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Abstract

Hypersaline waters and glacial ice are inhospitable environments that have
low water activity and high concentrations of osmolytes. They are in-
habited by diverse microbial communities, of which extremotolerant and
extremophilic fungi are essential components. Some fungi are specialized
in only one of these two environments and can thrive in conditions that
are lethal to most other life-forms. Others are generalists, highly adapt-
able species that occur in both environments and tolerate a wide range
of extremes. Both groups efficiently balance cellular osmotic pressure and
ion concentration, stabilize cell membranes, remodel cell walls, and neu-
tralize intracellular oxidative stress. Some species use unusual reproductive
strategies. Further investigation of these adaptations with new methods and
carefully designed experiments under ecologically relevant conditions will
help predict the role of fungi in hypersaline and glacial environments af-
fected by climate change, decipher their stress resistance mechanisms and
exploit their biotechnological potential.
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LIFE IN HYPERSALINE WATER AND GLACIAL ICE

Water is essential for life, and in environments where it is limited, some organisms have evolved
ways to survive and even thrive under conditions of extreme water scarcity. In nature, the amount
of biologically available water is limited not only by aridity, but also because it exists in unavail-
able states due to freezing or high concentrations of osmolytes. In fact, high concentrations of
extracellular solutes are characteristic of all these conditions: In the case of drought, solutes are
concentrated by evaporation of water, and in the case of freezing, by displacement of solutes
from expanding ice crystals into the decreasing volume of liquid water between the crystals (55).
This review focuses on fungi and their adaptations in two types of environments with low avail-
ability of water: glacial ice and hypersaline water (Figure 1). These fungal species typically fall
into the category of extremophilic fungi (including yeasts), which share some common and novel
characteristics.

Glacial and hypersaline environments are attracting growing interest among microbiologists
for two main reasons: the rapid changes in these environments due to climate change and the
increasing awareness of the novelty of their rich microbial communities. At first, hypersaline en-
vironments were thought to be inhabited mainly by archaea and glaciers mainly by bacteria. Only
later did it become clear that a considerable diversity of extremophilic fungi was an overlooked
but important component of these biotopes.

Despite the well-known salt tolerance of the alga Dunaliella salina, eukaryotic fungal cells
were thought of as too complex to adapt to extreme concentrations of extracellular salt (54).
Eventually, however, it was discovered that extremophilic fungi are an important component
of the hypersaline microbiota (13, 56). Thus, certain fungi tolerate high concentrations of
Na*, K+, Li*, Ca?*, and, most impressively, Mg?* in natural saline lakes as well as in artificial
evaporation ponds used for harvesting salt (136). Fungi populate thalassohaline waters, which
are mostly concentrated seawater, as well as athalassohaline waters, the ionic composition of

Figure 1

Typical hypersaline and glacial habitats. Shallow ponds for evaporation of sea water in salt production () and
glacial ice with various amounts of inorganic material originating mostly from subglacial bedrock ().
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which reflects local geology and environmental conditions. Thus, extremophilic fungi have been
isolated worldwide from saltern brines (1, 4, 23, 54, 134, 140); from magnesium-rich bitterns
(136); from the athalassohaline hypersaline waters of the Dead Sea, the Great Salt Lake, and the
alkaline Wadi El Natrun in Egypt (5, 85, 133); from hypersaline industrial effluents in temperate
and tropical climates (39, 66, 72); from cold hypersaline lakes in Antarctica; and from cryopegs
in Siberian permafrost (37). As explained below, the survival of these fungi is supported by
specialized adaptations at both genomic and phenotypic levels.

Glacial ice was originally thought to be a medium in which microbes could become entrapped
(sometimes in stable, chronologically defined layers) and remain viable but dormant for long pe-
riods. For example, over the last 30 years viable strains of fungi have been isolated from ice 1 to
2 million years old collected from ice cores at depths of 3.5 km (9, 27, 66, 80). Then, in 2007,
fungi were discovered in a much more dynamic glacial habitat: at the base of polythermal glaciers,
where local pressure creates a thin film of melted ice that allows unexpectedly abundant, metaboli-
cally active fungal communities. Similar observations have been made in the biodiversity sampling
of communities in retreating Arctic glaciers on Svalbard and glaciers in Europe, Canada, Alaska,
China, Patagonia, and Mexico (9, 14, 15, 18, 19, 24, 75, 124-126, 146). Some of the same fungal
species have also been sampled on the surface of melting ice sheets in Greenland and Antarctica
(26,92,113).

Fungi are essential to the biochemical cycles in polar and alpine regions. However, most studies
of fungi focus on their ecological role in soils and their interactions with plants (2, 3), while fungi in
glacial ice have been primarily studied by cataloging their biodiversity. Even here, large knowledge
gaps remain. For example, little is known about the species of fungi that are deposited on remote
supraglacial snow and ice fields by aeolian processes, or about their role in aerosols and in ice
nucleation (105). Interestingly, the overlap between the fungal diversity of the ice sheets and that
of the overlying fresh snow is very small (92). This supports the hypothesis that glacial microbiota
result from migration processes of microbes deposited on the glaciers and ice sheets by rain, snow,
and wind, during which these microbes undergo selection and enrichment as they move from the
surface to the bottom of the glacier, a process that can take thousands of years.

