LICHENOGRAPHIA THOMSONIANA: NORTH AMERICAN LICHENOLOGY IN HONOR OF JOHN W. THOMSON. EDS: M. G. GLENN, R. C. HARRIS, R. DIRIG & M. S. COLE. MYCOTAXON LTD., ITHACA, NY. 1998.

LICHENS OF GRANITIC PEAKS IN THE BITTERROOT RANGE, MONTANA AND IDAHO, USA

Bruce McCune

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902

ABSTRACT. Lichens on the high peaks and ridges of the Bitterroot Range are of particular interest because the Bitterroot Range lies near the eastern edge of the peninsula of oceanic influence into western Montana. The crest of the Bitterroot Range lies at the top of the huge Idaho Batholith, the largest mass of granite within the relatively maritime region of western Montana. A total of 218 species of lichenized fungi were found, distributed among 80 genera. *Lecidea syncarpa*, new to North America, is a common species in the Rocky Mountains. A species close to *Diplotomma alboatrum* is described in detail. It occurs on vertical rock surfaces and beneath sheltered overhangs. A key is given for sterile white crusts on soil or moss in the alpine. *Lecanora swartzii*, new to North America, also occurs beneath overhanging rocks.

INTRODUCTION

Only a handful of lichen studies have been published for alpine areas of the northern Rocky Mountains in Montana, Idaho, and adjoining British Columbia and Alberta. Imshaug's "Part I" describing alpine macrolichens of the western states (Imshaug 1957) gave high hopes for a "Part II" which never arrived. Recent lichen floras (Goward and McCune 1994, McCune and Goward 1995) included alpine macrolichens, but the crustose alpine lichens have been included only in floristic works for a few areas (e.g. DeBolt and McCune 1993, Eversman 1995). A comparison of the list in this paper with the few papers including alpine lichens from the Cascade Range (e.g. Douglas 1974, Ryan 1985) will show that the alpine areas of the Rockies and the Cascades have many differences. The most useful comprehensive keys for alpine crusts in the northern Rockies remain, therefore, Thomson (1979), Bird (1970), and McCune (1997).

The species list presented in this paper probably represents less than half of the total alpine lichen flora of the northern Rockies. I base this guess on the combination of our ignorance and inclusion of only granitic rocks in this study. The present paper includes a list of species, ecological notes, extended descriptions of selected species, a key to whitish sterile crustose species, and a briefly annotated checklist.

STUDY AREA

The high peaks and ridges of the Bitterroot Range lie near the eastern edge of the peninsula of oceanic influence into western Montana (McCune 1984). The crest of the Bitterroot Range lies at the top of the huge Idaho Batholith, the largest mass of granite within the relatively maritime region of western Montana. Most of the other high ranges in western Montana are primarily of sedimentary rock, with notable exceptions in the Anaconda Range and the Beartooth Plateau. Most of the granites in the Idaho Batholith are granodiorite and quartz monzonite (Ross 1963).

Climatic data are unavailable for the high mountains of the Bitterroot Range. Summers are warm yet short and often have prolonged dry periods. During the rest of the year precipitation is frequent, though often in small amounts. Snowfields often persist well into July although wind exposed ridges and peaks are relatively snow free through the winter.

All collecting sites reported here are on peaks and ridges over 2000 m in elevation. This study includes the highest peak in the Bitterroot Range, Trapper Peak, at 3080 m. The major collecting sites (Table 1, Figure 1) are all non forested. They range from broken subalpine forests to true alpine communities with no trees even in spots with adequate soil. Many of the sites had krummholz or scattered small trees around the edges. All of the sites are extremely rocky and many have almost no soil development.

