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Abstract

Quantitative resistance is likely to be more durable than major gene resistance for con-
trolling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resis-
tance affecting the degree of host damage, as measured by the percentage of leaf area
covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as
measured by the density of pycnidia produced within lesions. We tested this hypothesis
using a collection of 335 elite European winter wheat cultivars that was naturally infected
by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used
automated image analysis (AIA) of 21420 scanned wheat leaves to obtain quantitative
measures of conditional STB intensity that were precise, objective, and reproducible.
These measures allowed us to explicitly separate resistance affecting host damage from
resistance affecting pathogen reproduction, enabling us to confirm that these resistance
traits are largely independent. The cultivar rankings based on host damage were differ-
ent from the rankings based on pathogen reproduction, indicating that the two forms of
resistance should be considered separately in breeding programs aiming to increase STB
resistance. We hypothesize that these different forms of resistance are under separate
genetic control, enabling them to be recombined to form new cultivars that are highly
resistant to STB. We found a significant correlation between rankings based on auto-
mated image analysis and rankings based on traditional visual scoring, suggesting that
image analysis can complement conventional measurements of STB resistance, based
largely on host damage, while enabling a much more precise measure of pathogen re-
production. We showed that measures of pathogen reproduction early in the growing
season were the best predictors of host damage late in the growing season, illustrating
the importance of breeding for resistance that reduces pathogen reproduction in order
to minimize yield losses caused by STB. These data can already be used by breeding
programs to choose wheat cultivars that are broadly resistant to naturally diverse Z.
tritici populations according to the different classes of resistance.
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Zymoseptoria tritici (Desm.) Quaedvlieg & Crous (formerly Mycosphaerella gramini-
cola (Fuckel) J. Schröt. in Cohn) is a fungal pathogen that poses a major threat to
wheat production, particularly in temperate areas (Jørgensen et al., 2014; Dean et al.,
2012). It infects wheat leaves, causing the disease Septoria tritici blotch (STB). Yield
losses caused by STB can be 5-10%, even when resistant cultivars and fungicides are
used in combination. Around 1.2 billion dollars are spent annually in Europe on fungi-
cides targeted mainly towards STB control (Torriani et al., 2015). Z. tritici populations
in Europe carry a high degree of fungicide resistance (reviewed in Fones and Gurr, 2015;
Torriani et al., 2015). In several cases, fungicides repeatedly lost their efficacy only a few
years after their introduction due to rapid emergence of fungicide-resistant strains of Z.
tritici (Griffin and Fisher, 1985; Fraaije et al., 2005; Torriani et al., 2009). Resistance
to azoles, an important class of fungicides that is widely used to control STB, has been
growing steadily over the last twenty years in Europe (Cools and Fraaije, 2013; Zhan
et al., 2006) and appeared recently in North America (Estep et al., 2015). Therefore,
STB-resistant wheat cultivars have become an important breeding objective to enable
more effective management of the disease (McDonald and Mundt, 2016). Major re-
sistance genes such as Stb6 (Brading et al., 2002) provide nearly complete resistance
against a subset of Z. tritici strains carrying the wild type AvrStb6 allele (Zhong et al.,
2017), but as found for fungicides, major resistance often breaks down a few years after
it is introduced (Cowger et al., 2000). Quantitative resistance may be conferred by a
large number of quantitative trait loci (QTLs) with small and additive effects that can
be combined to provide high levels of disease resistance (Poland et al., 2009; St. Clair,
2010; Kou and Wang, 2010; McDonald and Linde, 2002; Mundt, 2014). Quantitative re-
sistance is thought to be more durable and hence deserves more attention from breeders
(McDonald and Linde, 2002; St. Clair, 2010; Mundt, 2014).

To enable breeding for quantitative resistance to STB, we need to comprehensively
analyze the quantitative distribution of its associated phenotypes, which is much more
difficult than phenotyping major gene resistance that typically shows a binomial distri-
bution. This challenge was recognized more than forty years ago and a number of studies
were conducted to evaluate quantitative resistance to STB under field conditions using
artificial inoculation (Rosielle, 1972; Shaner and Finney, 1982; Eyal, 1992; Brown et al.,
2001; Miedaner et al., 2013) and natural infection (Rosielle, 1972; Shaner et al., 1975;
Miedaner et al., 2013; Kollers et al., 2013b). Resistance to STB was also investigated
on detached leaves with artificial inoculations (e. g. by Chartrain et al., 2004). Several
studies performed visual scoring of quantitative resistance only once during the growing
season (Rosielle, 1972; Shaner and Finney, 1982; Eyal, 1992; Miedaner et al., 2013),
while other studies included two or more time points (Shaner et al., 1975; Brown et al.,
2001; Kollers et al., 2013b). One of the most comprehensive early studies screened 7500
wheat varieties including 2000 durum wheat cultivars to select the 460 most resistant
varieties for more detailed visual scoring (Rosielle, 1972).