The selection and enrichment processes of microbes during glacial formation vary according
to local conditions. Analyses of glacial communities in geographically distant areas find that ice
environments exhibit a great deal of spatial heterogeneity with very little overlap (82). This is true
for both subglacial and supraglacial environments. The latter are covered by snow or ice algae (or
both), which are responsible for the accumulation of pigmented organic matter. In some cases (e.g.,
black ice algae on the Greenland Ice Sheet) this leads to a significant reduction in surface albedo
and an increase in ice melt and microbial activity. Initial observations suggest that these algae act
as environmental filters and structure the supraglacial fungal community. The consequences are
complex, ranging from enrichment with pathogens and endophytes of boreal, polar, and alpine
plants to saprotrophic fungi contributing to algal biomass degradation (11, 92).

Prokaryotes and fungi of the englacial system (the habitat within glacial ice) are less stud-
ied than those in other glacial habitats. Some fungi deposited on the glacier surface gradually
migrate to deeper ice layers, possibly reproducing in the veins and the micropockets of brine be-
tween ice crystals. These fungal microcommunities may be influenced by mineral dissolution and
precipitation processes in the ice, possibly creating local islands of metabolically active fungi (3).

Under temperate and polythermal glaciers, and under large parts of the Greenland and
Antarctic Ice Sheets, liquid water can accumulate and create a habitat with high concentrations
of weathering products and nutrients. Fungi isolated from such subglacial environments likely
contribute to consortia of heterotrophic and chemoautotrophic microbes that accelerate the
weathering of rocks. However, their occurrence and role are still unknown (76). Given the
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accelerated glacial melt and retreat, fungi released by glacial meltwater from subglacial
environments could also be indicators of climate change (3, 9, 24).

Finally, studies of glacial fungi might give a clue as to how and when the first fungi made the
transition from water to land: This could have happened—according to the “White hypothesis”—
in icy environments of the Cryogenian period also known as Snowball Earth (82). During this
period, the diverse, including highly osmotic, glacial microniches on the surface of the melting
ice may have favored the transition from zoosporic fungi to hyphal growth and true osmotrophy.
Consistent with this, recent studies have shown an unexpected abundance and diversity of (mainly
uncultivable) zoosporic (e.g., chytrid fungi) lineages in certain icy environments (3, 8).

DIVERSITY OF FUNGI IN HYPERSALINE WATER AND GLACIAL ICE

Hypersaline and glacial environments differ in several important characteristics. Hypersaline en-
vironments, found mainly in temperate and tropical parts of the world, are characterized by high
UV radiation, low oxygen levels (at the highest salinities), fluctuating nutrients, and occasional
abrupt increases in water activity due to rainfall. Nevertheless, conditions are generally stable
(23). Glacial environments, on the other hand, are quite heterogeneous. The supraglacial zone is
influenced by the exposure to strong solar irradiation and cycles of freezing and thawing and is
enriched in nutrients and airborne microorganisms. The subglacial ice and englacial ice typically
receive little to no light, are oligotrophic, and are likely low in oxygen and influenced by local
mineral dissolution and precipitation processes (3, 27).

Despite these differences, the challenges encountered by microorganisms in hypersaline and
glacial environments overlap substantially. Salinity causes both ionic and osmotic stress through
osmotic imbalance. Freezing causes osmotic stress by dehydrating cells due to reduced water ab-
sorption and conduction. Under both conditions, osmolytes stabilize the cells by acting as both
cryoprotectants and osmoprotectants. This could explain why many fungal species isolated from
hypersaline environments are also isolated from cold or glacial ecosystems and why many fungi
isolated from glacial ice grow on media supplemented with 10% or even 17% (w/v) NaCl (125).

Unlike prokaryotes found in hypersaline waters, most fungi from these environments can grow
without salt but nevertheless tolerate high NaCl concentrations, some up to saturation (32% w/v);
i.e., they are extremely halotolerant (54). Few fungal species cannot grow in normal microbiolog-
ical media but require an increased concentration of salt (78, 83, 107, 147). Fungi found in glacial
ice show similar adaptability. Most are psychrotolerant rather than psychrophilic, and some even
grow at 37°C (57, 95).

The mycobiota of the two low-water-activity environments, hypersaline water and glacial ice,
can be divided into transient taxa that are strongly influenced by environmental conditions and the
resident core community, which is found in the majority of similar environments around the world
(Figure 2). Both categories can be further subdivided into specialists and generalists. Specialists
are usually associated with only one of the two environments with low water activity, while many
generalists can be isolated from both extreme habitats (4).