Site	Elev., m	State	County	Lat.	Long.
Bear Cr. Overlook	2165	MT	Ravalli	46°23'	114°17'
Skookum Butte	2195	MT	Missoula	46°39.5'	114°23'
Castle Rock	2350	MT	Ravalli	45°53'	114°27'
Big - Sweathouse divide	2500	MT	Ravalli	46°28'	114°14'
Grave Peak	2520	ID	Idaho	46°23.5'	114°44'
Ingomar Peak	2590	MT	Ravalli	46°13'	114°25'
Salmon Mt	2624	ID	Idaho	45°37'	114°50'
Lolo Peak	2750	MT	Lolo	46°40'	114°15'
Little St. Joseph Peak	2753	MT	Ravalli	46°36'	114°13'
Canyon Peak	2755	MT	Ravalli	46°15'	114°21'
Sweeney Peak	2780	MT	Ravalli	46°39'	114°13'
St. Mary's Peak	2845	MT	Ravalli	46°31'	114°14'
El Capitan	3043	MT	Ravalli	46°01'	114°24'
Trapper Peak	3080	MT	Ravalli	45°53.5'	114°18'

Table 1. Primary collecting sites at elevations over 2000 m, in order of increasing elevation (States: MT = Montana, ID = Idaho).

Figure 1. Major collecting sites (triangles) and location of study area. Small squares are towns. The Montana-Idaho border is shown by a dotted line.

METHODS

Each site was visited on only one day, with the exception of St. Mary's Peak which was visited twice. Collecting effort was fairly uniform across the sites, except for less time spent at Bear Creek overlook. Vouchers were collected for most species at most sites, but some common species were simply recorded without collecting. Approximately 1000 collections were made. Vouchers are primarily in the author's herbarium and OSC, with smaller numbers in WIS. Nomenclature mainly follows Esslinger and Egan (1995).

RESULTS AND DISCUSSION

Biodiversity

A total of 218 species in 80 genera were found. This total is much smaller than that of the alpine lichens of the Rocky Mountains because calcareous substrates are not represented in this study. The list given below is, however, fairly typical of siliceous alpine sites in the Rocky Mountains.

A few species are conspicuous by their absence. *Evernia divaricata* and *Dactylina madreporiformis* are common on the high granitic areas of the Beartooth Plateau in southern Montana and northwestern Wyoming, but these species are apparently absent from the Bitterroot Range. *Dactylina arctica* is common in the Canadian Rockies but still has not been found in the Rocky Mountains in the U.S. *Umbilicaria proboscidea* is another species common in the Canadian Rockies but apparently absent in the Bitterroot Range. *Cornicularia normoerica* is fairly frequent in the Cascade Range of Oregon and Washington, but is very rare in Montana, where it is not known south of Glacier Park (DeBolt and McCune 1993; McCune and Goward 1995).

Given the elevation range included in this study (2000-3080 m), one might expect a number of species to be restricted to one end or the other of this range. Certainly the low elevation sites include more species requiring woody substrates. A few species occurred only at the highest sites, for example, *Dactylina ramulosa*, *Sporastatia polyspora*, and the possibly undescribed black-fruited *Caloplaca*.

Alpine Habitats in the Bitterroots

Extensive alpine fellfields occur in only a few areas, one of the largest being on Lolo Peak. Alpine communities in the Bitterroot Range are mostly small, local, and poorly developed. This derives from several factors: elevation, topography, and snow, as described below. Elevations are rather low (compared to the Beartooth Plateau) for developing alpine communities at this latitude. Most of the sites had peripheral small trees. The peaks and ridges are steep and very rocky, with little soil development, greatly restricting the potential for terricolous lichen development. Snowpacks are deep in many microsites, excluding all but a few lichens tolerant of prolonged burial by snow.

Combining these factors results in many alpine lichens being restricted to a very narrow habitat on many of the peaks: cliff ledges and short slopes near the crest of peaks on the northwest side. This is the intersection of the most favorable areas on two independent gradients: the temperature gradient, with alpine lichens favoring cooler northerly aspects, and the wind/snowpack gradient, with lichens favoring the windswept western faces. Thus the best alpine lichen development in the Bitterroot Range is usually near the crest of northwestern slopes, combining cool temperatures and low snow accumulation. Because of the steep topography, the terricolous alpine lichen communities are often restricted to cliff ledges just off the NW side of the summits.

