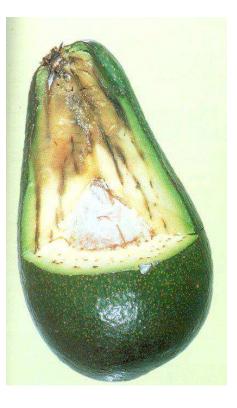
Pathology challenges in avocado:

Fruit diseases

Liz Dann, Lindy Coates, Luke Smith, Ken Pegg, Jan Dean, Tony Cooke

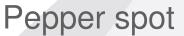
Topics covered

- Anthracnose, stem-end rot, pepper spot and sooty blotch
- Management of fruit diseases
 - Field practices and fungicide treatments
 - Postharvest practices and fungicides
- Rootstocks and nutrition
- Future management tools
- Integrated control

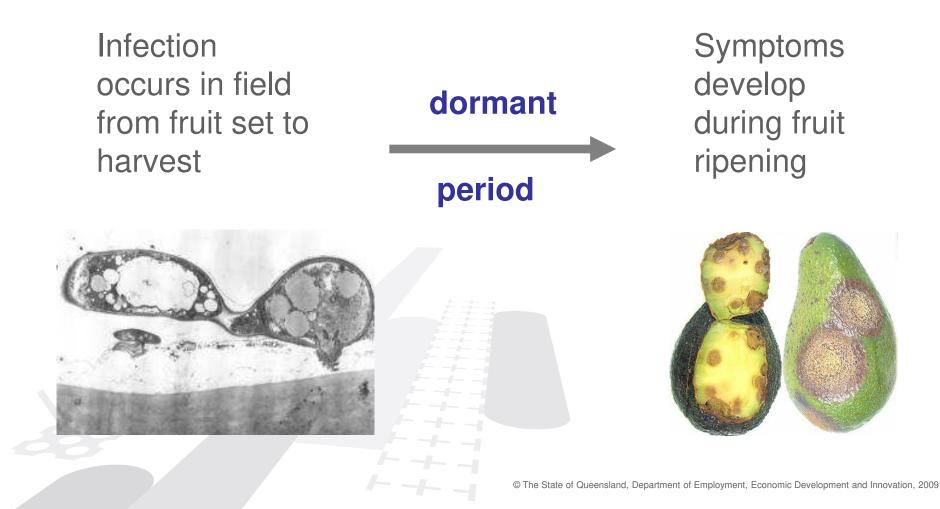

Queensland Primary Industries and Fisheries

Postharvest diseases

anthracnose


stem-end rot

Field diseases



Sooty blotch

© The State of Queensland, Department of Employment, Economic Development and Innovation, 2009

Anthracnose (Colletotrichum gloeosporioides)

Stem-end rot (many fungi)

• Botryosphaeria spp

XXXXX

- Lasiodiplodia theobromae
- Colletotrichum gloeosporioides
- Phomopsis perseae
- Thyronectria psuedotrichia

Stem-end rot (SER) fungi colonise the stem tissue of avocado trees without causing disease

Symptoms develop during fruit ripening

Stem-end rot

- SER more severe when trees are stressed
- Optimum irrigation and nutrition critical for control
- Higher incidence in immature fruit
- Incidence can be reduced by using field fungicides

Pepper spot (Colletotrichum gloeosporioides)

Caused by the same fungus which causes anthracnose

XXXXX

- Correlation with tree stress due to:
 - abiotic factors (drought, sunburn/heat stress, poor irrigation management, no mulching)
 - biotic factors (Phytophthora)

Pepper spot worsened by sunburn

Sooty blotch

- Superficial blemish that can develop on fruit and twigs
- Active in wet weather
- Well controlled with copper spray
 program

Management of fruit diseases

- Field
 - Registered fungicides eg. Copper, Amistar
 - Crop nutrition, especially Ca and N
 - Optimal irrigation
 - Variety/rootstock selection
 - Canopy management
 - Management of insect pests
 - Careful harvesting, avoiding skin damage, bruising

Canopy management

- Good ventilation, rapid drying
- Lift skirts off ground
- Prune out dead branches before flowering

Management of fruit diseases


- Postharvest
 - Keep fruit covered (out of sun) to prevent overheating
 - Remove field heat ASAP (pre-cool)
 - Handle fruit carefully, avoid bruising etc.
 - Registered fungicide (Sportak) before packing
 - Storage temperatures
 - green mature Hass, 4-5°C
 - ripening fruit >12°C
 - Near ripe 2-5°C

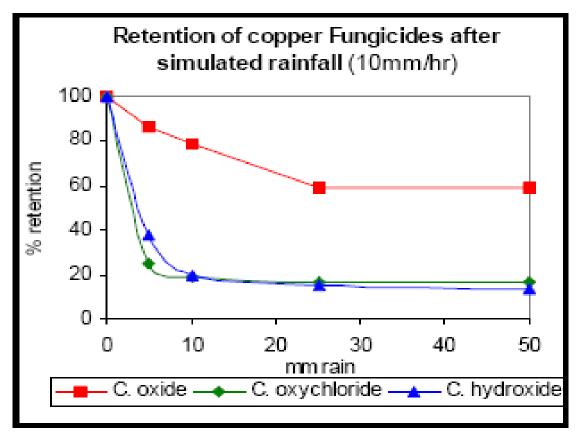
Lower storage temps may cause chilling injury