Specialist core species of hypersaline waters are represented by ascomycetous melanized black
yeasts Hortaea werneckii, Phaeotheca triangularis, and Trimmatostroma salinum (56) and basidiomyce-
tous filamentous fungi Wallemia ichthyophaga, Wallemia bederae, and Wallemia sebi (1, 61). In
comparison, glacial environments show higher variability in core fungal diversity. Specialist ba-
sidiomycetous yeast taxa that predominate in the glacial microbiome include members of the
Cryptococcus, Glaciozyma, Mrakia, Naganishia, Rhodotorula, and Sporobolomyces genera (16, 25, 121,
132,143). However, many yeast populations in glaciers are habitat-specific and strongly influenced
by the type and temperature of ice, sediment, and salt inclusions, resulting in pockets of local
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Aureobasidium subglaciale (EXF-2481) Hortaea werneckii (EXF-2000) Wallemia ichthyophaga (EXF-994)
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Figure 2

Representative species of extremotolerant and extremophilic fungi. Fungi were grown at 24°C for three weeks on malt extract agar [in
the case of Wailemia ichthyophaga, with 15% of added NaCl (w/v)].

diversity (91, 93, 148). Although these populations probably play an important role in nutrient
cycling and mineralization of organic matter, little is known about these processes.

Specialist species are found in a narrow range of environments and are among the species that
survive and grow in some of the most extreme conditions on the planet: the black yeast H. werneckii
grows in almost the entire range of NaCl concentrations (54). The basidiomycete W, ichthyophaga
can grow in solutions saturated with NaCl (54). This specialization may explain the limited distri-
bution of the fungus: Only 25 isolates of W, ichthyophaga are known worldwide. Even fewer isolates
have been found of the black yeast Aureobasidium subglaciale, most of which have been isolated from
the subglacial ice of Arctic glaciers (135). Interestingly, a handful of A. subglaciale strains (and sev-
eral rare Penicillium species) have also been isolated from household refrigerators, suggesting that
even highly specialized species can find unexpected refuge in certain artificial habitats (135).

The black yeast H. werneckii shows the extremophilic phenotype characteristic of black yeasts:
slow, polymorphic growth as yeast cells, hyphae, or meristematic clumps (i.e., thick melanized
cell walls covered by extracellular polysaccharides) and the ability to form biofilms (56). Although
H. werneckii is the predominant fungus in thalassohaline hypersaline waters worldwide, it has also
been found in cold environments such as deep-sea water and glacial ice, in association with animals
and plants, on salted foods, and as the causative agent of tinea nigra on salty human skin (53).
H. werneckii thus has a remarkable adaptability to different temperatures and salinities (reflected
in its ability to produce enzymes that are active at high salinities) (144).

The ability to grow at low water activity is rare among Basidiomycota. However, all species of
the genus Wallemia are xerophilic or halophilic (61). The specialist W, ichthyophaga, the phylogenet-
ically most distant species from the rest of the genus, is the most halophilic fungus known to date
with an obligate requirement for at least 10% (w/v) NaCl. This species also grows in saturated
KCI and MgSOy solutions and at 2.1 M MgCl, (21, 136). Comparative phylogenomic analy-
ses suggest that Wallemia belongs to the Wallemiomycetes, recently elevated to the subphylum
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Wallemiomycotina, a 500-million-year-old sister group of Agaricomycotina (147). The unusual
extremophilic nature of the taxon is reflected in the production of various toxic metabolites that in-
creases at high NaCl concentrations—a notable exception to the general rule of reduced secondary
metabolite synthesis at low water activity (60, 137).

In addition to the core community of habitat specialists, other species occur in both glacial and
hypersaline (and often many other) environments. These species usually do not tolerate such ex-
treme values of physicochemical parameters as the specialists, but they are characterized by a high
tolerance to many types of stress as well as by their nutritional versatility. Examples of such polyex-
tremotolerant species are Aureobasidium pullulans; Rhodotorula mucilaginosa; Debaryomyces hansenii;
and representatives of the genera Aspergillus, Cladosporium, and Penicillium (16,17,59,79, 141, 142).
Penicillium species from glacial environments are also characterized by the coexistence of a large
diversity of species in the same samples and the ability to thrive under extremely nutrient-poor
conditions (110, 111).

Many polyextremotolerant fungi originating from environments with low water activity exhibit
a number of exaptations that are considered virulence factors: increased resistance to oxidative
stress, growth at human body temperature, oligotrophy, melanization, and flexible morphology
(41, 42, 50, 51). Because of these characteristics, they can grow indoors, in close proximity to
humans, and in some cases cause opportunistic infections (50). The generalist R. mzucilaginosa col-
onizes dishwashers and washing machines and can infect humans (145). Studying these adaptations
and the biodiversity of these fungi indoors is important to better understand their evolution and
implications for the emergence of novel fungal pathogens (50, 102, 150).

A. pullulans, R. mucilaginosa, and D. hansenii are ubiquitous, polyextremotolerant species that can
be isolated from environments with widely varying water activity and temperature and other ex-
tremes (43, 89,99, 143). This adaptive behavior might be related to their ability to tolerate adverse
conditions in a state of anhydrobiosis (i.e., temporarily and reversibly suspended metabolism),
their ability to survive freeze-thaw cycles, and (in the case of A. pullulans and R. mucilaginosa) their
highly protective pigmented cell walls (7).