Understanding the infection cycle of STB in important to distinguish and measure
the most relevant aspects of quantitative resistance to the disease. Z. tritici spores ger-
minate on wheat leaves and penetrate the leaves through stomata (Kema et al., 1996).
After penetration, the fungus grows for several days within leaves without producing
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visible symptoms. During this latent phase, Z. tritici mycelium grows in the apoplast
and invades the host mesophyll around the position of the initial penetration (Duncan
and Howard, 2000). After 10-14 days of asymptomatic growth, the fungus becomes
necrotrophic, necrotic lesions appear in the invaded host tissue and asexual fruiting
bodies called pycnidia begin to form (Kema et al., 1996; Duncan and Howard, 2000). In
the dead host tissue, the fungus continues to grow saprotrophically and produces sex-
ual fruiting bodies called pseudothecia 25-30 days after infection (Sánchez-Vallet et al.,
2015). Whether Z. tritici is best referred to as a hemibiotroph or a latent necrotroph
remains unclear (Sánchez-Vallet et al., 2015). Asexual pycnidiospores are usually spread
by rain splash while sexual ascospores are spread by wind. The pathogen typically un-
dergoes 5-6 rounds of asexual reproduction and 1-2 rounds of sexual reproduction per
growing season.

Studies by Zhan et al. (1998) and Zhan et al. (2000) indicated that ≈66% of infections
on flag leaves came from asexual spores, while ≈24% came from ascospores originating
from within the infected field and ≈10% of flag leaf infections were immigrants from
surrounding fields. Pathogen asexual reproduction is thus the most important factor
explaining infection on flag leaves, but a significant fraction of flag leaf infections can
originate from airborne ascospores coming from within or outside of the field. The
amount of necrosis induced by STB on the uppermost leaves determines yield losses
(Brokenshire, 1976).

The amount of STB can be measured by determining disease incidence, disease severity
and pycnidia density (Madden et al., 2007; Shaner and Finney, 1982). Disease incidence
is the proportion of plant units diseased (Madden et al., 2007). In the case of STB, the
relevant plant units are leaves, hence we consider STB incidence to be the proportion
of wheat leaves diseased. The degree of infection on a leaf is a measure of disease
severity. STB severity is typically measured as the percentage of leaf area covered by
lesions (PLACL). Mean STB severity in a plot is usually defined as an average value
across a random sample that includes both infected and uninfected leaves. In contrast,
conditional STB severity is defined as the mean severity in a sample that includes only
infected leaves. Following Rosielle (1972), Shaner et al. (1975) and Shaner and Finney
(1982), we consider pycnidia density as another important measure of STB. We use
the term ”disease intensity” as a general term that refers to both disease severity and
pycnidia density. Similar to the definition of conditional severity, we define conditional
pycnidia density as the average pycnidia density in a sample of infected leaves. For this
study, we collected and analyzed only infected leaves and therefore we did not measure
STB incidence. The measures of STB that we report here represent conditional severity
and conditional pycnidia density.

Earlier studies of STB resistance combined disease severity and incidence using visual
assessments based on categorical scales. In studies of Rosielle (1972), Shaner et al. (1975)
and Eyal (1992) these scales included both the degree of lesion coverage and the density
of pycnidia in lesions, but in the studies of Brown et al. (2001) and Chartrain et al. (2004)
the disease scores were based on leaf coverage by lesions bearing pycnidia (i. e. using a
presence/absence measurement of pycnidia to define STB lesions). The accuracy of all
these methods is limited by an inherent subjective bias and a small number of qualitative
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categories, which may limit success in breeding for STB resistance.
In several studies, the importance of resistance that suppresses pathogen reproduction

(i. e. production of pycnidia) was recognized based on qualitative observations of
pycnidia coverage (e. g. Rosielle, 1972; Shaner et al., 1975; Shaner and Finney, 1982).
Because manual counting of pycnidia is extremely labor-intensive, it was only feasible to
count pycnidia on a very small scale (e. g. Shaner et al., 1975)] before the development
of new technology to automate this process.

Automated image analysis (AIA) provides a promising tool for measuring quantita-
tive disease resistance in the field (Mahlein, 2016; Simko et al., 2017). Mutka and Bart
(2015) and Mahlein (2016) highlight the importance of standardized imaging methods
for reproducibility. We used a novel phenotyping method based on automated analysis
of scanned leaf images (Stewart and McDonald, 2014; Stewart et al., 2016) in a winter
wheat panel planted to 335 elite European cultivars in a replicated field experiment
(Kirchgessner et al., 2017). This method benefits from well defined procedure of detach-
ing leaves and scanning them under standardized conditions, thus leading to objective
and reproducible results. Additionally, it enables generation of large amounts of reliable
data at a relatively low cost.