- Controlled ripening (ethylene)

Chilling injury ("diffuse discoloration")

Copper fungicides

XXXXXXXX


- Protectants no "short-cuts" in copper spray program (every 28 days in fine weather, every 14 days if very wet)
- <u>Must</u> maintain protection from fruit set (pea size) to harvest
- Do not spray at flowering can be phytotoxic
- If anthracnose and pepper spot a major problem, a "clean up" spray <u>before flower bud</u> break is OK
- Keep to recommended rates and monitor levels of copper in soil to avoid "copper contaminated soils"

Keeping copper on the fruit

- Smaller particle size gives better rain fastness, coverage and longevity (red, copper oxide)
- Wind will blow off particles $> 3\mu m$
- As fruit expands, copper is dislodged and fruit is not covered
 - Keep up the regular applications

Copper retention

Graph 1: Retention after simulated rainfall for 3 copper formulations (Centrilab, Holland).

Taken from: 2004 Citrus Fact Sheet, Hardy, S., Fallow, K. and Barkley, P.

Copper fungicides and foliar phosphonate application

- Use <u>red copper</u> (copper oxide/cuprous oxide) when spraying with phosphorus acid to reduce risk of toxicity
- Copper hydroxide (blue copper) is the worst to use with phosphorus acid, as the low pH makes it soluble (dissolves) and the cupric ions become phytotoxic
- Copper oxychloride (green copper) is intermediate
- Spray copper first, then phosphorus acid, don't mix

Strobilurin fungicides

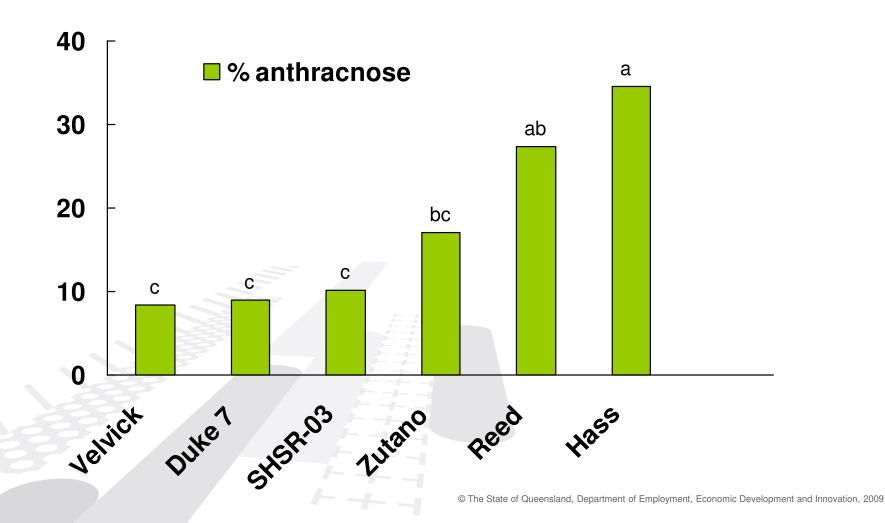
* XXXXXXXX

- Amistar® (registered for avocado)
- Cabrio® (not currently registered for avocado)
- Post-infection activity
- Can be applied after a very wet period
- Very effective when applied close to harvest (withholding period 7 days)
- Used with coppers in an anti-resistance strategy
 Eollow label directions to avoid functionary

Follow label directions to avoid fungi becoming resistant to this group

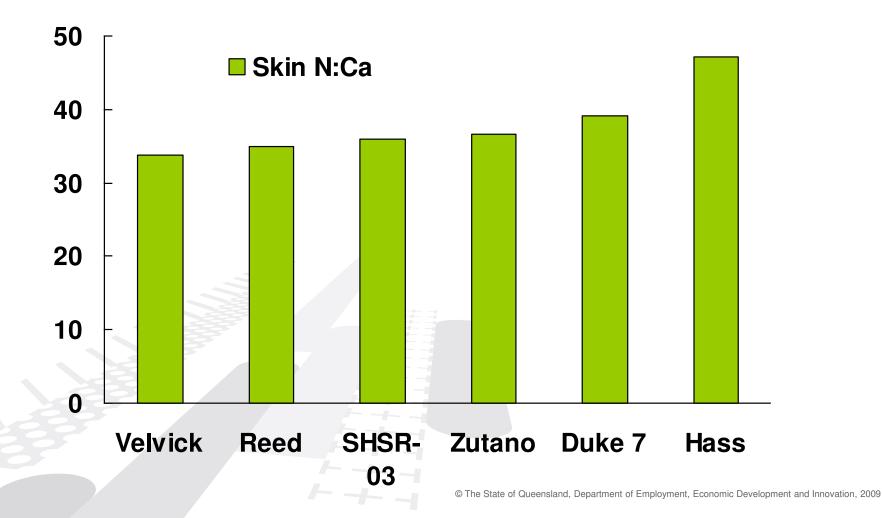
Postharvest prochloraz fungicide

- Use prochloraz as a non-recirculated overhead spray on the packing line to control anthracnose
- Apply as soon as possible after harvest
 - best within 24h
- Must be used in conjunction with an effective field spray program
- MRL for EU is 5mg/kg