Communities Beneath Overhangs

Lichens beneath sheltered overhangs and cliff faces often formed complex mixtures of interesting species. Some of these species are in the *Lecanora rupicola* group. Examination of this group in light of Leuckert and Poelt (1989) has refined our understanding of this group. *L. swartzii* (Ach.) Ach., new to North America, is quite distinct morphologically from the rest of the group, having almost stalked areoles and apothecia. It was found at four locations (Castle Rock, Ingomar Peak, Little St. Joseph Peak, and Skookum Butte, in all cases beneath overhangs. *L. rupicola* sens. str. turns out to be essentially absent from the northern Rockies, most of the previous reports actually being *L. bicincta*. West of the Cascade crest the pattern reverses and *L. rupicola* is much more common than *L. bicincta* but occasionally (Siskiyou Mountains) they co-ocur. All three taxa in Europe have two or more subspecies differing in chemistry (Leuckert and Poelt 1989), but I found it difficult to assign the North American specimens to subspecies based on spot tests.

Lecanora swartzii is a component of the distinctive community that grows beneath overhanging rocks. Other species restricted to this habitat are Lecanora pringlei, Fuscidea praeruptorum, and the Diplotomma species discussed below. Curiously, the two Lecanora species and the Fuscidea have very similar growth forms, being stalked areolate to almost fruticose. L. argopholis, when growing in this habitat, also assumes this growth form. Surely these are extremely stable habitats where longevity can be obtained by adopting a growth form that allows thickening in place rather than rapid lateral expansion.

Lecidea syncarpa Zahlbr. Verh. Zool.-Bot. Ges. Wien. 68:10. 1918. Syn.: Lecidea gneissicola Zahlbr. Ann. Mycol. 17:235. 1919. Lecidea saxosa R. A. Anderson (nomen nudum)

Lecidea syncarpa is a fairly common species in the Rocky Mountains. This taxon was tentatively described as a new taxon, "L. saxosa", by Roger Anderson (1964) but this description was never formally published. In correspondence Dr. Anderson mentioned that he had found this to be synonymous with the European L. syncarpa. This fact is noted in Hertel (1995). This species is apparently poorly known and rare even in Europe. The following description is based on notes sent to me by Dr. Anderson, along with my own observations on variability.

Thallus to 15 cm diam., rimose areolate to areolate or subsquamulose, brown, pale brown, or yellowish brown, less often greenish tinged; **areoles** to 2-3 mm diam., usually contiguous, occasionally somewhat dispersed, sometimes whitish or blackish edged; **prothallus** black or nearly so (occasionally whitish in spots), often conspicuous between the areoles or at the thallus margin, but occasionally not apparent.

Apothecia lecideine, black or somewhat whitish pruinose, to 3 mm diam., usually sessile to slightly elevated above the areoles; disc initially concave or flat, later convex; margin thin to somewhat thick, usually persistent except in strongly convex apothecia; exciple bluish green or olivaceous at the edge, pale or hyaline within or greyish-cloudy from crystals of norstictic acid, forming K+ rusty crystals; hymenium 45-55(60) μ m high, I+ blue-green, the asci I+ red brown; epihymenium blue green or olivaceous; subhymenium hyaline or nearly so; hypothecium brownish or pale brown; ascospores 8-13 x 3-5(7) μ m, simple, 8/ascus; conidia not seen.

Chemistry: Cortex I+ blue, K+ red, P+ yellow, C-; Medulla I+ blue or purple, K-, P-, C-. Contains norstictic acid (TLC).

Taxonomy: This member of the *Lecidea atrobrunnea* group is easily recognized its typically pale brownish, K + red thallus and I + blue medulla. For a description of the European material see Hertel (1970).

Distribution: Rocky Mountains in North America from western Montana south to Colorado and Utah; also in Europe (Austria, Spain).

Ecology: The substrate is typically siliceous rock, but occasionally this species is found on calcareous rock. It is usually in the subalpine to alpine zones in exposed to somewhat sheltered sites, but extends down into cool steppe communities (e.g. the Idaho location below).

