SANMOTION

SANYO DENKI AMERICA CORE PRODUCTS

MOTION AND CONTROL

SANMOTION

SANMOTION is the brand name for SANYO DENKI motion control systems.
SANYO DENKI is a worldwide provider of stepping and servo systems. Our products are known for their high quality, reliability and state of the art design. Our systems are used in a variety of industries which include factory automation, semiconductor, medical, and office automation.

SANMOTION R

With highly sophisticated control, this model offers a reduction in position settling time and advanced safety functions.

2.4 w to 5 kw

MOTOR SIZE

$14,20,40,60,80,86,130,220 \mathrm{~mm}$

INTERFACE

EtherCAT

Analog/Pulse Input Indexer
Modbus

sanmotion Model No.PB

Hybrid system combining the ease-of-use of stepping motors with the reliability of servo motors.
0.05 to $6.1 \mathrm{~N} \cdot \mathrm{~m}$

MOTOR SIZE
28, 42, 60, 86 mm

INTERFACE

EtherCAT

Pulse Input
Indexer

S.PANMOSE STEPPING SYYTEMS -5

High torque bipolar stepping motors and High performance microstep drivers.
0.041 to $4.4 \mathrm{~N} \cdot \mathrm{~m}$

MOTOR SIZE
NEMA 11, 17, 60 mm, 86 mm
INTERFACE
Pulse Input

2.PANASE STEPPING SSYTEMS F 2

High torque bipolar stepping motors and High performance microstep drivers.

0.0065 to $19 \mathrm{~N} \cdot \mathrm{~m}$

MOTOR SIZE

14 mm, NEMA 11, 17, 23, 50 mm, 60 mm, NEMA 34, 42

```
INTERFACE
```

Pulse Input
Indexer (RTA Product)
Analog (RTA Product)

SANMOTION
 MOTION CONTROLLER

SANMOTION C integrates motion control, robot control, and sequence control into one unit to provide major advantages in reduced device costs and shorter development times. For use in material handling robots and general industrial machinery. Image processing devices and a touch panel have also been developed as motion controller peripherals.

INTERFACE

EtherCAT

SANMOTION

New Models

SANMOTION R

Evolved, Eco-efficient, and Easy to UseAC
 Servo Amplifier "SANMOTION R" 3E Model

The 3E Model has a speed frequency response of 2.2 kHz , approximately twice that of our conventional product. The 3E Model is equipped with a gain increase function, a function for suppressing micro-vibrations at settling time, an adaptive notch filter for suppressing mechanical resonance, and a feed-forward vibration control function.

SANMOTIONModel No.PB

4-Axis Integrated EtherCAT Driver

High speed serial communication enables 4-axis stepping motor operation. In addition to the conventional closed loop control that eliminates step-out, the new model includes a mode that also eliminates delays in position commands. Without any delays in position commands, device takt time is reduced.

2SANMOTION F2

14 mm sq.
Compact Stepping Motor
Longer model in the compact 2-phase stepping motor released. Though small in size, its holding torque is significant at 1.42 oz-in.

SANMOTION F2

Vacuum Stepping Motor

Vacuum stepping motors can be driven in a vacuum environment without requiring a vacuum feedthrough. Use as vacuum compatible actuators while retaining the stepping motor benefits of easy high-precision openloop control.

Index
Introduction 2
SANMOTION R AC Servo Systems 6
Features 6
Combination Chart 7
Motors 8
Amplifiers 26
3E Model Analog/Pulse Input Type Servo Amplifier 26
Indexer Type Servo Amplifier 31
Indexer Modbus Interface Type Servo Amplifier 36
3E Model EtherCAT Interface Type Servo Amplifier 40
EtherCAT Interface Type Servo Amplifier 45
EtherCAT Interface High Speed Type Servo Amplifier 50
Analog DC Input Type Servo Amplifier 55
EtherCAT Interface DC Input Type Servo Amplifier 59
EtherCAT Interface DC Input Type Multi Axis Servo Amplifier 63
SANMOTION Model No. PB
Closed Loop Stepping Systems 70
Features 70
Combination Chart 71
Motors 72
Drivers 81
SANMOTION F5 5-phase Stepping Systems 98
Features 98
Combination Chart 99
Motors 100
Drivers 112
SANMOTION F2 2-phase Stepping Systems 116
Features 116
Combination Chart 116
Motors 119
Drivers 158
SANMOTION C Motion Controller 162
Features 162
Specifications 163

AC SERVO SYSTEMS

SANMOTION AC SERVO SYSTEMS

High Response

The 3E Model has a speed frequency response of 2.2 kHz , approximately twice that of our conventional product. Additionally, the position settling time has been shortened to $1 / 3$ of the original time.

Vibration Suppression Control

Feed forward vibration suppression control eliminates the typical vibrations seen at stationary positions in a servo system. This noise suppression is easily reduced by using simple onboard tuning procedures.

$100 \mathrm{~ms} / \mathrm{div}$

Improved Control Accuracy

The 3E Model is equipped with a gain increase function, a function for suppressing micro-vibrations at settling time, an adaptive notch filter for suppressing mechanical resonance, and a feed-forward vibration control function.

High-gain control

Vibration suppression by adaptive notch filter

EtherCAT Model

Model-based Following Control Auto Tuning
Vibration Suppression Control Disturbance Suppression
Homing Mode
Position Mode (PP, CSV, IP*)
Velocity Mode (PV, CSV)
Torque Mode (TQ, CST)
Safety Function
*High speed type only

Indexer Model

Auto Tuning

Vibration Suppression Control
Disturbance Suppression
Point data: Max. 254 points
Position Command Range: ± 31 bit
Homing Function
Point Loop/Conditional Jump
Jogging Function

Analog/Pulse Input Model

Model-based Following Control
Auto Tuning
Vibration Suppression Control
Disturbance Suppression
Position command
Pulse Input Frequency: Max. 5 M Hz Velocity Command**
Analog Voltage: Max. $\pm 12 \mathrm{~V}$
Preset Command: 3 points
Torque Command**
Analog Voltage: Max. $\pm 12 \mathrm{~V}$
**AC input type only

Lineup

Small Capacity Motors

Rated Power	Flange Size mminch inch	$\begin{aligned} & \text { Rated } \\ & \text { Torque } \\ & \mathrm{N} \cdot \mathrm{~m} \\ & \mathrm{lb} \cdot \mathrm{in} \end{aligned}$	Peak Torque at Stall $N \cdot m$ $\mathrm{lb} \cdot$ in	$\begin{aligned} & \text { Speed } \\ & \min ^{-1} \end{aligned}$	Model	Servo Amplifier Interface								Page
						EtherCAT				Indexer	Modbus	Analog / Pulse		
						200 VAC	100 VAC	48 VDC	24 VDC	200 VAC	200 VAC	200 VAC	48 VDC	
2.4 W	$\begin{gathered} 14 \\ 0.55 \end{gathered}$	$\begin{aligned} & 0.023 \\ & 0.204 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.53 \end{aligned}$	Max. 1500 Rated 1000	R2GAD102RM			\square						8
20 W	20	$\begin{gathered} 0.064 \\ 0.57 \end{gathered}$	$\begin{aligned} & 0.23 \\ & 2.04 \end{aligned}$	Max. 6000 Rated 3000	R2GA02D20F			\square						9
	0.79	$\begin{gathered} 0.064 \\ 0.53 \end{gathered}$	$\begin{aligned} & 0.18 \\ & 1.59 \end{aligned}$	Max. 4500 Rated 3000	R2FA02D20D				\square					
30 W	20	$\begin{aligned} & 0.095 \\ & 0.84 \end{aligned}$	$\begin{gathered} 0.38 \\ 3.4 \end{gathered}$	$\begin{aligned} & \text { Max. } 6000 \\ & \text { Rated } 3000 \end{aligned}$	R2GA02D30F			\square						
	0.79	$\begin{gathered} 0.095 \\ 0.84 \end{gathered}$	$\begin{gathered} 0.38 \\ 3.4 \end{gathered}$	Max. 3000 Rated 3000	R2FA02D30H				\square					10
	$\begin{gathered} 40 \\ 1.57 \end{gathered}$	0.098	0.37	$\text { Max. } 6000$	R2AA04003F	\square				\square	\square	\square		11
		$\begin{gathered} 0.87 \\ 0.098 \\ 0.87 \end{gathered}$	$\begin{gathered} 3.3 \\ 0.24 \\ 2.1 \end{gathered}$	Rated 3000 Max. 6000 Rated 3000	R2EA04003F R2GA04003F		\square	\square					\square	
		$\begin{aligned} & 0.098 \\ & 0.87 \end{aligned}$	$\begin{gathered} 0.33 \\ 2.9 \end{gathered}$	Max. 6000 Rated 3000	R2FA04003F				\square					
50 W	$\begin{gathered} 40 \\ 1.57 \end{gathered}$	$\begin{gathered} 0.159 \\ 1.41 \end{gathered}$	$\begin{gathered} 2.59 \\ 0.59 \\ 5.2 \end{gathered}$	Max. 6000 Rated 3000	R2AA04005F R2EA04005F	\square	\square			\square	\square	\square		12
		$\begin{gathered} 0.159 \\ 1.41 \end{gathered}$	$\begin{gathered} 0.54 \\ 4.8 \end{gathered}$	Max. 6000 Rated 3000	R2GA04005F			\square					\square	
		$\begin{gathered} 0.159 \\ 1.41 \end{gathered}$	$\begin{gathered} 0.40 \\ 3.5 \end{gathered}$	Max. 4500 Rated 3000	R2FA04005D				\square					
80 W	$\begin{gathered} 40 \\ 1.57 \end{gathered}$	$\begin{gathered} 0.255 \\ 2.27 \end{gathered}$	$\begin{aligned} & 0.86 \\ & 7.6 \end{aligned}$	Max. 6000 Rated 3000	R2EA04008F		\square							13
		$\begin{aligned} & 2.21 \\ & 0.255 \\ & 2.27 \end{aligned}$	$\begin{gathered} 0.86 \\ 7.6 \end{gathered}$	Max. 5000 Rated 3000	R2GA04008D			\square					\square	
$\begin{aligned} & 100 \mathrm{~W} \\ & 190 \mathrm{~W}) \end{aligned}$	$\begin{gathered} 40 \\ 1.57 \end{gathered}$	$\begin{aligned} & 2.218 \\ & 0.318 \\ & 2.81 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 10.4 \end{aligned}$	Max. 6000 Rated 3000	R2AA04010F	\square				\square	\square	\square		14
70 W	$\begin{gathered} 60 \\ 2.36 \end{gathered}$	$\begin{gathered} 0.318 \\ 2.81 \end{gathered}$	$\begin{aligned} & 0.84 \\ & 7.43 \end{aligned}$	Max. 2500 Rated 2100	R2FA06007R				\square					15
100 W	$\begin{gathered} 60 \\ 2.36 \end{gathered}$	$\begin{gathered} 0.318 \\ 2.81 \end{gathered}$	$\begin{aligned} & 1.13 \\ & 10.0 \end{aligned}$	Max. 6000 Rated 3000	R2AA06010F	\square				\square	\square	\square		16
		$\begin{aligned} & 0.318 \\ & 2.81 \end{aligned}$	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	Max. 6000 Rated 3000	R2EA06010F		\square							
		$\begin{aligned} & 0.318 \\ & 2.81 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 7.43 \end{aligned}$	Max. 5000 Rated 3000	R2GA06010D			\square					\square	
200 W	60	0.637	$\begin{gathered} 2.2 \\ 19.5 \end{gathered}$	Max. 6000 Rated 3000	R2AA06020F R2EA06020F	\square	\square			\square	\square	\square		17
	2.36	$\begin{gathered} 0.637 \\ 5.64 \end{gathered}$	$\begin{gathered} 19.5 \\ 1.5 \\ 13.3 \end{gathered}$	Max. 4500 Rated 3000	R2GA06020D			\square					\square	
400 W	60	$\begin{aligned} & 1.27 \\ & 11.2 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 42 \end{aligned}$	Max. 6000 Rated 3000	R2AA06040FX	\square				\square	\square	\square		18
(360 W)	2.36	$\begin{aligned} & 1.2 \\ & 1.15 \\ & 10.2 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 42 \end{aligned}$	Max. 6000 Rated 3000	R2AA06040FC	\square				\square	\square	■		
750 W	$\begin{gathered} 80 \\ 3.15 \end{gathered}$	$\begin{aligned} & 2.39 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 75 \end{aligned}$	Max. 6000 Rated 3000	R2AA08075F	\square				\square	\square	\square		19
1 kW	$\begin{gathered} 86 \\ 3.39 \end{gathered}$	$\begin{aligned} & 3.18 \\ & 28.1 \end{aligned}$	$\begin{gathered} 11.6 \\ 102.7 \end{gathered}$	Max. 6000 Rated 3000	R2AAB8100H	\square				\square	\square	\square		20

Medium Capacity Motors

Rated Power	FlangeSize	RatedTorque	$\begin{aligned} & \text { Peak Torque } \\ & \text { at Stall } \end{aligned}$	Speed	Model	Servo Amplifier Interface								Page
						EtherCAT				Indexer	Modbus	Analog/	Pulse	
	$\begin{aligned} & \mathrm{mm} \\ & \text { inch } \end{aligned}$	$\begin{gathered} \mathrm{N} \cdot \mathrm{~m} \\ \mathrm{l} \cdot \mathrm{in} \end{gathered}$	$\begin{gathered} \mathrm{N} \cdot \mathrm{~m} \\ \mathrm{lb} \cdot \mathrm{in} \end{gathered}$	min^{-1}		200 VAC	100 VAC	48 VDC	24 VDC	200 VAC	200 VAC	200 VAC	48 VDC	
0.55 kW	$\begin{aligned} & 130 \\ & 5.12 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 23 \end{aligned}$	$\begin{gathered} 7 \\ 62 \end{gathered}$	Max. 5000 Rated 2000	R2AA13050D	\square				\square		\square		21
1.2 kW	$\begin{array}{r} 130 \\ 5.12 \end{array}$	$\begin{aligned} & 5.7 \\ & 50 \end{aligned}$	$\begin{gathered} 16 \\ 142 \end{gathered}$	Max. 5000 Rated 2000	R2AA13120D	\square				\square		\square		22
2 kW	$\begin{gathered} 130 \\ 5.12 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 84 \end{aligned}$	$\begin{aligned} & 30 \\ & 265 \end{aligned}$	$\begin{aligned} & \text { Max. } 5000 \\ & \text { Rated } 2000 \end{aligned}$	R2AA13200D	■				■		■		23
5 kW	$\begin{aligned} & 220 \\ & 8.67 \end{aligned}$	$\begin{gathered} 24 \\ 212 \end{gathered}$	$\begin{gathered} 75 \\ 664 \end{gathered}$	Max. 4000 Rated 2000	R2AA22500L	\square				\square		\square		24

Linear Actuator

Rated Thrust	$\begin{aligned} & \text { Motor } \\ & \text { Size } \\ & \text { mm } \\ & \text { inch } \end{aligned}$	RatedThrustNlbl	PeakThrustNIb	$\begin{gathered} \text { Speed } \\ \mathrm{m} / \mathrm{s} \end{gathered}$	Model	Servo Amplifier Interface								Page
						EtherCAT				Indexer	Modbus	Analog	Pulse	
						200 VAC	100 VAC	48 VDC	24 VDC	200 VAC	200 VAC	200 VAC	48 VDC	
5.1 N	$\begin{gathered} 12 \\ 0.47 \end{gathered}$	$\begin{aligned} & 5.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 3.71 \end{aligned}$	Max. 2.0 Rated 1.0	DEOAC001A03MX00			\square						25

AC SERVO SYSTEMS

MOTOR
 POWER
 2.4 w
 MOTOR
 FLANGE SIZE
 14 mm (0.55 inch)

Specifications

Power Supply		48 VDC
Model		R2GAD102RMXH30
Rated Power	kW	0.0024
Maximum Speed	min^{-1}	1500
Rated Speed	min^{-1}	1000
Rated Torque	$\mathrm{N} \cdot \mathrm{m}$	0.023
	$\mathrm{lb} \cdot \mathrm{in}$	0.204
Peak Torque at Stall	$\mathrm{N} \cdot \mathrm{m}$	0.06
	$\mathrm{lb} \cdot \mathrm{in}$	0.53
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.0023
	$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.000786
Encoder		17bit serial absolute
Motor Mass	kg	0.15
	lb	0.33
Operating Temperature		0 to $40^{\circ} \mathrm{C}$ (32 to $104^{\circ} \mathrm{F}$)
Humidity		$20 \sim 90 \% \mathrm{RH}$, no condensation

- Torque Curve
- R2GAD102RM

Dimension

Applicable Amplifier

Power Supply	Motor	Amplifier			
		EtherCAT	Indexer	Modbus	Analog/Pulse
48 VDC	$\begin{aligned} & \text { R2GAD102RMXH30 } \\ & \text { 1027-116392*3 } \end{aligned}$	RF2J14A0HL5			

*3 1027-: w/ CPC screw lock type connector assembly.

MOTOR POWER
 MOTOR FLANGE SIZE
 20 mm (0.79 inch)

Specifications

Power Supply		48 VDC	24 VDC
Model		R2GA02D20F	R2FA02D20D
Rated Power	kW	0.02	0.02
Maximum Speed	min^{-1}	6000	4500
Rated Speed	min^{-1}	3000	3000
Rated Torque	$\mathrm{N} \cdot \mathrm{m}$	0.064	0.064
	$\mathrm{lb} \cdot \mathrm{in}$	0.57	0.57
Peak Torque at Stall	$\mathrm{N} \cdot \mathrm{m}$	0.23	0.18
	lb - in	2.04	1.59
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.0033	0.0033
	$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.0011	0.0011
Encoder		2000 P/R incremental	13bit serial absolute
Motor Mass	kg	0.14	0.14
	lb	0.31	0.31
Operating Temperature		0 to $40^{\circ} \mathrm{C}$	to $104^{\circ} \mathrm{F}$)
Humidity		20 ~ 90\%	no condensation

Torque Curve

- R2GA02D20F

- R2FA02D20D

Applicable Amplifier

Power Supply	Motor	Amplifier			
		EtherCAT	Indexer	Modbus	Analog/Pulse
48 VDC	$\begin{aligned} & \text { R2GA02D20FXS00 } \\ & 1027-107013^{* 3} \end{aligned}$	$\begin{aligned} & \text { RS2K04AAHA5 } \\ & \text { RF2J24A8HL5 } \end{aligned}$			
24 VDC	$\begin{aligned} & \text { R2FAO2D20DXC00 } \\ & 1027-116393^{* 3} \end{aligned}$	$\begin{aligned} & \text { RS2J04A2HA5 } \\ & \text { RF2K24AOHL5 } \end{aligned}$			

*3 1027-: w/ CPC screw lock type connector assembly

AC SERVO SYSTEMS

$\underset{\substack{\text { MOTOR } \\ \text { POWER }}}{ } \quad 30 \mathrm{~W}$
 MOTOR
 FLANGE SIZE
 20 mm (0.79 inch)

Specifications

Power Supply		48 VDC	24 VDC
Model		R2GA02D30F	R2FA02D30H
Rated Power	kW	0.03	0.03
Maximum Speed	min^{-1}	6000	3000
Rated Speed	min^{-1}	3000	3000
Rated Torque	$N \cdot m$	0.095	0.095
	$\mathrm{lb} \cdot \mathrm{in}$	0.84	0.84
Peak Torque at Stall	$\mathrm{N} \cdot \mathrm{m}$	0.38	0.38
	$\mathrm{lb} \cdot \mathrm{in}$	3.36	3.36
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.0046	0.0046
	$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.0016	0.0016
Encoder		2000 P/R incremental	13bit serial absolute
Motor Mass	kg	0.18	0.18
	lb	0.4	0.4
Operating Temperature		0 to $40^{\circ} \mathrm{C}$	to $104^{\circ} \mathrm{F}$)
Humidity		20 ~ 90\%	no condensation

Humidity

Torque Curve

- R2GA02D30F

- R2FA02D30H

Unit: mm (inch)

Applicable Amplifier

Power Supply	Motor	Amplifier			
		EtherCAT	Indexer	Modbus	Analog/Pulse
48 VDC	$\begin{aligned} & \text { R2GA02D30FXS00 } \\ & \text { 1027-107014** } \end{aligned}$	$\begin{aligned} & \text { RS2K04AAHA5 } \\ & \text { RF2J24A8HL5 } \end{aligned}$			
24 VDC	$\begin{aligned} & \text { R2FAO2D30HXCOO } \\ & 1027-116394^{* 3} \end{aligned}$	$\begin{aligned} & \text { RS2J04A2HA5 } \\ & \text { RF2K24A0HL5 } \end{aligned}$			

*3 1027-: w/ CPC screw lock type connector assembly.

MOTOR POWER

MOTOR
FLANGE SIZE

40 mm (1.57 inch)

Specifications

Power Supply		200 VAC	100 VAC	48 VDC	24 VDC
Model		R2AA04003F	R2EA04003F	R2GA04003F	R2FA04003F
Rated Power	kW	0.03	0.03	0.03	0.03
Maximum Speed	min^{-1}	6000	6000	6000	6000
Rated Speed	min^{-1}	3000	3000	3000	3000
Rated Torque	$\mathrm{N} \cdot \mathrm{m}$	0.098	0.098	0.098	0.098
	$\mathrm{lb} \cdot \mathrm{in}$	0.87	0.87	0.87	0.87
Peak Torque at Stall	$\mathrm{N} \cdot \mathrm{m}$	0.37	0.37	0.37	0.33
	lb - in	3.3	3.3	3.3	2.92
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.028	0.028	0.0247	0.0247
	$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.0095	0.0095	0.0084	0.0084
Encoder		17 bit serial absolute			
Motor Mass	kg	0.35	0.35	0.35	0.37
	lb	0.78	0.78	0.78	0.82
Operating Temperature		0 to $40^{\circ} \mathrm{C}$ (32 to $104^{\circ} \mathrm{F}$)			
Humidity		20 to 90% RH, no condensation			

Dimension

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA04003FXP00M(E01) ${ }^{* 3}$		$\begin{aligned} & \text { RS2A01A0KA4 } \\ & \text { RS2A01A2HA5 } \end{aligned}$	RS1A01AC	RS1A01AF	RS3A01A0AA4
100 VAC	R2EA04003FXP00M(E01)*3		RS2E01A0KA4			
48 VDC	$\begin{aligned} & \text { R2GA04003FXPOOM } \\ & 1027-116504^{* 3} \end{aligned}$		$\begin{aligned} & \text { RS2K04A2HA5 } \\ & \text { RF2K24AOHL5 } \end{aligned}$			RF2G21A0A00
24 VDC	$\begin{aligned} & \text { R2FA04003FXR03M } \\ & \text { 1027-116396*3 } \\ & \text { R2FA04003FCR03M } \\ & 1027-116395^{* 3} \end{aligned}$	w/Brake	$\begin{aligned} & \text { RS2J04A2HA5 } \\ & \text { RF2K24AOHL5 } \end{aligned}$			

*3 E01 and 1027-: w/ CPC screw lock type connector assembly.

AC SERVO SYSTEMS

MOTOR POWER
 MOTOR
 FLANGE SIZE
 40 mm (1.57 inch)

Specifications

Power Supply		200 VAC	100 VAC	48 VDC	24 VDC
Model		R2AA04005F	R2EA04005F	R2GA04005F	R2FA04005D*2
Rated Power	kW	0.05	0.05	0.05	0.05
Maximum Speed	min^{-1}	6000	6000	6000	4500
Rated Speed	min^{-1}	3000	3000	3000	3000
Rated Torque	$\mathrm{N} \cdot \mathrm{m}$	0.159	0.159	0.159	0.159
	lb - in	1.41	1.41	1.41	1.41
Peak Torque at Stall	$\mathrm{N} \cdot \mathrm{m}$	0.59	0.59	0.59	0.40
	lb - in	5.22	5.22	5.22	3.54
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.0409	0.0409	0.0376	0.0376
	$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.0139	0.0139	0.0128	0.0128
Encoder		17 bit serial absolute*1			
Motor Mass	kg	0.39	0.39	0.39	0.41
	lb	0.87	0.87	0.87	0.90
Operating Temperature		0 to $40^{\circ} \mathrm{C}$ (32 to $104^{\circ} \mathrm{F}$)			
Humidity		20 to 90\% RH, no condensation			

*1 $2000 \mathrm{p} /$ r incremental encoder equipped motor is also available for R2AA04005F.
*2 Brake equipped motor is available. Refer to page 67 for brake specifications.
Dimension

Torque Curve - R2AA04005F

- R2GA04005F

Applicable Amplifier

*3 E01 and 1027-: w/ CPC screw lock type connector assembly.

Power Supply		100 VAC	48 VDC
Model		R2EA04008F*2	R2GA04008D*2
Rated Power	kW	0.08	0.08
Maximum Speed	min^{-1}	6000	5000
Rated Speed	min^{-1}	3000	3000
Rated Torque	$\mathrm{N} \cdot \mathrm{m}$	0.255	0.255
	$\mathrm{lb} \cdot \mathrm{in}$	2.27	2.27
Peak Torque at Stall	$\mathrm{N} \cdot \mathrm{m}$	0.86	0.86
	$\mathrm{lb} \cdot \mathrm{in}$	7.6	7.6
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.066	0.0627
	$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.023	0.021
Encoder		17bit serial absolute	
Motor Mass	kg	0.51	0.51
	lb	1.13	1.13
Operating Temperature		0 to $40^{\circ} \mathrm{C}$ (32 to $104^{\circ} \mathrm{F}$)	
Humidity		20 to 90\% RH, no condensation	

*2 Brake equipped motor is available. Refer to page 67 for brake specifications.

Dimension

AC SERVO SYSTEMS

*1 $2000 \mathrm{p} / \mathrm{r}$ incremental encoder equipped motor is also available.
*2 (): Specification for brake motor. Refer to page 67 for brake specifications.

Dimension
Unit: mm (inch)

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA04010FXP00M(E01)*3		RS3A01A2HA4	RS1A01AC	RS1A01AF	RS3A01A0AA4
			RS2A01A0KA4			
	R2AA04010FCP00M6(E01)*3	w/ Brake	RS2A01A2HA5			

*3 E01: w/ CPC screw lock type connector assembly

MOTOR POWER

MOTOR
FLANGE SIZE

60 mm (2.36 inch)

Specifications

Power Supply	
Model	
Rated Power	kW
R2FA06007R	

*2 Brake equipped motor is available. Refer to page 67 for brake specifications.

Dimension

Torque Curve

- R2FA06007R

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
24 VDC	$\begin{aligned} & \text { R2FA06007RXR03M } \\ & 1027-116400^{* 3} \end{aligned}$		$\begin{aligned} & \text { RS2J04A2HA5 } \\ & \text { RF2K24A0HL5 } \end{aligned}$			
	$\begin{aligned} & \text { R2FA06007RCR03M } \\ & 1027-116399^{* 3} \end{aligned}$	w/Brake				

*3 1027-: w/ CPC screw lock type connector assembly.

AC SERVO SYSTEMS

MOTOR POWER
 100w

MOTOR
 FLANGE SIZE
 60 mm (2.36 inch)

Specifications

| Power Supply | | 200 VAC | | 100 VAC |
| :--- | :--- | :---: | :---: | :---: | 48 VDC

*1 $2000 \mathrm{p} /$ r incremental encoder equipped motor is also available for R2AA06010F.