Importantly, our AIA method allowed us to quantitatively separate the net effects
of resistance components affecting host damage from resistance components affecting
pathogen reproduction. Components of resistance (Parlevliet, 1979) are defined as resis-
tance factors suppressing individual processes of the infection cycle (Willocquet et al.,
2017). Components of resistance that suppress infection efficiency and lesion expansion
are responsible for a reduction in host damage, while components of resistance that sup-
press spore production (Parlevliet, 1979) or pycnidia coverage (Simon and Cordo, 1998)
are responsible for a reduction in pathogen reproduction Pathogen reproduction was
quantified by automatic counting of asexual fruiting bodies of the pathogen (pycnidia)
on wheat leaves (Stewart and McDonald, 2014; Stewart et al., 2016) and host damage
was measured by automatic detection of discolored leaf areas caused by STB infection.

In this large-scale field experiment, leaves were infected naturally by a genetically
diverse local population of Z. tritici and the epidemic was allowed to develop naturally.
Despite three fungicide treatments including five active ingredients that eliminated vir-
tually all other diseases, STB infection was widespread across the field experiment. This
pervasive natural infection by a fungicide-resistant population allowed us to investigate
quantitative resistance in a nearly pure culture of Z. tritici under the high-input field
conditions typical of Europe. The combination of wet and cool weather conditions favor-
ing development of STB, a large number of wheat cultivars planted in a single location,
and utilization of a novel AIA method enabled a comprehensive characterization of quan-
titative resistance that led to a clear ranking of STB resistance in a broad collection of
European winter wheat cultivars.

We report separate rankings of wheat cultivars based on two different components
of epidemic outcome, one measured as host damage and the other as pathogen repro-
duction. We found that the two rankings are considerably different. We identified a
phenotypic quantity that combines these two components and found that it correlates
best with the ranking based on traditional visual assessments. In this way, we identified
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new, broadly active sources of resistance to STB in existing European wheat cultivars.
Our findings open several possibilities for further genetic studies of quantitative resis-
tance to STB.

Materials and Methods

Plant materials and experimental design. A total of 335 elite European winter wheat
(Triticum aestivum) varieties from the GABI-wheat panel (Kollers et al., 2013a,b) were
evaluated in this experiment. Two biological replicates of the wheat panel were grown
during the 2015–2016 growing season in two complete blocks separated by about 100
meters at the Field Phenotyping Platform (FIP) site of the Eschikon Field Station of
the ETH Zurich, Switzerland (coordinates 47.449, 8.682) (Kirchgessner et al., 2017).
The complete blocks were composed of 18 rows and 20 columns composed of 1.2m by
1.7m plots, with the genotypes arranged randomly within each block except for a check
variety (CH Claro) that was planted at least once within each row and column, leading
to 21 replicates of CH Claro within each block. All plots were sown on 13 October 2015.

includingPractices recommended for conventional, high-input wheat production in
Switzerland include applications of fertilizers and pesticides. Fertilizers were applied five
times during spring 2016, including boron with ammonium nitrate (nitrogen 52 kg/ha)
on 4 March; P2O5 at 92 kg/ha on 7 March; K2O at 120 kg/ha on 10 March; magnesium
with ammonium nitrate on 12 April (magnesium 15 kg/ha, nitrogen 72 kg/ha) and on
20 May (magnesium 4 kg/ha, nitrogen 19 kg/ha). The pre-emergence herbicide Herold
SC (Bayer) was applied on 29 October 2015 (dose 0.6 l/ha). The stem shortener Moddus
(Syngenta) was applied on 6 April 2016 (dose 0.4 l/ha) at GS (growth stage) 31 that
corresponds to stem elongation (Zadoks et al., 1974). Insecticide Biscaya (Bayer) was
applied on 25 May 2016 (dose 0.3 l/ha) at GS 51 that corresponds to inflorescence
emergence.

Fungicides were applied three times: (i) 6 April, Input, Bayer (a mixture of spirox-
amin at 300 g/l and prothioconazole at 150 g/l, dose 1.25 l/ha, GS 31); (ii) 25 May,
Aviator Xpro, Bayer (a mixture of bixafen at 75 g/l and prothioconazole at 150 g/l,
dose 1.25 l/ha, GS 51) and 6 June, Osiris, BASF (a mixture of epoxiconazole at 56.25
g/l and metconazole at 41.25g/l, dose 2.5 l/ha, GS 65 that corresponds to anthesis). In
total, the three fungicide applications included five active ingredients representing three
modes of action. In particular, bixafen is a succinate dehydrogenase inhibitor (SDHI);
prothioconazole, epoxiconazole and metconazole are azoles, the main chemical group in
the sterol 14a-demethylation inhibitors (DMI) class of fungicides; and spiroxamin be-
longs to the morpholine class of fungicides. This strategy of fungicide application aimed
to minimize the overall levels of the most common fungal diseases on Swiss wheat.