The airborne saprotrophic fungi of the genus Cladosporium are associated with dead organic
matter. In polar regions, they have been proposed as bioindicators of rapidly melting glaciers and
ice sheets and associated with newly exposed land (101). Aspergillus and Penicillium species are also
commonly found in cultured isolates from brines and are known to survive in ice for a long time
as “living fossils” (12). Some species that can reproduce in glacial environments appear to evolve
there into genetically or phenotypically distinct populations (109, 111). Some are characterized by
an even richer profile of secondary metabolites than is seen in their mesophilic relatives despite
living in extremely oligotrophic environments (92, 112).

ADAPTATIONS TO EXTREME CONDITIONS

The similarities between hypersaline and glacial environments mean that microorganisms in these
environments face some common challenges. The concentrated extracellular solutes in the brine
and between the ice crystals may contain ions that are toxic if they enter the cell in large quantities.
Low water activity of the medium threatens the cell with water loss. Low temperature and high
salinity alter the fluidity of lipid membranes and disrupt membrane-bound processes. Thus, in the
plethora of fungal adaptations to life in hypersaline and glacial environments, some clear patterns
can be discerned (Figure 3).

The first step in responding to extreme conditions is to perceive them. One of the most im-
portant signaling pathways that responds to high osmolarity, the high-osmolarity glycerol (HOG)
signal transduction pathway, is triggered by sensors in the plasma membrane and leads to the
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MAPK (mitogen-activated protein kinase) Hog1 via two cascades of signaling molecules (58). In
addition to hyperosmolarity, this pathway also responds to numerous other stress factors, including
low temperatures (88), and leads to a variety of changes in transcription, translation, and ubiquiti-
nation. The HOG signaling pathway has been studied in detail in H. werneckii and W. ichthyophaga,
leading to the identification of all major components of the pathway (63, 70, 129). In contrast to
what occurs in most other species, Hog1 is constitutively phosphorylated in W, ichthyophaga under
optimal osmotic conditions and is dephosphorylated under both hypo- and hypersaline condi-
tions. Moreover, only one of the two branches of the signaling pathway leading to Hogl appears
to be conserved in this species (98). In H. werneckii, Hogl is permanently phosphorylated as long
as the cells are maintained at high NaCl concentrations, whereas in most fungi (including H. wer-
neckii at high KCI or sorbitol concentrations) such phosphorylation is only transient (98). In other
extremotolerant fungi, HOG and other signaling pathways have received less attention despite
some initial studies, e.g., in D. bansenii (100). The same is true for alternative signaling pathways.
A promising target for future research is the calcineurin signaling pathway, which regulates ion
homeostasis (62). The signaling pathway is involved in tolerance to NaCl in Aspergillus oryzae (62)
and to freezing in Saccharomyces cerevisiae (87).

A universal response of fungi to hyperosmotic stress is intracellular accumulation of small
organic molecules such as glycerol. These compatible solutes balance the osmotic pressure, pre-
venting cytosol dehydration and loss of turgor (96). Glycerol and some other compatible solutes
also have a cryoprotective function (52).

The synthesis of large quantities of compatible solutes contributes substantially to the high en-
ergy requirements of the extremophilic lifestyle (84). Because of its small size, glycerol is cheaper
to produce than larger compatible solutes, but it is also susceptible to leakage from the cell (84).
In contrast to the deliberate release of glycerol during hypoosmotic shock by plasma membrane
aquaglyceroporins (119), such leakage is undesirable and is countered by active transport of glyc-
erol back into the cell by transporters of the major facilitator superfamily (MFS) (33). These
proteins, Stll and its homologs, are one of the most commonly identified mechanisms of fungal
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adaptation to hypersaline conditions. In H. werneckii, Aspergillus sydowii, Aspergillus salisburgensis,
Aspergillus sclerotialis, D. bansenii, and several Hyphopichia species, transcription of genes encoding
homologs of Stl1 is induced in response to high NaCl concentrations in the environment (40, 63,
73, 90, 117). The multiplication of genes encoding Stll has also been observed in several halo-
tolerant and halophilic fungi, including A. pullulans and A. subglaciale (127), W. ichtbyophaga (139),
and Hyphopichia spp. (73). The costs required to synthesize compatible solutes could also be re-
duced by efficient uptake of glycerol produced by other organisms, or even by active predation—a
possibility that has been largely neglected in the existing literature focused on the study of pure
cultures.

The synthesis of glycerol is controlled by the rate-limiting enzyme glycerol-3-phosphate dehy-
drogenase 1 (Gpdl). Its expression is strongly upregulated during hyperosmotic shocks, as shown
in H. werneckii (63), A. pullulans and A. subglaciale (127), A. sydowii (90), Eurotium rubrum (65), and
Hyphopichia spp. (73). However, under long-term hypersaline conditions, expression often returns
to the level of nonsaline conditions, while Stll expression remains elevated, suggesting that cells
in stable hypersaline environments prioritize the energetically more efficient import of glycerol
over its synthesis (90).