Representative Specimens Seen: USA. COLORADO: Clear Creek County, N-facing slope between Squaw Mt. and Chief Mt., 39°41'N 105°30'W, 3440 m, *Anderson 5426, Lich. Western N. Amer. No. 38*; Summit County, North Star Mtn. near Blue Lake Reservoir, T8S R78W S3, 3600-3900 m, *Anderson* 9160. IDAHO: Custer County: Lost River Range, above Bear Creek, 43°49'N 113°28'W, 2200 m, *McCune 19734*; Fremont County, E of Henrys Lake, 44°38'N 111°18'W, 2100-2700 m, *Anderson 10246*. MONTANA: Gallatin County: Madison Range, ridge above Beaver Creek, 45°10'N 111°22'W, 2835 m, *McCune 15757*; Ravalli County: Bitterroot Range, summit of El Capitan, 46°01'N 114°24'W, 3043 m, *McCune 13067*. WYOMING: Park County: Beartooth Plateau, 44°59'N 109°26'W, 3150 m, *McCune 19894*. (all specimens in herb. McCune).

Additional Locations: Roger Anderson provided me with location data for the following additional states and counties, but I have not seen the specimens. COLORADO: Boulder, Garfield, Grand, Hinsdale, Larimer, Mesa, Ouray, Pitkin, San Juan, and San Miguel Counties. UTAH: Duchesne County (Uinta Mts.). WYOMING: Carbon County (Snowy Range Pass).

Diplotomma sp.

Thallus indistinct, becomming verruculose to bullate, the verrucules or areoles typically 0.1 to 1.0 mm diam., dull olive brownish but in one case grayish pruinose.

Apothecia lecideine, 0.3-0.7(1.0) mm diam.; disc initially flat but soon convex to hemispherical, black, often lightly but distinctly pruinose; exciple soon disappearing as the disk becomes convex, brown in section, the edge about 50 μ m thick; hymenium ca. 125 μ m high, not inspersed with oil drops; epihymenium brown, with superficial hyaline to yellowish granules; hypothecium brown; ascospores 16-19 x 7-10 μ m, submuriform to muriform, with about 4 transverse walls and 1-2 longitudinal partitions, greyish to brown, 8/ascus; conidia not seen.

Chemistry: No lichen substances known; spot tests negative except hymenium, hypothecium, and exciple amyloid (I+ blue).

Taxonomy: Only two saxicolous *Diplotomma* species are known from the Rocky Mountains. *D. alboatrum* has muriform spores while the norsticticdeficient chemotype of *D. venustum* (= *D. epipolium*) has 3-septate spores. The species reported here is in the *D. alboatrum* group. That species typically occurs on calcareous rock, has a whitish thallus, and often a pseudothalline margin. The Montana material is close to descriptions of *D. ambiguum*. *Diplotomma ambiguum* was recently synonymized under *D. alboatrum* (as *Buellia alboatrum* in Nordin 1996). Nordin considered *D. ambiguum* to be an epruinose form occurring on siliceous coastal rocks in Scandanavia. Because of the complex taxonomic history and extremely variable morphology of *D. alboatrum*, a satisfactory disposition of the material from Montana must await the North American revision of this group by Anders Nordin.

The specimens are sometimes confused by associated Amandinea punctata. This species and the Diplotomma are sometimes intricately intermixed. The Amandinea has a thinner and usually more prominent exciple (about 20 μ m thick), lacks the superficial granules on the epihymenium, and has two-celled spores. Both the Amandinea and Diplotomma can grow on a similar thallus, so

that it is likely that the *Amandinea* is parasitic on either the *Diplotomma* or the underlying *Lecanora bicincta*.

Diplotomma ambiguum is in the North American checklist based on Imshaug's (1951) monograph, material which is K+ red, and should be referred to D. chlorophaeum, according to Noble (1982). This can also be considered to be the norstictic acid chemotype of D. alboatrum.

Distribution: I have seen similar specimens only from western Montana in the northern Rocky Mountains. The Californian records (Imshaug 1951) are another species (see preceding paragraph).

Ecology: The thallus may arise on the thallus of other lichens or on bare rock. So far it is known exclusively from near-vertical siliceous rock surfaces and beneath sheltered overhangs. Typical associates are *Lecanora bicincta*, *Amandinea punctata* (see under Taxonomy), *Fuscidea praeruptorum*, and *Lecanora pringlei* and, in one case, *Xanthoria candelaria*. *Lecanora pringlei* and *F. praeruptorum* are likewise restricted to a similar habitat and are probably good indicator species for the possible presence of this *Diplotomma*.