Dimension

Torque Curve

- R2AA06010F

- R2EA06010F

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA06010FXP00M(E01) ${ }^{* 3}$		$\begin{aligned} & \text { RS3A01A2HA4 } \\ & \text { RS2A01AOKA4 } \\ & \text { RS2A01A2HA5 } \end{aligned}$	RS1A01AC	RS1A01AF	RS3A01A0AA4
100 VAC	R2EA06010FXP00M(E01)** R2EA06010FCP00M(E01)	w/ Brake	RS2E01A0KA4			
48 VDC	$\begin{aligned} & \text { R2GA06010DXPO0M } \\ & 1027-107017^{* 3} \end{aligned}$		$\begin{aligned} & \text { RS2K04A2HA5 } \\ & \text { RF2K24A0HL5 } \end{aligned}$			RF2G21A0A00

*3 E01 and 1027-: w/ CPC screw lock type connector assembly

mooror Powier 200
 60 mm (2.36 inch)

Specifications

Power Supply		200 VAC	100 VAC	48 VDC
Model		R2AA06020F	R2EA06020F*2	R2GA06020D*2
Rated Power	kW	0.2	0.2	0.2
Maximum Speed	min^{-1}	6000	6000	4500
Rated Speed	min^{-1}	3000	3000	3000
Rated Torque	$N \cdot m$	0.637	0.637	0.637
	$\mathrm{lb} \cdot \mathrm{in}$	5.64	5.64	5.64
Peak Torque at Stall	$\mathrm{N} \cdot \mathrm{m}$	2.2	2.2	1.5
	lb - in	19.5	19.5	13.3
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.2223	0.2223	0.219
	$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.0756	0.0756	0.0748
Encoder		17 bit serial absolute ${ }^{* 1}$		
Motor Mass	kg	0.96	0.96	0.96
	lb	2.13	2.13	2.13
Operating Temperature		0 to $40^{\circ} \mathrm{C}$ (32 to $104^{\circ} \mathrm{F}$)		
Humidity		20\% to 90\% RH, no condensation		

*1 $2000 \mathrm{p} /$ r incremental encoder equipped motor is also available for R2AA06020F.
*2 Brake equipped motor is available. Refer to page 67 for brake specifications.

Dimension

Torque Curve

- R2AA06020F

- R2EA06020F

R2GA06020D

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA06020FXP00M(E01)*3		$\begin{aligned} & \text { RS3A02A2HA4 } \\ & \text { RS2A01AOKA4 } \\ & \text { RS2A01A2HA5 } \end{aligned}$	RS1A01AC	RS1A01AF	RS3A02A0AA4
	$\begin{aligned} & \text { R2AA06020FCPOOM } \\ & 1027-107010^{* 3} \end{aligned}$	w/ Brake				
100 VAC	R2EA06020FXP00M(E01)**		RS2E03A0KA4			
	R2EA06020FCP00M(E01)*3	w/ Brake				
48 VDC	$\begin{aligned} & \text { R2GA06020DXP00M } \\ & 1027-107019^{* 3} \end{aligned}$		$\begin{aligned} & \text { RS2K04A2HA5 } \\ & \text { RF2K24AOHL5 } \end{aligned}$			RF2G21A0A00
	$\begin{aligned} & \text { R2GA06020DCP00M } \\ & 1027-107018^{* 3} \end{aligned}$	w/ Brake				

*3 E01 and 1027-: w/ CPC screw lock type connector assembly

AC SERVO SYSTEMS

*1 $2000 \mathrm{p} / \mathrm{r}$ incremental encoder equipped motor is also available.
*2 (): Specification for brake motor. Refer to page 67 for other brake specifications.

Dimension
Unit: mm (inch)

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA06040FXP00M(E01)*3		$\begin{aligned} & \text { RS3A02A2HA4 } \\ & \text { RS2A03AOKA4 } \end{aligned}$	RS1A03AC	RS1A03AF	RS3A02A0AA4
	R2AA06040FCP00M6(E01) ${ }^{3}$	w/ Brake	RS2A03A2HA5			

*3 E01: w/ CPC screw lock type connector assembly.

*1 $2000 \mathrm{p} / \mathrm{r}$ incremental encoder equipped motor is also available.

Dimension

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA08075FXP00M(E01)*3		$\begin{aligned} & \text { RS3A03A2HA4 } \\ & \text { RS2A03AOKA4 } \end{aligned}$	RS1A03AC	RS1A03AF	RS3A03A0AA4
	R2AA08075FCP00M(E01)*3	w/ Brake	RS2A03A2HA5			

*3 E01: w/ CPC screw lock type connector assembly.

AC SERVO SYSTEMS

Dimension

Unit: mm (inch)

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	$\begin{aligned} & \text { R2AAB8100HXR00M } \\ & 1027-107012^{* 3} \end{aligned}$		$\begin{aligned} & \text { RS3A03A2HA4 } \\ & \text { RS2A03AOKA4 } \\ & \text { RS2A03A2HA5 } \end{aligned}$	RS1A03AC	RS1A03AF	RS3A03A0AA4
	$\begin{aligned} & \text { R2AAB8100HCR00M } \\ & 1027-107011^{* 3} \end{aligned}$	w/ Brake				

*3 1027-: w/ CPC screw lock type connector assembly

Dimension

Applicable Amplifier

Power Supply	Motor	Amplifier			
		EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA13050DXP00M	$\begin{aligned} & \text { RS3A03A2HA4 } \\ & \text { RS2A03AOKA4 } \\ & \text { RS2A03A2HA5 } \end{aligned}$	RS1A03AC		RS3A03A0AA4

AC SERVO SYSTEMS

Dimension

Unit: mm (inch)

Applicable Amplifier

Power Supply	Motor	Amplifier			
		EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA13120DXP00M	$\begin{aligned} & \text { RS3A05A2HA4 } \\ & \text { RS2A05AOKA4 } \\ & \text { RS2A05A2HA5 } \end{aligned}$	RS1A05AC		RS3A05A0AA4

Dimension

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA13200DXP00M		RS3A10A2HA4 RS2A10A0KA4	RS1A10AC		RS3A10A0AA4
	R2AA13200DCP00M	w/ Brake	RS2A10A2HA5			

AC SERVO SYSTEMS

*2 Brake equipped motor is available. Refer to page 67 for brake specifications

Dimension

Applicable Amplifier

Power Supply	Motor		Amplifier			
			EtherCAT	Indexer	Modbus	Analog/Pulse
200 VAC	R2AA22500LXP00M		RS3A15A2HA4 RS2A15AOKA4	RS1A15AC		RS3A15A0AA4
	R2AA22500LCP00M	w/ Brake	RS2A15A2HA5			

MOTOR THRUST	$5.1 \mathrm{~N}$	MOTOR WIDTH	$12 \text { mm (0.46 inch) }$					
\square Specifications				Thrust Curve DE0AC001A03MX00				
Power Supply		48VDC						
Model		DEOAC001A03MX00		DE0AC001A03MX00				
Rated Thrust	N	5.1						
	lb	1.15						
Peak Thrust	N							
	lb	3.0				Maximum thrust		
Maximum Speed	m / s							
Rated Speed	m / s	1.0			Continuous thrust			
Encoder		Optical Incremental Encoder						
Linear Encoder Resolution (quadratured)	$\mu \mathrm{m}$	1			${ }^{0.5}$ Spee	s) ${ }^{1.5}$		
Motor Mass	g	185						
	lb							
Operating Temperature								
Humidity		20 to 80% RH, no condensation						

Dimension

Applicable Amplifier

Power Supply	Motor	Amplifier			
		EtherCAT	Indexer	Modbus	Analog/Pulse
48 VDC	$\begin{aligned} & \text { DE0AC001A03MX00 } \\ & 1028-107023^{* 3} \end{aligned}$	RF2J24A8HL5			

*3 1028-: w/ CPC screw lock type connector assembly.

AC SERVO SYSTEMS

3E Model Analog/Pulse Input Type Servo Amplifier $C \in \epsilon_{\text {叫 }}^{\text {is }}$. 院

Control function		Position control/Speed control/Torque control (Parameter switching)
Main circuit power (Note 1)		3-Phase: 200 to 240 VAC +10, $-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ Single-phase: 200 to 240 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz}+3 \mathrm{~Hz} \quad$ (Note 2)
Control power		Single-phase: 200 to 240 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$
Environment	Ambient temperature	0 to $+55^{\circ} \mathrm{C}$
	Storage temperature	-20 to $+65^{\circ} \mathrm{C}$
	Operation/Storage humidity	Below 90\% RH (no condensation)
	Elevation	Below 1000 m
	Vibration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$
	Shock	19.6 m/s ${ }^{2}$
Structure		Built-in tray type power supply

Note 1) Always use input voltage within the specification range for the main circuit power supply.
Note 2) AC200V-single-phase input type corresponds only to RS3A01A0AA4/RS3A02A0AA4/RS3A03A0AA4/RS3A05A0AA4.

Performance

Speed control range
Frequency characteristics
Allowable load inertia moment

1:5000 (Internal speed command)
2200 Hz (In high frequency sampling mode) *Differs for each model.
10 times motor rotor inertia moment

Built-in Functions

Protection functions

Digital operator
Dynamic brake circuit
Regenerative resistor
Monitor

- Input/Output Signals

Position command	Maximum input pulse frequency
Speed command	Command voltage Input impedance Command voltage
Torque command	Input impedance
General input	Sequence input
Torque limit input	
General output	Sequence output
Position signal output	Encoder output pulse signal

Overcurrent, Current detection error, Overload, Regeneration error, Overheating, External error, Overvoltage, Main circuit power supply under voltage, Main circuit power supply open phase, Control circuit power supply under voltage, Encoder error, Overspeed Speed control error, Speed feedback error, Excessive position deviation, Position command pulse error, Built-in memory error, Parameter error, Cooling fan error
Status display, Monitor display, Alarm display, Parameter setting, Test run, Adjustment mode Built-in
Built-in
Speed monitor (VMON) $2.0 \mathrm{~V} \pm 10 \%$ (at $1000 \mathrm{~min}^{-1}$)
Torque (thrust force) command monitor (TCMON) $2.0 \mathrm{~V} \pm 10 \%$ (at 100\%)

System Configuration: 10A, 20A, 30A, 50A

Item		Parts Number	Description
$\checkmark \quad 1$	Encoder Cable: 10 ft	EEXTKABS2410FT	
		EEXTKABS24JN10FT	For 0.55 kW and 1.2 kW motor
$\checkmark \quad 2$	Motor Power Cable: 10 ft	MEXTK1810FT	
		MEXTK18JN10FT	For 0.55 kW motor
		MEXTK14JN10FT	For 1.2 kW motor
$\checkmark \quad 3$	Brake Cable: 10 ft	MEXTBRK2010FT	Only for brake equipped motor
$\checkmark 4 \mathrm{a}$	I/O Cable: 2 m	QHO-CJ0201-S01	Both sides 50 pin connectors
4b	Terminal Block	OH0-TB001-S01	Used with I/O Cable (4a)
$\checkmark \quad 5$	I/O Cable: 2 m	OHO-CJ0203-S01	One side 50 pin connector, one side flying leads
$\checkmark 6 \mathrm{a}$	Connector [CN4]	AL-00718252-01	For STO, no need if (6b) is selected
$\checkmark 6 \mathrm{~b}$	Connector [CN4]	AL-00718251-01	For STO cancellation, no need if 6 a is selected
7	Connector [EN1, EN2]	AL-00632607	No need if Encoder Cable (1) is selected
8	Connector [CNA]	AL-00686902-01	Supplied with Amplifier
9	Connector [CNB]	AL-Y0004079-01	No need if Motor Power Cable (2) is selected
10	Communication Cable: 1 m	AL-00911582-01	For tandem operation
$\checkmark \quad 11$	USB Communication Cable: 1 m	AL-00896515-01	Communication with SANMOTION MOTOR Setup software
12	Battery [CN3]	AL-00880402-01	Used when using a battery -backup method absolute encoder

[^0]
AC SERVO SYSTEMS

System Configuration: 100A, 150A

Item		Parts Number	Description
\checkmark	Encoder Cable: 10 ft	EEXTKABS24JN10FT	
$\checkmark 2$	Motor Power Cable: 10 ft	MEXT10JN10FT	For 2 kW motor
\checkmark		MEXT08JN10FT	For 5 kW motor
$\checkmark 3$	M	MEXTB10JN10FT	For brake equipped 2 kW motor
3		MEXTB08JN10FT	For brake equipped 5 kW motor
$\checkmark \quad 4 \mathrm{a}$	I/O Cable: 2 m	QHO-CJ0201-S01	Both sides 50 pin connectors, no need if (5) is selected
4b	Terminal Block	QH0-TB001-S01	Used with I/O Cable (4a)
$\checkmark \quad 5$	I/O Cable: 2 m	QHO-CJ0203-S01	One side 50 pin connector, one side flying leads
$\checkmark 6 \mathrm{a}$	Connector [CN4]	AL-00718252-01	For STO
$\checkmark 6 \mathrm{~b}$	Connector [CN4]	AL-00718251-01	For STO cancellation
7	Connector [EN1, EN2]	AL-00632607	No need if Encoder Cable (1) is selected
$\checkmark 8$	Connector [CNA]	AL-Y0005159-01	
9	Communication Cable: 1 m	AL-00911582-01	For tandem operation
$\checkmark \quad 10$	USB Communication Cable: 1m	AL-00896515-01	Communication with SANMOTION MOTOR Setup software
11	Battery [CN3]	AL-00880402-01	Used when using a battery -backup method absolute encoder

To build a complete system, you need to have checked items.
Note: I/O cable can be chosen either 4 a or 5 . Connector for CN4 can be chosen either 6 a or 6 b .

Wiring Diagram

Dimensions

RS3A01A0AA4
Mass: $0.8 \mathrm{~kg}(1.76 \mathrm{lb}) \quad$ Unit: mm (inch)

RS3A03A0AA4
Mass: $0.9 \mathrm{~kg}(1.98 \mathrm{lb})$

RS3A10A0AA4
Mass: $4.2 \mathrm{~kg}(9.26 \mathrm{lb})$
Unit: mm (inch)

RS3A02A0AA4

RS3A05A0AA4
Mass: $1.6 \mathrm{~kg}(3.53 \mathrm{lb})$

RS3A15A0AA4
Mass: 4.9 kg (10.8 lb)

Indexer Type Servo Amplifier

Control function		Position control
Main circuit power ${ }^{(N o t e}$ 1)		Three-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ Single-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz}+3 \mathrm{~Hz}$ (Note 2)
Control circuit power		Single-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$
Environment	Ambient temperature	0 to $+55^{\circ} \mathrm{C}$
	Storage temperature	-20 to $+65^{\circ} \mathrm{C}$
	Operation/Storage humidity	Below 90\% RH (no condensation)
	Elevation	Below 1000 m
	Vibration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ Frequency range 10 to 55 Hz tested for 2 hours in each direction X.Y.Z
	Shock	19.6 m/s ${ }^{2}$
Structure		Built-in tray type power supply

Note 1) Power source voltage should be within the specified range
200 VAC Power input type: Specified power supply range $=170$ to 253 VAC
Note 2) The 200 VAC single-phase input types corresponds only to the RS1A01AC, RS1A03AC, RS1A05AC

Performance

Speed control range
1:5000 (Internal speed command)
Frequency characteristics
600 Hz

Built-in Functions

Protection functions

LED display
Dynamic brake circuit
Regeneration process
Monitor

Over current, Current detection error, Overload, Regeneration error, Amplifier overheating, External overheating, Over voltage, Main circuit low voltage, Main circuit open phase, Control power supply error, Encoder error, Over speed, Speed control error, Speed feedback error, Excessive position error, Position command pulse error, CPU error, Built-in memory error, Battery error, Parameter error
Status display, Monitor display, Alarm display, Parameter setting, Adjustment mode Built-in
Built-in
Speed monitor (VMON) $2.0 \mathrm{~V} \pm 10 \%$ (at $1000 \mathrm{~min}^{-1}$)
Torque monitor (TCMON) $2.0 \mathrm{~V} \pm 10 \%$ (at 100%)

Positioning Function

Number of control axis	1 pc
Number of registration points	It is possible to set it up to 254 points (PO00 to P253)
Maximum command amounts	$-2,147,483,648$ to $+2,147,483,647$
Command unit	mm or pulse
Fast-forwarding speed	$2,147,483.647 \mathrm{~mm} / \mathrm{sec}(0.001 \mathrm{~mm} /$ pulse selection)
Addition \& Reduction speed	Automatic addition \& Reduction speed (Straight line/S curve shift)
Point data setting	Setting by numeric value input with PC or teaching
Traveling point number setting	Parallel 8 bit (Binary code)
Current limitation	0 to 510\% (Rating =100\%), however, less than instant maximum stall current
Software limitation	Yes
Traveling mode	Zero-point return, Analog (JOG, 1 Step), Specified point traveling
Area signal	8 zones in maximum

Input/Output Signals

Sequence input signal

Sequence output signal

[^1]System Configuration: 15A, 30A, 50A

Item		Parts Number	Description
$\checkmark 1$	Encoder Cable: 10 ft	EEXTABS2410FT	
$\checkmark \quad 2$	Motor Power Cable: 10 ft	MEXT1810FT	
3	Brake Cable: 10 ft	MEXTBRK2010FT	Only for Brake Equipped Motor
$\checkmark \quad 4 \mathrm{a}$	I/O Cable: 2 m	QH0-CJ0201-S01	Both sides 50 pin connectors
4b	Terminal block	QH0-TB001-S01	Used with I/O Cable (4a)
$\checkmark 5$	I/O Cable: 2 m	QHO-CJ0203-S01	One side 50 pin connector, one side flying leads
6	Connector [CN1]	AL-00385594	No need if I/O cable (4a or 5) is selected
7	Connector [CN2]	AL-00385596	No need if Encoder Cable (1) is selected
$\checkmark 8$	Connector [CNA]	AL-00329461-01	
9	Connector [CNB]	AL-Y0000988-01	Supplied with Amplifier
10	Connector [CNC]	AL-00329458-01	No need if Motor Power Cable (2) is selected
11	PC Interface Cable	AL-00490833-01	Communication with SANMOTION R Setup Software
12	Battery	AL-00494635-01	

To build a complete system, you need to have checked items. Note: I/O Cable can be chosen either 4a or 5.

System Configuration: 100A, 150A

Item		Parts Number	Description
$\checkmark 1$	Encoder Cable: 10 ft	EEXTABS24JN10FT	
\checkmark	Motor Power Cable: 10 ft	MEXT18JN10FT	for 0.55 kW
		MEXT12JN10FT	for 1.2 kW
		MEXT10JN10FT	for $2 \mathrm{~kW}, 5 \mathrm{~kW}$
3	Motor Power + Brake Cable: 10 ft	MEXTB10JN10FT	Only for Brake Equipped Motor
$\checkmark \quad 4 \mathrm{a}$	I/O Cable: 2 m	OH0-CJ0201-S01	Both sides 50 pin connectors
4b	Terminal block	QH0-TB001-S01	Used with I/O Cable (4a)
$\checkmark 5$	I/O Cable: 2 m	OHO-CJ0203-S01	One side 50 pin connector, one side flying leads
6	Connector [CN1]	AL-00385594	No need if I/O cable (4a or 5) is selected
7	Connector [CN2]	AL-00385596	No need if Encoder Cable (1) is selected
8	PC Interface Cable	AL-00490833-01	Communication with SANMOTION R Setup Software
9	Battery	AL-00494635-01	

To build a complete system, you need to have checked items.
Note: I/O Cable can be chosen either 4 a or 5.

Wiring Diagram

Dimensions

RS1A01AC

RS1A05AC

RS1A03AC

RS1A10AC

Mass: $5.2 \mathrm{~kg}(11.5 \mathrm{lb})$
Unit: mm (inch)

RS1A15AC

$$
\text { Mass: } 6.5 \text { kg (14.3 lb) }
$$

Unit: mm (inch)

AC SERVO SYSTEMS

Indexer Modbus Interface Type Servo Amplifier \quad C \in dinve $^{\circ}$.

Specifications

Control function	
Main circuit power (Note 1)	
Control circuit power	
	Ambient temperature
Environment	Storage temperature
	Operation/Storage humidity
	Elevation
	Vibration
	Shock

```
Position control
Three-phase: 200 to 230 VAC +10, -15%,50/60 Hz \pm3Hz
Single-phase: }200\mathrm{ to 230 VAC +10,-15%,50/60 Hz }\pm3\textrm{Hz}\mathrm{ (Note 2)
Single-phase: 200 to 230 VAC +10, -15%,50/60 Hz \pm3Hz
0 to +55 C
-20 to +650}\textrm{C
Below 90% RH (no condensation)
Below 1000 m
4.9 m/s}\mp@subsup{\textrm{s}}{}{2}\mathrm{ Frequency range 10 to 55 Hz tested for 2 hours in each direction X.Y.Z
19.6 m/\mp@subsup{s}{}{2}
Built-in tray type power supply
```

Structure
Note 1) Power source voltage should be within the specified range. 200 VAC Power input type: Specified power supply range $=170$ to 253 VAC Note 2) The 200 VAC single-phase input types corresponds only to the RS1A01AF, RS1A03AF

Performance

Speed control range Frequency characteristics

1:5000 (Internal speed command)
600 Hz

Built-in Functions

Protection functions

LED display
Dynamic brake circuit Regeneration process

Monitor

Over current, Current detection error, Overload, Regeneration error, Amplifier overheating, External overheating, Over voltage, Main circuit low voltage, Main circuit open-phase, Control power supply error, Encoder error, Over speed, Speed control error, Speed feedback error, Excessive position error, Position command pulse error, CPU error, Built-in memory error, Battery error, Parameter error Status display, Monitor display, Alarm display, Parameter setting, Adjustment mode
Built-in
Built-in
Speed monitor (VMON) $2.0 \mathrm{~V} \pm 10 \%$ (at $1000 \mathrm{~min}^{-1}$)
Torque monitor (TCMON) 2.0V $\pm 10 \%$ (at 100\%)

Positioning Function

Number of control axis	1 pc
Number of registration points	It is possible to set it up to 254 points (P000 to P253)
Maximum command amounts	$-2,147,483,648$ to $+2,147,483,647$
Command unit	mm or pulse
Fast-forwarding speed	$2,147,483.647 \mathrm{~mm} / \mathrm{sec}(0.001 \mathrm{~mm} /$ pulse selection)
Addition \& Reduction speed	Automatic addition \& Reduction speed (Straight line/S curve shift)
Point data setting	Setting by numeric value input with PC or teaching
Traveling point number setting	Parallel 8 bit (Binary code)
Current limitation	0 to 510% (Rating $=100 \%)$, however, less than instant maximum stall current
Software limitation	Yes
Traveling mode	Zero-point return, analog (JOG, 1 Step), Specified point traveling
Area signal	8 zones in maximum

Modbus Interface

Item	Content	Default Value	Remark
Protocol	Modbus-RTU	-	Binary mode fixed (No compliant with ASCII mode)
Interface	RS-485 (1:N)	-	N=8
Baud rate (bps)	$4800,9600,19200,38400,57600,115200$	115200	(Note 2)
Start bit	1	1	Fixed
Data length (bit)	8	8	Fixed
Parity	None, even/odd number	even	(Note 3)
Stop bit	1,2	1	(Note 3)
Electric specification	Based on RS-485 (half duplex communication)	RS-485 compliant (half duplex communication)	Fixed
Connector	RJ-45	-	-

Note 1) From the limitation of general RS-485 physical layer (distance, terminator) specification, connectable amplifier (or other slave units) number is up to 31 per one segment. (Maximum number of devices without repeater.) Set up a node address with the rotary switch front of amplifier or in the R-Setup (personal computer interface) software. Note 2) Set up a communication setup (access speed) with the rotary switch on the front surface of amplifier or in R-Setup (personal computer interface). Note 3) Communication setup (transfer speed, and stop bit) is set up by the R-Setup software (interface with PC).

System Configuration

Item		Parts Number	Description
$\checkmark \quad 1$	Encoder Cable: 10 ft	EEXTABS2410FT	
$\checkmark \quad 2$	Motor Power Cable: 10 ft	MEXT1810FT	
3	Brake Cable: 10 ft	MEXTBRK2010FT	Only for Brake Equipped Motor
$\checkmark \quad 4$	I/O Cable: 3 ft	1026-100410	
5	Connector [CN1]	AL-Y0004290	No need if I/O Cable (4) is selected
6	Connector [CN2]	AL-00385596	No need if Encoder Cable (1) is selected
$\checkmark \quad 7$	Connector [CNA]	AL-00329461-01	
8	Connector [CNB]	AL-Y0000988-01	Supplied with Amplifier
9	Connector [CNC]	AL-00329458-01	No need if Motor Power Cable (2) is selected
10	PC Interface Cable	AL-00490833-01	Communication with SANMOTION R Setup Software
11	Battery	AL-00494635-01	

To build a complete system, you need to have checked items.

Wiring Diagram

Dimensions

RS1A01AF

Mass: $0.9 \mathrm{~kg}(2.0 \mathrm{lb})$

RS1A03AF
Mass: 1.0 kg (2.2 lb)

AC SERVO SYSTEMS

Control function
Main Circuit Power (Note 1)
Control Power
\qquadAmbient temperature Environment
Storage temperature Operation/Storage humidity Elevation Vibration
Struck

```
Speed control/Torque control/Position control (Parameter changeover)
3-Phase: 200 to 240 VAC +10, -15%,50/60 Hz\pm3 Hz
    Single-phase: }200\mathrm{ to }240\mathrm{ VAC +10,-15%,50/60 Hz m3 Hz (Note 2)
    Single-phase: }200\mathrm{ to }240\mathrm{ VAC +10, -15%,50/60 Hz m3 Hz
    0 to +55 C
    -20 to +65 C
    Below 90% RH (no condensation)
    Below 1000 m
    4.9 m/\mp@subsup{s}{}{2}
    19.6 m/\mp@subsup{s}{}{2}
    Built-in tray type power supply
```

Note 1) Always use input voltage within the specification range for the main circuit power supply.
Note 2) AC200V-single-phase input type corresponds only to RS3A01A0HA4/RS3A02A0HA4/RS3A03A0HA4/RS3A05A0HA4.