In S. cerevisine, expression of Gpdl and Stll is also upregulated by freezing and improves
yeast freezing tolerance (32). Since regulation occurs via the HOG pathway and the cryopro-
tective role of glycerol is well known (77), the same may be expected in other fungi. For example,
Myakia psychrophila accumulates glycerol as a compatible solute at 4°C due to upregulation of
Gpd1 expression (115).

While glycerol is the main compatible solute of most fungi, many other osmolytes warrant
further investigation. It has been suggested that Rhodotorula frigidialcobolis lowers its freezing
point with ethanol (123), and a variety of organisms produce antifreeze proteins—a nonosmolyte
alternative to prevent freezing damage (64). In addition to glycerol, H. werneckii accamulates ara-
bitol, mannitol, erythritol (especially in the stationary growth phase) (69), and even mycosporines
and mycosporine-like amino acids (67). W, ichthyophaga accumulates glycerol and arabitol (138).
Trehalose is known to protect against extreme temperatures, but its role in halotolerance is ques-
tionable (90). The genomes of A. sydowii, Aspergillus versicolor, and Hyphopichia spp. are enriched in
genes for amino acid uptake (73, 90), while A. salisburgensis, A. sclerotialis, and M. psychrophila are
enriched in the number of genes encoding transporters of the MFS (115, 117).

Not all of the above osmolytes are necessarily directly associated with halotolerance or psy-
chrotolerance. The accumulation of small organic molecules in the cytosol may play other roles in
stress tolerance that remain to be explored, including the mitigation of oxidative stress (50). The
production of reactive oxygen species (ROS) in the cell typically increases under stressful condi-
tions, including high salinity and low temperatures (77, 120). In H. werneckii, the ability to cope
with ROS is thought to determine the upper limit of salt tolerance (97). Increased expression of
antioxidant response genes has been observed in A. sclerotialis and Aspergillus salisburgensis at high
salinity (117) and in the psychrotolerant Penicillium olsonii following cold shock (38).

The classic route of ROS detoxification is via antioxidant enzymes, the three most impor-
tant being superoxide dismutases, catalases, and peroxiredoxins. There is some evidence that the
copy number of genes encoding these enzymes correlates with the maximum tolerated salinity
of selected halotolerant fungi (42). An alternative, nonenzymatic way of ROS detoxification has
emerged in recent years, particularly in the context of resistance to ionizing radiation: scaveng-
ing ROS with low-molecular-weight complexes of manganese, short peptides, and other small
metabolites. The model was first discovered in bacteria and later extended to other organisms,
including fungi (106), and to ROS that are formed during aging and desiccation (35). Geomzyces
pannorum, a weak producer of enzymatic antioxidants, uses phenolics to increase ROS scavenging
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activity after cold shock (77), but otherwise the potential role of small osmolytes in mitigating
ROS under hypersaline and cold conditions remains largely unexplored.

The balancing of osmotic pressure is complemented by careful management of intracellular
concentrations of inorganic ions. This usually means retaining sufficient amounts of intracellular
K* and expelling excess Na* and other toxic ions (e.g., Mg®*, Li*, or others, depending on the
environment). H. werneckii and A. pullulans appear to do this very efficiently (68), butin D. bansenii
and W, ichthyophaga the concentration of intracellular Na™ is relatively high (99, 138).

Active membrane transport of inorganic ions provides another important energy sink under
hypersaline conditions. The energy is provided by ATP or by the proton motive force, which is
mainly generated by the H"-ATPase Pmal. Black yeasts, including H. werneckii and Aureobasidium
spp., contain a large collection of transporter genes consisting of both paralogs and unrelated but
functionally redundant transporters (e.g., three types of K importers in 4. pullulans) (44). In these
and other halotolerant fungi, expression of transporter genes responds to environmental salinity
(65,73, 90, 131). Heterologously expressed transporters from D. bansenii increase halotolerance
of S. cerevisiae (100).

The role of alkali metal cation transporter genes in fungal halotolerance is well established, but
an abundance of these genes is neither sufficient nor necessary for halotolerance. The diversity
and multiplicity of transporter genes is high in many black fungi, not all of which are halotolerant
(44). In contrast, the halophilic W ichthyophaga has only a modest diversity and an abundance of
transporter genes, the transcription of which is mostly unresponsive to salt (139).

Membrane transporters, other membrane-bound proteins, and cellular integrity depend on
adequate cell membrane fluidity. At low temperatures, psychrophilic fungi decrease the saturation
and average chain length of fatty acids and lower the sterol:phospholipid ratio (6,77, 103, 104). Ad-
ditional compounds such as carotenoids may help to balance the higher proportion of unsaturated
fatty acids (123). In halotolerant and halophilic fungi, fluctuation of plasma membrane fluidity is
kept low even at extreme salt concentrations (128), and at least some of these changes are achieved
by altered expression of fatty acid desaturases, elongases, and enzymes involved in ergosterol syn-
thesis (48, 90). Since these changes can affect membrane permeability, this could reduce the need
for active transport counteracting the leaking of various substances through the membrane. For
example, in D. hansenii osmotic stress induces membrane depolarization and reduces permeability
to cationic substances (22).