Specimens Seen: USA. MONTANA: Missoula County, Bitterroot Range, summit of Skookum Butte, 46°39.5'N 114°23'W, 2195 m, on vertical rock beneath overhang, 14 July 1981, *McCune 11616* (OSC, SASK, herb. McCune); north end of Sapphire Range, north slope of University Mountain, 46° 52'N 113° 57'W, 1035 m, on cliffs surrounded by talus and broken forests of *Pseudotsuga* and *Larix occidentalis*, September 1993, *McCune 21151* (OSC).

Species List

Species were found in both Idaho and Montana unless only one state or the other is indicated by "Id" or "Mt". Because collecting sites in Montana outnumbered those in Idaho by 6:1, most of the species reported only from Montana probably also exist in the alpine of the Bitterroot Range in Idaho.

Acarospora chlorophana sensu lato Acarospora fuscata Acarospora schleicheri Mt Acarospora thamnina Mt Ahtiana sphaerosporella Mt Alectoria sarmentosa Mt Alectoria vexillifera Mt Allantoparmelia alpicola Mt Amandinea punctata Arthroraphis citrinella Aspicilia caesiocinerea Aspicilia cinerea Mt Aspicilia desertorum ? Aspicilia supertegens ? Bellemerea alpina Bellemerea cinereorufescens Biatora vernalis Mt Brodoa oroarctica Bryonora castanea Id Bryonora pruinosa Mt Bryoria chalybeiformis Mt Bryoria fremontii Mt Bryoria pseudofuscescens Mt Buellia papillata Buellia retrovertens Caloplaca cinnamomea Mt Caloplaca epithallina Mt Caloplaca jungermanniae

288

Caloplaca saxicola Mt Caloplaca stillicidiorum Mt Caloplaca tiroliensis Mt Caloplaca sp. (black fruited, on bryophytes) Mt Candelariella terrigena Candelariella vitellina Carbonea vitellinaria Catapyrenium cinereum Mt Catapyrenium daedaleum Mt Cetraria cucullata Mt Cetraria ericetorum ssp. reticulatum Cetraria hepatizon Cetraria islandica Mt Cetraria merrillii Mt Cetraria nivalis Mt Cetraria pinastri Mt Cetraria platyphylla Mt Cladonia borealis Cladonia carneola Mt Cladonia cervicornis (with morphology of C. macrophyllodes but lacking atranorin by TLC) Cladonia chlorophaea Mt Cladonia ecmocyna Mt Cladonia fimbriata Mt Cladonia macrophyllodes Cladonia ochrochlora Mt Cladonia pocillum Cladonia pyxidata Mt Cladonia sulphurina Mt Coelocaulon aculeatum Coelocaulon muricatum Cystocoleus ebeneus Id Dactylina ramulosa Mt Dermatocarpon intestiniforme Mt Dermatocarpon reticulatum Mt Diploschistes muscorum Diplotomma cf. ambiguum (see text) Mt Diplotomma penichrum (normally a species of low to middle elevations but also occasionally in the

subalpine) Mt

Ephebe solida (on seepage lines over rock) Mt Fuscidea praeruptorum (see text under "overhangs"; containing alectorialic and barbatolic acids and unknowns by TLC; prothallus paler gray than European specimens I have seen; apothecia not found) Hydrothyria venosa (spring in subalpine forest not far below ridgetop; see McCune 1984) Mt Hypogymnia austerodes Mt Hypogymnia imshaugii Hypogymnia metaphysodes Mt Hypogymnia "montana" (see McCune & Goward 1995) Hypogymnia physodes Mt Hypogymnia tubulosa Mt Lecanora argopholis (see text; overhangs) Mt Lecanora beringii Mt Lecanora bicincta (see text) Lecanora cenisea Lecanora circumborealis Lecanora impudens Mt Lecanora intricata Lecanora marginata Mt Lecanora novomexicana (the thomsonii morph) Mt Lecanora polytropa Lecanora pringlei (see text; overhangs) Mt Lecanora swartzii (see text; overhangs) Mt Lecanora umbrosa Mt Lecanora zosterae Mt Lecidea atrobrunnea Lecidea auriculata Lecidea fuscoatra Lecidea lactea Id Lecidea plana Lecidea praenubila Mt Lecidea syncarpa (see text) Mt