Performance

Speed control range Frequency characteristics Allowable load inertia moment

1:5000 (Internal speed command)
2200 Hz (In high frequency sampling mode) *Differs for each model.
10 times motor rotor inertia moment

Built-in Functions

$\left.\begin{array}{l|l}\text { Over current, Current detection error, Overload, Regeneration error, Overheat error, External overheating, } \\ \text { Protection functions } & \begin{array}{l}\text { Over voltage, Main circuit power low voltage, Main circuit power supply open phase, Control power supply } \\ \text { low voltage, Encoder error, Over speed, Speed control error, Speed feedback error, Excessive position, }\end{array} \\ \text { Position command pulse error, Built-in memory error, Parameter error, Cooling fan error. }\end{array}\right\}$

Safety Standard

Servo amplifier type Safety standards				
All models	UL, c-UL ratings		UL 61800-5-1	
		Low-voltage directive	IEC/EN 61800-5-1	
	EN standards	EMC directive	- IEC/EN 61000-6-4 - IEC/EN 61000-6-2 -EN61000-6-7	- IEC/EN 61800-3 - IEC/EN 61326-1
	KC mark (Korea Certification Mark)		KN 61000-6-2, KN 61000-6-4	
Model with safety function	Function safet		- IEC61508, SIL3 - IEC62061, SILCL3	- ISO13894-1, Cat3, PL=e

EtherCAT Interface Specifications

| Physical layer | IEC61158-2 IEEE802.3u 100BASE-TX |
| :--- | :--- | :--- |
| Data link layer | IEC61158-3,-4 Type12 |
| Application layer | IEC61158-5,-6 Type12 |
| Device profile | IEC61800-7 Profile type1(CiA402) CoE (CANopen over EtherCAT) FoE (File access over EtherCAT) |
| Communication port | RJ45 connector (2 ports) |
| Baud rate | 100 Mbps (Full duplex) |
| Max. No. of nodes | 65535 nodes |
| Transmission distance/topology | Max. 100 m (between nodes)/Daisy-chain |
| Cable | Twisted-pair CAT5e (straight or cross) |
| Communication object | SDO (Service Data Object) PDO (Process Data Object) |
| Minimum communication cycle time | $125 \mu s$ (62.5 $\mu \mathrm{s}: ~ s p e e d / t o r q u e ~ c o n t r o l ~ o n l y) ~$ |
| PDO length | Output: Max. 31 objects, Input: Max. 31 objects Total: Max. 62 objects |
| Synchronization function | SYNC0, SYNC1 Event Synchronization Mode, Synchronous with SM2 Event Mode, Asynchronous Mode |
| Operation mode | Profile Position Mode, Profile Velocity Mode, Profile Torque Mode, Homing Mode, Cycle Sync |
| LED indicator | Position Mode, Cycle Sync Velocity Mode, Cycle Sync Torque Mode |
| General Input/Output | Port 0/1 link display, RUN display, error display |

System Configuration: 10A, 20A, 30A, 50A

Item			Parts Number	Description
\checkmark	1	Encoder Cable: 10 ft	EEXTKABS2410FT	
			EEXTKABS24JN10FT	For 0.55 kW and 1.2 kW motor
\checkmark	2	Motor Power Cable: 10 ft	MEXTK1810FT	
			MEXTK18JN10FT	For 0.55 kW motor
			MEXTK14JN10FT	For 1.2 kW motor
\checkmark	3	Brake Cable: 10 ft	MEXTBRK2010FT	Only for brake equipped motor
	4	Connector [EN1, EN2]	AL-00632607	No need if Encoder Cable (1) is selected
	5	Connector [CN4]	AL-00718252-01	For STO, no need if safety device is not installed
	6	Connector [CN2]	AL-00842383	For general I/O signals
	7	Connector [CNA]	AL-00686902-01	Supplied with Amplifier
	8	Connector [CNB]	AL-Y0004079-01	No need if Motor Power Cable (2) is selected
\checkmark	9	USB Communication Cable: 1 m	AL-00896515-01	Communication with SANMOTION MOTOR Setup software
	10	Battery [CN3]	AL-00880402-01	Used when using a battery -backup method absolute encoder

To build a complete system, you need to have checked items.

AC SERVO SYSTEMS

System Configuration: 100A, 150A

Item			Parts Number	Description
\checkmark	1	Encoder Cable: 10 ft	EEXTKABS24JN10FT	
\checkmark	2	Motor Power Cable: 10 ft	MEXT10JN10FT	For 2 kWV motor
			MEXT08JN10FT	For 5 kW motor
\checkmark	3	Motor Power + Brake Cable: 10 ft	MEXTB10JN10FT	For brake equipped 2 kW motor
			MEXTB08JN10FT	For brake equipped 5 kW motor
	4	Connector [EN1, EN2]	AL-00632607	No need if Encoder Cable (1) is selected
	5	Connector [CN4]	AL-00718252-01	For STO, no need if safety device is not installed
	6	Connector [CN2]	AL-00842383	For general I/O signals
\checkmark	7	Connector [CNA]	AL-Y0005159-01	
\checkmark	8	USB Communication Cable: 1m	AL-00896515-01	Communication with SANMOTION MOTOR Setup software
	9	Battery [CN3]	AL-00880402-01	Used when using a battery -backup method absolute encoder

To build a complete system, you need to have checked items.

Wiring Diagram

AC SERVO SYSTEMS

Dimensions

RS3A01A2HA4
Mass: $0.8 \mathrm{~kg}(1.76 \mathrm{lb}) \quad$ Unit: mm (inch)

RS3A03A2HA4
Mass: $0.9 \mathrm{~kg}(1.98 \mathrm{lb}) \quad$ Unit: mm (inch)

RS3A10A2HA4
Mass: $4.2 \mathrm{~kg}(9.26 \mathrm{lb})$
Unit: mm (inch)

RS3A02A2HA4

RS3A05A2HA4
Mass: $1.6 \mathrm{~kg}(3.53 \mathrm{lb})$
Unit: mm (inch)

RS3A15A2HA4
Mass: 4.9 kg (10.8 lb) Unit: mm (inch)

EtherCAT Interface Type Servo Amplifier

Specifications

Control function
Main circuit power (Note 1)
Control circuit power

Ambient temperature	
Environment	Storage temperature Operation/Storage humidity
	Elevation Vibration Shock

Position control/Speed control/Torque control (Parameter changeover)
Three-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$
Single-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ (Note 2)
Single-phase: 100 to $115 \mathrm{VAC}+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ (Note 3)
Single-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$
Single-phase: 100 to $115 \mathrm{VAC}+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ (Note 3)
0 to $+55^{\circ} \mathrm{C}$
-20 to $+65^{\circ} \mathrm{C}$
Below 90\% RH (no condensation)
Below 1000 m
$4.9 \mathrm{~m} / \mathrm{s}^{2}$ Frequency range 10 to 55 Hz tested for 2 hours in each direction X.Y.Z $19.6 \mathrm{~m} / \mathrm{s}^{2}$
Built-in tray type power supply

Structure
Note 1) Power source voltage should be within the specified range
200 VAC Power input type: Specified power supply range $=170$ to 253 VAC
100 VAC Power input type: Specified power supply range $=85$ to 127 VAC
Note 2) 200 VAC single-phase input type corresponds only to the RS2A01A0KA4, RS2A03A0KA4 and RS2A05A0KA4 Note 3) 100 VAC single-phase input type corresponds only to the RS2E01A0KA4 and RS2E03AOKA4

Performance

Speed control range
Frequency characteristics
1:5000 (Internal speed command)
800 Hz

Built-in Functions

Protection functions
LED display
Dynamic brake circuit
Regeneration process
Monitor

Over current, Current detection error, Overload, Regeneration error, Amplifier overheating, External overheating, Over voltage, Main circuit power low voltage, Main circuit power supply open phase, Control power supply low voltage, Encoder error, Over speed, Speed control error, Speed feedback error, Excessive position, Position command pulse error, Built-in memory error, Parameter error
Status display, Monitor display, Alarm display, Parameter setting, Adjustment mode
Built-in
Built-in
Speed monitor (VMON) $2.0 \mathrm{~V} \pm 10 \%$ (at $1000 \mathrm{~min}^{-1}$)
Torque monitor (TCMON) $2.0 \mathrm{~V} \pm 10 \%$ (at 100%)

Safety Standard
Servo amplifier type
All models
Model with safety function

Safety standards		
UL ratings	UL508C	
	Low-voltage directive	- EN61800-5-1
EN standards	EMC directive	- EN55011, G1, ClassA - EN61000-6-2 - EN61800-3
Function safety standards	- IEC61508, SIL2 - ISO13849-1, Cat.3, PL = d	- IEC62061, SILCL2 - EN954-1, Cat. 3

EtherCAT Interface Specifications

Physical layer
Data link layer
Application layer
Device profile
Communication port
Baud rate
Max. No. of nodes
Transmission distance/topology
Cable
Communication object
PDO length
Synchronization function
Operation mode
LED indicator
General Input/Output

Physical layer
Data link layer
Application layer
Device profile
Communication port
Max. No. of nodes
Transmission distance/topology
Cable
Communication object
SO length
Synchronization function
Operation mode

General Input/Output

IEC61158-2
IEEE802.3u 100BASE-TX
IEC61158-3,-4 Type12
IEC61158-5,-6 Type12
IEC61800-7 Profile type1(CiA402) •CoE (CANopen over EtherCAT) •FoE (File access over EtherCAT)
RJ45 connector (2 ports)
100 Mbps (Full duplex)
65535 nodes
Max. 100 m (between nodes)/Daisy-chain
Twisted-pair CAT5e (straight or cross)
SDO (Service Data Object)
PDO (Process Data Object)
Output: Max.64Byte Input: Max.64Byte Total: Max. 128 Bytes
SYNCO, SYNC1 Event Synchronization Mode (DC Mode), Synchronous with SM2 Event Mode, Asynchronous Mode Profile Position Mode, Profile Velocity Mode, Profile Torque Mode, Homing Mode, Cycle Sync Position Mode, Cycle Sync Velocity Mode, Cycle Sync Torque Mode
Port 0/1 link display, RUN display, error display
2 inputs, 2 outputs (4 total)

AC SERVO SYSTEMS

System Configuration: 15A, 30A, 50A

Item		Parts Number	Description
$\checkmark \quad 1$	Encoder Cable: 10 ft	EEXTKABS2410FT	
$\checkmark \quad 2$	Motor Power Cable: 10 ft	MEXTK1810FT	
3	Brake Cable: 10 ft	MEXTBRK2010FT	Only for Brake Equipped Motor
4	I/O Cable: 3 ft	1026-100407	
$\checkmark 5$	Safety Off Cable: 3 ft	1026-100410	One side flying leads
6	Safety Off / Battery Cable: 3 ft	1026-100416	One side flying leads + Battery + Holder
7	Connector [CN2]	AL-Y0004290-02	No need if Safety Off Cable (5) is selected
8	Connector [EN1]	AL-00632607	No need if Encoder Cable (1) is selected
9	Connector [CNA]	AL-00686902-01	Supplied with Amplifier
10	Connector [CNB]	AL-Y0004079-01	No need if Motor Power Cable (2) is selected
11	PC Interface Cable	AL-00689703-01	Communication with SANMOTION MOTOR Setup Software
12	Battery	1025-106187	Battery + Holder (ask us)

To build a complete system, you need to have checked items.

System Configuration: 100A, 150A

Item		Parts Number	Description
$\checkmark 1$	Encoder Cable: 10 ft	EEXTKABS24JN10FT	
$\checkmark 2$	Motor Power Cable: 10 ft	MEXTK18JN10FT	For 0.5 kW motor
		MEXTK14JN10FT	For 1.2 kW motor
		MEXT10JN10FT	For 2 kW motor
		MEXT08JN10FT	For 5 kW motor
3	Motor Power + Brake Cable: 10 ft	MEXTB10JN10FT	For brake equipped 2 kW motor
		MEXTB08JN10FT	For brake equipped 5 kW motor
4	I/O Cable: 3 ft	1026-100407	
$\checkmark 5$	Safety Off Cable: 3 ft	1026-100410	One side flying leads
6	Safety Off / Battery Cable: 3 ft	1026-100416	One side flying leads + Battery + Holder
7	Connector [EN1]	AL-00632607	No need if Encoder Cable (1) is selected
8	Connector [CN2]	AL-Y0004290-02	No need if Safety Off Cable (5) is selected
$\checkmark \quad 9$	Connector [CNA]	AL-Y0005159-01	
10	PC Interface Cable	AL-00689703-01	Communication with SANMOTION MOTOR Setup Software
11	Battery	1025-106187	Battery + Holder (ask us)

To build a complete system, you need to have checked items

AC SERVO SYSTEMS

Wiring Diagram

Dimensions

RS2A01A0KA4
RS2E01A0KA4
Mass: $0.75 \mathrm{~kg}(1.65 \mathrm{lb})$

Unit: mm (inch)

RS2A05A0KA4
Unit: mm (inch)
Mass: $1.65 \mathrm{~kg}(3.6 \mathrm{lb})$

RS2A15A0KA4
Mass: $5.3 \mathrm{~kg}(11.7 \mathrm{lb})$

RS2A03A0KA4

RS2E03A0KA4

Mass: $0.95 \mathrm{~kg}(2.1 \mathrm{lb})$
Unit: mm (inch)

RS2A10A0KA4
Unit: mm (inch)
Mass: 5.0 kg (11 lb)

AC SERVO SYSTEMS

EtherCAT Interface High Speed Type Servo Amplifier

$\mathrm{C} \in \mathrm{OH}_{\mathrm{is}}$ ©

Specifications

Control function		Position control/Speed control/Torque control (Parameter changeover)
Main circuit power (Note 1)		Three-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ Single-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ (Note 2)
Control circuit power		Single-phase: 200 to 230 VAC $+10,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$
Environment	Ambient temperature	0 to $+55^{\circ} \mathrm{C}$
	Storage temperature	-20 to $+65^{\circ} \mathrm{C}$
	Operation/Storage humidity	Below 90\% RH (no condensation)
	Elevation	Below 1000 m
	Vibration	$5 \mathrm{~m} / \mathrm{s}^{2}$ Frequency range 10 to 55 Hz tested for 2 h in each direction $\mathrm{X} . \mathrm{Y} . \mathrm{Z}$
	Shock	$20 \mathrm{~m} / \mathrm{s}^{2}$
Structure		Built-in tray type power supply
Note 1) Power source voltage should be within the specified range 200 VAC Power input type: Specified power supply range $=170$ to 253 VAC Note 2) 200 VAC single-phase input type corresponds only to the RS2A01A0KA4, RS2A03AOKA4, RS2A05A0KA4		
\square Performance		
Speed control range 1:5000 (Internal		eeed command)
Frequency characteristics 800 Hz		
- Built-in Functions		
Protection functions	Over current, Current detection error, Overload, Regeneration error, Magnetic pole position estimation error, Amplifier overheating, External overheating, Over voltage, Main circuit power low voltage, Main circuit power supply open phase, Control power supply low voltage, Encoder error, Over speed, Speed control error, Speed feedback error, Excessive position, Position command error, Built-in memory error, Parameter error	
LED display	Status display, M	nitor display, Alarm display, Test operation, Adjustment mode
Dynamic brake circuit	circuit Built-in	
Regeneration process	process Built-in	
Monitor	Speed monitor (VI Torque monitor	MON) $2.0 \mathrm{~V} \pm 10 \%$ (at $1000 \mathrm{~min}^{-1}$) CMON) $2.0 \mathrm{~V} \pm 10 \%$ (at 100\%)

Safety Standard

Servo amplifier type Safety standards			
	UL ratings	UL508C	
		Low-voltage directive	-EN61800-5-1
All models	EN standards	EMC directive	-EN61000-6-2 - EN61800-3 - EN61326-3-1
Model with safety function	Function safety standards	- IEC61508, SIL2 - IEC62061, SILCL2	- ISO13894-1, Cat3, PL=d

EtherCAT Interface Specifications

| IEC61158-2 |
| :--- | :--- |
| IEEE802.3u 100BASE-TX |

System Configuration: 15A, 30A, 50A

Item		Parts Number	Description
$\checkmark 1$	Encoder Cable: 10 ft	EEXTKABS2410FT	
$\checkmark 2$	Motor Power Cable: 10 ft	MEXTK1810FT	
3	Brake Cable: 10 ft	MEXTBRK2010FT	Only for Brake Equipped Motor
4	Connector [EN1, EN2]	AL-00632607	No need if Encoder Cable (1) is selected
5	Connector [CN1]	AL-00718252-01	For STO, no need if safety device is not installed
6	Connector [CN1]	AL-00849548-02	For STO cancellation, supplied with Amplifier.
7	Connector [CN2]	AL-00842383	For general I/O signal
8	Connector [CNA]	AL-00686902-01	Supplied with Amplifier
9	Connector [CNB]	AL-Y0004079-01	No need if Motor Power Cable (2) is selected
10	PC Interface Cable	AL-00689703-01	Communication with SANMOTION MOTOR Setup software
11	Battery	1025-106187	Battery + Holder (ask us)

[^2]
AC SERVO SYSTEMS

System Configuration: 100A, 150A

Item		Parts Number	Description
$\checkmark 1$	Encoder Cable: 10 ft	EEXTKABS24JN10FT	
$\checkmark 2$	Motor Power Cable: 10 ft	MEXTK18JN10FT	For 0.55 kW motor
		MEXTK14JN10FT	For 1.2 kW motor
		MEXT10JN10FT	For 2 kW motor
		MEXT08JN10FT	For 5 kW motor
3	Motor Power + Brake Cable: 10 ft	MEXTB10JN10FT	For brake equipped 2 kW motor
		MEXTB08JN10FT	For brake equipped 5 kW motor
4	Connector [EN1, EN2]	AL-00632607	No need if Encoder Cable (1) is selected
5	Connector [CN1]	AL-00718252-01	For STO, no need if safety device is not installed
6	Connector [CN1]	AL-00849548-02	For STO cancellation, supplied with Amplifier.
7	Connector [CN2]	AL-00842383	For general I/O signal
$\checkmark 8$	Connector [CNA]	AL-Y0005159-01	
9	PC Interface Cable	AL-00689703-01	Communication with SANMOTION MOTOR Setup software
10	Battery	1025-106187	Battery + Holder (ask us)

To build a complete system, you need to have checked items.

Wiring Diagram

Dimensions

RS2A01A2HA5
Mass: $0.75 \mathrm{~kg}(1.65 \mathrm{lb})$

RS2A05A2HA5

RS2A15A2HA5

RS2A03A2HA5
Mass: $0.95 \mathrm{~kg}(2.1 \mathrm{lb})$

RS2A10A2HA5
Mass: 5.0 kg (11 lb)
Unit: mm (inch)

Analog DC Input Type Servo Amplifier

Specifications

Control function		Position control
Main circuit power		$48 \mathrm{VDC} \pm 10 \%$ (Note 1)
Control circuit power		$5 \mathrm{VDC} \pm 5 \%$ (Note 2)
Environment	Ambient temperature	0 to $+40^{\circ} \mathrm{C}$ (Note 3)
	Storage temperature	-20 to $+65^{\circ} \mathrm{C}$
	Operation/Storage humidity	Below 90\% RH (no condensation)
	Elevation	Below 1000 m
	Vibration	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ Frequency range 10 to 55 Hz tested for 2 hours in each direction X.Y.Z
	Shock	19.6 m/ ${ }^{2}$
Structure		Built-in tray type power supply

Note 1) Enter the voltage within specification ranges to the power source voltage of the main circuit.
Note 2) The control power source is used as the power source to the encoder.
Even if the voltage input is within the specification field, when the wiring is long to the encoder, the voltage may decrease as a result of the wiring and the encoder may not operate properly.
Note 3) Use within the operation ambient temperature range.

Performance

Speed control range	$1: 5000$ (Internal speed command)
Frequency characteristics	1200 Hz

Built-in Functions

Orotection functions	Over current, Current detection error, Overload, Amplifier overheating, External overheating, Over voltage, Main circuit power low voltage, Control power supply low voltage, Encoder error, Over velocity, Velocity control error, Velocity feedback error, Excessive position, Position command pulse error, Built-in memory error, Parameter error
LED display	Status display, Alarm display, Power-supplied-state display
Dynamic brake circuit	Built-in

Input Command

Position command	Maximum input pulse frequency	5M PPS (reverse rotation + normal rotation pulse and code + pulse) 1.25M PPS (90° phase difference, two-phase pulse)
	Input pulse configuration	Normal rotation + reverse rotation command pulse, code + pulse train command, or 90° phase difference, two-phase pulse train command
	Electronic gear	N/D ($\mathrm{N}=1$ through 2097152, $\mathrm{D}=1$ through 2097152), 1/2097152 ${ }^{\text {S/ } / D \leq 2097152 ~}$
Sequence input signal		Servo-on, alarm reset, torque limit, encoder-clear, forward rotation prohibit, reverse rotation prohibit, command prohibit, external trip, forced discharge, emergency stop, gain switching, internal velocity setting, etc.
Sequence output signal		Servo-ready, power-on, servo-on, holding brake timing, torque and velocity limited state, low velocity, velocity attainment, velocity-matching, zero-velocity, command acceptable, status of gain switch, velocity loop proportional control state, control mode switching state, forward OT, reverse OT, warning, alarm code (3 bits), etc.
Position output signal		$\mathrm{N} / 32768$ ($\mathrm{N}=1$ through 32767), $1 / \mathrm{N}(\mathrm{N}=1$ through 64) or $2 / \mathrm{N}(\mathrm{N}=2$ through 64)

AC SERVO SYSTEMS

System Configuration

Item			Parts Number	Description
\checkmark	1	Encoder Cable: 10 ft	EEXTGABS2410FT	
\checkmark	2	Motor Power Cable: 10 ft	MEXTG1810FT	
	3	Brake Cable: 10 ft	MEXTGBRK2010FT	Only for Brake Equipped Motor
\checkmark	4	Amplifier Power Cable: 2 m	AL-00745943-01	
\checkmark	5	I/O Cable Set, for CN1A and CN1B	AL-00745949-01	
	6	Regenerative Unit	RF1BB00	No need if I/O Cable (5) is selected
	7	Connector [CNA]	AL-00329461-01	
\checkmark	8	PC Interface Cable	AL-00490833-01	Communication with SANMOTION MOTOR Setup Software
	9	Battery	AL-00494635-01	

To build a complete system, you need to have checked items.

Wiring Diagram

Dimensions

RF2G21A0A00

Mass: $0.23 \mathrm{~kg}(0.51 \mathrm{lb})$

EtherCAT Interface DC Input Type Servo Amplifier

Specifications

Amplifier Model		RS2K04A2HA5	RS2J04A2HA5
Control function		Position control/Speed control/Torque control (Parameter changeover)	
Main circuit power		48 VDC $\pm 10 \%$	24 VDC $\pm 10 \%$
Control circuit power		24 VDC $\pm 10 \%$	
Environment	Ambient temperature	0 to $+40^{\circ} \mathrm{C}$	
	Storage temperature	-20 to $+65^{\circ} \mathrm{C}$	
	Operation/Storage humidity	Below 90\% RH (no condensation)	
	Elevation	Below 1000 m	
	Vibration	$5 \mathrm{~m} / \mathrm{s}^{2}$ Frequency range 10 to 55 Hz tested for 2 hours in each direction X.Y.Z	
	Shock	$20 \mathrm{~m} / \mathrm{s}^{2}$	
Structure		Built-in tray type power supply	

Performance

Speed control range	$1: 5000$ (Internal speed command)
Frequency characteristics	800 Hz

Built-in Functions

Protection functions

LED display
Dynamic brake circuit
Regeneration process circuit
Monitor

Over current, Current detection error, Over load, Regeneration error, Magnetic pole position estimation error, Amplifier overheating, External overheating, Over voltage, Main circuit power low voltage, Main circuit power supply open phase, Control power supply low voltage, encoder error, Over speed, Speed control error, Speed feedback error, Excessive position, Position command error, Built-in memory error, Parameter error.
Status display, Monitor display, Alarm display, Test operation, Adjustment mode
Built-in
Built-in
Speed monitor (VMON) $2.0 \mathrm{~V} \pm 10 \%$ (at $1000 \mathrm{~min}^{-1}$)
Torque monitor (TCMON) $2.0 \mathrm{~V} \pm 10 \%$ (at 100%)

EtherCAT Interface Specifications

Physical layer
Data link layer
Application layer

Device profile

Communication port
Baud rate
Max. No. of nodes
Transmission distance/topology
Cable
Communication object

PDO length

Synchronization function

Operation mode
LED indicator
General Input/Output

```
                                    IEC61158-2
                                    IEEE802.3u 100BASE-TX
                                    IEC61158-3,-4 Type12
                                    IEC61158-5,-6 Type12
                                    IEC61800-7 Profile type1(CiA402)
                            - CoE (CANopen over EtherCAT)
                            - FoE (File access over EtherCAT)
RJ45 connector (2 ports)
100 Mbps (Full duplex)
6 5 5 3 5 \text { nodes}
Max. }100\mathrm{ m (between nodes)/Daisy-chain
Twisted-pair CAT5e (straight or cross)
SDO (Service Data Object)
PDO (Process Data Object)
Output: Max. 20 objects, Input: Max. 20 objects
Total: Max. }40\mathrm{ Bytes
SYNCO, SYNC1 Event Synchronization Mode (DC Mode), Synchronous with SM2
Event Mode, Asynchronous Mode
Profile Position Mode, Profile Velocity Mode, Profile Torque Mode, Homing Mode,
Cycle Sync Position Mode, Cycle Sync Velocity Mode, Cycle Sync Torque Mode
Port 0/1 link display, RUN display, error display
6 inputs, 2 outputs (8 total)
```


AC SERVO SYSTEMS

System Configuration

Item		Parts Number	Description
\checkmark	Encoder Cable: 10 ft	EEXTKABS2410FT	
$\checkmark \quad 2$	Motor Power Cable: 10 ft	MEXTK1810FT	
3	Brake Cable: 10 ft	MEXTBRK2010FT	Only for Brake Equipped Motor
4	I/O Connector [CN2]	AL-00842383	
5	Connector [EN1]	AL-00632607	No need if Encoder Cable (1) is selected
$\checkmark 6$	Connector [CN1]	AL-00718252-01	For STO function, no need if connector (7) is selected
$\checkmark 7$	Connector [CN1]	AL-00849548-02	For STO function cancellation, no need if connector (6) is selected
8	Connector [CNA]	AL-Y0010913-01	Supplied with Amplifier
9	Connector [CNB]	AL-Y0004079-01	No need if Motor Power Cable (2) is selected
10	PC Interface Cable	AL-00689703-01	Communication with SANMOTION MOTOR Setup Software

To build a complete system, you need to have checked items.

Wiring Diagram

Dimensions

RS2K04A2HA5

RS2J04A2HA5
Mass: $0.55 \mathrm{~kg}(1.2 \mathrm{lb})$

EtherCAT Interface DC Input Type Multi Axis Servo Amplifier

Specificaitons

Note 1) Always use input voltage within the specification range for the main circuit power supply.

Performance

```
Speed control range
Frequency characteristics 800 Hz
1:5000
```


Built-in Functions

Protection functions	Over current, Current detection error, Overload, Regeneration error, Overheating, External disorder, Over voltage, Main circuit power low voltage, Encoder error, Over speed, Speed control error, Speed feedback error, Unreasonable position deviation, Position command pulse error, Built-in memory error, Parameter error
LED display	Alarm display (red), status display (green), control power establishment (green), main circuit charge (red), communication link (green) $\times 2$, communication RUN (green), communication Error (red)
Regeneration process	External type (Connect to the CNC connector, if a regenerative resistor is required.)

EtherCAT interface specifications

Physical layer
Data link layer
Application layer
Device profile

Communication port
Baud rate
Max. No. of nodes
Transmission distance/topology
Cable
Communication object
Synchronization types
Operation mode
LED indicator
General Input/Output

IEC61158-2
IEEE802.3u 100BASE-TX
IEC61158-3,-4 Type12
IEC61158-5,-6 Type12
IEC61800-7 Profile type1(CiA402)

- CoE (CANopen over EtherCAT)
- FoE (File access over EtherCAT)

RJ45 connector (2 ports)
100 Mbps (Full duplex)
65535 nodes
Max. 100 m (between nodes)/Daisy-chain
Twisted-pair CAT5e (straight or cross)
SDO (Service Data Object)
PDO (Process Data Object)
SYNC0, SYNC1 Event Synchronization Mode, Asynchronous Mode Profile Position Mode, Profile Velocity Mode, Profile Torque Mode, Homing Mode, Cycle Sync Position Mode, Cycle Sync Velocity Mode, Cycle Sync Torque Mode
Port 0/1 link display, RUN display, error display
Input: 8 points (total), Output: 2 points / axis (8 points in total)

AC SERVO SYSTEMS

System Configuration

Item		Parts Number	Description
\checkmark	Encoder Cable: 10 ft	EEXTKABS2410FT	
		1026-107008	For 1027-107013 and 1027-107014 motor
		1026-107024	For 1028-107023 motor
\checkmark	Motor Power Cable: 10 ft	1026-107009	
		1026-107025	For 1028-107023 motor
3	Connector [EN1 to 4]	AL-00632607	No need if Encoder Cable (1) is selected
4	Connector [MOT1 to 4]	AL-00922660	No need if Motor Cable (2) is selected
5	Connector [CN1]	AL-00718252-01	For STO, no need if safety device is not installed
6	Connector [CN1]	AL-00849548-02	For STO cancellation, supplied with Amplifier.
$\checkmark 7$	Connector [CNA]	AL-00922656	For amplifierr power supply
8	Connector [CNC]	AL-00922658	For refenerative resistor connection
9	Connector [I/O]	AL-00922662	For general I/O singal
10	PC Interface Cable	AL-00689703-01	Communication with SANMOTION MOTOR Setup software
11	Battery [CN3]	AL-00880402-01	Used when using a battery-backup method absolute encoder

To build a complete system, you need to have checked items.