STB inoculum and calculation of number of cycles of infection. All STB infection
was natural, with the majority of primary inoculum likely originating from airborne
ascospores coming from nearby wheat fields that surround the Eschikon field site. We
obtained rough estimates of the average number of asexual cycles of reproduction within
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the pathogen population. For this purpose, we used the data from Shaw (1990) showing
the effect of temperature on latent period and local weather data coming from the nearby
Lindau weather station (see Appendix A.1 for details of estimation).

Disease assessment based on automated image analysis. Leaves exhibiting obvious
STB lesions were collected two times during the growing season. The first collection was
made on 20 May 2016 (t1, approximately GS 41 that corresponds to booting) and the
second collection was made on 4 July 2016 (t2, approximate GS was in the range 75-
85 that corresponds to milk development (75) and dough development (85)). For both
collections, 16 infected leaves were collected at random from each plot. At t1, leaves were
collected from the highest infected leaf layer, which was typically the third or fourth fully
extended, but non-senescent leaf still visible when counting from the ground or one to
three leaf layers below the top leaf. At t2, the leaf layer below the flag leaf (F-1) was
sampled in each plot. The sampled leaves were placed in paper envelopes, kept on ice
in the field, and stored at 4◦ C for two days before mounting on A4 paper with printed
reference marks and sample names, as described in (Stewart et al., 2016). Absorbent
paper was placed between each sheet of eight mounted leaves and sheets were pressed
with approximately 5 kg at 4◦ C for two-three days prior to scanning at 1200 dpi with a
Canon CanoScan LiDE 220 flatbed scanner. The resulting scans were saved as “jpeg”
images.

Scanned images were analyzed with the software ImageJ (Schindelin et al., 2015) using
a modification of the macro described by Stewart and McDonald (2014) and Stewart
et al. (2016)(source code of the macro and a user manual are given in (Stewart et al.,
2016)). The parameters used for the macro are given in Supplemental Table S1 and an
explanation of their meaning is provided in the macro instructions. Figure 1 illustrates
the workflow associated with the macro. The maximum length of the scanned area for
each leaf was 17 cm. When leaves were longer than 17 cm, bases of the leaves were placed
within the scanned area, while the leaf tips extended outside the scanned area. For each
leaf, the following quantities were automatically recorded from the scanned image: total
leaf area, necrotic and chlorotic leaf area, number of pycnidia and their positions on the
leaf. Necrotic and chlorotic leaf areas were detected based on discoloration of the leaf
surface and were not based on the presence of pycnidia. From these measurements, we
calulated the percentage of leaf area covered by lesions (PLACL), the density of pycnidia
per unit lesion area (ρlesion), the density of pycnidia per unit leaf area (ρleaf) (see Table
1).

The three quantities PLACL, ρlesion, and ρleaf quantify different aspects of conditional
intensity of STB in each plot. Although we aimed to collect only infected leaves, there
were a few cases in plots with very little STB when the collected leaves did not have
necrotic lesions or did not have pycnidia. These leaves were not considered when calcu-
lating the mean or median values used for ranking cultivars or assessing the magnitude
of effects.

We identified several cases of biased leaf collection at t1, where leaves were sampled
from lower leaf layers in which some of the leaves exhibited natural senescence, leading
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Cv Rubens (mean values)
• Leaf area: 16.9 cm2

• Necrotic area: 3.3 cm2

• PLACL: 19.8%
• # Pycnidia: 178
• ρlesion: 50.6 / cm2

Cv Vanilnoir (mean values)
• Leaf area: 14.1 cm2

• Necrotic area: 8.2 cm2

• PLACL: 61.9%
• # Pycnidia: 78
• ρlesion: 10.3 / cm2

Rubens

Vanilnoir

Figure 1: Illustration of the automated phenotyping procedure with the ImageJ macro
(Stewart et al., 2016). Leaves are mounted on pre-printed paper sheets; the
ImageJ macro distinguishes leaves from the white background; within each
leaf, the macro identifies necrotic lesions (lesion labels are shown in blue) and
their areas; within each lesion, the macro identifies fungal fruiting bodies called
pycnidia (black dots).

Table 1: Important STB disease properties determined using automated image analysis.

Quantity Description Dimension
PLACL percentage of leaf area covered by lesions percent
ρlesion density of pycnidia per unit lesion area # pycnidia/cm2 lesion
ρleaf density of pycnidia per unit total leaf area # pycnidia/cm2 leaf
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to extensive chlorosis and some necrosis. We removed several sheets that were strongly
affected by collector bias or natural senescence. Next, we estimated the proportion of
remaining scoring errors due to collector bias as pcb = 0.055±0.003 by testing 200 leaves
sampled randomly from the entire leaf population.