The barrier of the plasma membrane is supplemented by the cell wall. In H. werneckii, the
melanization of the cell wall is thought to reduce the leakage of glycerol at high salinity (69). Some
of the (very few) changes observed in H. werneckii after seven years of experimental evolution at
high salinity were associated with the cell wall (45). In W ichthyophaga, the cell wall thickens more
than threefold at high salinity and accounts for more than half of the cell dry mass. The otherwise
contracted genome of the species is significantly enriched with genes encoding hydrophobins,
small hydrophobic proteins that could further impermeabilize and strengthen the cell wall (71,
138, 139).

The elasticity of the cell wall is crucial for the survival of fungi after osmotic shock. Architec-
tural changes in the cell wall can occur within seconds of shock (30). In several halotolerant and
halophilic fungi, the changes in the cell wall are accompanied by altered expression of enzymes
involved in the synthesis, restructuring, or degradation of chitin, B-glucans, and hydrophobins
(65, 71,90, 117) and also of mannoproteins on the cell wall surface (40). A phosphomannomu-
tase from the polyextremotolerant yeast Rbodotorula mucilaginosa, an enzyme catalyzing an early
step of O- and N-linked mannosylation, increased halotolerance of S. cerevisiae when heterolo-
gously expressed (43). Mannose is also a component of mannan, an extracellular polysaccharide of
Rhodotorula spp. that protects against desiccation and freeze-thaw damage (123).
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Although the above adaptations keep the intracellular environment as undisturbed as pos-
sible even under extreme conditions, this balance is not absolute. Membrane transporters and
the synthesis of compatible solutes are energetically costly. Antifreeze compounds prevent dam-
age from intracellular ice crystals, but low temperatures still slow down enzymatic reactions. As
a result, growth of extremotolerant and extremophilic organisms is often slow (51, 103). In re-
sponse, H. werneckii upregulates genes of the glycolytic pathway, tricarboxylic acid cycle, pentose
phosphate pathway, and mitochondrial biogenesis at high salinity (131). D. hansenii upregulates
genes encoding proteins of mitochondrial functions (40). At low temperatures M. psychrophila
upregulates genes involved in ribosome and energy metabolism (115). In contrast, R. frigidialco-
bolis downregulates electron transport chain and tricarboxylic acid cycle genes, but overexpresses
fermentation and pentose phosphate pathway genes (123). Psychrophilic enzymes with higher ac-
tivity at low temperatures have also been intensively studied, not least because of their potential
biotechnological applications (28).

Other global adaptations to high salinity include a proteome with an increased proportion
of acidic amino acid residues, a feature also observed in halophilic prokaryotes (65, 117). At low
temperatures, codon usage bias and frequent alternative splicing were observed in M. psychrophila
(115) and an increased role of small RNAs in R. frigidialcobolis (123).

In some cases, single genes have been reported to have significant effects on fungal extremo-
tolerance. 3’-Phosphoadenosine-5'-phosphatases from H. werneckii and A. pullulans, or even a
21-amino acid region of these enzymes when inserted into the homologous protein of the
recipient, increased halotolerance of S. cerevisine and Arabidopsis thaliana (36, 130). A phosphoglu-
comutase from R. mucilaginosa proved to be more lithium resistant than its very lithium-sensitive
S. cerevisine homolog and increased the halotolerance of the latter yeast (43). The changes in the
carboxy-terminal domain of RNNA polymerase II in fungi from polar and hypersaline environ-
ments affect the ability of this enzyme to undergo phase separation in vitro and localize in vivo,
potentially allowing it to overcome energetic barriers to metabolic activity (86).

GENOMICS AND TRANSCRIPTOMICS

It was expected that genomic data would accelerate genetic research of typically recalcitrant
extremotolerant fungi. However, explaining such complex phenotypes as psychrotolerance or
halotolerance with genome analysis only leads to very general and often inconclusive observations
(49, 114). Sequencing the transcriptomes of fungi grown at high salinity or low temperatures pro-
vided more informative insights (90, 117), but even transcriptional responses were often difficult
to interpret (139).

Nevertheless, the availability of a genome sequence is a valuable first step in deciphering the
halotolerance and psychrotolerance of fungi. On the one hand, it can support and direct targeted
in vitro genetic studies. On the other hand, a sequenced genome provides a reference point for
further sequencing, followed by comparative and population genomics. Such studies have, for
example, revealed an unexpected diversity of reproductive strategies of fungi from extreme envi-
ronments (Table 1). Evidence of recombination has been discovered in three species previously
considered asexual: A. pullulans (49), Wallemia mellicola (116), and W. ichthyophaga (47). The degree
of recombination observed was higher in A. pullulans than in most other fungi (49). This species
was confirmed to be a true generalist, without cryptic specialization, although it is capable of in-
habiting an unusually wide variety of environments, both temperate and extreme (49). While the
observed recombination of the A. pullulans and W. mellicoln is not difficult to explain, due to their
ubiquitous distribution, it is surprising in W ichthyophaga, an extremely rare species with a narrow
range of habitats and therefore very limited opportunities for recombination (61).
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Table 1 Representative extremophilic and extremotolerant fungi and their traits discovered by population genomics