Wiring Diagram

*1
*2 The servo amplifier contains an internal regenerative process circuit. If DC voltage increases due to the regenerative power occuring when the motor is stopped, connect a regenerative resistor.
*3 - When the wiring from the DC power supply to the servo amplier is long, install an electrolytic capacitor on the amplifier side between P-N and CP-CN if necessary. -When using a battery for the DC power supply between P-N and CP-CN, always install an electrolytic capacitor ($2000 \mu \mathrm{~F}$ or more).
Motor connection differs by the motor specifications. The indications of red, white, black, green and orange apply when the motor power and brake lines are the lead type.
Refer to the encoder connection figure for the wiring of the connector for the encoder connection.
*6 Turn the power off as a way to shut off the main circuit power for the protection of the servo ampifier during emergency stops.
7 Use a shielded twisted pair cable (STP) with Category 5e (TIA standards) or higher.
*8 An earth leakage circuit breaker conforming to UL and either IEC or EN standards is - recommended.
*9 The external power supply is to be arranged by the customer.
*10 CN1 is a connector for the Safe Torque Off function. Connect the connector to the safety function to make the Safe Torque Off function active. Otherwise, the servo will not be turned on (no power to the motor).
*11 Do not connect anything to I/O-9, 10, 27 and 28.
*12 Contact us for main circuit power supply 24 VDC.

Dimensions

■ RF2J14A0HL5 Mass: $0.75 \mathrm{~kg}(1.65 \mathrm{lb})$
■ RF2K24A0HL5 Mass: 0.8 kg (1.76 lb)
RF2J24A8HL5 Mass: 0.75 kg (1.65 lb)

Brake Equipped Motors

Motor Model		R2FA04003F	R2FA04005D	R2EA04008F	R2GA04008D	R2AA04010F
Rated Power		30 W	50 W	80 W	80 W	90 W
Power Supply		24 VDC	24 VDC	100 VAC	48 VDC	200 VAC
	VDC	$24 \pm 10 \%$				
	Amp	0.27	0.27	0.27	0.27	0.27
	$N \cdot m$	0.32	0.32	0.32	0.32	0.32
	$\mathrm{lb} \cdot$ in	2.8	2.8	2.8	2.8	2.8
	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.0078	0.0078	0.0078	0.0078	0.0078
	$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.0027	0.0027	0.0027	0.0027	0.0027
	kg	0.27	0.27	0.27	0.27	0.27
	lb	0.60	0.60	0.60	0.60	0.60

Motor Model			R2FA06007R	R2EA06020F	R2GA06020D	R2AA06040F	R2AA08075F
Rated Power			70 W	200 W	200 W	400 W	750 W
Power Supply			24 VDC	100 VAC	48 VDC	200 VAC	200 VAC
$\begin{aligned} & \frac{0}{y} \\ & \stackrel{0}{00} \end{aligned}$	Input Voltage	VDC	$24 \pm 10 \%$				
	Input Current	Amp	0.27	0.32	0.32	0.32	0.37
	Minimum Static Friction	$N \cdot m$	0.36	1.37	1.37	1.37	2.55
	Torque	$\mathrm{lb} \cdot$ in	3.2	12.1	12.1	12.1	22.6
	Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.06	0.06	0.06	0.06	0.25
		$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.021	0.021	0.021	0.021	0.085
	Mass	kg	0.36	0.39	0.35	0.39	0.89
		lb	0.80	0.86	0.78	0.86	2.0

Motor Model			R2AAB8100H	R2AA13200D	R2AA22500L
Rated Power			1 kW	2 kW	5 kW
Power Supply			200 VAC	200 VAC	200 VAC
$\begin{aligned} & \frac{0}{\frac{0}{0}} \\ & \frac{丶 10}{0} \end{aligned}$	Input Voltage	VDC	$24 \pm 10 \%$	$24 \pm 10 \%$	$24 \pm 10 \%$
	Input Current	Amp	0.3	0.66	1.2
	Minimum Static Friction	$N \cdot m$	3.92	12	42
	Torque	$\mathrm{lb} \cdot$ in	34.7	106	372
	nertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.343	0.5	5.1
		$\mathrm{lb} \cdot \mathrm{in}^{2}$	0.117	0.17	1.7
	Mass	kg	0.84	1.5	5.5
	Mass	lb	1.9	3.3	12

Incremental Encoder with Hall Sensor Equipped Motor

Dimensions

P/N	LL	LG	KL	LA	LB	LE
R2AA04005FXK30M **	68.5 (2.70)		34.4 (1.35)			
R2AA04005FCK30M ${ }^{* 1}$	104.5 (4.11)	5	35.3 (1.39)	46	$30{ }_{-0.021}^{0}$	2.5
R2AA04010FXK00M	84 (3.31)	(.2)	34.4 (1.35)	(1.81)	(1.18-00084)	(.1)
R2AA04010FCK00M	120 (4.72)		35.3 (1.39)			
R2AA06010FXK30M **	78.2 (3.08)					
R2AA06010FCK30M* ${ }^{\text {+1 }}$	106.2 (4.18)					
R2AA06020FXK00M	89.2 (3.51)	6	44.6	70	$50 \stackrel{0}{-0.025}$	
R2AA06020FCK00M	117.2 (4.61)	(.24)	(1.76)	(2.76)	(1.97-0001)	3
R2AA06040FXK00M	115.2 (4.54)					(.12)
R2AA06040FCK00M	143.2 (5.64)					
R2AA08075FXK00M	128.3 (5.05)	8	54.4	90	$70-0.030$	
R2AA08075FCK00M	163.7 (6.44)	(.31)	(2.14)	(3.54)	(2.76-0012)	

P/N	LH	LC	LZ	LR	S	Q	QE	LT
R2AA04005FXK30M* ${ }^{*}$								
R2AA04005FCK30M**	56	40	2-ø4.5					
R2AA04010FXK00M	(2.20)	(1.57)	(2-ø.18)	25	$8 \quad \stackrel{0}{-0.009}$	20	N/A	N/A
R2AA04010FCK00M				(.98)	(. $31-004$)	(.79)		
R2AA06010FXK30M * ${ }^{\text {* }}$								
R2AA06010FCK30M**								
R2AA06020FXK00M	82	60	4-ø5.5					
R2AA06020FCK00M	(3.23)	(2.36)	(4-ø.22)	30	$14-0.011$	25		
R2AA06040FXK00M				(1.18)	(. $55-004$)	(.98)	M5	12
R2AA06040FCK00M								(.47)
R2AA08075FXK00M	108	80	4-ø6.6	40	$16-{ }_{-0.011}$	35		
R2AA08075FCK00M	(4.25)	(3.15)	(4-ø.26)	(1.57)	(. $63-0.004$)	(1.38)		

Encoder Specifications

Note: *1 - The motor and encoder connectors of R2AA04005F and R2AA06010F are mounted towared the rear side of motor (Figure B). Other motos have Figure A.

Model Numbering System

Motor

C ... Absolute encoder for incremental system [MA018]
H ... Absolute encoder for incremental system
K ... 2000 P/R incremental encoder [PP031]
P ... Battery backup method absolute enocoder [PA035C]
R ... Battery less optical absolute encoder [HA035]
S ... 8192 P/R incremental encoder [PP018T]
02R ... 2.4 W $008 \cdots 80 \mathrm{~W} \quad 075 \ldots 750 \mathrm{~W}$
D20 ... $20 \mathrm{~W} \quad 010 \ldots 100 \mathrm{~W} 120 \ldots 1.2 \mathrm{~kW}$
003 ... 30 W 020 ... 200 W 200 ... 2 kW
$005 \cdots 50 \mathrm{~W} \quad 040 \cdots 400 \mathrm{~W} 500 \cdots 5 \mathrm{~kW}$ 007 ... 70 W 050 ... 550 W

Safe Torque Off Fucntion * / Specification Identification **

4 ... Available (with delay circuit)
5 ... Available (with delay circuit) 00… Standard

CLOSED LOOP STEPPING SYSTEMS

sammotion Model No.PB

High Speed Positioning

High torque performance in the low speed range delivers a shorter positioning time for a short stroke/high hit rate application.

Zero Motor Hunting

PB system eliminates the usual motor hunting seen in servo systems; this is done by applying constant torque delivered to the motor which is a typical characteristic of stepping motor systems.

Improved Efficiency

Low motor heat generation is achieved by controlling the current to the motor which gives you optimum motor performance through all of the motors speed/torque range.

Indexer Model

Homing Function
Position Command Range: ± 31 bit
Relative/Absolute Travel
Point Mode
Point data: Max. 128 points
Program Mode
Program size: Max. 1024 lines
Point Loop/Conditional Jump
Jogging Function
Torque Limit Function
Alarm/ \pm OT
Holding Brake Control

Pulse Input Model

Homing Function
Jogging Function
Pulse Input Frequency: Max. 400 kHz
Resolution: 100 to 16,000 P/R
Encoder Signal Output
ALM Output
In-position Output
Holding Brake Control

EtherCAT Model

Two Axis Control
Homing Mode
Position Mode (PP, CSV)
Velocity Mode (PV, CSV)
Jogging Function
Holding Brake Control

$\underset{\text { Conformanceteste }}{\text { E }} \rightarrow$

Lineup

Flange Size	Motor Length	Max. Stall Torque	Model	Driver								Page
					Indexer			Pulse Inp		EtherCAT		
	$\begin{aligned} & \mathrm{mm} \\ & \text { inch } \end{aligned}$	$\begin{aligned} & \mathrm{N} \cdot \mathrm{~m} \\ & \mathrm{OZ} \cdot \mathrm{in} \end{aligned}$		Type R		Type M	Type P		Type M	Type E	Type E Multi-axis	
				100 VAC	200 VAC	24/48 VDC	100 VAC	200 VAC	24/48 VDC	24/48 VDC	24/48 VDC	
28 mm 1.1 inch	$\begin{aligned} & 59.2 \\ & 2.33 \end{aligned}$	$\begin{gathered} 0.055 \\ 7.79 \end{gathered}$	PBM281DXE50								\square	72
	$\begin{aligned} & 58.5 \\ & 2.30 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 7.08 \end{aligned}$	PBM282FXE20			\square			\square			73
	$\begin{gathered} 117.1 \\ 4.61 \end{gathered}$	$\begin{gathered} 0.155 \\ 22.0 \end{gathered}$	PBM284FXE20			\square			\square			74
	$\begin{gathered} 117.1 \\ 4.61 \end{gathered}$	$\begin{gathered} 0.115 \\ 16.3 \end{gathered}$	PBM284FXE50							\square		
	$\begin{aligned} & 78.5 \\ & 3.09 \end{aligned}$	$\begin{gathered} 0.115 \\ 16.3 \end{gathered}$	PBM285DXE50								\square	75
42 mm 1.7 inch	$\begin{aligned} & 55.9 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 49.6 \end{aligned}$	PBM423FXK30-M	\square	\square		\square	\square				76
	$\begin{aligned} & 57.6 \\ & 2.27 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 55.2 \end{aligned}$	PBM423FXE20			\square			\square			
	$\begin{aligned} & 55.9 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 55.2 \end{aligned}$	PBM423FXE50							\square		
	$\begin{aligned} & 55.9 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 55.2 \end{aligned}$	PBM423DXK50								\square	
60 mm 2.4 inch	$\begin{aligned} & 68.8 \\ & 2.71 \end{aligned}$	$\begin{gathered} 1.3 \\ 184.1 \end{gathered}$	PBM603FXK30-M	\square	\square		\square	\square				77
	$\begin{aligned} & 70.3 \\ & 2.77 \end{aligned}$	$\begin{gathered} 1.3 \\ 184.1 \end{gathered}$	PBM603FXE20			\square			\square			
	$\begin{aligned} & 68.8 \\ & 2.71 \end{aligned}$	$\begin{gathered} 1.3 \\ 184.1 \end{gathered}$	PBM603FXE50							\square		
	$\begin{aligned} & 68.8 \\ & 2.71 \end{aligned}$	$\begin{gathered} 1.05 \\ 148.7 \end{gathered}$	PBM603DXK50								\square	
	$\begin{gathered} 100.8 \\ 3.97 \end{gathered}$	$\begin{gathered} 1.9 \\ 269.1 \end{gathered}$	PBM604FXK30-M	\square	\square		-	\square				78
	$\begin{gathered} 102.3 \\ 4.03 \end{gathered}$	$\begin{gathered} 1.9 \\ 269.1 \end{gathered}$	PBM604FXE20			\square			\square			
	$\begin{gathered} 100.8 \\ 3.97 \end{gathered}$	$\begin{gathered} 1.9 \\ 269.1 \end{gathered}$	PBM604FXE50							\square		
	$\begin{gathered} 100.8 \\ 3.97 \end{gathered}$	$\begin{aligned} & 1.85 \\ & 262 \end{aligned}$	PBM604DXK50								\square	
86 mm	$\begin{aligned} & 79.5 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 439 \end{aligned}$	PBM861FXK30-M	\square	\square		\square	\square				79
	$\begin{aligned} & 110 \\ & 4.33 \end{aligned}$	$\begin{gathered} 6.1 \\ 863.9 \end{gathered}$	PBM862FXK30-M	\square	\square			\square				80

Driver Command Type

Indexer Model Startup via I/O Signal Startup preset points or programs in the driver memory using the Input/Output signals. Startup via RS-485 Serial Communication Control by transmitting speed, acceleration/deceleration and distance data via serial communication.	AC Input	DC Input
Pulse Input Model Controlled by Pulse Stream Signal Motion is generated by responding to pulse input commands from a host device.	Type R	
EtherCAT Model Controlled through EtherCAT interface Motion command is sent through EtherCAT which is a field-bus system that allows 100 Mbps high-speed and highly reliable communication.	Type P	

CLOSED LOOP STEPPING SYSTEMS
MOTOR

FLANGE SIZE $28 \mathrm{~mm}(1.10 \mathrm{inch})$| MOTOR |
| :--- |
| LENGTH |$\quad 59.2 \mathrm{~mm}$ (2.33 inch)

- Specifications

Power Supply	
Model	
Driver Type	
Maximum Stall Torque	$\mathrm{N} \cdot \mathrm{m}$
	oz-in
Rotor Moment of Inertia	$x 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Incremental Encoder	
Motor Weight	kg
	lb

Operating Temperature Humidity

24/48 VDC

 PBM281DXE50Type E Multi

$$
\begin{gathered}
0.055 \\
7.79 \\
0.01 \\
0.055
\end{gathered}
$$

2000 P/R (500 P/R x4)
0.16
0.35
-10 to $40^{\circ} \mathrm{C}\left(16\right.$ to $104^{\circ} \mathrm{F}$) 20 to 90% RH, no condensation

Torque Curve - PBM281DXE50

Dimension

Applicable Driver

Power Supply	Motor	Driver		
		Indexer	Pulse Input	EtherCAT
24/48 VDC	PBM281DXE50			PB4D003E440

Dimension

Unit: mm (inch)

Applicable Driver

| Power Supply | Motor | Driver | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Indexer | Pulse Input | EtherCAT |
| PBM282FXE20 | | | |

CLOSED LOOP STEPPING SYSTEMS

MOTOR FLANGE SIZE	28 mm	.10 inch)	мото LENG	14
Specifications				
Power Supply		24/48 VD		48 VDC
Model		PBM284FXE20		PBM284FXE50
Driver Type		Type M		EtherCAT
Maximum Stall Torque	$\mathrm{N} \cdot \mathrm{m}$	0.155		0.115
	oz•in	22.0		16.3
Rotor Moment of Inertia	$\times 10^{4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.016		0.016
	oz.in ${ }^{\text {2 }}$	0.088		0.088
Incremental Encoder		$2000 \mathrm{P} / \mathrm{R} \quad(500 \mathrm{P} / \mathrm{R} \times 4)$		$500 \mathrm{P} / \mathrm{R}$
Motor Weight	kg	0.23		0.23
	lb	0.51		0.51
Operating Temperature		-10 to $40^{\circ} \mathrm{C}\left(16\right.$ to $104^{\circ} \mathrm{F}$)		
Humidity		20 to 90% RH, no condensation		

Torque Curve

- PBM284FXE20

- PBM284FXE50

Unit: mm (inch)

Dimension

PBM284FXE50

Unit.man (inch)

Unit: mm (inch)
PBM284FXE20

UL1430 AWG26
MOTOR CONNECTOR

Applicable Driver

Power Supply	Motor		Driver		
$24 / 48$ VDC	PBM284FXE20	Indexer	Pulse Input	EtherCAT	
48 VDC	PBM284FXE50			PB3D003M200	

MOTOR \quad MOTOR
 FLANGE SIZE
 28 mm (1.10 inch)

78.5 mm (3.09 inch)

Specifications

Operating Temperature
Humidity

24/48 VDC
PBM285DXE50
Type E Multi
0.115
16.3
0.022
0.12

2000 P/R (500 P/R x4)
0.26
0.57
-10 to $40^{\circ} \mathrm{C}\left(16\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ 20 to 90% RH, no condensation

Dimension

Applicable Driver

Power Supply	Motor	Driver	Pulse Input	EtherCAT	
	PBM285DXE50			Indexer	
$24 / 48$ VDC					

CLOSED LOOP STEPPING SYSTEMS

MOTOR

FLANGE SIZE $4.2 \mathrm{~mm}(1.65 \mathrm{inch})$| MOTOR |
| :--- |
| LENGTH |
| ME |

Specifications

Power Supply		100/200 VAC	24/48 VDC	24/48 VDC	24/48 VDC
Model		PBM423FXK30-M	PBM423FXE20	PBM423FXE50	PBM423DXK50
Driver Type		Type R, Type P	Type M	Type E	Type E Multi
Maximum Stall Torque	$\mathrm{N} \cdot \mathrm{m}$	0.35	0.39	0.39	0.39
	oz•in	49.6	55.2	55.2	55.2
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.056	0.056	0.056	0.056
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.31	0.31	0.31	0.31
Incremental Encoder		16000 P/R (4000 P/R x4)	2000 P/R ($500 \mathrm{P} / \mathrm{x} \times 4$)	$500 \mathrm{P} / \mathrm{R}$	16000 P/R (4000 P/R x4)
Motor Weight	kg	0.35	0.35	0.35	0.35
	lb	0.77	0.77	0.77	0.77
Operating Temperature			-10 to $40^{\circ} \mathrm{C}$ (16 to $104^{\circ} \mathrm{F}$)		
Humidity			20 to 90% RH	no condensat	

Dimension

PBM423FXK30-M PBM423FXE50 PBM423DXK50

PBM423FXE20

- Torque Curve - PBM423FXK30-M

Toraue $48 \mathrm{VDC}-24 \mathrm{VDC}-$
Power Consumption $48 \mathrm{VDC}----24 \mathrm{VDC}$

Torque $48 \mathrm{VDC}-24 \mathrm{VDC}-$
Power Consumption $48 \mathrm{VDC}-\ldots--24 \mathrm{VDC}$

- PBM423DXK50

Applicable Driver

Power Supply	Motor	Driver		
		Indexer	Pulse Input	EtherCAT
200 VAC	PBM423FXK30-M	PB4A002R301	PB4A002P301	
100 VAC		PB4A002R300	PB4A002P300	
24/48 VDC	PBM423FXE20	PB3D003M200		
	PBM423FXE50			PB4D003E2D0
	PBM423DXK50			PB4D003E440

MOTOR
 FLANGE SIZE
 60 mm (2.36 inch)
 MOTOR LENGTH
 $68.8 / 70.3 \mathrm{~mm}(2.712 .77$ inch $)$

Specifications

Power Supply		100/200 VAC	24/48 VDC	24/48 VDC	24/48 VDC
Model		PBM603FXK30-M	PBM603FXE20	PBM603FXE50	PBM603DXK50
Driver Type		Type R, Type P	Type M	Type E	Type E Multi
Maximum Stall Torque	$\mathrm{N} \cdot \mathrm{m}$	1.3	1.3	1.3	1.05
	oz•in	184.1	184.1	184.1	148.7
Rotor Moment of Inertia	$x 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.4	0.4	0.4	0.4
	oz.in ${ }^{2}$	2.2	2.2	2.2	2.19
Incremental Encoder		$16000 \mathrm{P} / \mathrm{R}(4000 \mathrm{P} / \mathrm{R} \times 4)$	2000 P/R (500 P/R x 4)	$500 \mathrm{P} / \mathrm{R}$	16000 P/R (4000 P/R x4)
Motor Weight	kg	0.85	0.85	0.85	0.85
	lb	1.87	1.87	1.87	1.87
Operating Temperature		-10 to $40^{\circ} \mathrm{C}\left(16\right.$ to $104^{\circ} \mathrm{F}$)			
Humidity			20 to 90\% RH	no condensation	

Dimension

PBM603FXK30-M

PBM603FXE50
PBM603DXK50

Unit: mm (inch)

\square Torque Curve - PBM603FXK30-M

- PBM603FXE20

Applicable Driver

Power Supply	Motor	Driver		
		Indexer	Pulse Input	EtherCAT
200 VAC	PBM603FXK30-M	PB4A002R301	PB4A002P301	
100 VAC		PB4A002R300	PB4A002P300	
24/48 VDC	PBM603FXE20	PB3D003M200		
	PBM603FXE50			PB4D003E2D0
	PBM603DXK50			PB4D003E440

CLOSED LOOP STEPPING SYSTEMS

MOTOR

FLANGE SIZE $60 \mathrm{~mm}(2.36$ inch $)$| MOTOR |
| :--- |
| LENGTH | 100,$8 / 10 \Omega, 8 \mathrm{~mm}$ (3.97/4.03 inch)

Specifications

Power Supply	
Model	
Driver Type	
Maximum Stall Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rotor Moment of Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Incremental Encoder	
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

100/200 VAC	24/48 VDC	24/48 VDC	24/48 VDC
PBM604FXK30-M	PBM604FXE20	PBM604FXE50	PBM603DXK50
Type R, Type P	Type M	Type E	Type E Multi
1.9	1.9	1.9	1.85
269.1	269.1	269.1	262
0.84	0.84	0.84	0.84
4.6	4.6	4.6	4.6
1600 P/R (4000 P/R x4)	2000 P/R (500 P/R x 4)	$500 \mathrm{P} / \mathrm{R}$	1600 P/R (4000 P/R x4)
1.42	1.42	1.42	1.42
3.13	3.13	3.13	3.13
-10 to $40^{\circ} \mathrm{C}\left(16\right.$ to $104^{\circ} \mathrm{F}$)			
20 to 90% RH, no condensation			

Dimension

 PBM604FXK30-MPBM604FXE50 PBM604DXK50

PBM604FXE20

Torque Curve - PBM604FXK30-M

- PBM604FXE20

- PBM604DXK50

Applicable Driver

Power Supply	Motor	Driver		
		Indexer	Pulse Input	EtherCAT
200 VAC	PBM604FXK30-M	PB4A002R301	PB4A002P301	
100 VAC		PB4A002R300	PB4A002P300	
24/48 VDC	PBM604FXE20	PB3D003M200		
	PBM604FXE50			PB4D003E2D0
	PBM604DXK50			PB4D003E440

\section*{$\begin{aligned} & \text { MOTOR } \\ & \text { FLANGE SIZE }\end{aligned} 86 \mathrm{~mm}(3.37 \mathrm{inch})$ $\begin{aligned} & \text { MOTOR } \\ & \text { LENGTH }\end{aligned} 79.5 \mathrm{~mm}(3.13 \mathrm{inch})$
 Specifications
 | Power Supply | | 100/200 VAC |
| :---: | :---: | :---: |
| Model | | PBM861FXK30-M |
| Driver Type | | Type R, Type P |
| Maximum Stall Torque | $\mathrm{N} \cdot \mathrm{m}$ | 3.1 |
| | oz•in | 439.0 |
| Rotor Moment of Inertia | $\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ | 1.48 |
| | oz.in ${ }^{2}$ | 8.1 |
| Incremental Encoder | | 16000 P/R (4000 P/R x4) |
| Motor Weight | kg | 1.9 |
| | lb | 4.2 |
| Operating Temperature | | -10 to $40^{\circ} \mathrm{C}$ (16 to $104^{\circ} \mathrm{F}$) |
| Humidity | | 20 to 90% RH, no condensation |
 Torque Curve
 }

Dimension

\square Applicable Driver

Power Supply	Motor	Driver		
		Indexer	Pulse Input	EtherCAT
200 VAC	PBM861FXK30-M	PB4A002R301	PB4A002P301	
100 VAC		PB4A002R300	PB4A002P300	

CLOSED LOOP STEPPING SYSTEMS

MOTOR FLANGE SIZE	86 mm (3.37 inch)	MOTOR LENGTH	410 mm (4.33 inch)

Specifications

Power Supply	
Model	
Driver Type	
Maximum Stall Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rotor Moment of Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	oz.in ${ }^{2}$
Incremental Encoder	
Motor Weight	kg
	lb

Operating Temperature

Humidity

Torque Curve

Dimension

Unit: mm (inch)

Applicable Driver

Power Supply	Motor	Driver		
		Indexer	Pulse Input	EtherCAT
200 VAC	PBM862FXK30-M	PB4A002R301	PB4A002P301	
100 VAC		PB4A002R300	PB4A002P300	

AC Input Driver Indexer Model Type R

Driver Model			PB4A002R300	PB4A002R301
Power Supply			Single phase AC100V to 115V -15\% +10\% 50/60Hz	Single phase / 3-phase AC200V to 230V -15\% +10\% 50/60Hz
Environment	Ambient	Operating	0 to $55^{\circ} \mathrm{C}$	
	Temp.	Storage	-20 to $65^{\circ} \mathrm{C}$	
	Operating / Storage Humidity		90\% RH (non-condensing)	
	Vibration Resistance		0.5 G (tested with frequency range 10 to $55 \mathrm{~Hz}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ each direction 2 h)	
Structure			Tray Structure, Rear Mounting Type	
Mass			Approx. 0.65 kg	
Dimensions			W42×H150×D120 mm	
Functions	Rotation Speed		0 to $4500 \mathrm{~min}^{-1}$ (86 mm : 0 to $4000 \mathrm{~min}^{-1}$)	
	Resolution (P/R)		Electronic Gear 100 to 16000	
	Regeneration Process		Internal (software processing)	
	Holding Brake Control Function		Internal	
	Protective Functions		Power Voltage Error, Regeneration Voltage Error, Over-speed, Encoder Disconnection, CPU Error, Overload Stop, Servo Error, Zero-return Error, Nonvolatile Memory Error, Initialization Error, Over-current, Amplifier Overheat, Motor Overheat, Counter Overflow	
	Display		7SEG LED Display (2 pieces)	
	Digital Operator		Resolution, Related Motor, Positive Direction Definition, Gain, Node Address, Trans. Speed, Holding Brake Control, Jog Driving	
	Operation Functions		Auto Zero-return / Push Operation (Current limit)	
	Communication Specifications (PCIF)		RS-485 Start-Stop Synchronization, Half Duplex Communication, Trans. Speed: 9600, 38400, 115200, 307200bps	
Input/Output Signals	Input Signals	Functions	ALMCLR General-purpose Input x8 (Point, STOP, EXE, SELECT, HOME sensor, Limit, Deviation CLR, Pause, Jog, Interlock)	
		Electric	General-purpose Input: Interactive Input Photo Coupler DC5V to 24V	
	Output Signals	Functions	ALMCLR General-purpose Output x7 (Point No., Ack, Busy, HOME END, Push END, ZONE, Input Monitor, In-position, Bit Out)	
		Electric	General-purpose Output: Open Collector, DC30V/15 mA Max.	