We found that the original image analysis macro reported in Stewart et al. (2016)
identified many falsely detected pycnidia, especially in cultivars with large numbers of
thick trichomes. We addressed this issue by improving the macro and performing an
extensive optimization of the macro parameters. We changed the macro code to improve
detection of pycnidia by enhancing the contrast and optimizing the proportion of red,
green and blue channels in the leaf images. To find an optimal set of macro parameters,
we tested more than 160 different sets of parameters on 16 leaves that represented a
wide range of numbers of pycnidia per leaf. We chose the parameter set that had the
highest concordance coefficient between the numbers of pycnidia per leaf detected by the
macro and the numbers of pycnidia counted manually. We then analyzed the entire set
of images using this optimized parameter set and tested the outcome in several ways.

First we visually inspected 209 leaves chosen using random stratified sampling within
the range ρlesion < 50. We focused on this range, because we found it to be most
prone to false detection of pycnidia. For each leaf subjected to visual inspection, we
performed a binary (yes/no) assessment of whether the macro correctly detected most
of the lesions and pycnidia. This was done by comparing scanned leaf images with
overlay images in which the detected lesions and pycnidia were marked by the macro
(examples of overlays are shown in Fig. 1). Errors that led to incorrect quantification of
disease symptoms could be divided into four categories: defects on leaves, collector bias,
scanning errors and deficiencies in the image analysis macro. Leaf defects included insect
damage, mechanical damage, insect bodies and frass, other fungi, uneven leaf surfaces
creating shadows, and dust particles on leaves. Scanning errors included shadows on leaf
edges and folded leaves that resulted from leaves that were not properly flattened prior
to scanning. Deficiencies of the macro consisted of recognizing green parts of leaves as
lesions, or recognizing dark spaces between light-colored leaf hairs as pycnidia, and parts
of dark borders around lesions as pycnidia. In total, 21 leaves were deemed to exhibit
scoring errors and were removed from the dataset as a result of this procedure. Based on
this outcome, we estimated the proportion of scoring errors as ptot = 0.10 ± 0.02 out of
which proportion of errors due to false pycnidia was estimated as pfp = 0.004±0.03. Here,
the uncertainties are reported in the form of the 95 % confidence intervals calculated
according to CI = 1.96

√
p(1 − p)/n, where p is the sample proportion and n is the

sample size.
To further quantify the accuracy of pycnidia detection by the macro, we compared

pycnidia counts by the macro to manual pycnidia counts. For this purpose, we selected
30 random leaves from the entire dataset as well as 6 leaves with more than 400 counted
pycnidia. We found that pycnidia counts by the macro had high concordance (concor-
dance coefficient rc = 0.97) and high correlation (rs = 0.96, p = 5 · 1017) with manual
pycnidia counts. The macro underestimated pycnidia counts on average by 26 ± 10%
(the uncertainty here represents the 95% confidence interval).

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/129353doi: bioRxiv preprint 

https://doi.org/10.1101/129353
http://creativecommons.org/licenses/by/4.0/


Disease assessment based on visual scoring. Visual assessments of STB were per-
formed at three time points: 20 May (approximately GS 41), 21 June (approximately
GS 75) and 29 June (approximately GS 80). The STB level in each plot was scored by
global assessment of the three uppermost leaf layers on a 1-9 scale (1 means no disease, 9
means complete infection, please refer to Supplemental Table S2 for more details of the
scale) based on both STB incidence and severity (Michel, 2001). The presence of pycni-
dia was used as an indicator of STB infection. The absence of pycnidia was interpreted
as an absence of STB, even if necrotic lesions were visible. During visual scoring, the
presence of other diseases (such as stripe rust, septoria nodorum blotch and fusarium
head blight) was assessed qualitatively. All plots were scored with approximately equal
time spent on each plot.

Statistical analysis. We compared differences in STB resistance among cultivars for
each dataset by pooling together the data points from individual leaves belonging to
different replicates and sampling dates. The data from the automated image analysis
consisted of ≈60 data points per cultivar representing the two time points and the
two biological replicates (blocks). Cultivar CH Claro was an exception because it was
replicated 42 times and thus had ≈1300 data points from leaf image analysis and 124
data points from visual scoring. The relative STB resistance of all wheat cultivars was
ranked based on the means of the conditional measurements of disease intensity PLACL,
ρlesion and ρleaf over ≈60 individual leaf data points. We also calculated medians and
standard errors of the means for each cultivar.

Resistance that affects STB incidence was not measured using AIA, as only diseased
leaves were analyzed. The visual scoring data was based on three time points and
two biological replicates, generating 6 data points per cultivar. For each cultivar the
area under disease progress curve (AUDPC) was calculated by taking averages of visual
scores over the two replicates. It was assumed that infection started from zero at 14 days
before the first assessment. To analyze differences between cultivars these scores were
weighted with coefficients that depend on times of assessments such that each weighted
score gives a proportional contribution to the total AUDPC and the average over scores
from different replicates and time points gives the total AUDPC (see Appendix A.2 for
details on calculation of AUDPC and weighting of scores). AUDPC was used to rank
the cultivars according to visual scoring (Fig. 3D).