Species Extreme phenotype Distribution Recombination Ploidy
Aureobasidium pullulans Polyextremotolerant Generalist Yes Haploid
Aureobasidium melanogenum | Polyextremotolerant Generalist/specialist | No Haploid or diploid (hybrids)
Aureobasidium subglaciale Psychrotolerant Specialist No Haploid
Hortaea werneckii Extremely halotolerant | Specialist No Haploid or diploid (hybrids)
Wallemia ichthyopbaga Halophilic Specialist Yes Haploid
Wallemia mellicoln Extremely osmotolerant | Generalist Yes Haploid

In contrast to the generalists A. pullulans and W. mellicola, the specialists A. subglaciale (135) and
H. werneckii (46) are strictly clonal. Despite known pitfalls, including Muller’s ratchet, clonality also
eliminates the recombination load that would disrupt efficient genome configurations of evolving
extremophiles, and it also saves the energy required for sexual reproduction (46). Nevertheless,
clonality in Aureobasidium melanogenum and H. werneckii is amended by unusual intraspecific hy-
bridization, described as “stable parasexuality” (46, p. 12). This results in highly heterozygous
diploids that make up about two-thirds of the species’ wild isolates and are stable enough to
spread over large geographical distances—without haploidization, which is generally typical of
parasexuality (46). In addition to altered ploidy, which alone can affect phenotype (122), paralo-
gous genes are not necessarily functionally identical—as shown in the case of glycerol-3-phosphate
dehydrogenases of H. werneckii (74). Hybrid genomes have also been found in some other, nonex-
tremotolerant fungi (34), but the prevalence of this phenomenon in fungi, the mechanism of
hybridization, and its ecological implications in extreme environments are as yet unknown.

FUTURE RESEARCH

The number of studies on the microbiology of glacial ice and hypersaline waters is increasing, but
fungi still receive far less attention than prokaryotes. The diversity and geographical distribution
of fungi in these environments are generally well known, with some exceptions. For example, our
knowledge of the fungi growing in magnesium-rich bitterns is rudimentary. In addition, published
studies on biodiversity in glacial and hypersaline environments are mainly based on culturing
techniques.

A few studies using culture-independent methods reported fungal DNA in glacial and hyper-
saline environments (4, 29, 93, 134). These studies showed a considerable diversity of uncultivable
fungi (e.g., Chytridiomycota) in glacial environments (8), but none so far in hypersaline environ-
ments. However, molecular methods for analyzing fungal diversity are also not without problems.
In such studies, particular care should be taken not to amplify environmental DNA derived from
organisms that cannot survive in extreme environments. In addition, some fungal species are
particularly recalcitrant to DNA extraction, due to their thick, often melanized cell walls (44).
Standard methods may not succeed in extracting DNA from these cells, thus distorting inferences
about the composition of the extremotolerant fungal community.

The ecological functions of fungal diversity in glacial and hypersaline environments are largely
unexplored. Proposed functions range from actively shaping their environment to interactions
with plants and animals. Some of these fungi are opportunistic human pathogens, and many hold
untapped biotechnological potential, e.g., the production of cold-active enzymes (28) and biocon-
trol of cold-stored produce (135). More research is also needed in the face of climate changes,
which pose particular threats to the cryosphere. Glacial fungi are directly affected by these pro-
cesses, but they can also help shape them. For example, certain fungi may form a symbiotic,
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lichen-like relationship with pigmented, albedo-reducing algae, and in this way contribute to ac-
celerating ice melt. This phenomenon needs to be studied further, especially with regard to its
impact on global warming (94).

The role of fungal populations in salterns in modulating halite precipitation and the organolep-
tic quality of harvested salt is largely unknown. The role of fungi as ecological drivers in
hypersaline habitats has not yet been investigated. Open questions include the following: (#) the
influence of available nutrients, such as phosphorus and nitrogen, on fungal abundance; () possi-
ble correlations and interactions of fungi with the alga D. sa/ina (81); and (¢) the role of fungi in
the microbial mats that form the floor of the precipitation basins of salterns (which in some an-
cient salterns may have been continuously cultivated for hundreds of years) (20). Other important
research topics are fungal degradation of wood immersed in hypersaline water (144) and the role
of hypersaline water as a reservoir of species pathogenic to corals and other marine animals (e.g.,
A. sydowii), a role possibly exacerbated by global warming (108). Finally, some of these halophilic
fungi could have important biotechnological applications in reversing the trend of global loss of
agricultural land due to salinization; that is, if fungal genes conferring halotolerance and/or stress
tolerance could be successfully transferred to plants of agricultural importance (36).