Dimension

CLOSED LOOP STEPPING SYSTEMS

System Configuration

Item		Parts Number	Description
$\checkmark 1$	Power Cable: 1 m	PBC8P0010A	
2	Motor Power Cable: 3 m	PBC7M0030A	Extension Cable
3	Encoder Cable: 3 m	PBC7E0030A	Extension Cable
4	I/O Cable (unshielded): 1 m	PBC5S0010A	26 pin, Unshielded Cable
5	Communication Cable: 0.3 m	PBC6C0003A	
$\checkmark 6$	Communication Converter Unit	PBFM-U6	USB/RS-485 conversion Communication with SPBALL-01 Setup Software

To build a complete system, you need to have checked items.

Wiring Diagram

100 to 115 VAC Input

Driver Model: PB4A002R300

AC Input Driver Pulse Input Model Type P

($\in \cdot{ }_{c} N_{u s}$ e

Driver Model			PB4A002P300	PB4A002P301
Power Supply			Single phase AC100V to 115V -15\% +10\% 50/60Hz	Single phase / 3-phase AC200V to 230V $-15 \%+10 \% 50 / 60 \mathrm{~Hz}$
Environment	Ambient Operating temp. \quad Storage Operating/ Storage Humidity Vibration Resistance		0 to $55^{\circ} \mathrm{C}$	
			-20 to $65^{\circ} \mathrm{C}$	
			90\% RH (non-condensing)	
			0.5 G (tested with frequency range 10 to	$\mathrm{Hz}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ each direction 2 h)
Structure			Tray Structure, Rear Mounting Type	
Mass			Approx. 0.65 kg	
Dimensions			W42×H150×D120 mm	
Functions	Rotation Speed		0 to $4500 \mathrm{~min}-1$ (86 mm : 0 to $4000 \mathrm{~min}^{-1}$)	
	Resolution (P/R)		Electronic gear 100 to 16000	
	Regeneration Process		Internal (software processing)	
	Holding Brake Control Function		Internal	
	Protective Functions		Power Voltage Error, Regeneration Voltag CPU Error, Overload Stop, Servo Error, Ze Initialization Error, Over-current, Amplifier	Error, Over-speed, Encoder Disconnection, ro-return Error, Nonvolatile Memory Error, Overheat, Motor Overheat, Counter Overflow
	Display		7SEG LED Display (2 pieces)	
	Digital Operator		Resolution, Related Motor, Positive Direc Speed, Holding Brake Control, Jog Driving	ion Definition, Gain, Node Address, Trans.
	Operation Functions		Auto Zero-return / Push Operation (Curren	t limit)
	Communication Specifications (PCIF)		RS-485 Start-Stop Synchronization, Half D Speed: 115200bps	uplex Communication, Trans.
Input/Output Signals	Input Signals	Functions	Pulse Input, STOP, ALMCLR General-purpose Input $\times 2$ (Deviation CLR	HOME, Push, Brake Control, Counter Reset)
		Electric	Pulse Input: Line receiver (1 or 2 input mo General-purpose Input: Interactive Input P	de) hoto Coupler DC5V to 24V
	Output Signals	Functions	Encoder Signal (A / B / C) ALM, In-position General-purpose Output $\times 2$ (HOME END	Push END, ZONE, Input Monitor)
		Electric	Encoder Signal Output: Line Amplifier 4000 *C-phase / phase origin signal outputs wil General-purpose Output: Open collector	OP/R not be emitted at velocities over $200 \mathrm{~min}^{-1}$. DC30V / 15mA Max.

* A function that finely adjusts the unit step angle per pulse parameters. Setup software is required.

System Configuration

Item		Parts Number	Description
$\checkmark 1$	Power Cable: 1 m	PBC8P0010A	
2	Motor Power Cable: 3 m	PBC7M0030A	Extension Cable
3	Encoder Cable: 3 m	PBC7E0030A	Extension Cable
4	I/O Cable: 1 m	PBC5S0010C	26 pin, Shielded Cable
5	Limit Input Cable 1 m	PBC7S0010A	
$\checkmark 6$	Communication Converter Unit	PBFM-U6	USB/RS-485 conversion Communication with SPBALL-01 Setup Software

To build a complete system, you need to have checked items.

Wiring Diagram

100 to 115 VAC Input
 Driver Model: PB4A002P300

Driver Model		PB3D003M200	
Interface		Generic Input (SW1 = ON)	Pulse Train Input (SW1 = OFF)
Power Supply		DC24V/48V $\pm 10 \%$ (28 mm Motor is only available as 24 V .)	
Environment	Ambient Operating temp. Storage	0 to $55^{\circ} \mathrm{C}$	
		-20 to $70^{\circ} \mathrm{C}$	
	Operating/Storage Humidity	90\% RH (non-condensing)	
	Vibration Resistance	0.5 G (tested with frequency range 10 to $55 \mathrm{~Hz}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ each direction 2 h)	
Mass/Dimensions		Approx. $0.36 \mathrm{Kg} / \mathrm{W} 32 \times \mathrm{H} 160 \times$ D95 mm	
Functions	Rotation Speed	0 to $4500 \mathrm{~min}^{-1}$	
	Resolution (P/R)	500, 1000, 2000, 4000, 5000, 10000	
	Regeneration Process	Internal	
	Protective Functions	Power Voltage Error, Regeneration Voltage Error, Over-speed, Encoder Disconnection, CPU Error, Overload Stop, Excessive Position Deviation, Zero-return Error, Nonvolatile Memory Error, Initialization Error (Power Line Disconnection)	
	Display	7SEG LED Display	
	Functions	Normal Drive (incremental move, absolute move), Zero-return, Module Operation, Push Operation, Teaching Functions Point Functions: 128Point Program Functions: 1 PRG $\times 1024$ Line, 32 PRG $\times 32$ Line, 128 PRG $\times 8$ Line	Normal Drive, Zero-return
	Rotary Switch	Node Address Setting (0 to F) Normalize velocity loop gain setting SSW1: Interface Selection (On: RS-485, OFF: Pulse) SW2: Terminating Resistor Setting (On: with terminating resistance)	
	DIP-Switches		
Input/Output Signals	Input Signals	(Normal Mode) STOP, EXE, POINT, HOME, JOG, SELECT, Pause, Interlock, Generic Input, MODE SELECT, Hard Limit, ALM CLR (Teaching Mode) STOP, JOG, Point, PWR Pulse input: Photo coupler: DC3V to 5V (Input resistance=270) Input signal: DC5V to 24 V	Pulse, STOP, ALMCLR, Gain Setting, Deviation Clear, HOME
	Output Signals	(Normal Mode) Ack, PEND, END, Busy, Zone, Mode MON, STOP MON, In-position, Homing complete, Generic Output, Encoder Output, SON MON, ALM, HEND, Input Monitor (Teaching Mode) PEND, HEND, In-position, Mode MON, SON MON Output signal: Open collector DC30V / 30mA Max. *Encoder C-phase signal outputs within $200 \mathrm{~min}^{-1}$	ALM, STOP MON, In-position, Homing complete, Encoder Output, SON MON, STOP MON
	Communication Specifications Trans.	RS-485 Standard Start-Stop Synchronization, Half Duplex$9600,38400,115200,128000 \mathrm{bps}$9600 bps	

* A function that finely adjusts the unit step angle per pulse parameters. Setup software is required.

Dimension

Unit: mm (inch)

CLOSED LOOP STEPPING SYSTEMS

System Configuration

Item		Parts Number	Description
\checkmark	Power Cable: 1 m	PBC6P0010A	
2	Motor Power Cable: 3 m	PBC6M0030A	Extension Cable
3	Encoder Cable: 3 m	PBC6E0030A	Extension Cable
4a	I/O Cable: 1 m	PBC5S0010A	26 pin, Unshielded Cable
4b	I/O Cable: 1 m	PBC5S0010C	26 pin, Shielded Cable
5	Communication Cable: 0.3 m	PBC6C0003A	
$\checkmark 6$	Communication Converter Unit	PBFM-U6	USB/RS-485 conversion Communication with SPBA1W-01 Setup Software

To build a complete system, you need to have checked items.

Wiring Diagram

Indexer DIP Switch SW1: ON

DC Input Driver EtherCAT ModeI

Dimension

System Configuration

Item		Parts Number	Description
$\checkmark \quad 1$	Power Cable: 1 m	PBC9P0020A	
2	Motor Power Cable: 3 m	PBC8M0030A	Extension Cable
3	Encoder Cable: 3 m	PBC7E0030A	Extension Cable
4	I/O Cable: 1 m	PBC1S0010A	20 pin, Unshielded Cable
$\checkmark 6$	Communication Converter Unit	PBFM-U6	USB/RS-485 conversion Communication with SANMOTION MOTOR Setup Software

[^3]
Wiring Diagram

DC Input Driver EtherCAT Multi-Axis Model

Driver Model

Power Supply

	$\begin{array}{l}\text { Ambient } \\ \text { temp. }\end{array}$	Operating
	Storage	

Vibration Resistance
Shock resistance
Elevation
Mass
Dimensions

Rotation Speed

Resolution (P/R)
Regeneration Process
Holding Brake Control Function
Functions
Protective Functions

Display

PC interface
Physical layer / Protocol
Transmission speed
Interface
Communication port / Topology
Device profile
Synchronization

Input Signal
I/O Signals
Output Signal

PB4D003E440
Main power supply 24/48VDC $\pm 10 \% 14 \mathrm{~A}$
Control power supply 24VDC $\pm 10 \% 1.5 \mathrm{~A}$
0 to $55^{\circ} \mathrm{C}$
-20 to $65^{\circ} \mathrm{C}$
90\% RH (non-condensing)
$5 \mathrm{~m} / \mathrm{s}^{2}$ (Tested X, Y and Z directions for 2 hours in the frequency range between 10 to 55 Hz .) $20 \mathrm{~m} / \mathrm{s}^{2}$
Below 1,000m above sea level
0.7 kg

W60×H160×D95mm
0 to $4500 \mathrm{~min}^{-1}$ (0 to $3000 \mathrm{~min}^{-1}$ for 60 mmsq . motor) 10000
Regenerative resistor (Option)
Built in
Main circuit overcurrent, Overload, Initializing operation error, Driver overheat, Main circuit overvoltage, Regeneration error, Main circuit voltage lack, Control circuit voltage lack, Encoder disconnection, Overspeed, Position deviation error, Wrap around, Memory error, CPU and around circuit error, Communication error.
Status display, Alarm display
USB2.0
100BASE-TX / IEEE802.3 compliant ethernet 100Mbit/s, Full duplex
2 ports (RJ45) / Daisy-chain (Max. 65535 nodes)
CoE (IEC61800-7-201), FoE (ASCII code access)
SM2 event synchronization, DC synchronization (SYNCO / SYNC1), Asynchronous Minimum Cycle Time 0.25 ms
Photocoupler input type, Number of inputs: 16
Input resistance: $2.2 \mathrm{k} \Omega$
Input voltage: "H" level: 4.0 to 26.4 VDC , "L" level: 0 to 1.0 VDC Open-collector output via photocoupler, Number of outputs: 12
Output signal standards: VCEO: 4.75 to 26.4 V
IC: 50mA or less (In use of 24VDC.)

Dimension

CLOSED LOOP STEPPING SYSTEMS

System Configuration

Item		Parts Number	Description
$\checkmark 1$	Power Cable: 1 m	PBC10P0010A	
2	Motor Power Cable: 3 m	PBC8M0030A	Extension Cable
3	Encoder Cable: 3 m	PBC7E0030A	Extension Cable
4	I/O Cable: 1 m	PBC9S0010C	
$\checkmark \quad 5$	USB Communication Cable: 1 m	AL-00896515-01	Communication with SANMOTION MOTOR Setup Software
6	Regen Unit	PBFE-02	Need when using 60 mmsq motor. (Ask us)

To build a complete system, you need to have checked items.

Wiring Diagram

[^4]
CLOSED LOOP STEPPING SYSTEMS

Model Numbering System

Motor

 E ... 2000 (500x4) P/R with Z-phase output

Driver

MEMO

5-PHASE STEPPING SYSTEMS

SANMOTION
 5-PHASE STEPPING SYSTEMS

 F5

 F5}

The SANMOTION F5 is a five-phase stepping system that provides precise positioning with simple control. The typical basic step angle is 0.72°, precisely controlled by pulse signals. The products can be used in a wide variety of applications, including fixed-speed drive synchronized to a command pulse, accurate positioning, and stable stopping.

Low Vibration

Low-vibration mode function provides smooth driving, even with one-division (full step) and two-division (half step) coarse resolution settings. This allows vibrations to be suppressed without control system restrictions.

Microstep drive

The basic step angle of 0.72° can be set to a resolution of up to 250 divisions in 16 levels. This allows for smooth operation with minimal vibrations.

Application Examples

The SANMOTION F5 can be used in a wide variety of applications, including fixed-speed drive synchronized to a command pulse, accurate positioning, and stable stopping.

- Semiconductor devices, analytical and testing devices used in medical and environmental fields, ATMs, monitoring cameras and spotlights, packaging machines, embroidering machines, automatic ticket gates and more

All model numbers in this catalog are compliant with the tolerances for specified toxic substances (cadmium, lead, mercury, hexavalent chromium, PBB, and PBDE) found in supplement II of the EU RoHS directive (2011/65/EU), as of the October 2012 production lot. Also, SANMOTION F5 drivers and motors whose model numbers start with "SM" feature standard specifications that are compliant with CE (European Norm) and UL standards.

Lineup

5-Phase Stepping Motor

Motor Size	Holding Torque $\mathrm{N} \cdot \mathrm{m}$ $o z \cdot i n$	Current Amp	Model	Shape	Motor Length mm inch	Driver 24/48 VDC input	Page
$28 \mathrm{~mm}$$\text { NEMA } 11$	$\begin{gathered} 0.041 \\ 5.81 \end{gathered}$	0.75	SH5281-7241	S	$\begin{gathered} 32 \\ 1.26 \end{gathered}$	F5PAE140P100	100
	$\begin{gathered} 0.078 \\ 11 \end{gathered}$	0.75	SH5285-7241	S	$\begin{aligned} & 51.5 \\ & 2.03 \end{aligned}$	F5PAE140P100	101
42 mm NEMA 17	$\begin{gathered} 0.125 \\ 17.7 \end{gathered}$	1.4	SF5421-8241	S	$\begin{gathered} 35 \\ 1.38 \end{gathered}$	F5PAE140P100	102
	$\begin{gathered} 0.185 \\ 26.2 \end{gathered}$	1.4	SF5422-8241	S	$\begin{gathered} 41 \\ 1.61 \end{gathered}$	F5PAE140P100	103
	$\begin{gathered} 0.245 \\ 34.7 \end{gathered}$	1.4	SF5423-8241	S	$\begin{gathered} 49 \\ 1.93 \end{gathered}$	F5PAE140P100	104
$60 \mathrm{~mm}$$2.36 \text { inch }$	$\begin{aligned} & 0.57 \\ & 80.7 \end{aligned}$	1.4	SM5601-8241	S	$\begin{gathered} 49 \\ 1.93 \end{gathered}$	F5PAE140P100	105
	$\begin{aligned} & 0.9 \\ & 127 \end{aligned}$	1.4	SM5602-8241	S	$\begin{gathered} 60 \\ 2.36 \end{gathered}$	F5PAE140P100	106
	$\begin{aligned} & 1.55 \\ & 219 \end{aligned}$	1.4	SM5603-8241	S	$\begin{gathered} 89 \\ 3.50 \end{gathered}$	F5PAE140P100	107
$\begin{aligned} & 86 \mathrm{~mm} \\ & 3.39 \mathrm{inch} \end{aligned}$	$\begin{gathered} 2.1 \\ 297 \end{gathered}$	1.4	SM5861-8241	S	$\begin{gathered} 66 \\ 2.60 \end{gathered}$	F5PAE140P100	108
	$\begin{aligned} & 4.4 \\ & 623 \end{aligned}$	1.4	SM5862-8241	S	$\begin{aligned} & 96.5 \\ & 3.80 \end{aligned}$	F5PAE140P100	109

Shape S: Single Shaft

Linear Actuator

Motor Size	Holding Torque N (lb)	Current Amp	Model	Shape	Motor Length mm (inch)	Driver 24/48 VDC input	Page
$\begin{aligned} & 4.65 \mathrm{~mm} \\ & \\ & \hline \end{aligned}$	$\begin{gathered} 370 \\ 83.2 \end{gathered}$	0.75	SL5421-7241	S	$\begin{gathered} 87 \\ 3.43 \end{gathered}$	F5PAE140P100	110
			SL5421-72XB41	S, BRK	$\begin{aligned} & 117 \\ & 4.61 \end{aligned}$		
60 mm 2.36 inch	450	1.4	SL5601-8241	S	$\begin{gathered} 135.6 \\ 5.34 \end{gathered}$	F5PAE140P100	111
	101		SL5601-82XB41	S, BRK			

Shape S: Single Shaft BRK: Electrical Magnetic Brake Equipped

5-PHASE STEPPING SYSTEMS

MOTOR
 FLANGE SIZE
 32 mm (1.26 inch)

Specification

New pentagon winding, 0.72 /step

Model	Single Shaft	SH5281-7241
	$\mathrm{N} \cdot \mathrm{m}$	0.041
	$\mathrm{oz} \cdot \mathrm{in}$	5.81
Rated Current	A/phase	0.75
Wiring Resistance	$\Omega /$ phase	1.05
Winding Inductance	$\mathrm{mH} /$ phase	0.44
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.01
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.055
Motor Weight	kg	0.11
	lb	0.24
Operating Temperature		-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Humidity		20 to $90 \% \mathrm{RH}$, no condensation

Torque Curve

Pull-out torque
Source current (no load)-----
Source current (load applied)..............
fs: Maximum self-start frequency when not loaded
With rubber coupling
Driver: F5PAE140P100

- SH5281-72 48 VDC Input

24 VDC Input

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence									
Lead wire color	1	2	3	4	5	6	7	8	9	10
Blue			+	+	+			-	-	-
Red	-	-			+	+	+			-
Orange		-	-	-			+	+	+	
Green	+			-	-	-			+	+
Black	+	+	+			-	-	-		

MOTOR
 FLANGE SIZE
 28 mm (NEMA 11)

MOTOR

LENGTH

$51.5 \mathrm{~mm}(2.03$ inch $)$

Specification

New pentagon winding, 0.72 /step
RoHS

Model	Single Shaft	SH5285-7241
	$\mathrm{N} \cdot \mathrm{m}$	0.078
	$\mathrm{oz} \cdot \mathrm{in}$	11
Rated Current	A/phase	0.75
Wiring Resistance	$\Omega /$ phase	1.15
Winding Inductance	$\mathrm{mH} /$ phase	0.64
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.022
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.12
Motor Weight	kg	0.2
	lb	0.44
Operating Temperature		-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122{ }^{\circ} \mathrm{F}\right)$
Humidity		20 to $90 \% ~ R H$, no condensation

Torque Curve

Pull-out torque
Source current (no load)-----
Source current (load applied).............
fs: Maximum self-start frequency when not loaded
With rubber coupling
Driver: F5PAE140P100

- SH5285-72 48 VDC Input

Internal Wiring

Connection method:
New pentagon connection

Direction of motor rotation
When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

| | Excitation sequence | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lead wire color | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Blue | | | + | + | + | | | - | - | - |
| Red | - | - | | | + | + | + | | | - |
| Orange | | - | - | - | | | + | + | + | |
| Green | + | | | - | - | - | | | + | + |
| Black | + | + | + | | | - | - | - | | |

5-PHASE STEPPING SYSTEMS

MOTOR
 FLANGE SIZE
 35 mm (1.38 inch)

Specification

New pentagon winding, 0.72 /step

Torque Curve

RoHS

Model	Single Shaft	SF5421-8241
	$\mathrm{N} \cdot \mathrm{m}$	0.125
	$\mathrm{oz} \cdot \mathrm{in}$	17.7
Rated Current	$\mathrm{A} /$ phase	1.4
Wiring Resistance	$\Omega /$ phase	0.47
Winding Inductance	$\mathrm{mH} /$ phase	0.37
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.028
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.153
Motor Weight	kg	0.24
	lb	0.53
Operating Temperature		-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122{ }^{\circ} \mathrm{F}\right)$
Humidity		20 to $90 \% \mathrm{RH}, \mathrm{no} \mathrm{condensation}$

Pull-out torque
Source current (no load) -----
Source current (load applied).
fs: Maximum self-start frequency when not loaded
With rubber coupling
Driver: F5PAE140P100

- SF5421-82 48 VDC Input

Internal Wiring

Connection method: New pentagon connection	Direction of motor rotation When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.										
							du				
	Lead wire color	1	2	3	4	5	6	7	8	9	10
Black~Rer	Blue			+	+	+			-	-	-
$3 \circlearrowleft \varepsilon$	Red	-	-			+	+	$+$			-
$\text { \} }$	Orange		-	-	-			+	+	+	
	Green	+			-	-	-			+	$+$
Green Orange	Black	+	+	+			-	-	-		

MOTOR
 FLANGE SIZE
 4.2 mm (NEMA 17)
 MOTOR LENGTH
 41 mm (1.61 inch)

Specification

New pentagon winding, 0.72 \% step
RoHS

Model	Single Shaft	SF5422-8241
	$\mathrm{N} \cdot \mathrm{m}$	0.185
	$\mathrm{oz} \cdot \mathrm{in}$	26.2
Rated Current	$\mathrm{A} /$ phase	1.4
Wiring Resistance	$\Omega /$ phase	0.55
Winding Inductance	$\mathrm{mH} /$ phase	0.66
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.045
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.246
Motor Weight	kg	0.31
	lb	0.68
Operating Temperature		-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122{ }^{\circ} \mathrm{F}\right)$
Humidity	20 to $90 \% \mathrm{RH}, \mathrm{no}$ condensation	

Torque Curve

Pull-out torque
Source current (no load) -----
Source current (load applied).............
fs: Maximum self-start frequency when not loaded With rubber coupling Driver: F5PAE140P100

- SF5422-82 48 VDC Input

24 VDC Input

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side

	Excitation sequence															
Lead wire color	1	2	3	4	5	6	7	8	9	10						
Blue			+	+	+			-	-	-						
Red	-	-			+	+	+			-						
Orange		-	-	-			+	+	+							
Green	+			-	-	-			+	+						
Black	+	+	+			-	-	-								

5-PHASE STEPPING SYSTEMS

MOTOR
 FLANGE SIZE
 4.2 mm (NEMA 17)
 MOTOR LENGTH
 4.9 mm (1.93 inch)

Specification

New pentagon winding, 0.72 /step

Torque Curve

Model	Single Shaft	SF5423-8241
	$\mathrm{N} \cdot \mathrm{m}$	0.245
	$\mathrm{oz} \cdot \mathrm{in}$	34.7
Rated Current	A/phase	1.4
Wiring Resistance	$\Omega /$ phase	0.65
Winding Inductance	$\mathrm{mH} /$ phase	0.75
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.056
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.306
Motor Weight	kg	0.38
	lb	0.84
Operating Temperature		-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Humidity		20 to $90 \% \mathrm{RH}$, no condensation

Source current (no load) -----
Source current (load applied).............
fs: Maximum self-start frequency when not loaded
With rubber coupling
Driver: F5PAE140P100

- SF5423-82 48 VDC Input

24 VDC Input

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence														
Lead wire color	1	2	3	4	5	6	7	8	9	10					
Blue			+	+	+			-	-	-					
Red	-	-			+	+	+			-					
Orange		-	-	-			+	+	+						
Green	+			-	-	-			+	+					
Black	+	+	+			-	-	-							

MOTOR
 FLANGE SIZE
 60 mm (2.36 inch)
 MOTOR
 LENGTH
 4.9 mm (1.93 inch)

Specification

New pentagon winding, 0.72 /step
CEc*Mus RoHS

Model	Single Shaft	SM5601-8241
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.57
	oz•in	80.7
Rated Current	A/phase	1.4
Wiring Resistance	Q/phase	0.9
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	2.7
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.2
	oz. in^{2}	1.093
Motor Weight	kg	0.62
	lb	1.37
Operating Temperature		-10 to $40^{\circ} \mathrm{C}$ (14 to $104{ }^{\circ} \mathrm{F}$)
Humidity		95\% RH max.: under $40^{\circ} \mathrm{C}$, no condensation

Torque Curve

Pull-out torque
Source current (no load) -----
Source current (load applied).............
fs: Maximum self-start frequency when not loaded With rubber coupling Driver: F5PAE140P100

SM5601-82
48 VDC Input

24 VDC Input

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence															
Lead wire color	1	2	3	4	5	6	7	8	9	10						
Blue			+	+	+			-	-	-						
Red	-	-			+	+	+			-						
Orange		-	-	-			+	+	+							
Green	+			-	-	-			+	+						
Black	+	+	+			-	-	-								

5-PHASE STEPPING SYSTEMS

MOTOR MOTOR
 FLANGE SIZE
 60 mm (2.36 inch)
 MOTOR
 LENGTH
 60 mm (2.36 inch)

Specification

New pentagon winding, 0.72 /step

Model	Single Shaft	SM5602-8241
Holding Torque	$N \cdot m$	0.9
	oz•in	127
Rated Current	A/phase	1.4
Wiring Resistance	@/phase	1.15
Winding Inductance	$\mathrm{mH} /$ phase	4.7
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.31
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.106
Motor Weight	kg	0.8
	lb	1.76
Operating Temperature		-10 to $40^{\circ} \mathrm{C}$ (14 to $104{ }^{\circ} \mathrm{F}$)
Humidity		95\% RH max.: under $40^{\circ} \mathrm{C}$, no condensation

Torque Curve

Pull-out torque
Source current (no load) -----
Source current (load applied).............
fs: Maximum self-start frequency when not loaded
With rubber coupling
Driver: F5PAE140P100

- SM5602-82 48 VDC Input

24 VDC Input

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence														
Lead wire color	1	2	3	4	5	6	7	8	9	10					
Blue			+	+	+			-	-	-					
Red	-	-			+	+	+			-					
Orange		-	-	-			+	+	+						
Green	+			-	-	-			+	+					
Black	+	+	+			-	-	-							

MOTOR
 FLANGE SIZE
 60 mm (2.36 inch)

MOTOR
LENGTH

89 mm (3.50 inch)

Specification

New pentagon winding, 0.72 /step
CEc~us RoHS

Model	Single Shaft	SM5603-8241
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	1.7
	oz•in	241
Rated Current	A/phase	1.4
Wiring Resistance	Q/phase	1.85
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	8.1
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.6
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	3.28
Motor Weight	kg	1.27
	lb	2.8
Operating Temperature		-10 to $40^{\circ} \mathrm{C}$ (14 to $\left.104{ }^{\circ} \mathrm{F}\right)$
Humidity		95% RH max.: under $40^{\circ} \mathrm{C}$, no condensation

Torque Curve

Pull-out torque
Source current (no load) -----
Source current (load applied).............
fs: Maximum self-start frequency when not loaded With rubber coupling Driver: F5PAE140P100

- SM5603-82 48 VDC Input

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence									
Lead wire color	1	2	3	4	5	6	7	8	9	10
Blue			+	+	+			-	-	-
Red	-	-			+	+	+			-
Orange		-	-	-			+	+	+	
Green	+			-	-	-			+	+
Black	+	+	+			-	-	-		

5-PHASE STEPPING SYSTEMS

MOTOR
 FLANGE SIZE
 86 mm (3.39 inch)
 MOTOR
 66 mm (2.60 inch)

Specification

New pentagon winding, 0.72 /step

Model	Single Shaft
	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	$\Omega /$ phase
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

Torque Curve

Pull-out torque-_
Source current (no load) -----
Source current (load applied).....
fs: Maximum self-start frequency when not loaded With rubber coupling
Driver: F5PAE140P100

- SM5861-82 48 VDC Input

24 VDC Input

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence										
Lead wire color	1	2	3	4	5	6	7	8	9	10	
Blue			+	+	+			-	-	-	
Red	-	-			+	+	+			-	
Orange		-	-	-			+	+	+		
Green	+			-	-	-			+	+	
Black	+	+	+			-	-	-			