290

Lecidea tessellata Lecidella elaeochroma Mt Lecidella patavina Mt Lecidella stigmatea Mt Lecidella wulfenii Mt Lecidoma demissum Mt Lepraria cacuminum Lepraria neglecta Leprocaulon subalbicans Leptochidium albociliatum Leptogium lichenoides Leptogium subaridum (Salmon Mt., Idaho; extremely isidiate, forming a compact tuft over Grimmia; medulla similar to that of L. magnussonii) Id Letharia columbiana Mt Letharia vulpina Mt Lobaria linita (rare, Grave Peak only; see McCune 1984) Id Massalongia carnosa Mt Megaspora verrucosa Mt Melanelia disjuncta Melanelia elegantula Mt Melanelia infumata Mt Melanelia panniformis Mt Melanelia sorediosa Mt Melanelia stygia Mt Melanelia subelegantula Mt Melanelia subolivacea Mt Melanelia tominii Mt Miriquidica garovaglii Id Miriquidica griseoatra Mt Miriquidica leucophaea Mt Mycobilimbia fusca Mt Nodobryoria abbreviata Nodobryoria subdivergens Mt Ochrolechia androgyna Mt Ochrolechia inaequatula Ochrolechia upsaliensis Mt Ophioparma lapponicum Pannaria pezizoides Id Pannaria praetermissa Id Parmelia omphalodes ssp. pinnatifida

Mt

Parmelia omphalodes Mt Parmelia saxatilis Parmeliopsis ambigua Mt Peltigera aphthosa Peltigera canina Peltigera collina Mt Peltigera didactyla Mt Peltigera kristinssonii Mt Peltigera lepidophora Mt Peltigera leucophlebia Peltigera malacea Peltigera ponojensis Peltigera rufescens Mt Peltigera venosa Mt Phaeophyscia sciastra Mt Phaeorrhiza nimbosa Mt Physcia dubia Physcia phaea Mt Physconia enteroxantha Mt Physconia muscigena Physconia perisidiosa Mt Placynthiella oligotropha Sometimes dominant on soil on solifluction lobes but also common on many other microsites. Mt Placynthiella uliginosa Platismatia glauca Mt Polychidium muscicola Id Polysporina simplex Porpidia glaucophaea auct. (see Gowan 1989) Porpidia crustulata Mt Protoparmelia badia Pseudephebe minuscula Pseudephebe pubescens Mt Psora nipponica Mt Psoroma hypnorum Pyrrhospora elabens Mt Rhizocarpon disporum Mt Rhizocarpon eupetraeum Mt Rhizocarpon geminatum Mt Rhizocarpon geographicum Rhizocarpon grande

Rhizocarpon hochstetteri Mt Rhizocarpon macrosporum Mt Rhizocarpon polycarpum Id Rhizocarpon pusillum Mt Rhizocarpon riparium Rhizocarpon superficiale Mt Rhizoplaca melanophthalma Mt Rimularia insularis Mt Rinodina archaea Mt Rinodina mniaraea Id Rinodina turfacea Mt Solorina crocea Sporastatia polyspora Sporastatia testudinea Staurothele areolata Mt Stereocaulon alpinum Mt Tephromela aglaea Mt Tephromela armeniaca Thamnolia subuliformis Trapeliopsis granulosa Mt

Umbilicaria angulata Id Umbilicaria decussata Mt Umbilicaria deusta Umbilicaria havaasii Mt Umbilicaria hyperborea Umbilicaria krascheninnikovii Umbilicaria lambii Mt Umbilicaria phaea Mt Umbilicaria torrefacta Mt Umbilicaria vellea Umbilicaria virginis Verrucaria sp. Mt Xanthoparmelia coloradoensis Xanthoparmelia lineola Mt Xanthoria candelaria Mt Xanthoria elegans Mt Xanthoria sorediata Mt

Key to Sterile White Alpine Crusts on Soil or Moss

Species included were found in or near the study area. Bracketed species were not found in the study area but are likely to be found there or nearby in the future. In many cases these species occur on soil or moss over rock. The *Lepraria* species are poorly known in North America and will require considerable revision.