The significance of differences in resistance between cultivars was tested with the
global Kruskal-Wallis test (Sokal and Rohlf, 2012) using the kruskal.test function in
R (R Core Team, 2016) for each data set. For resistance measures showing global
differences between cultivars, we determined significantly different groups of cultivars
based on pairwise comparisons, whereby any two cultivars in the same group were not
significantly different from each other and any two cultivars from different groups were
different. Pairwise differences were tested with multiple pairwise Kruskal-Wallis tests
using the function kruskal in the package agricolae in R (de Mendiburu, 2016) using the
false discovery rate (FDR) 0.05 for significance level correction (Benjamini and Hochberg,
1995) for multiple comparisons.

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/129353doi: bioRxiv preprint 

https://doi.org/10.1101/129353
http://creativecommons.org/licenses/by/4.0/


We determined correlations between cultivar rankings based on AUDPC and using
both means and medians of PLACL, ρlesion and ρleaf for each cultivar. We also com-
puted correlations with respect to means of PLACL, ρlesion and ρleaf between t1 and
t2 to determine the predictive power of these quantities. In this case, means were
taken over about 15 leaves originating from the same plot. All correlations were calcu-
lated with Spearman’s correlation test (Sokal and Rohlf, 2012) using the open-source
scipy package (http://www.scipy.org) written for the Python programming language
(http://www.python.org).

We analyzed differences between t1 and t2 in terms of PLACL, ρlesion and ρleaf to
identify cultivars whose resistance increased over time. For this purpose, we used the
Wilcoxon rank sum test with the FDR correction for multiple comparisons at p < 0.01.

Workflow. For clarity, we briefly summarize the workflow of the experiment as a linear
sequence of steps. We first collected leaf samples, mounted them on sheets of paper and
scanned them. Next, we performed the basic image analysis using the ImageJ macro as
illustrated in Fig. 1. After that, we tested the data and estimated scoring errors using
visual examination of leaf images. Finally, we performed detailed statistical analyses
using the verified datasets.

Results

Overall description of the STB epidemic. Despite three fungicide applications with
five active ingredients and three modes of action, we observed widespread STB in nearly
all of the experimental plots. There were obvious differences in overall levels of STB
infection on different cultivars. Comparison of overall levels of STB disease with nearby
untreated plots showed that the fungicides significantly suppressed STB development.
STB was the dominating disease in the fungicide-treated plots; other leaf diseases were
present at very low levels or entirely absent as a result of the fungicide treatments.
Hence, this experiment provided an unusual opportunity to assess quantitative STB
resistance to infection by a natural, genetically diverse population of Z. tritici under
conducive field conditions and in the absence of competing wheat diseases.

According to weather data collected from the Lindau weather station located about
200 m away from the field site, the weather in spring-summer 2016 was cool and rainy,
conditions highly conducive to development of STB (see Fig. A2 in Appendix A.1). Av-
erage daily temperature between 1 March and 27 July was 12.5o C and the total amount
of rainfall was 1245 mm. Based on daily temperature and rainfall data, we estimate that
six asexual generations of Z. tritici occurred during this period. Between the two leaf
sampling dates t1 and t2, we estimated two asexual generations (see Appendix A.1 for
details of estimation).

An overview of the dataset. A total of 21420 leaves were included in the automated
analysis pipeline, with an average of 30 leaves per plot. The total leaf area analyzed was
36.8 m2 of which 11.3 m2 was recognized as damaged by STB. The mean analyzed area
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Table 2: Summary of the leaf analysis

Total Mean Median Maximum Minimum
Measured quantities

Leaf area (mm2) 36 874 893 1738 1701 3626 103
Necrotic area (mm2) 11 162 727 526 415 2519 0
Number of pycnidia 5 148 640 243 147 4828 0
Pycnidia area (mm2) 77 681 3.66 2.35 56 0

Derived quantities
PLACL (%) 32 24 99.6 0
ρlesion 48 40 416 0
ρleaf 14 9 301 0

of an individual leaf was 17 cm2. In total 2.7 million pycnidia were counted. The mean
number of pycnidia within a leaf was 127. A more detailed description of the overall
dataset is given in Table 2. The full dataset will be submitted to www.datadryad.org
after acceptance. Correlations between the two biological replicates ranged from 0.23
to 0.66, with p-values ranging from 10−4 to 10−35 (Fig. A3, see Appendix A.3 for more
details).

The distributions of the raw data points corresponding to individual leaves with re-
spect to PLACL, ρlesion and ρleaf are shown in Figs. 2 and 3. The distributions of PLACL,
ρlesion and ρleaf were non-normal and had outliers. All of these distributions were con-
tinuous, consistent with previous studies that hypothesized that the majority of STB
resistance in wheat is quantitative (Stewart et al., 2016).