MOTOR
 FLANGE SIZE
 86 mm (3.39 inew

MOTOR LENGTH

96.5 mm (3.80 inch)

Specification

New pentagon winding, $0.72{ }^{\circ} /$ step
CEccions RoHS

Model	Single Shaft	SM5862-8241
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	4.4
	oz•in	623
Rated Current	A/phase	1.4
Wiring Resistance	Ω / phase	2
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	13
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	3
	$\mathrm{oz} \cdot \mathrm{in}{ }^{2}$	16.4
Motor Weight	kg	2.9
	lb	6.39
Operating Temperature		-10 to $40^{\circ} \mathrm{C}$ (14 to $104{ }^{\circ} \mathrm{F}$)
Humidity		95% RH max.: under $40^{\circ} \mathrm{C}$, no condensation

Torque Curve

Pull-out torque -
Source current (no load) -----
Source current (load applied).....
fs: Maximum self-start frequency when not loaded With rubber coupling
Driver: F5PAE140P100

- SM5862-82 48 VDC Input

24 VDC Input

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence																
Lead wire color	1	2	3	4	5	6	7	8	9	10							
Blue			+	+	+			-	-	-							
Red	-	-			+	+	+			-							
Orange		-	-	-			+	+	+								
Green	+			-	-	-			+	+							
Black	+	+	+			-	-	-									

5-PHASE STEPPING SYSTEMS

CYLINDER

FLANGE SIZE $4.2 \mathrm{~mm}(1.65$ inch $)$| CYLINDER |
| :--- |
| LENGTH |

- Specification

New pentagon winding

Model		Double Shaft
		w/ Brake
Stroke		mm
		in
Thrust		N
		lb
Rated Current		A/phase
Wiring Resistance		Q/phase
Winding Inductance		mH/phase
Resolution		mm
		in
Motor Weight		kg
		lb
Brake	Power Source	VDC / W
	Static Friction Torque	N
		lbs

```
SL5421-7241
SL5421-72XB41
                5 0
                                1.97
                                370
                                83.2
                                0 . 7 5
                                1.9
                2.3
                0 . 0 0 4
        0.00016
        0.65 (0.8*)
        1.43 (1.8*)
        24 VDC / 2.4 W
            370
                83.2
```

* Specifications for brake motor

Dimension

Torque Curve

Driver: FS1D140P10
Source current: 24 VDC
Excitation current: $0.75 \mathrm{~A} /$ phase
Excitation mode: 4-phase excitation (Full step)

- SL5421-72

Brake Connection

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence									
Lead wire color	1	2	3	4	5	6	7	8	9	10
Blue			+	+	+			-	-	-
Red	-	-			+	+	+			-
Orange		-	-	-			+	+	+	
Green	+			-	-	-			+	+
Black	+	+	+			-	-	-		

CYLINDER
 FLANGE SIZE
 60 mm (2.36 inch)

CYLINDER LENGTH
 135.6 mm (5.34 inch$)$

Specification

New pentagon winding

Model		Double Shaft	SL5601-8241
		w/ Brake	SL5601-82XB41
Stroke		mm	80
		in	3.15
Thrust		N	450
		lbs	101
Rated Current		A/phase	1.4
Wiring Resistance		Q/phase	0.77
Winding Inductance		mH/phase	1.65
Resolution		mm	0.008
		in	0.00032
Motor Weight		kg	1.4 (1.7*)
		lb	3.09 (3.75*)
Brake	Power Source	VDC / W	$24 \mathrm{VDC} / 6 \mathrm{~W}$
	Static Friction Torque	N	450
		lbs	101

* Specifications for brake motor

Dimension

Torque Curve

Driver: FS1D140P10 Source current: 24 VDC Excitation current: 1.4 A/phase Excitation mode: 4-phase excitation (Full step)

- SL5601-82

Brake Connection

Internal Wiring

Connection method:
New pentagon connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Excitation sequence									
Lead wire color	1	2	3	4	5	6	7	8	9	10
Blue			+	+	+			-	-	-
Red	-	-			+	+	+			-
Orange		-	-	-			+	+	+	
Green	+			-	-	-			+	+
Black	+	+	+			-	-	-		

5－PHASE STEPPING SYSTEMS

5－Phase DC Input Micro－step Driver

Specification

	Model number	F5PAE140P100
	Main circuit power	24 VDC／48 VDC $\pm 10 \%$＊1
	Main circuit power supply current	3 A
	Protection class	Class III
	Operation environment	Installation category（over－voltage category）：I（CE）Pollution level： 2
	Operating ambient temperature	0 to $+50^{\circ} \mathrm{C}$
	T Storage temperature	-20 to $+70^{\circ} \mathrm{C}$
	$⿳ 亠 丷 厂 彡$ ．Operating ambient humidity	35 to 85\％RH（no condensation）
	Storage humidity	10 to 90% RH（no condensation）
	${ }_{\text {D }}$ Operation altitude	1000 m or less above sea level
	$\underset{\sim}{\sim}$ Vibration resistance	Tested under the following conditions； $5 \mathrm{~m} / \mathrm{s}^{2}$ ，frequency range 10 to 55 Hz ，direction along X ， Y and Z axes，for 2 hours each
	Impact resistance	$20 \mathrm{~m} / \mathrm{s}^{2}$
	Withstandable voltage	Not influenced when 0.5 kVAC is applied between power input terminal and cabinet for one minute．
	Insulation resistance	$10 \mathrm{M} \Omega$ min．when measured with 500 VDC megohmmeter between input terminal and cabinet．
	Mass	0.23 kg
	Selection function	Pulse input type（1－input type／2－input type），low－vibration mode（low－vibration drive／microstep drive），resolution （2－phase mode／5－phase mode），output signal（phase origin monitor／alarm），operating current，step－angle
	Protection functions	Overcurrent protection
	LED indication	Power supply monitor，alarm display （main power supply under－and overvoltage，regenerative fault，overcurrent fault，ardware fault）
	Auto－Current－Down canceling input signal	Photocoupler input system；input resistance： 330Ω Input－signal＂${ }^{\prime}$＂level： 4.5 to 5.5 V ；input－signa｜＂L＂level： 0 to 0.5 V
	Step－angle selection input	Photocoupler input system；input resistance： 330Ω Input－signal＂ H ＂level： 4.5 to 5.5 V ；input－signa｜＂ L ＂level： 0 to 0.5 V
	Command pulse input signal	Photocoupler input system；input resistance： 330Ω Input－signal＂${ }^{H}$＂level： 4.5 to 5.5 V ；input－signal＂${ }^{\text {＂＂level：}} 0$ to 0.5 V Provided that voltage between Level H to L shall be 4.5 V or over． Maximum input frequency： $400 \mathrm{kpulse} / \mathrm{s}$
	Power down input signal	Photocoupler input system；input resistance： 330Ω Input－signal＂ H ＂level： 4.5 to 5.5 V ；input－signa｜＂ L ＂level： 0 to 0.5 V
	Phase origin monitor output signal／	Open collector output via photocoupler
	Alarm output signal	Output signal standard Vceo： 30 V or less ${ }^{* 2}$ ，Ic： 5 mA or less， Vce （sat）： 1.0 V or less

＊1 Use either $24 \mathrm{VDC} \pm 10 \%$ or $48 \mathrm{VDC} \pm 10 \%$ for main circuit power supply．Make sure never exceed 60 VDC，even if power supply voltage increases due to counter－electromotive force after misstep occurs．If there are any possibilities of exceeding 60 VDC ，connect optional regenerative resistor． Regenerative resistor use is recommended if you operate with 60 mm sq ．or 86 mm sq．motor．
＊2 Make sure the voltage used for output signal is 5 VDC or over．

Safety Standards

$\begin{aligned} & \text { CE } \\ & \text { (TÜV) } \end{aligned}$	Directives	Category	Standard	Name
	Low－voltage directives	－	EN61800－5－1	－
		Emission	EN61000－6－4	Conducted emissions test
			EN61000－6－4	Electromagnetic radiation disturbance
			EN61000－4－2	ESD（Electrostatic discharge）
	EMC directives		EN61000－4－3	RS（Radio－frequency amplitude modulated electromagnetic field）
		Immunity	EN61000－4－4	Fast transionts
			EN61000－4－5	CS（Radio－frequency common mode）
			EN61000－4－6	Surges
UL	Acquired standards		Applicable standard	File No．
	UL UL for Canada（c－UL）		UL508C	E179775

－EMC characteristics may vary depending on the configuration of the users＇control panel，which contains the driver or stepping motor，or the arrangement and wiring of other electrical devices．
Parts for EMC noise suppression like noise filters and toroidal type ferrite cores may be required depending on circumstances．
－Validation test of driver has been performed for low－voltage EMC directives at TUV（TUV product service）for self－declaration of CE marking．

Driver Controls and Connectors

(2) Function select DIP switch (DSW1)
(1) Operating current select switch (RUN)
(3) Step angle select switch (SS1, SS2)

I/O signal interface connector (CN2)

- I/O Cable 1m

P/N: FC3S0010A

- I/O Cable 2 m

P/N: FC5S0020A

- I/O Connector

P/N: FC5S0000A

Motor connector port (CN3) Motor Cable 1m P/N: FC3M0010A

4. Output signal selection (MODE1)
 Select the output signal

MODE1	Output signal
ON	Alarm output
OFF	Phase origin monitor output

5 to 7. Motor selection (SP1, SP2, SP3)
Perform setting for motor you use first by confirming the Itable of setting for motors to be connected].
8. (MODE2)

Do not turn ON this switch.
3 Step angle select switch (SS1, SS2)
The number of divisions of the stepping motor basic step angle can be set with the rotary switch.
After selecting 2- or 5-phase mode by function select DIP switch 3 (DSEL), set the step angle select switches for the desired step angle.

5-Phase Mode: DSW1 function select DIP switch 3 = OFF				2-Phase Mode: DSW1 function select DIP switch 3 = ON			
$\begin{aligned} & \hline \text { SS1, } \\ & \text { SS2 } \end{aligned}$	Number of divisions	Resolution	Basic step angle	$\begin{aligned} & \hline \text { SS1, } \\ & \text { SS2 } \end{aligned}$	Number of divisions	Resolution	Basic step angle
0	1	500	0.72°	0	0.4	200	$1.8{ }^{\circ}$
1	2	1000	$0.36{ }^{\circ}$	1	0.8	400	$0.9{ }^{\circ}$
2	2.5	1250	0.288°	2	1.6	800	$0.45{ }^{\circ}$
3	4	2000	0.18°	3	2	1000	$0.36{ }^{\circ}$
4	5	2500	0.144°	4	3.2	1600	0.225°
5	8	4000	0.09°	5	4	2000	0.18°
6	10	5000	0.072°	6	6.4	3200	0.1125°
7	20	10000	0.036°	7	10	5000	0.072°
8	25	12500	0.0288°	8	12.8	6400	0.05625°
9	40	20000	0.018°	9	20	10000	0.036°
A	50	25000	0.0144°	A	25.6	12800	0.028125°
B	80	40000	0.009°	B	40	20000	0.018°
C	100	50000	0.0072°	C	50	25000	0.0144°
D	125	62500	0.00576°	D	51.2	25600	0.0140625°
E	200	100000	0.0036°	E	100	50000	0.0072°
F	250	125000	0.00288°	F	102.4	51200	0.00703125°

- Factory default setting: SS1 = 1 and SS2 = 0
- Set the step angle select input (DSEL) to select SS1 or SS2, then set the rotary switch.
(4) LED for power supply monitor (POW)

Lights up when the control power and main circuit power supply are connected.
(5) LED for alarm display (ALM)

Flashes repeatedly when an alarm is generated.

Indication	Explanation
"ALM" repeats single-flashing.	Main power supply voltage drop (Detected when excitation is on.)
"ALM" repeats double-flashing.	Overvoltage of main power supply (Detected when motor stops.)
"ALM" repeats triple-flashing.	Regeneration error (Detected when motor is operating.)
"ALM" repeats quadruple-flashing.	Overcurrent error
"ALM" repeats five-times-flashing.	Hardware error
- When alarm activated, stepping motor winding current is interrupted and then the state	
becomes" not-excited" at the same time that LED"ALM" flahes.	
When "DSW1: MODE1" is set to ON, signal is output outward from alarm output	
terminal (AL). (Photocoupler is turned on.)	
This state is maintained until the power supply is turned off. Please re-turn on the power supply after eliminating alarm cause.	

5-PHASE STEPPING SYSTEMS

Connections Signals

External wiring diagram

Connect the regenerative resistor when there is a risk that the supply voltage could exceed 60 VDC due to the motor's back emf.

Applicable Wire Sizes

Part	Applicable wire	Insulation diameter	Wiring length
For power supply	AWG20 $\left(0.5 \mathrm{~mm}^{2}\right)$ to AWG18 $\left(0.75 \mathrm{~mm}^{2}\right)$	$\varnothing 1.7$ to $\varnothing 3.0 \mathrm{~mm}$	Under 3 m
For input/output signal	AWG24 $\left(0.2 \mathrm{~mm}^{2}\right)$ to AWG22 $\left(0.3 \mathrm{~mm}^{2}\right)$	$\varnothing 1.15$ to $\varnothing 1.8 \mathrm{~mm}$	Under 3 m
For motor	AWG20 $\left(0.5 \mathrm{~mm}^{2}\right)$ to AWG18 $\left(0.75 \mathrm{~mm}^{2}\right)$	$\varnothing 1.7$ to $\varnothing 3.0 \mathrm{~mm}$	10 mmax.

When bundling wire together or running wires through duct, take reduction rate of each wire allowable current into consideration. When ambient temperature is relatively high, wire product lifetime is reduced due to heat deterioration. In this case, please use Heat resistant Indoor PVC (HIV).

Specification summary of I/O signals

Signal name	CN2 Pin number	Function summary
Phase origin monitor output (standard)	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	DSW1 MODE1=OFF Photocoupler is turned on when excitation phase is the origin (the state power supply is turned on).
Alarm output	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	DSW1 MODE1=ON Photocoupler is turned on when the driver is in the state of alarm being activated.
Auto-Current-Down canceling input	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	Inputting this signal (internal photpcoupler is turned on) disables Auto-Current-Down function.
Step angle select input	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	Division numbers can be switched via SSEL-signal. Internal photocoupler is OFF ... Setting via rotary switch SS1 enabled Internal photocoupler is ON ... Setting via rotary switch SS2 enabled
CW pulse input (standard)	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	When in "2-input type", input the drive pulse that rotates in a CW direction.
Pulse train input	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	When in "1-input type", input the drive pulse train for motor rotation.
CCW pulse input (standard)	$\begin{gathered} 9 \\ 10 \end{gathered}$	When in "2-input type", input the drive pulse that rotates in a CCW direction.
Rotational direction input	$\begin{gathered} 9 \\ 10 \end{gathered}$	When in "1-input type", input the motor rotational direction signal. Internal photocoupler ON ... CW direction Internal photocoupler OFF ... CCW direction
Power down input	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	Inputting this signal (internal photocoupler is turned on) shuts off the current carried to motor.

Pulse Input

- Pulse duty 50\% max.
- Maximum input frequency: 400 kpulse/s
- When the crest value of the input signal exceeds 5 V , use the external limit resistance R to limit the input current to approximately 10 mA . (Take the photocoupler forward voltage (1.5 V) into consideration.)

Input Circuit Configuration of ACDOFF, SSEL, PD

- When the crest value of the input signal exceeds 5 V , use the external limit resistance R to limit the input current to approximately 10 mA . (Take the photocoupler forward voltage (1.5 V) into consideration.)

Output Signal Configuration of MON, AL

- When the motor excitation phase is at the phase origin (power ON status), the photocoupler is ON.
- Inputting pulse turns on photocoupler every 7.2° of motor output axis from phase origin.
- Set command frequency to 50 kpulse/s or less to use phase origin monitor.
- Perform switching of division number via step-angle selection input signal (SSEL) with phase origin monitor output turned on and motor being stopped.
- Switching division number at the point other than excitation origin may cause that phase origin monitor output is not correctly output.

Dimensions

2-PHASE STEPPING SYSTEMS

SANMOTION
 2-PHASE STEPPING SYSTEMS

Low Vibration

This driver features approximately 10% less vibration compared with our conventional product. Also, a lowvibration mode function provides smooth driving, even with one-division (fullstep) and two-division (half-step) coarse resolution settings. This allows vibrations to be suppressed without control system restrictions.

Lineup

Motor Size	$\begin{aligned} & N \cdot m \\ & o z \cdot \text { in } \end{aligned}$	Amp	Model	Shape	Driver									Page
					DC Input						AC Input			
										$$				
$\begin{aligned} & 14 \mathrm{~mm} \\ & 0.55 \text { inch } \end{aligned}$	$\begin{gathered} 0.0065 \\ 0.92 \end{gathered}$	0.3	$\begin{aligned} & \text { SH2141-5541 } \\ & \text { SH2141-5511 } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { D } \end{aligned}$										118
	0.01	0.4	SH2145-5641	S										
			SH2145-5611	D										
28 mm NEMA 11	$\begin{aligned} & 0.07 \\ & 9.91 \end{aligned}$	0.5	$\begin{aligned} & \text { SH2281-5671 } \\ & \text { SH2281-5631 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	\square	\square								119
	$\begin{aligned} & 0.07 \\ & 9.91 \end{aligned}$	1	$\begin{aligned} & \text { SH2281-5771 } \\ & \text { SH2281-5731 } \end{aligned}$	$\begin{aligned} & S \\ & D \end{aligned}$	\square	E								
	$\begin{aligned} & 0.145 \\ & 20.53 \end{aligned}$	0.5	$\begin{aligned} & \text { SH2285-5671 } \\ & \text { SH2285-5631 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	\square	\square								120
	$\begin{aligned} & 0.145 \\ & 20.53 \end{aligned}$	1	$\begin{aligned} & \text { SH2285-5771 } \\ & \text { SH2285-5731 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	\square									
$42 \mathrm{~mm}$$\text { NEMA } 17$	$\begin{aligned} & 0.083 \\ & 11.75 \end{aligned}$	1	SS2421-5041	S	\square	\square								121
	$\begin{aligned} & 0.186 \\ & 26.33 \end{aligned}$	1	SS2422-5041	S	■	\square								
	$\begin{aligned} & 0.25 \\ & 35.4 \end{aligned}$	0.5	103H5205-5140	S	\square	\square								122
	$\begin{gathered} 0.29 \\ 41.07 \end{gathered}$	1	SF2421-10B41 SF2421-10B11	$\begin{aligned} & \text { S } \\ & \text { D } \end{aligned}$	\square									123
	$\begin{gathered} 0.38 \\ 53.81 \end{gathered}$	0.5	103H5208-5140	S	-	\square								124
	$\begin{gathered} 0.43 \\ 60.89 \end{gathered}$	1	$\begin{aligned} & \text { SF2422-10B41 } \\ & \text { SF2422-10B11 } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { D } \end{aligned}$										125
	$\begin{gathered} 0.49 \\ 69.39 \end{gathered}$	0.5	103H5210-5140	S	\square	\square								126
	$\begin{gathered} 0.51 \\ 72.22 \end{gathered}$	1	$\begin{aligned} & \text { 103H5210-5214 } \\ & \text { 103H5210-52XB12 } \end{aligned}$	D, TAP D, BRK, TAP	■									127
	$\begin{gathered} 0.8 \\ 113.3 \end{gathered}$	1	$\begin{aligned} & \text { SF2423-10B41 } \\ & \text { SF2423-10B11 } \end{aligned}$	$\begin{aligned} & \text { S } \\ & \text { D } \end{aligned}$	\square									128
	$\begin{gathered} 0.37 \\ 52.39 \end{gathered}$	1	$\begin{aligned} & \text { SF2424-10B41 } \\ & \text { SF2424-10B11 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	\square									129
42 mm NEMA 17 $0.9^{\circ} /$ step	$\begin{aligned} & 0.23 \\ & 32.5 \end{aligned}$	2	SH1421-5241	S	\square	\square								130
	$\begin{aligned} & 0.35 \\ & 48.1 \end{aligned}$	2	SH1422-5241	S		\square								131
	$\begin{aligned} & 0.48 \\ & 37.9 \end{aligned}$	2	SH1424-5241	S	\square	\square								132
50 mm 1.97 inch	$\begin{gathered} 0.1 \\ 14.16 \end{gathered}$	1	SS2501-8040	S	-	■								133
	$\begin{aligned} & 0.215 \\ & 30.44 \end{aligned}$	1	SS2502-8040	S	\square	\square								

Lineup

Motor Size	$\begin{aligned} & \mathrm{N} \cdot \mathrm{~m} \\ & \mathrm{oz} \cdot \mathrm{in} \end{aligned}$			Shape					Driver					Page
		Amp	Model											
$\underset{\text { NEMA } 23}{56 \mathrm{~mm}}$	0.55 77.9	2	$\begin{aligned} & \text { 103H7121-5740 } \\ & \text { 103H7121-5710 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	\square	\square			\square	\square				134
	0.55 77.9	3	103H7121-5840	s			\square	\square	\square	\square				
	1 141.6	2	103H7123-5740	$\begin{aligned} & S \\ & D \end{aligned}$	\square	\square			\square	\square				135
	1 141.6	3	103H7123-5840	S			\square	\square	\square	\square				
	14.6 1.6 266	2	103H7126-5740	S	\square	\square			\square	\square				136
	${ }_{1}^{22.6}$		103H7126-5710						-	\square				
	226.6	3	103H7126-5840				■	\square	\square	\square				
	$\stackrel{2}{283.2}$	2	103H7128-5740 $103 \mathrm{H} 7128-5710$	$\begin{aligned} & S \\ & D \end{aligned}$	\square	\square			\square	\square				137
	$\stackrel{2}{283}$	3	103H7128-5840	s			\square	\square	\square	\square				
	$\begin{gathered} 283.2 \\ 141.6 \end{gathered}$	3	SP2563-5260 SP2563-5200	$\begin{aligned} & \text { S, CBL } \\ & \text { S, CONN } \\ & \text { S, CBL } \end{aligned}$			\square	\square	\square	\square				138
	1.7	3	SP2566-5260				\square	\square	\square	\square				139
	24.88		SP2566-5200 103H7821-5760	${ }_{\text {SON }}$										
$\begin{gathered} 60 \mathrm{~mm} \\ \begin{array}{c} 2.36 \text { inch } \\ \text { w/NEMA } \\ \text { mounting } \end{array} \end{gathered}$	124.6	2	103H7821-5730	D	\square	\square			\square	\square				140
	0.88 124.6	4	$\begin{aligned} & \text { 103H7821-1760 } \\ & \text { 103H7821-1730 } \end{aligned}$	D			■	\square	\square	\square				
	1.84 1.37 194	2	$103 \mathrm{H78822-5760}$ $103 \mathrm{H} 7822-5730$	$\begin{aligned} & \mathrm{S} \\ & \hline 0 \end{aligned}$	\square	\square			\square	\square				141
	1.37	4	103H7822-1760	S			\square	■	\square	\square				
	194 1.1		103H77822-2511	D										
	155.8	4.4	103H7822-25XB12	D, BRK					-	\square				142
	382.3	2	103H78823-5730	D	■	\square			\square	\square				143
	2.7 382.3	4	103H7823-1760 103H7823-1730	D			\square	\square	\square	\square				
$\begin{gathered} 60 \mathrm{~mm} \\ 2.36 \mathrm{inch} \\ 0.9 / \mathrm{stcp} \end{gathered}$	0.69 97.7	2	SH1601-5240	S	■	\square			■	■				144
	1.28 181.2	2	SH1602-5240	S	\square	\square			\square	\square				145
	2.15 304.4	2	SH1603-5240	S	\square	\square			\square	\square				146
$\begin{aligned} & 86 \mathrm{~mm} \\ & \text { NEMA } 34 \end{aligned}$	3.3 467.3	2	SM2861-5052	S							\square			147
	3.3 467.3	4	SM2861-5152	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$					\square	\square	\square	\square	\square	
	3.3 467.3	6	SM2861-5252	s					\square	\square		\square	\square	
	- $\begin{gathered}6.4 \\ 906.3\end{gathered}$	2	SM2862-5052	S										148
	${ }_{6}^{6.4}$	4	SM2862-5152	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$					\square	\square	\square	\square	\square	
	$\begin{gathered} 906.3 \\ 6.4 \\ 906.3 \end{gathered}$	6	$\begin{gathered} \text { SMM2862-5122 } \\ \text { SH2825252-52 } \\ \text { SH2862-52XB12 } \end{gathered}$	$\stackrel{\stackrel{S}{S}}{\mathrm{D}, \mathrm{BRK}}$					\square	\square		\square	\square	149
	1274.5	2	SM2863-5052	S										150
	974.5 1274	4	SM2863-5152	$\begin{aligned} & \text { S } \\ & \text { D } \end{aligned}$					\square	\square	\square	\square	\square	
	9	6	SM2863-5252	S					\square	\square		\square	\square	
	6.4	6	SP2862-5260	s, CBL					-	\square		\square	-	151
	${ }_{9}^{906.3}$													
	1274.5	6	SP2863-5260	S, CBL					\square	\square		\square	-	152
$\begin{gathered} 106 \mathrm{~mm} \\ \text { NEMA } 42 \end{gathered}$	1869.2	6	103H89222-5241	S								\square	\square	153
	19 2690.5	6	103H89223-5241	S									\square	154
$\begin{aligned} & 42 \mathrm{~mm} \\ & \hline \text { Nin } \end{aligned}$	$\begin{gathered} 0.37 \\ 52.39 \end{gathered}$	2	103H5208-49V40	S, CBL	\square	\square			\square	\square				155
$\begin{aligned} & 56 \mathrm{~mm} \\ & \begin{array}{l} \text { Nent } \\ \text { Nactur } \end{array} \end{aligned}$	$\begin{aligned} & 0.45 \\ & 63.72 \end{aligned}$	2	103H7121-47V40	S, CBL	\square	\square			\square	\square				156

Shape S: Single Shaft D: Double Shaft CBL: Cable Type CONN: Connector Type BRK: Electrical Magnetic Brake Equipped

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft
	Double Shaft
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	Ω / phase
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

SH2141-5541	SH2145-5641
SH2141-5511	SH2145-5611
0.0065	0.01
0.92	1.42
0.3	0.4
21	19
4.2	4
0.00058	0.0011
0.0032	0.0060
0.028	0.042
0.062	0.093
-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$	
20 to 90% RH, no condensation	

RoHS
Constant current circuit, Source voltage:
24 VDC I Operating current: Rated Current,
2-phase energization (full-step) I JL=[0.01
$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(0.05 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer
method I fs: Maximum self-start frequency
when not loaded

- SH2141-55

- SH2145-56

Constant current circuit, Source voltage: . -phase energization (full-step) I JL=[0.01 method] I when not loaded

Unit: mm (inch)

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color			RED	BLU	YEL
ORG					
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

Torque Curve

Dimension

MOTOR
 FLANGE SIZE
 28 mm (NEMA 11)
 MOTOR LENGTH
 32 mm (1.26 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

| Model | Single Shaft | | SH2281-5671 |
| :--- | :--- | :---: | :---: |\quad SH2281-5771

Dimension

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[0.01 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(0.05 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

SH2281-56

SH2281-57

Internal Wiring

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	SH2285-5671	SH2285-5771
	Double Shaft	SH2285-5631	SH2285-5731
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.145	0.145
	oz•in	20.53	20.53
Rated Current	A/phase	0.5	1
Wiring Resistance	Q/phase	15	3.75
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	13.5	3.4
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.022	0.022
	$\mathrm{oz} \cdot \mathrm{in}{ }^{2}$	0.12	0.12
Motor Weight	kg	0.20	0.20
	lb	0.44	0.44
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)	
Humidity		20 to 90\%	ndensation