1a Thallus minutely fruticose

2a Thallus corticate, C+ red, K-, P-. Thallus warty sometimes becoming coralloid, usually with spiny extensions

[Ochrolechia frigida]

2b Thallus ecorticate, C-, K+ yellow or deep yellow, P+ yellow or orange
3a Thallus P+ deep yellow turning orange (thamnolic acid and atranorin);
phyllocladia poorly developed and blending onto pseudopodetia;
widespread, common in many open habitats

Leprocaulon subalbicans

3b Thallus P+ pale yellow or P- (atranorin and rangiformic acid); phyllocladia and pseudopodetia well developed and differentiated (typically the thallus is so well developed that it would not be keyed here); uncommon

[Leprocaulon gracilescens]

291

1b Thallus crustose

4a Thallus P+ yellow, deep yellow, orange-red, or pale orange

- 5a Thallus P+ yellow or P+ deep orange, K+ yellow, C-
 - 6a Thallus P+ yellow (alectorialic acid); thallus smooth, superficially appearing corticate but actually not

Lepraria neglecta

6b Thallus P+ deep yellow turning deep orange (thamnolic acid + atranorin); thallus fuzzy, obviously ecorticate

Leprocaulon subalbicans (see above)

5b Thallus P+ pale orange, K-, C+ red (gyrophoric acid + unknown substance); thallus warty, grading to fine granules but not forming discrete soralia

Ochrolechia inaequatula

[The P reaction of *O. inaequatula* is unlike the rich oranges from stictic, norstictic, and thamnolic acids; instead it is a dull, pale orange, but nevertheless a distinct reaction.]

4b Thallus P+ pale yellowish or P-

- 7a Thallus C+ red, KC+ red, K-
 - 8a Soredia not in discrete soralia but rather with a warty thallus grading into small granules; thallus P+ pale orange

Ochrolechia inaequatula (see above)

8b Soredia in discrete soralia or the soralia fusing into a continuous, finely sorediate crust; thallus P- (gyrophoric acid only)

Ochrolechia androgyna

7b Thallus C-, KC- or KC+ yellow, K- or K+ yellow

9a Thallus K+ yellow, containing atranorin

10a Thallus margin indistinctly to distinctly lobed; thallus containing rangiformic acid plus traces of other fatty acids

[Lepraria borealis]

10b Thallus margin diffuse or obscurely lobed; thallus containing porphyrillic and fatty acids, usually roccellic acid); both powdery and granular forms are known; cortex lacking; very common in exposed alpine and subalpine sites; widespread

Lepraria cacuminum

9b Thallus K-, atranorin lacking, forming large, corticate warts, never forming a powdery or finely granular thallus; widespread and common *Ochrolechia upsaliensis*

[Although not usually sterile, juvenile, sterile colonies of *Ochrolechia upsaliensis* are occasionally found; these are KC-, C- or C+ yellow]

ACKNOWLEDGMENTS

I thank John Thomson, who contributed greatly to this work by countless hours spent teaching me crustose lichens. Most of the field work and much of the lab work was done while I was a student at the University of Wisconsin. During that time I was a regular pest at Dr. Thomson's office; nevertheless he almost always would put down whatever he was doing to help me through the maze of scattered literature and difficult characters. Many other lichenologists, too numerous to mention, have also contributed by helping with difficult specimens. But in particular I thank John Sheard for advice and comments on *Buellia, Diplotomma, Rinodina*, and related genera and, posthumously, Roger Anderson for sharing his information on *Lecidea syncarpa*. Thanks to Trevor Goward, Katie Glew, and Bruce Ryan, for reviewing the manuscript. For great company during the field work I thank Patricia Muir, Jeff Kooris, Elaine Johnson, Homer and Virginia McCune, and Jack Mefford.