Crop load, rootstock and nutrition affects fruit quality

- Evidence for higher quality fruit from trees with high crop loads (Trials 2007 & 2008)
- 'Hass' fruit quality consistently high (disease lower) from Velvick (West Indian) rootstock
- Further assessments continuing in AV08000 with Tony Whiley & Peter Hofman



Effect of rootstock on anthracnose, Hampton 2008

Effect of rootstock on fruit skin N:Ca ratio, Hampton 2008

Correct nutrition (Ca and N) is critical

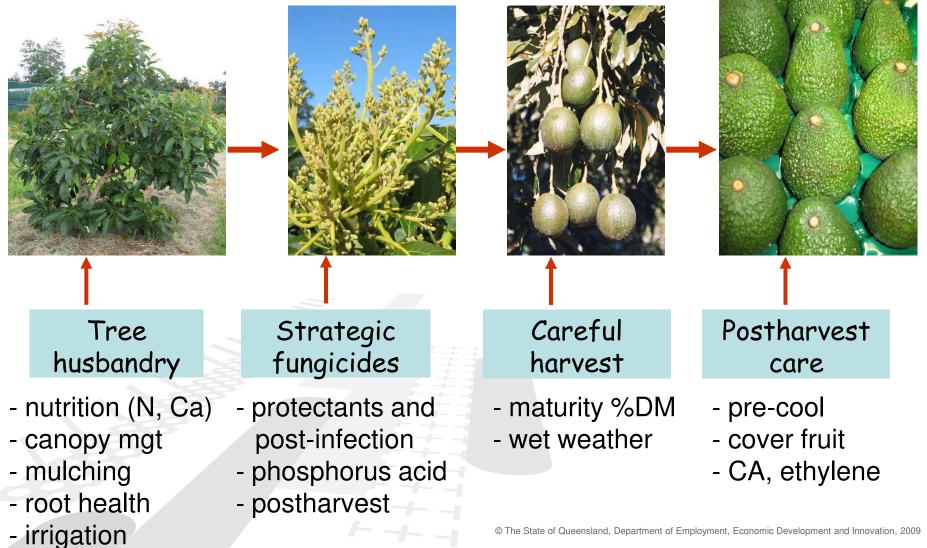
- increased shelf life and decreased disorders with improved calcium nutrition
- Ca levels in fruit difficult to manage
- Higher Ca in fruit from 'Velvick' than from 'Duke'
- High N can result in greater photosynthesis in leaves, outcompeting developing fruit for water and Ca and Mg
 - excessive N fertiliser can result in poorer quality fruit with more disease

Correlations between disease, yield & nutrient balance – Hampton 2008

Variable 1	Variable 2	Ρ	r (correlation coefficient)	Relationship
Anthracnose severity	Yield per tree	0.044	0.30	-
Anthracnose severity	Fruit skin N:Ca	0.011	0.39	+
Stem-end rot severity	Fruit skin N:Ca	0.013	0.38	+

Future management tools

XXXXXXXXX



Future management tools

- Nutrient optimisation, N and Ca
- Improved formulations of fungicides mancozeb?
- New products being tested natural green® (calciumbased), Aminogro ® (chitosan from prawn shells), EcoCarb (potassium bicarb.), biological controls, plant defence activators
 - "soft", not fungicides, OK for organic etc.
- Controlled/modified atmosphere ripening

Integrated control – the complete picture

Acknowledgements

Graham and Vivienne Anderson, Duranbah Harold Taylor, Duranbah Brendan and Liz Burton, Steven Lean, Hampton Graeme Thomas, Hampton Tony Whiley, Nambour David Peasley, Murwillumbah Peter Hofman and team, DPI&F Nambour (QICARP)

Know-how for Horticulture™

Project AV07000 is supported by Avocados Australia, QPIF and HAL. It is funded using avocado grower levies which are matched by the Australian Government through HAL

Contact us!!

- Liz Dann
 - (07) 3896 9468
 - Elizabeth.dann@deedi.qld.gov.au
- Luke Smith
 - (07) 3896 9608
 - Luke.smith@deedi.qld.gov.au

Strict label instructions for strobilurin fungicides

- Necessary to avoid fungi becoming resistant to the group
- Used with coppers in an anti-resistance strategy
 - Do not start season with an Amistar®
 - No more than 3 Amistar® sprays per season
 - No more than 2 consecutive Amistar® sprays
 - No more than 1/3 of sprays to be Amistar®
 - Withholding period 7 days (3 days for mango)