For the visual assessments conducted across two replicates and three time points, the
lowest score was 1 and the highest score was 4 (on a 1-9 scale). The lowest AUDPC value
was 81, the highest value was 154 and the average AUDPC across all cultivars was 103.
The Spearman correlation between visual scores of the two replicates was not significant
in the first assessment but was significant in the second and third assessments. The
visual assessment also found that yellow rust was present in about 1 % of plots on 20
May and in about 2 % of plots on 21 June, 2016; Septoria nodorum blotch was present
in only a single plot on 21 June, 2016 (about 0.1 % of plots); Fusarium head blight was
present in about 2 % of plots only on 21 June, 2016.

Host damage vs. pathogen reproduction. From the raw data obtained via AIA,
we derived three quantitative resistance measures: PLACL, ρlesion and ρleaf . PLACL is
defined as the necrotic leaf area divided by the total leaf area, ρlesion is the total number
of pycnidia divided by the necrotic leaf area and ρleaf is the total number of pycnidia
divided by the total leaf area. ρleaf can also be calculated from the first two factors as

PLACL · ρlesion =
Necrotic area

Leaf area
· Number of pycnidia

Necrotic area
=

Number of pycnidia

Leaf area
= ρleaf .

(1)
PLACL characterizes host damage due to pathogen infection while ρlesion characterizes
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pathogen reproduction on the necrotic leaf tissue. ρleaf is the product of these two
quantities, combining host damage with pathogen reproduction. Calculation of these
three quantities from the AIA data allowed us to differentiate between host damage and
pathogen reproduction, and also to combine these two factors into the most integrative
measure of disease intensity, providing a comprehensive insight into different components
of STB resistance. Next, we ranked the wheat cultivars with respect to each of these
three quantities.

Ranking of cultivars. Resistance ranking of the cultivars was based on the three mea-
sures obtained from AIA (PLACL, ρlesion and ρleaf) and the AUDPC calculated from vi-
sual scoring. For PLACL, ρlesion and ρleaf , the distributions differed significantly between
cultivars. For each of these three measures, the null hypothesis of identical distributions
for all cultivars was rejected by a Kruskal-Wallis global comparison with p < 2.2 · 10−16.
However, the global Kruskal-Wallis test did not reveal differences between distributions
of the weighted visual scores (p = 1). Kruskal-Wallis multiple pairwise comparisons
identified three significantly different groups of cultivars for PLACL and four signifi-
cantly different groups of cultivars for ρlesion and ρleaf (Figs. 2 and 3). Supplemental File
S3 shows that cultivar ranking based on the Kruskal-Wallis test statistic (mean ranks)
is highly correlated with cultivar ranking based on the mean and median values asso-
ciated with each cultivar, indicating that in the majority of cases significantly different
cultivars also have different means and medians.

There were notable differences between resistance rankings based on PLACL and
ρlesion (Fig. 2D). Several of the thirty least resistant cultivars based on host damage were
ranked among the most resistant cultivars based on pathogen reproduction. Similarly,
some of the most resistant cultivars based on host damage were among the least resistant
cultivars based on pathogen reproduction. For example cultivar Vanilnoir showed high
PLACL and low ρlesion whereas cultivar Rubens exhibited the opposite pattern. Visual
examination of leaves belonging to cultivars that exhibited the largest difference in their
ranking between PLACL and ρlesion confirmed these patterns. There were relatively low
correlations between PLACL and ρlesion with respect to means (rs = 0.17, p = 0.0022,
Fig. 2G) and medians (rs = 0.26, p < 10−6, Fig. 2F) taken over leaves belonging to the
same cultivar. The correlation between PLACL and ρlesion was not significant when
calculated based on individual leaf data pooled together (Fig. 2H). Supplemental Tables
S3–6 supporting Fig. 2 show means, standard errors of means, medians and Kruskall-
Wallis test statistics based on PLACL and ρlesion for all cultivars. Supplemental File S1
gives a brief description of all supplemental files and tables.

Automated measures of quantitative STB resistance correlated strongly with the tra-
ditional measurement based on AUDPC of visual scores. Medians of PLACL and ρlesion
correlated significantly (p < 10−12) with the AUDPC (rs = 0.38 and rs = 0.53 re-
spectively). Correlations between AUDPC and means were somewhat weaker but also
significant. The strongest correlation was between the combined measure ρleaf and the
AUDPC (cf. Fig. 3, means: rs = 0.63, medians: rs = 0.58). More figures of cultivar
ranking that support Figs. 2 and 3 with different combinations of measures are shown
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in Supplemental File S2. Supplemental Tables 7–8 supporting Fig. 3 show means, stan-
dard errors of means, medians and Kruskall-Wallis test statistics based on ρleaf for all
cultivars.

Predictors of epidemic development. So far we analyzed data for each cultivar based
on pooling the sampling dates t1 and t2. Next we consider data from the sampling
dates t1 and t2 separately. An important question is: To what extent can we predict a
measure of disease at t2 from measurements made at t1? We address this question by
investigating correlations between t1 and t2 with respect to each of the three measures:
PLACL, ρlesion, and ρleaf (Fig. 4). A higher degree of correlation corresponds to a higher
predictive power.