The growing knowledge of fungal adaptations to extreme environments has been accompa-
nied by increasing interest in the field, leading to the development of methods accessible beyond
the short list of mesophilic model organisms in the laboratory. The ability to sequence tens or
hundreds of fungal genomes can be used in genome-wide association studies, although the small
differences in stress tolerance and large intraspecific genotypic variability may hinder this ap-
proach (49). Alternatively, successful genetic manipulation and the ability to mate strains in a
laboratory setting would support the identification of quantitative trait loci. Valuable insights can
be gained by subjecting extremotolerant fungi to experimental evolution under extreme condi-
tions followed by whole-genome sequencing of the evolved strains (45). Although the possibilities
are not yet fully exploited and are more difficult than for S. cerevisize, genetic manipulation of ex-
tremophilic and extremotolerant fungi with CRISPR-Cas9 is finally within reach (31, 149). This
should renew interest in hypothesis-driven research, which has been overshadowed for a while by
the data-driven research of the genome and transcriptome era.

For best results, the study of extremotolerance should abandon the implicit and erroneous
assumption that the cellular response to an environmental shock is a good proxy of the response
required for constant growth under extreme conditions (54). A rapid environmental perturbation
can cause a large shift in the cell’s transcriptome and proteome, but when cells recover, many of
the affected genes return to their preshock transcription levels despite the continued presence of
the stressor (48, 115). The overlap between genes responding to shock and those responding to
sustained stress is generally small—in H. werneckii at high salinity (131) and also in S. cerevisiae at
low temperature (118), to name just two examples. Moreover, the study of shocks is less relevant to
survival in nature than is often assumed. While rain can lead to hypoosmotic shock, cells in nature
are not normally moved from freshwater into brine or suddenly shifted from room temperature
to a freezing state. Instead, a slow deterioration of conditions likely allows organisms to activate
the stress response toolbox in a less dramatic way, possibly through anticipatory stress responses
(10).

Finally, approaches such as cocultivation, single-cell sequencing, and metatranscriptomics
might enable us to study fungal stress tolerance under less-artificial conditions than pure,
nutrient-rich, and dense cell cultures of extremotolerant and extremopbhilic fungi.

Fungi are an essential component of microbial communities in hypersaline and glacial
habitats. Their diversity and adaptation to stress in selected model organisms have been well
studied. Further progress can be made by describing the ecological role of fungi in situ and their
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interactions with extremophilic prokaryotic microbial communities. Careful design of experi-
ments and adaptation of new methods to work with generalist, nonmodel, extremotolerant fungi
will allow us to better understand their role in a rapidly changing environment and explain how
they survive some of the most extreme conditions on the planet.

1. Extremotolerant and extremophilic fungi are an essential component of microbial
communities in hypersaline and glacial environments.

2. Hypersaline water and glacial ice are both characterized by a low availability of water
and a high concentration of inorganic ions.

3. Some specialized fungi are rarely found outside their preferred environment—either
hypersaline (Hortaea werneckii, Phacotheca triangularis, Trimmatostroma salinum, some
Wallemia species) or glacial (some species of the genera Aureobasidium, Cryptococcus,
Glaciozyma, Mrakia, Naganishia, Rbodotorula, and Sporobolomyces).

4. Some fungi are generalists, occurring in hypersaline, glacial, and often many other
environments, such as stressful artificial environments, e.g., Aureobasidium pullu-
lans; Rhbodotorula mucilaginosa; Debaryomyces hansenii; and some species of the genera
Aspergillus, Cladosporium, and Penicillium.

5. Common mechanisms of extremotolerance in fungi from hypersaline and glacial
environments include optimized signaling pathways, balancing of cellular osmotic pres-
sure and ion concentration, maintenance of optimal cell membrane fluidity, cell wall
strengthening, optimized energy metabolism, and efficient neutralization of intracellular
oxidative stress.

6. Fungal species from hypersaline and glacial environments use different reproductive
strategies, from intensive recombination to strict clonality interspersed with occasional
hybridization (“stable parasexuality”) that produces heterozygous stable diploids.

7. Some fungi from hypersaline and glacial environments have been shown to have
considerable biotechnological potential.

1. Whatis the size of the uncultivable fungal microbiota in different hypersaline and glacial
environments?

2. What is the role of fungi in nutrient cycling in hypersaline waters and glacial ice?

3. How do fungi interact with each other and with other microorganisms in hypersaline
waters and glacial ice; e.g., how do they influence algal blooms that reduce albedo and
accelerate the melting of the Greenland Ice Sheet?

4. Can the effects of climate change on extreme environments, particularly the increasing
amount of glacial meltwater, lead to the release of fungi that are potentially harmful to
animals or plants?
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5. Can CRISPR-Cas9, single-cell sequencing, quantitative trait locus analysis, and other
methods be adapted for use with recalcitrant cells of most extremotolerant and
extremophilic fungi?

6. Can the study of fungal adaptations to hypersaline and glacial conditions be carried out
under more ecologically relevant conditions—under constant stress rather than shocks,
in cocultures rather than pure cultures, with a combination of multiple stressors rather
than just one?

7. How can the biotechnological potential of fungi from hypersaline and glacial environ-
ments be exploited in practice?
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