Dimension

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color		RED	BLU	YEL	ORG
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.01 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(0.05 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SH2281-56

SH2281-57

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

MOTOR
 FLANGE SIZE
 33 mm (1.25 inch $)$

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft
	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	$\Omega /$ phase
Winding Inductance	$\mathrm{mH} /$ phase
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

```
103H5205-5140
0.25
3 5 . 4
0.5
13.4
23.4
0 . 0 3 6
0 . 2 0
0.23
0 . 5 1
    -10 to 50 % C (14 to 122*
20 to 90% RH, no condensation
```


Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H5205-51

Dimension

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

MOTOR FLANGE SIZE 4.2 mm (NEMA 17) $\begin{aligned} & \text { MOTOR } \\ & \text { LENGTH }\end{aligned} 3.3$ mm (1.30 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	SF2421-10B41
	Double Shaft	SF2421-10B11
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.29
	$\mathrm{oz} \cdot \mathrm{in}$	41.07
Rated Current	A/phase	1
Wiring Resistance	$\Omega /$ phase	3.6
Winding Inductance	$\mathrm{mH} /$ phase	7
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.031
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.169
Motor Weight	kg	0.23
	lb	0.51
		-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122{ }^{\circ} \mathrm{F}\right)$
Humidity	20 to $90 \% \mathrm{RH}$, no condensation	

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SF2421-10B

Dimension

Motor Cable Model Number: 4835775-1

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Connector pin number			3	7	5
Excitation	1	-	-	+	+
	2	+	-	-	+
	sequence	3	+	+	-

2-PHASE STEPPING SYSTEMS

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft
	$\mathrm{N} \cdot \mathrm{m}$
$\mathrm{oz} \cdot \mathrm{in}$	
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	$\Omega /$ phase
Winding Inductance	$\mathrm{mH} /$ phase
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb

Operating Temperature
Humidity

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) | JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H5208-51

Dimension

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color					
RED	BLU	YEL	ORG		
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

MOTOR
 FLANGE SIZE
 4.2 mm (NEMA 17)
 MOTOR
 LENGTH
 39 mm (1.54 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	SF2422-10B41
	Double Shaft	SF2422-10B11
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.43
	$\mathrm{oz} \cdot$ in	60.89
Rated Current	A/phase	1
Wiring Resistance	$\Omega /$ phase	4.4
Winding Inductance	$\mathrm{mH} /$ phase	9.6
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.046
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.252
Motor Weight	kg	0.3
	lb	0.66
Operating Temperature		
Humidity		

Torque Curve

Constant current circuit, Source voltage 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

SF2422-10B

Dimension

Motor Cable Model Number: 4835775-1 Unit: mm (inch)

Internal Wiring

4.8 mm (1.89 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	103H5210-5140
	$\mathrm{N} \cdot \mathrm{m}$	0.49
	$\mathrm{oz} \cdot$ in	69.39
Rated Current	Alphase	0.5
Wiring Resistance	$\Omega /$ phase	20
Winding Inductance	$\mathrm{mH} /$ phase	35
Rotor Inertia	$x 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.074
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.40
Motor Weight	kg	0.37
	lb	0.82
Operating Temperature		-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Humidity		20 to $90 \% \mathrm{RH}$, no condensation

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H5210-51

Dimension

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color		RED	BLU	YEL	ORG
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

\section*{| MOTOR |
| :--- | :--- | :--- | :--- | :--- |
| FLANGE SIZE |$\quad 4.2 \mathrm{~mm}$ (NEMA 17) \(\begin{aligned} \& MOTOR

\& LENGTH\end{aligned} 4.8 / 81.6 \mathrm{~mm}\) (1.89/3.21 inch)}

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model		Double Shaft	103H5210-5214
		w/ Brake	103H5210-52XB12
Holding Torque		$N \cdot m$	0.51
		oz•in	72.2
Rated Current		A/phase	1
Wiring Resistance		Q/phase	4.8
Winding Inductance		$\mathrm{mH} / \mathrm{phase}$	9.5
Rotor Inertia		$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.074 (0.089*)
		$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.405 (0.487*)
Motor Weight		kg	0.37 (0.51*)
		lb	0.82 (1.12*)
Operating Temperature			-10 to $50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)
Humidity			20 to $90 \% \mathrm{RH}$, no condensation
Brake	Power Source	VDC / W	$24 \mathrm{VDC} / 2.4 \mathrm{~W}$
	Static Friction Torque	$\mathrm{N} \cdot \mathrm{m}$	0.3 Min.
		$\mathrm{oz} \cdot \mathrm{in}$	42.5 Min.

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H5210-52

Dimension
103H5210-5214

103H5210-52XB12

Internal Wiring
Brake Connection

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color		RED	BLU	YEL	ORG
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

2-PHASE STEPPING SYSTEMS

MOTOR MOTOR
 FLANGE SIZE
 4.2 mm (NEMA 17)
 48 mm (1.89 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	SF2423-10B41
	Double Shaft	SF2423-10B11
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.56
	oz•in	79.30
Rated Current	A/phase	1
Wiring Resistance	Q/phase	5.2
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	12.5
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.063
	oz. in^{2}	0.344
Motor Weight	kg	0.38
	lb	0.84
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $122{ }^{\circ} \mathrm{F}$)
Humidity		20 to 90% RH, no condensation

Torque Curve

Constant current circuit, Source voltage 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

SF2423-10B

Dimension

Motor Cable Model Number: 4835775-1
Unit: mm (inch)

Internal Wiring

MOTOR FLANGE SIZE 4.2 mm (NEMA 17) $\begin{aligned} & \text { MOTOR } \\ & \text { LENGTH } \\ & \text { LES }\end{aligned} 5.5 \mathrm{~mm}(2.34$ inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	SF2424-10B41
	Double Shaft	SF2424-10B11
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.8
	oz•in	113.3
Rated Current	A/phase	1
Wiring Resistance	Q/phase	6.5
Winding Inductance	$\mathrm{mH} /$ phase	16
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.094
	oz. in^{2}	0.514
Motor Weight	kg	0.51
	lb	1.12
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $122{ }^{\circ} \mathrm{F}$)
Humidity		20 to 90% RH, no condensation

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[2.6 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(14.2 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SF2424-10B

Dimension

Motor Cable Model Number: 4835775-1
Unit: mm (inch)

Internal Wiring

Specification
Bipolar winding, $0.9^{\circ} /$ step

Model	Single Shaft	SH1421-5241
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.23
	oz•in	32.5
Rated Current	A/phase	2
Wiring Resistance	Q/phase	0.85
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	2.1
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.044
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.24
Motor Weight	kg	0.24
	lb	0.53
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $122{ }^{\circ} \mathrm{F}$)
Humidity		20 to $90 \% \mathrm{RH}$, no condensation

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SH1421-52

Dimension

Unit: mm (inch)

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

MOTOR $4 ?$ MOTOR
 FLANGE SIZE
 4.2 mm (NEMA 17)
 LENGTH
 39 mm (1.54 inch)

Specification

Bipolar winding, 0.9° /step \quad RoHS

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ($5.14 \mathrm{oz} \cdot \mathrm{in}^{2}$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SH1422-52

Dimension

Internal Wiring

Orange:	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the directio of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
Red Yellow		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

4.8 mm (1.89 inch)

- Specification

Bipolar winding, $0.9^{\circ} /$ step

Model	Single Shaft
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} / \mathrm{phase}$
Wiring Resistance	Ω / phase
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$
	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) । JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SH1424-52

Dimension

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color					
RED	BLU	YEL	ORG		
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

MOTOR MOTOR
 FLANGE SIZE
 mm (1.97 inch)
 LENGTH
 $11.4 / 16.4 \mathrm{~mm}$ ($0.43 / 0.63$ inch $)$

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	SS2501-8040	SS2502-8040
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.1	0.215
	oz•in	14.16	30.44
Rated Current	A/phase	1	1
Wiring Resistance	Q/phase	4.5	5.9
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	2	3.2
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.026	0.049
	$\mathrm{oz} \cdot \mathrm{in}{ }^{2}$	0.142	0.268
Motor Weight	kg	0.09	0.15
	lb	0.2	0.33
Operating Temperature		-10 to 50	- $122^{\circ} \mathrm{F}$)
Humidity		20 to 90\%	ondensation

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

Torque Curve

Constant current circuit, Source voltage 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.01 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(1.80 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

SS2501-8040

- SS2502-8040

MOTOR
FLANGE SIZE

56 mm (NEMA 23)
MOTOR LENGTH 41.8 mm (1.65 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	$103 \mathrm{H} 7121-5740$	$103 \mathrm{H} 7121-5840$
	Double Shaft	$103 \mathrm{H} 7121-5710$	
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.55	0.55
	$\mathrm{oz} \cdot \mathrm{in}$	77.9	77.9
Rated Current	A/phase	2	3
Wiring Resistance	$\Omega /$ phase	1.1	0.54
Winding Inductance	$\mathrm{mH} /$ phase	3.7	1.74
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.1	0.1
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.55	0.55
Motor Weight	kg	0.47	0.47
	lb	1.04	1.04
Operating Temperature	-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$		
Humidity	20 to $90 \% \mathrm{RH}$, no condensation		

Dimension

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the directio of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

When excited by a direct current in the order shown below, the direction frotion is clockwise as viewed from the output shat side.

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H7121-57

- 103H7121-58

$\begin{array}{l}\text { MOTOR } \\ \text { FLANGE SIZE }\end{array}$	$56 \mathrm{~mm}(\mathrm{NEMA} 23)$	$\begin{array}{l}\text { MOTOR } \\ \text { LENGTH }\end{array}$	$53.8 \mathrm{~mm}(2.12$ inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	103H7123-5740	103H7123-5840
	Double Shaft	103H7123-5710	
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	1	1
	oz•in	141.6	141.6
Rated Current	A/phase	2	3
Wiring Resistance	Q/phase	1.5	0.7
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	7.5	3.5
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.21	0.21
	oz. in^{2}	1.15	1.15
Motor Weight	kg	0.65	0.65
	lb	1.43	1.43
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)	
Humidity		20 to 90% RH, no condensation	

Dimension

Internal Wiring

Orange o \square \qquad 2 Blue o	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the directi of rotation is clockwise as viewed from the output shaft side.					
med Yellow	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) । JL=[2.6 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(14.22 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H7123-57

- 103H7123-58

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	$103 \mathrm{H} 7126-5740$	$103 \mathrm{H} 7126-5840$
	Double Shaft	$103 \mathrm{H} 7126-5710$	
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	1.6	1.6
	$\mathrm{oz} \cdot \mathrm{in}$	226.6	226.6
Rated Current	A/phase	2	3
Wiring Resistance	$\Omega /$ phase	2	0.94
Winding Inductance	$\mathrm{mH} /$ phase	9.1	4
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.36	0.36
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	1.97	1.97
Motor Weight	kg	0.98	0.98
	lb	2.16	2.16
	-10 to $50^{\circ} \mathrm{C}$ (14 to $\left.122^{\circ} \mathrm{F}\right)$		
Humidity		20 to $90 \% ~ R H, ~ n o ~ c o n d e n s a t i o n ~$	

Dimension

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

MOTOR
 FLANGE SIZE
 56 mm (NEMA 23)
 MOTOR LENGTH
 94.8 mm (3.73 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	103H7128-5740	103H7128-5840
	Double Shaft	103H7128-5710	
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	2	2
	oz•in	283.2	283.2
Rated Current	A/phase	2	3
Wiring Resistance	Q/phase	2.3	1.03
Winding Inductance	$\mathrm{mH} /$ phase	10.4	4.3
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.49	0.49
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	2.68	2.68
Motor Weight	kg	1.3	1.3
	lb	2.87	2.87
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)	
Humidity		20 to $90 \% \mathrm{RH}$, no condensation	

Dimension

Torque Curve

Constant current circuit, Source voltage 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) । JL=[7.4 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(40.46 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H7128-57

- 103H7128-58

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color		RED	BLU	YEL	ORG
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

MOTOR

FLANGE SIZE $\frac{0}{}$ MM (NEMA 23) | MOTOR |
| :--- |
| LENGTH |

- Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Cable Type		SP2563-5260
	Connector Type		
SP2563-5200			

Torque Curve

Constant current circuit, Source voltage: 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) । JL=[2.6 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(14.22 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SP2563-52

Dimension

Internal Wiring

- Direction of motor rotation
The output shaft rotates clockwise as seen from the shaft side, when excited by DC in the following order.

Lead wire color		RED	BLU	YEL	ORG
Connector pin number		(3)	(2)	(4)	(1)
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

MOTOR ص
 FLANGE SIZE
 MOTOR
 LENGTH
 102 mm (4.02 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Torque Curve

Constant current circuit, Source voltage 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) । JL=[7.4 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ (40.46 oz•in ${ }^{2}$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SP2566-52

Dimension

Internal Wiring

- Direction of motor rotation

The output shaft rotates clockwise as seen from the shaft side, when excited by DC in the following order.

Lead wire color			RED	BLU	YEL
ORG					
Connector pin number	(3)	(2)	(4)	(1)	
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	$103 \mathrm{H} 7821-5760$	$103 \mathrm{H} 7821-1760$
	Double Shaft	$103 \mathrm{H} 7821-5730$	$103 \mathrm{H} 7821-1730$
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	0.88	0.88
	$\mathrm{oz} \cdot \mathrm{in}$	124.6	124.6
Rated Current	A/phase	2	4
Wiring Resistance	$\Omega /$ phase	1.27	0.35
Winding Inductance	$\mathrm{mH} /$ phase	3.3	0.8
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.275	0.275
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	1.5	1.5
Motor Weight	kg	0.6	0.6
	lb	1.32	1.32
	-10 to $50^{\circ} \mathrm{C}$	$\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$	
Humidity		20 to 90%	RH, no condensation

Dimension

Unit: mm (inch)

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the directio of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

When excited by a direct current in the order shown below, the direction fration is clockwise as viewed from the output shat side.

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) । $\mathrm{JL}=\left[2.6 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(14.22 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H7821-57

- 103H7821-17

MOTOR ©
 FLANGE SIZE
 MOTOR
 LENGTH
 52.5 mm (2.07 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	103H7822-5760	103H7822-1760
	Double Shaft	103H7822-5730	103H7822-1730
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	1.37	1.37
	oz•in	194	194
Rated Current	A/phase	2	4
Wiring Resistance	Q/phase	1.55	0.43
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	5.5	1.38
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.4	0.4
	oz. in^{2}	2.19	2.19
Motor Weight	kg	0.77	0.77
	lb	1.7	1.7
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)	
Humidity		20 to 90% RH, no condensation	

Dimension

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) । JL=[2.6 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(14.22 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H7822-57

- 103H7822-17

2-PHASE STEPPING SYSTEMS

MOTOR
 FLANGE SIZE
 60 mm (2.36 inch)
 $\underset{\substack{\text { MOTOR } \\ \text { LENGTH }}}{\substack{\text { M }}} \mathbf{5 2 , 5 / 9 4 . 2 \mathrm { mm } (2 . 0 7 / 3 . 7 1}$ inch)

Specification
Unipolar winding, $1.8^{\circ} /$ step

Model	Double Shaft
	$\mathrm{W} /$ Brake
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	$\Omega /$ phase
Winding Inductance	$\mathrm{mH} /$ phase
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: 6 A/Phase (RTA A-NDC06.V set value), half-step I JL=[2.6 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ (14.22 oz.in ${ }^{2}$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H7822-25

* Specifications for brake motor

Dimension

103H7822-2511

Unit: mm (inch)

103H7822-25XB12

Internal Wiring

Brake Connection

	Lead wire color		WHT \& BLK	RED	BLU	YEL	ORG
	Excitation sequence	1	+	-	-		
		2	+		-	-	
		3	+			-	-
		4	+	-			-

MOTOR
 FLANGE SIZE
 60 mm (2.36 inch)

MOTOR

 LENGTH 84.5 mm (3.33 inch)
Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	$103 \mathrm{H} 7823-5760$	$103 \mathrm{H} 7823-1760$
	Double Shaft	$103 \mathrm{H} 7823-5730$	$103 \mathrm{H} 7823-1730$
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	2.7	2.7
	$\mathrm{oz} \cdot \mathrm{in}$	382.3	382.3
Rated Current	A/phase	2	4
Wiring Resistance	$\Omega /$ phase	2.4	0.65
Winding Inductance	$\mathrm{mH} /$ phase	9.5	2.4
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.84	0.84
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	4.59	4.59
Motor Weight	kg	1.34	1.34
	lb	2.95	2.95
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $\left.122^{\circ} \mathrm{F}\right)$	
Humidity		20 to $90 \% \mathrm{RH}$, no condensation	

Unit: mm (inch)

Dimension

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the directio of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

Torque Curve

Constant current circuit, Source voltage 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) । JL=[7.4 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ($40.46 \mathrm{oz} \cdot \mathrm{in}^{2}$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H7823-57

- Specification

Bipolar winding, $0.9^{\circ} /$ step

Model	Single Shaft
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	$\Omega /$ phase
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[0.94 $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right.$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SH1601-52

Dimension

Unit: mm (inch)

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the directio of rotation is clockwise as viewed from the output shaft side.					
	Lead wire		RED	BLU	YEL	ORG
		1	-	-	+	+
	Excitation	2	+	-	-	+
	sequence	3	+	+	-	-
		4	-	+	+	-

$\underset{\text { FLANGE SIZE }}{\text { MOTOR }} \mathbf{6 0} \mathbf{m m}(2.36$ inch $) \underset{\substack{\text { LENGTH }}}{\substack{\text { LOTR }}} \mathbf{5} \mathbf{4} \mathrm{mm}(2.13$ inch $)$

Specification

Bipolar winding, $0.9^{\circ} /$ step

Model	Single Shaft
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} / \mathrm{phase}$
Wiring Resistance	Ω / phase
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[2.6× $10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ($14.22 \mathrm{oz} \cdot \mathrm{in}^{2}$) pulley balancer method] I fs: Maximum self-start frequency when not loaded

SH1602-52

Unit: mm (inch)

Internal Wiring

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color		RED	BLU	YEL	ORG
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

- Specification

Bipolar winding, $0.9^{\circ} /$ step

Model	Single Shaft
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	Ω / phase
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

SH1603-5240
 2.15
 304.4

2
2.3
8.8
0.75
4.10
1.2
2.65
-10 to $40^{\circ} \mathrm{C}$ (14 to $104{ }^{\circ} \mathrm{F}$)
95% RH max.: under $40^{\circ} \mathrm{C}$, no condensation

Torque Curve

Constant current circuit, Source voltage 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I JL=[7.4× $10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(40.46 \mathrm{oz} \cdot \mathrm{in}^{2}\right)$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

SH1603-52

Dimension

Internal Wiring

	- Direction of motor rotation					
	When excited by a direct current in the order shown below, the directio of rotation is clockwise as viewed from the output shaft side.					
	Lead wire		RED	BLU	YEL	ORG
		1	-	-	+	+
	Excitation	2	+	-	-	+
	sequence	3	+	+	-	-
		4	-	+	+	-

MOTOR
 FLANGE SIZE
 86 mm (NEMA 34)
 MOTOR LENGTH
 66 mm (2.6 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft
	Double Shaft
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} / \mathrm{phase}$
Wiring Resistance	Ω / phase
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

CEcTMUS RoHS

SM2861-5052	SM2861-5152	SM2861-5252
	SM2861-5122	
3.3	3.3	3.3
467.3	467.3	467.3
2	4	6
2.2	0.56	0.29
15	3.7	1.7
1.48	1.48	1.48
8.09	8.09	8.09
1.75	1.75	1.75
3.92	3.92	3.92
-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$		
20 to 90%	RH, no condensation	

Torque Curve

Constant current circuit, Source voltage: 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[15.3 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(83.65 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

SM2861-50

- SM2861-51

Internal Wiring

	Direction of motor rotation When excited by a direct current in the order shown below, the directio of rotation is clockwise as viewed from the output shaft side.					
	Lead wire color		RED	BLU	YEL	ORG
	Excitation sequence	1	-	-	+	+
		2	+	-	-	+
		3	+	+	-	-
		4	-	+	+	-

2-PHASE STEPPING SYSTEMS

MOTOR
 FLANGE SIZE
 MOTOR
 LENGTH
 96.5 mm (3.8 inch)

Specification
Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft	SM2862-5052	2862-5152	2862-5252
	Double Shaft	SM2862-5122		
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$	6.4	6.4	6.4
	oz•in	906.3	906.3	906.3
Rated Current	A/phase	2	4	6
Wiring Resistance	Q/phase	3.2	0.83	0.36
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	25	6.4	2.8
Rotor Inertia	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	3	3	3
	oz $\cdot \mathrm{in}^{2}$	16.4	16.4	16.4
Motor Weight	kg	2.9	2.9	2.9
	lb	6.5	6.5	6.5
Operating Temperature		-10 to $50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)		
Humidity		20 to 90% RH, no condensation		

Dimension

Cross section S-S

Torque Curve

Constant current circuit, Source voltage: 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) । $\mathrm{JL}=\left[15.3 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(83.65 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- SM2862-50

- SM2862-51

- SM2862-52

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color					
RED	BLU	YEL	ORG		
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

MOTOR OQ MOTOR
 FLANGE SIZE

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model		Double Shaft w/ Brake	SH2862-52XB12
Holding Torque		$\mathrm{N} \cdot \mathrm{m}$	6.4
		oz•in	906.3
Rated Current		A/phase	6
Wiring Resistance		Q/phase	0.36
Winding Inductance		$\mathrm{mH} /$ phase	2.8
Rotor Inertia		$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	3.8
		$\mathrm{oz} \cdot \mathrm{in}^{2}$	20.8
Motor Weight		kg	3.7
		lb	8.15
Operating Temperature			-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Humidity			20 to $90 \% \mathrm{RH}$, no condensation
Brake	Power Source	VDC / W	24 VDC / 10 W
	Static Friction Torque	$\mathrm{N} \cdot \mathrm{m}$	5 Min .
		$\mathrm{oz} \cdot \mathrm{in}$	708 Min .

Torque Curve

Constant current circuit, Source voltage: 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[15.3 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(83.65 \mathrm{oz} \cdot \mathrm{n}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

SH2862-52

Dimension

Internal Wiring

Brake Connection

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color			RED	BLU	YEL
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

2-PHASE STEPPING SYSTEMS

MOTOR
 FLANGE SIZE

- Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Shaft
	Double Shaft
Holding Torque	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	$\Omega /$ phase
Winding Inductance	$\mathrm{mH} /$ phase
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb

Operating Temperature
Humidity

C $\mathrm{CON}_{\mathrm{cs}}$.
RoHS

SM2863-5052	SM2863-5152	SM2863-5252
	SM2863-5122	
9	9	9
1274.5	1274.5	1274.5
2	4	6
4	1	0.46
32	7.9	3.8
4.5	4.5	4.5
24.6	24.6	24.6
4	4	4
8.96	8.96	8.96
-10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$		
20 to 90%	RH, no condensation	

Dimension

Torque Curve

Constant current circuit, Source voltage: 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[44 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(240.56 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

SM2863-50

- SM2863-51

- SM2863-52

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color		RED	BLU	YEL	ORG
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

Dimension

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color			RED	BLU	YEL
ORG					
Connector pin number	(3)	(2)	(4)	(1)	
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

MOTOR
 FLANGE SIZE
 150 mm (5.91 inch$)$

Specification
Bipolar winding, $1.8^{\circ} /$ step

Model	Cable Type
	$\mathrm{N} \cdot \mathrm{m}$
	$\mathrm{oz} \cdot \mathrm{in}$
Rated Current	A/phase
Wiring Resistance	Ω / phase
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$
Rotor Inertia	$\times 10^{4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb

Operating Temperature
Humidity

SP2863-5260
9
1274.5

6
0.53
3.8
4.5
24.6
4.2
9.3
-10 to $40^{\circ} \mathrm{C}\left(14\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
95% Max. at $40^{\circ} \mathrm{C}$ Max., no condensation

Torque Curve

Constant current circuit, Source voltage: 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[44 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(240.56 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

SP2863-52

Dimension

Internal Wiring

- Direction of motor rotation
When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color			RED	BLU	YEL
ORG					
Connector pin number	(3)	(2)	(4)	(1)	
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

MOTOR
 FLANGE SIZE

MOTOR LENGTH

163.3 mm (6.4 inch)

Specification

Bipolar winding, $1.8^{\circ} /$ step

Model	Single Type	103H89222-5241
	$\mathrm{N} \cdot \mathrm{m}$	13.2
	$\mathrm{oz} \cdot$ in	1869.2
Rated Current	$\mathrm{A} /$ phase	6
Wiring Resistance	$\Omega /$ phase	0.45
Winding Inductance	$\mathrm{mH} /$ phase	5.4
Rotor Inertia	$x 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	14.6
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	79.83
Motor Weight	kg	7.5
	lb	16.53
Operating Temperature		$-10 \mathrm{to} 50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Humidity		20 to $90 \% \mathrm{RH}, \mathrm{no}$ condensation

Torque Curve

Constant current circuit, Source voltage 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[44 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(240.56 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

103H89222-52

Dimension

Internal Wiring

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color		RED	BLU	YEL	ORG
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

Specification
Bipolar winding, $1.8^{\circ} /$ step

Model	Single Type
	$\mathrm{N} \cdot \mathrm{m}$
$\mathrm{oz} \cdot \mathrm{in}$	
Rated Current	$\mathrm{A} /$ phase
Wiring Resistance	$\Omega /$ phase
Winding Inductance	$\mathrm{mH} /$ phase
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
	$\mathrm{oz} \cdot \mathrm{in}^{2}$
Motor Weight	kg
	lb
Operating Temperature	
Humidity	

Torque Curve

Constant current circuit, Source voltage: 100 VAC I Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[44 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(240.56 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H89223-52

Dimension

Internal Wiring

\cdots b
When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

Lead wire color		RED	BLU	YEL	ORG
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

- Direction of motor rotation

MOTOR MOTOR
 fLANGE SIZE 4.2 mm (NEMA 17)
 MOTOR
 LENGTH
 39 mm (1.54 inch$)$

Specification

Bipolar winding, $1.8^{\circ} /$ step, Vacuum

Model	Single Shaft	103H5208-49V40
	$\mathrm{N} \cdot \mathrm{m}$	0.37
	$\mathrm{oz} \cdot \mathrm{in}$	52.39
Rated Current	A/phase	2
Wiring Resistance	$\Omega /$ phase	1.27
Winding Inductance	$\mathrm{mH} /$ phase	2
Rotor Inertia	$\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.056
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.306
Motor Weight	kg	0.34
	lb	0.75
Baking Temperature		Less than $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$
Working Pressure Range	$1 \times 10^{-5} \mathrm{~Pa}$ or more	

Torque Curve

Constant current circuit, Source voltage 24 VDC | Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[0.94 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H5208-49V40

MOTOR MOTOR
FLANGE SIZE
mm (NEMA 23)

Specification
Bipolar winding, $1.8^{\circ} /$ step, Vacuum

Model	Single Shaft	103H7121-47V40
	$\mathrm{N} \cdot \mathrm{m}$	0.45
	$\mathrm{oz} \cdot$ in	63.72
Rated Current	A/phase	2
Wiring Resistance	$\Omega /$ phase	0.94
Winding Inductance	$\mathrm{mH} / \mathrm{phase}$	3.4
Rotor Inertia	$x 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.1
	$\mathrm{oz} \cdot \mathrm{in}^{2}$	0.547
Motor Weight	kg	0.67
	lb	1.48
Baking Temperature		Less than $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$
Working Pressure Range	$1 \times 10^{-5} \mathrm{~Pa}$ or more	

Torque Curve

Constant current circuit, Source voltage: 24 VDC I Operating current: Rated Current, 2-phase energization (full-step) I $\mathrm{JL}=\left[0.94 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(5.14 \mathrm{oz} \cdot \mathrm{in}^{2}\right)\right.$ pulley balancer method] I fs: Maximum self-start frequency when not loaded