LITERATURE CITED

- Anderson, R. A. 1964. The genus *Lecidea* (lichenized fungi) in Rocky Mountain National Park, Colorado. Ph.D. Thesis, University of Colorado, Boulder.
- Bird, C. D. 1970. Keys to the lichens of west-central Canada. Photocopies distributed by Department of Biology, University of Calgary. 171 pp.
- Brodo, I. M. and V. Alstrup. 1981. The lichen Bryoria subdivergens (Dahl) Brodo and Hawksworth in Greenland and North America. Bryologist 84:229-235.
- DeBolt, A. and B. McCune. 1993. Lichens of Glacier National Park, Montana. Bryologist 96:192-204.
- Douglas, G. W. 1974. Lichens of the North Cascades Range, Washington. Bryologist 77:582-592.
- Esslinger, T. L. and R. S. Egan. 1995. A sixth checklist of the lichen-forming, lichenicolous, and allied fungi of the continental United States and Canada. Bryologist 98:467-549.
- Eversman, S. 1995. Lichens of alpine meadows on the Beartooth Plateau, Montana and Wyoming, U.S.A. Arctic and Alpine Research 27:400-406.
- Gowan, S. P. 1989. The lichen genus *Porpidia* (Porpidiaceae) in North America. Bryologist 92:25-59.
- Goward, T. and B. McCune. 1994. The Lichens of British Columbia, Part 1. Crown Publications, Victoria, BC. 181 pp.
- Hertel, H. 1970. Beiträge zur Kenntnis der Flechtenfamilie Lecideaceae III. Herzogia 2:37-62.
- Hertel, H. 1995. Schlüssel für die Arten der Flechtenfamilie Lecideaceae in Europa. Bibliotheca Lichenologica 58:137-180.
- Imshaug, H. A. 1951. The lichen-forming species of the genus *Buellia* occurring in the United States and Canada. Ph.D. Diss., University of Michigan, 217 pp.

- Imshaug, H. A. 1957. Alpine lichens of western United States and adjacent Canada. I. The macrolichens. Bryologist 60:177-272.
- Leuckert, C. and J. Poelt. 1989. Studien über die *Lecanora rupicola*-Gruppe in Europa (Lecanoraceae). Nova Hedwigia 49:121-167.
- McCune, B. 1984. Lichens with oceanic affinities in the Bitterroot Mountains of Montana and Idaho. Bryologist 87:44-50.
- McCune, B. 1997. Key to the lichen genera of the Pacific Northwest. 70 pp., privately published.
- McCune, B. and T. Goward. 1995. Macrolichens of the Northern Rocky Mountains. Mad River Press, Arcata, California.
- Noble, W. J. 1982. The Lichens of the Coastal Douglas-Fir Dry Subzone. PhD Thesis, Univ. British Columbia, 942 pp.
- Nordin, A. 1996. *Buellia* species (Physciaceae) with pluriseptate spores in Norden. Symbolae Botanicae Upsalienses 31:327-354.
- Ross, C. P. 1963. Modal Composition of the Idaho Batholith. U.S. Geological Survey Professional Paper 475-C.
- Ryan, B. D. 1985. Lichens of Chowder Ridge, Mt. Baker, Washington. Northwest Science 59:279-293.

Thomson, J. W. 1979. Lichens of the Alaskan arctic slope. University of Toronto Press. 314 pp.

McCune, Bruce. 1998. "Lichens of granitic peaks in the Bitterroot Range, Montana and Idaho, USA." *Lichenographia Thomsoniana : North American lichenology in honor of John W. Thomson* 281–294.

View This Item Online: <u>https://www.biodiversitylibrary.org/item/311628</u> Permalink: <u>https://www.biodiversitylibrary.org/partpdf/344784</u>

Holding Institution New York Botanical Garden, LuEsther T. Mertz Library

Sponsored by The LuEsther T Mertz Library, the New York Botanical Garden

Copyright & Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. Rights Holder: American Bryological and Lichenological Society License: <u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u> Rights: <u>https://biodiversitylibrary.org/permissions</u>

This document was created from content at the **Biodiversity Heritage Library**, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.