- 103H7121-47V40

Dimension

Internal Wiring

- Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side

Lead wire color			RED	BLU	YEL
ORG					
Excitation	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

Motor General Specifications

Motor model number	SH2141	SH228 \square	SS242■	SH142■	103H52	SS250 \square
Type						
Operating ambient temperature	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$					
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$					
Operating ambient humidity	20 to 90 RH (no condensation)					
Storage humidity	5 to 95 RH (no condensation)					
Operation altitude	1000 m (3281 feet) max. above sea level					
Vibration resistance	Vibration frequency 10 to 500 Hz , total amplitude $1.52 \mathrm{~mm}\left(10\right.$ to 70 Hz), vibration acceleration $150 \mathrm{~m} / \mathrm{s}^{2}(70$ to 500 Hz), sweep time $15 \mathrm{~min} /$ cycle, 12 sweeps in each X, Y and Z direction.					
Impact resistance	$500 \mathrm{~m} / \mathrm{s}^{2}$ of acceleration for 11 ms with half-sine wave applying three times for X, Y, and Z axes each, 18 times in total.					
Thermal class	Class B ($+130^{\circ} \mathrm{C}$)					
Withstandable voltage	At normal temperature and humidity, no failure with 500 VAC @50/60 Hz applied for one minute between motor winding and frame.					
Insulation resistance	At normal temperature and humidity, not less than $100 \mathrm{M} \Omega$ between winding and frame by 500 VDC megger.					
Protection grade	IP40					
Winding temperature rise	80 K max. (Based on Sanyo Denki standard)					
Static angle error	$\pm 0.09^{\circ}$			$\pm 0.054^{\circ}$	$\pm 0.09^{\circ}$	
Thrust play *1	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & (0.003 \mathrm{in} \text {) max. } \\ & \text { (load: } 0.35 \mathrm{~N} \\ & \text { (} 0.08 \mathrm{lbs} \text {)) } \end{aligned}$	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & \text { (0.003 in) max. } \\ & \text { (load: } 1.5 \mathrm{~N} \\ & \text { (} 0.34 \mathrm{lbs} \text {)) } \end{aligned}$	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & \text { (0.003 in) max. } \\ & \text { (load: } 4 \mathrm{~N} \\ & (0.9 \mathrm{lbs} \text {)) } \end{aligned}$	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & (0.003 \mathrm{in} \text {) max. } \\ & \text { (load: } 5 \mathrm{~N} \\ & (1.12 \mathrm{lbs} \text {) }) \end{aligned}$	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & \text { (} 0.003 \mathrm{in} \text {) } \\ & \text { (load: } 5 \mathrm{~N} \\ & \text { (1.12 lbs)) } \end{aligned}$	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & (0.003 \mathrm{in} \text {) max. } \\ & \text { (load: } 4 \mathrm{~N} \\ & \text { (} 0.9 \mathrm{lbs} \text {) } \end{aligned}$
Radial play ${ }^{*}$	Vibration frequency 10 to 500 Hz , total amplitude $1.52 \mathrm{~mm}\left(10\right.$ to 70 Hz), vibration acceleration $150 \mathrm{~m} / \mathrm{s}^{2}(70$ to 500 Hz), sweep time $15 \mathrm{~min} /$ cycle, 12 sweeps in each X, Y and Z direction.					
Shaft runout						
Concentricity of mounting pilot relative to shaft	$\begin{aligned} & \varnothing 0.05 \mathrm{~mm} \\ & (\varnothing 0.002 \mathrm{in}) \end{aligned}$	$\begin{aligned} & \varnothing 0.05 \mathrm{~mm} \\ & (\varnothing 0.002 \mathrm{in}) \end{aligned}$	$\begin{aligned} & \curvearrowleft 0.075 \mathrm{~mm} \\ & (\varnothing 0.003 \mathrm{in}) \end{aligned}$	$\begin{aligned} & \varnothing 0.05 \mathrm{~mm} \\ & (\varnothing 0.002 \mathrm{in}) \end{aligned}$	$\begin{aligned} & \varnothing 0.05 \mathrm{~mm} \\ & (\varnothing 0.002 \mathrm{in}) \end{aligned}$	$\begin{aligned} & \varnothing 0.075 \mathrm{~mm} \\ & (\varnothing 0.003 \mathrm{in}) \end{aligned}$
Squareness of mounting surface relative to shaft	$\begin{aligned} & 0.1 \mathrm{~mm} \\ & \text { (0.004 in) } \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~mm} \\ & (0.004 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~mm} \\ & (0.004 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~mm} \\ & \text { (} 0.004 \mathrm{in} \text {) } \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~mm} \\ & (0.004 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~mm} \\ & (0.004 \mathrm{in}) \end{aligned}$
Direction of motor mounting	Can be freely mounted vertically or horizontally					

Motor model number	103H712■	SH160	103H78	103H8922 \square	SM286口
Type					S1 (continuous operation)
Operating ambient temperature	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$				$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$				$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Operating ambient humidity	20 to 90 RH (no condensation)				95% max.: $40^{\circ} \mathrm{C}$ max., 57% max.: $50^{\circ} \mathrm{C}$ max.,
Storage humidity	5 to 95\% RH (no condensation)				35% max.: $60^{\circ} \mathrm{C}$ max. (no condensation)
Operation altitude	1000 m (3281 feet) max. above sea level				
Vibration resistance	Vibration frequency 10 to 500 Hz , total amplitude $1.52 \mathrm{~mm}(10$ to 70 Hz$)$, vibration acceleration $150 \mathrm{~m} / \mathrm{s}^{2}(70$ to 500 Hz), sweep time $15 \mathrm{~min} / \mathrm{cycle}, 12$ sweeps in each X, Y and Z direction.				
Impact resistance	$500 \mathrm{~m} / \mathrm{s}^{2}$ of acceleration for 11 ms with half-sine wave applying three times for X, Y, and Z axes each, 18 times in total.				
Thermal class	Class B ($+130^{\circ} \mathrm{C}$)				Class F (+155 ${ }^{\circ} \mathrm{C}$)
Withstandable voltage	At normal temperature and humidity, no failure with 1000 VAC @ $50 / 60 \mathrm{~Hz}$ applied for one minute between motor winding and frame.			At normal temperature and humidity, no failure with 1500 VAC @ $50 / 60 \mathrm{~Hz}$ applied for one minute between motor winding and frame.	
Insulation resistance	At normal temperature and humidity, not less then $100 \mathrm{M} \Omega$ between winding and frame by 500 VDC megger.				
Protection grade	IP40				IP43
Winding temperature rise	80 K max. (Based on Sanyo Denki standard)				
Static angle error	$\pm 0.054^{\circ}$	$\pm 0.054^{\circ}$	$\pm 0.09^{\circ}$		
Thrust play * ${ }^{\text {* }}$	$0.075 \mathrm{~mm}(0.003 \mathrm{in})$ (load: $10 \mathrm{~N}(2.25 \mathrm{lbs})$)				
Radial play *2	$\begin{aligned} & 0.025 \mathrm{~mm} \\ & 0.001 \mathrm{in} \text {) } \\ & \text { (load: } 5 \mathrm{~N} \\ & \text { (1.12 lbs)) } \end{aligned}$	$\begin{aligned} & 0.025 \mathrm{~mm} \\ & 0.001 \mathrm{in} \text {) } \\ & \text { (load: } 5 \mathrm{~N} \\ & \text { (1.12 lbs)) } \end{aligned}$	$\begin{aligned} & 0.025 \mathrm{~mm} \\ & \text { (} 0.001 \mathrm{in} \text {) } \\ & \text { (load: } 5 \mathrm{~N} \\ & \text { (1.12 lbs)) } \end{aligned}$	$\begin{aligned} & 0.025 \mathrm{~mm} \\ & \text { (} 0.001 \mathrm{in} \text {) } \\ & \text { (load: } 5 \mathrm{~N} \\ & (2.25 \mathrm{lbs}) \text {) } \end{aligned}$	$0.025 \mathrm{~mm}(0.001 \mathrm{in})$ (load: $10 \mathrm{~N}(1.12 \mathrm{lbs})$)
Shaft runout	0.025 mm (0.001 in)				
Concentricity of mounting pilot relative to shaft	$\varnothing 0.075 \mathrm{~mm}$ ($\varnothing 0.003 \mathrm{in}$)				
Squareness of mounting surface relative to shaft	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & \text { (0.003 in) } \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~mm} \\ & \text { (0.004 in) } \end{aligned}$	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & (0.003 \mathrm{in}) \end{aligned}$	0.15 mm (0.006 in)	$\begin{aligned} & 0.075 \mathrm{~mm} \\ & (0.003 \mathrm{in}) \end{aligned}$
Direction of motor mounting	Can be freely mounted vertically or horizontally				

[^5]
2-Phase Bipolar DC Input Micro-step Driver

Specification

Driver model		
Basic specifications	Input source	
	Source current	
	Environment	Protection class
		Operation environment
		Ambient operation temperature
		Storage temperature
		Operating ambient humidity
		Storage humidity
		Operation altitude
		Vibration resistance
		Impact resistance
		Withstandable voltage
		Insulation resistance
	Mass (Weight)	
Functions	Selection functions	
	Protection functions	
I/O signals	Command pulse input signal	
	Power down input signal	
	Phase origin monitor output signal	
	Rotation monitor output signal	

24/36 VDC $\pm 10 \%$
3 A

Installation category (over-voltage category) : I, pollution degree: 2
0 to $+50^{\circ} \mathrm{C}$
-20 to $+70^{\circ} \mathrm{C}$
35 to 85\% RH (no condensation)
O

Tested under the following conditions: $5 \mathrm{~m} / \mathrm{s}^{2}$ frequency range 10 to 55 Hz , direction along X, Y and Z axes, for 2 hours each
Not influenced at NDS-C-0110 standard section 3.2.2 division "C"
Not influenced when 0.5 kVAC is applied between power input
$10 \mathrm{M} \Omega \mathrm{min}$. when measured with 500 VDC megohmmeter between input terminal and cabinet.
0.09 kg (0.20 lbs)

Step angle, pulse input mode, low vibration mode, step current operating current, original excitation phase Power monitor, alarm display
Photocoupler input system, input resistance: 220Ω
input signal "H" level: 4.0 to 5.5 V , input signal "L" level: 0 to 0.5 V
Maximum input frequency: $150 \mathrm{kpulse} / \mathrm{s}$
input signal "H" level: 4.0 to 5.5 V , input signal "L" level: 0 to 0.5 V
From the photocoupler by the open collector output
Output specification: Vceo $=40 \mathrm{~V}$ Max., Ic $=10 \mathrm{~mA}$ Max.
Output specification: Vceo $=40 \mathrm{~V}$ Max., $\mathrm{Ic}=10 \mathrm{~mA}$ Max.

Safety Standards

CE (TÜV)	Directives	Category	Standard	Name
	Low-voltage directives	-	EN61010-1	-
	EMC directives	Emission	$\begin{aligned} & \text { EN55011-A } \\ & \text { EN55011-A } \end{aligned}$	Terminal disturbance voltage Electromagnetic radiation disturbance
			EN61000-4-2	ESD (Electrostatic discharge)
		Immunity	EN61000-4-3	RS (Radio-frequency amplitude modulated electromagnetic field)
		Immunity	EN61000-4-4	Fast transients/burst
			EN61000-4-6	Conducted disturbances
UL	Acquired standards		Applicable standard	File No.
	UL		UL508C	E179775
	UL for Canada			

Dimension

Unit: mm (inch

Driver Controls and Connectors

Operating current selection switch (RUN)
The value of the motor current can be set when operating.

Dial	0	1	2	3	4	5	6	7
Stepping motor current (A)	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3
Dial	8	9	A	B	C	D	E	F
Stepping motor current (A)	1.2	1.1	1.0	0.9	0.8	0.7	0.6	0.5

- The factory setting is $\mathrm{F}(0.5 \mathrm{~A})$.

Select the current after checking the rated current of the combination motor.
(2) Function selection DIP switchpack

Select the function depending on your specification.
Factory settings

1. Step angle select (EX1, EX2, EX3)

Select the partition number of the basic step angle.

| EX1 | EX2 | EX3 | Partition number |
| :--- | :--- | :--- | :--- | :--- |
| ON | ON | ON | 1-division |
| OFF | ON | OFF | 2-division |
| ON | OFF | OFF | 4-division |
| OFF | OFF | OFF | 8-division |
| OFF | OFF | ON | 16-division |

2. Input method select (F/R)

Select input pulse type.

F/R	Input pulse type
ON	1 input (CK, U/D)

3. Current selection when stopping (ACD1, ACD2)

Select the current value of the motor when stopping.

ACD2	ACD1	Current value of the motor
ON	ON	100% of driving current
ON	OFF	60% of driving current
OFF	ON	50% of driving current
OFF	OFF	40% of driving current

- Initial configuration of factory shipment is set to 40% of rated value. Driver and motor should be operated at around 50% of rated value to reduce heat.

4. Low-vibration mode select (LV)

Provides low-vibration, smooth operation even if resolution is coarse (1-division, 2-division, etc).

LV	Operation
ON	Auto-micro function
OFF	Micro-step

5. Excitation select (EORG)

The excitation phase when the power supply is engaged is selected.
EORG Original excitation phase
ON Excitation phase at power shut off
OFF Phase origin

- By turning on the EORG, the excitation phase during power OFF will be saved. Therefore, there will be no shaft displacement when turning the power ON.

3 LED for power supply monitor (POW) Lit up when the main circuit power supply is connected.
(4) LED for alarm display (ALM)

Lights in the following conditions:

- Motor cable is broken.
- Switching element in driver is faulty.
- The main circuit voltage is out of specifications range (19 VDC max.).

When "ALM" is displayed, the winding current of the stepping motor is cut off and it is in a "non-excitation" state. At the same time, an output signal (photocoupler ON) is transmitted from the alarm output terminal (AL) to an external source. When the alarm circuit is operating, this state is maintained until it is reset by switching on the power supply again. When an alarm condition has occurred, please take corrective actions to rectify the cause of the alarm before switching on the power supply again.
(5) I/O signal terminal block (CN1)

Connect the I/O signal.

Motor terminal block (CN2)
Connect the motor's power line.
7 Power supply terminal block (CN3)
Connect the main circuit power supply.

2-PHASE STEPPING SYSTEMS

Connections and Signals

Wiring Diagram

Pulse Input

- Pulse duty 50\% max.
- Maximum input frequency: 150 kpulse/s
- When the crest value of the input signal exceeds 5 V , use the external limit resistance R to limit the input current to approximately 15 mA .

Applicable Wire Sizes

Part	Wire sizes	Allowable wire length
For power supply	22 AWG $\left(0.3 \mathrm{~mm}^{2}\right)$	2 m Max.
For input/output signal	24 AWG $\left(0.2 \mathrm{~mm}^{2}\right)$ to 22 AWG $\left(0.3 \mathrm{~mm}^{2}\right)$	$2 \mathrm{~m} \mathrm{Max}$.
For motor	$22 \mathrm{AWGG}\left(0.3 \mathrm{~mm}^{2}\right)$	Under 3 m

Specification Summary of Input/Output Signals

Signal CN1 Pin number		mber Function summary
CW pulse input (CW) (Standard)	1	When in "2 input mode", input the drive pulse that rotates in a CW direction.
Pulse train input (CK)	1	When in "1 input mode", input the drive pulse train for motor rotation.
CCW pulse input (CCW) (Standard)	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	When in "2 input mode", input the drive pulse train that rotates in a CCW direction.
Rotational direction input (U/D)	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	When in "1 input mode", input the motor rotational direction signal. Internal photocoupler ON: CW direction Internal photocoupler OFF: CCW direction
Power down input (PD)	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	Inputting PD signal will cut off (power off) the current flow to the motor (With DIP switch selected, change to the low power function is possible). PD input signal on (internal photocoupler on): PD function is valid. PD input signal off (internal photocoupler off): PD function is invalid.
Phase origin monitor output (MON)	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	When the excitation phase is at the origin (during power on) this function turns on. When FULL step, ON once for 4 pulses; when HALF step, ON once for 8 pulses.
Alarm output (AL)	9 10	When alarm circuits are actuated inside the driver, outputs signals to outside, after which the stepping motor changes to unexcited status.

As for the motor rotational direction, CW direction is regarded as the clockwise rotation, and CCW direction is regarded as the counterclockwise rotation by viewing the motor from output shaft side.

Input Signal

When the crest value of the input signal exceeds 5 V , use the external limit resistance R to limit the input current to approximately 15 mA .

Output Signal

- Photocoupler is set to ON at phase origin of motor excitation (setting when number of divisions is 2).
- MON output is taken at every 7.2 degrees of motor output shaft from phase origin.

F品
Motion Control Systems
R.T.A. is a leading company in the motion control industry and it is number one in Italy in the stepper system segment. Over the years, the partnership among R.T.A. and SANYO DENKI has achieved a strong market penetration, through the introduction of high technology products and innovative solutions.

Pulse Input

Driver Series	Model	Voltage Range	Current Range	Dimension
A-CSD	$02 . \mathrm{V}$	24 to 48 VDC	0.7 to 2.4 Amps	$92 \times 85 \times 23 \mathrm{~mm}$
	$04 . \mathrm{V}$	24 to 48 VDC	2.6 to 4.4 Amps	$92 \times 85 \times 23 \mathrm{~mm}$
	$06 . \mathrm{V}$	24 to 85 VDC	1.9 to 6.0 Amps	$94 \times 101 \times 25 \mathrm{~mm}$
X-PLUS	B4	110 to 230 VAC	2.4 to 4.0 Amps	$152 \times 129 \times 46 \mathrm{~mm}$
X-MIND	B6	110 to 230 VAC	3.4 to 6.0 Amps	$180 \times 53 \times 173 \mathrm{~mm}$

Indexer, RS485 Serial Communication

Driver Series	Model	Voltage Range	Current Range	Dimension
CSD	J4	24 to 48 VDC	2.6 to 4.4 Amps	$90 \times 99 \times 30 \mathrm{~mm}$
X-MIND	K6	110 to 230 VAC	3.4 to 6.0 Amps	$180 \times 53 \times 173 \mathrm{~mm}$

Analog Input

Driver Series	Model	Voltage Range	Current Range	Dimension
ADW	$06 . V$	24 to 75 VDC	1.9 to 6.0 Amps	$94 \times 122 \times 25 \mathrm{~mm}$

SANMOTION MOTION CONTROLLER

SANMOTION C integrates motion control, robot control, and sequence control into one unit to provide major advantages in reduced device costs and shorter development times. Several different types of industrial networks can be used. For use in material handling robots and general industrial machinery. Image processing devices and a touch panel have also been developed as motion controller peripherals.

Controller with three control functions

The SANMOTION C has the three functions of motion control, robot control, and sequence control and makes it easy to build a variety of application systems.

With high-speed fieldbus EtherCAT interface

EtherCAT interface is provided as standard.
With 100 Mbps high-speed and high-reliability communications, this fieldbus speeds up the system control capability and improves responsiveness.
The takt time is significantly shortened.

SANMOTION EtherCAT Interface Models
SANMOTION R
3E Model EtherCAT Interface Type Servo Amplifier P. 40
EtherCAT Interface Type Servo Amplifier.............................. P. 45
EtherCAT Interface High Speed Type Servo Amplifier P. 50
EtherCAT Interface DC Input Type Servo Amplifier P. 59
EtherCAT Interface DC Input Type Multi Axis Servo Amplifier... P. 63
SANMOTION Model No.PB
DC Input Driver EtherCAT Model P. 90
DC Input Driver EtherCAT Multi-Axis Model P. 93

CPU module

Model		SMC265X	Remarks
CPU		1.8 GHz	
Memory		1 GB	
Battery backed up SRAM		1 MB	
Specifications of provided interfaces	EtherCAT	100 Mbps	Motion bus RJ-45 connector
	CAN	125 kbps to 1 Mbps	D-Sub 9-pin female connector
	RS485	1200 bps to 115200 bps	Mini-D-Sub 15-pin male connector
	Ethernet	10/100 Mbps	RJ-45 connector
	USB	USB 2.0 high speed	For memory storage
Expansion unit maximum		12	
Input power supply		24 VDC (19.2 VDC to 30 VDC)	2-pin connector x 1 (Phoenix Contact)
Maximum input power		99 W	
Rush current		10 A	
Maximum output power (K-BUS DC24V)		40 W	
Maximum output power (K-BUS DC5V)		10 W	
Weight		1,335 g	

I/O module

P/N	Specifications	Mass	Cable side connector
DM276-A	Digital input: 6 points, 24 VDC, positive common input Digital output: 8 points, $24 \mathrm{VDC}, 1 \mathrm{~A}$, sink output	135 g	2-pin connector $1+8$-pin connector x 2 (Phoenix Contact)

Common specifications

Operating ambient temperature	0 to $+55^{\circ} \mathrm{C}$
Storage ambient temperature	-40 to $+70^{\circ} \mathrm{C}$
Operating/storage humidity	10 to 95\% (no condensation)
Vibration resistance	Complies with EN 61131-2. For frequency range $5 \leqq f<9 \mathrm{~Hz}$, half amplitude: 3.5 mm ; for frequency range $9 \leqq f<150 \mathrm{~Hz}$, acceleration: $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Shock resistance	$147 \mathrm{~m} / \mathrm{s}^{2}$ in compliance with EN61131-2
Operating altitude	2000 m max.
Installation location	In control panel
Overvoltage category	Il or lower
Degree of pollution	2 or lower

System Configuration

Dimensions

SMC265X
Unit: mm (inch)

DM276-A
Unit: mm (inch)

Value Added Assembly

SANYO DENKI AMERICA provides the total solution for motor drive system.
Depending the requirement, we assemble actuators, gearheads, connectors, cables, harnesses and some other peripheral parts to our product in our ISO 9001 certified factory.

Repair Service

SANYO DENKI AMERICA provides prompt service of overhaul and repair for legacy SANMOTION products in our official repair department.

Precautions For Adoption
Failure to follow the precautions on right may cause moderate injury and property damage, or in some circumstances, could lead to a serious accident.
Always follow all listed precautions.

. Cautions

- Read the accompanying Instruction Manual carefully prior to using the product
- If applying to medical devices and other equipment affecting people's lives, please contact us beforehand and take appropriate safety measures.
- If applying to equipment that can have significant effects on society and the general public, please contact us beforehand.
- Do not use this product in an environment where vibration is preset, such as in a moving vehicle or shipping vessel.
- Do not perform any retrofitting, re-engineering, or modification to this equipment
- The products presented in this catalog are meant to be used for general industrial applications. If using for special applications related to aviation and space, nuclear power, electric power, submarine repeaters, etc., please contact us beforehand.
* For any question or inquiry regarding the above, contact our Sales Department.

SANYO DENKI AMERICA, INC.

U.S. Headquarters

Address: 468 Amapola Ave., Torrance, CA 90501
Phone: 8009057989
Fax: 3102126686

Silicon Valley Office

Address: 1500 Wyatt Dr. Suite 5, Santa Clara, CA 95054
Phone: 4089881700
Fax: 4089821700

Chicago Office

Address: 1340 Remington Road Suite E, Schaumburg, IL 60173
Phone: 2243536420
Fax: 2243536302

Detroit Office (Repair Service)

Address: 37511 Schoolcraft Road, Livonia, MI 48150
Phone: 7345251806
Fax: 7345253367

Discover

SANYO DENKIMotion and Control

Motorized Actuator MCE model

High performance motor with NSK Electrified
Monocarrier linear actuator

SANMOTION
 AC SERVO SYSTEMS

High-performance AC servo systems consisting of servo amplifiers with advanced vibration suppression and highly efficient servo motors.

EtherCAT우*

SANMOTION F2

With high torque, Iow vibration, low noise, and high resolution. Their rich lineup is used in a wide range of fields.

STEPPING SYSTEM

24/36 VDC Input Bipolar Microstep Driver

42 mm sq (NEMA 17) Motor

Model Number (Actuator and Motor)	Lead	Stroke	Max Trust	Max Speed		
MCE03010P01K0001SKF	1 mm	100 mm	1040 N	$50 \mathrm{~mm} / \mathrm{s}$		Customize Options
:---						
- Lead: 2, 10, 12 mm						
- Compatible Driver and Cable						
- Stroke: 50, 150 mm						
Closed loop stepping system with						

stepping system with
EtherCAT/ Indexer drive is also available.

■ System Configuration

AC SERVO SYSTEM

24 VDC Input Multi Axis EtherCAT Amplifier (Total 300 W)

40 mm sq, 30 W Motor

Model Number (Actuator and Motor)	Brake	Lead	Stroke	Max Trust	Max Speed
MCE03010P02K0001SAF		2	100	1040	100
MCE03010P02K0001SBF	\checkmark	mm	mm	N	mm / s
■ Customize Options - Lead: $2,10,12 \mathrm{~mm}$ - Stroke: 50 to 250 mm - Driver I/F: Analog/Pulse, single axis EtherCAT	\square Compatible Amplifier and Cable				
	Amplifier			RF2K24AOHL5	
	a: Motor			1026-107009	
	Cable	b: Encoder		EEXTKABS2410FT	
		c: Brake		MEXTBRK2010FT	
		d: Power		AL-00921367-01	

200 VAC input EtherCAT Amplifier

- 40 mm sq, 100 W Motor

Model Number (Actuator and Motor)	Brake	Lead	Stroke	Max Trust	Max Speed
MCE03015H10K0001SCF		10	150	704	830 mm
MCE03015H10K0001SDF	\boldsymbol{V}	mm	mm	N	mm / s

60 mm sq, 200 W Motor

Model Number (Actuator and Motor)	Brake	Lead	Stroke	Max Trust	Max Speed
MCE06030H10K0001SEF		$\begin{gathered} 10 \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & 300 \\ & \mathrm{~mm} \end{aligned}$	$\begin{gathered} 2626 \\ N \end{gathered}$	$\begin{gathered} 830 \\ \mathrm{~mm} / \mathrm{s} \end{gathered}$
MCE06030H10K0001SFF	\checkmark				
- Customize Options - Lead: 2, 10, 12 mm - Stroke: MCE03 model 50 to 250 mm MCE06 model 50 to 600 mm - Driver I/F: Analog/Pulse, Indexer	■ Compatible Amplifier and Cable				
	Amplifier	100 W motor		RS3A01A2HA4	
		200 W Motor		RS3A02A2HA4	
	Cable	b:	Motor	MEXTK1810FT	
			Encoder	EEXTKABS2410FT	
				MEXTBRK2010FT	

■ System Configuration

For any inquiry, contact our sales department.
U.S. Headquarters

468 Amapola Ave. Torrance, California 90501 Tel: 1.800.905.7989
URL: www.sanyodenki.com/america

[^0]: To build a complete system, you need to have checked items.
 Note: I/O cable can be chosen either 4 a or 5 . Connector for CN4 can be chosen either 6 a or 6 b .

[^1]: Servo ON, Alarm rest, Start-up, Zero-return, Analog, Override/analog high-speed, Cancellation, Speed reduction short of zero-point, External defect, Over-travel, External data setting, 1 step travel, Interrupt start-up, Output selection, MFIN, Point specification input
 NC-ready, Holding brake timing, Error, Effective external operation, On operation, Positioning completion, In-position output, Zero-return completion, Multiple purpose output (8 bits)

[^2]: To build a complete system, you need to have checked items.

[^3]: To build a complete system, you need to have checked items.

[^4]: * Keep the max. extended length to 2 m or less and the max. current consumption to 14 A or less (7 A for normal operation) while in use.

[^5]: Regarding the SH2145, SF242ם, 103H5208-49V40 and 103H7121-47V40, please ask us.
 *1 Thrust play: Shaft displacement under axial load.
 *2 Radial play: Shaft displacement under radial load applied 1/3rd of the length from the end of the shaft.