Consider the first column in Fig. 4 that illustrates how PLACL in t1 correlates with
PLACL, ρlesion and ρleaf in t2. PLACL in t1 correlates somewhat better with ρlesion in
t2 than with ρleaf or PLACL in t2. However, PLACL in t1 is a poorer predictor for the
three quantities in t2 than the quantities that include pycnidia counts, ρlesion and ρleaf
(compare the first column with the second and third columns in Fig. 4). The highest
correlations emerge between ρleaf in t1 and ρlesion in t2 (rs = 0.44) and between ρleaf in
t1 and ρleaf in t2 (rs = 0.50). As shown in the first row in Fig. 4, the best predictor for
PLACL (the measure of host damage that is most likely to reflect decreased yield) in t2
is ρlesion (the most inclusive measure of pathogen reproduction) in t1.

Figure 4 gives a general account of the correlations/predictive power among the mea-
sured quantities in t1 and t2. We investigate more subtle patterns of this comparison
in supplemental File S4, where we separate the effect of cultivar differences from the
overall effect.

For a subset of 39 cultivars, we performed similar measurements in a preliminary ex-
periment conducted in 2015 (published in Stewart et al., 2016). Comparisons between
the outcomes in 2016 and 2015 indicated that PLACL exhibited no significant corre-
lation, while ρlesion and ρleaf showed moderate and significant correlations (rs = 0.46,
p = 0.0035 for ρlesion and rs = 0.41, p = 0.0092 for ρleaf). This further highlights the
importance of measuring quantitative resistance based on pathogen reproduction as it
provided a more consistent measure of STB resistance between years and environments
than measures of STB resistance based on host damage.

Increase of resistance to STB between t1 and t2. Next we investigate the difference
between t1 and t2 to identify cultivars that exhibit an increase in resistance over time.
We will refer to this as ”late-onset” resistance. Each of the quantities, PLACL, ρlesion
and ρleaf , increased on average between the two time points (Fig. 5). The difference was
somewhat larger for ρleaf than for PLACL and ρlesion. The overall mean differences are
smaller than the variance of differences in individual cultivars. This is because positive
changes in some cultivars were compensated by negative changes in other cultivars (as
seen in Fig. 5).

We investigated the negative changes in more detail. We identified 53 cultivars in
total (marked in red in Fig. 5) that exhibited significant negative changes with respect
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Figure 2: Ranking of wheat cultivars according to their resistance against host damage
(panel C) and pathogen reproduction (panel E). Wheat cultivars were ranked
in order of increasing susceptibility to STB based on their mean values of
PLACL (percentage of leaf area covered by lesions, panel C) and ρlesion (py-
cnidia density per lesion, panel E). Colored markers depict means over two
replicates and two time points, error bars indicate standard errors of means.
Different colors of markers (blue, orange, black, green) represent significantly
different groups of cultivars based on Kruskal-Wallis multiple comparison FDR
correction, gray dots correspond to cultivars that could not be assigned to any
group. Light blue dots represent average values for individual leaves. Cultivar
CH Claro appears as a horizontal blue line due to its 21-fold higher number
of replicates. Black dots show medians for each cultivar. Lines in panel D
represent changes in ranking between PLACL and ρlesion among the 30 most
susceptible and the 30 most resistant cultivars based on PLACL. Panels A
and B show frequency histograms of PLACL and ρlesion based on individual
leaf data from the two replicates and two time points. Three insets in panel
E illustrate the relationship between PLACL and ρlesion based on individual
leaf data (panel H), means (G) and medians (panel F). Panels B and E extend
only up to 140 along the x-axis, missing 90 data points with values between
140 and 256.
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Figure 3: Ranking of wheat cultivars according to the resistance measure, ρleaf , that
combines host damage and pathogen reproduction (panel B) and according to
AUDPC (area under the disease progress curve) based on conventional visual
assessments (panel D). In panels B and D cultivars are ranked in order of
increasing susceptibility based on mean values of leaf pycnidia density, ρleaf
(panel B), and AUDPC (panel D). Colored markers show means over two
replicates and two time points, error bars indicate standard errors of means.
Different colors of markers (blue, orange, black, green) represent significantly
different groups of cultivars based on a Kruskal-Wallis multiple comparison
with FDR correction, gray dots correspond to cultivars that could not be
assigned to any group. Light blue dots represent average values for individual
leaves. Cultivar CH Claro appears as a horizontal blue line due to its 21-fold
higher number of replicates. Black dots show medians for each cultivar. Lines
in panel C represent changes in ranking between ρleaf and AUDPC among the
30 most susceptible and the 30 most resistant cultivars found in ρleaf . Panel
A shows a frequency histogram of ρleaf based on individual leaves from two
replicates and two time points. Two insets illustrate the relationship between
ρleaf and AUDPC with respect to means (panel F) and medians (panel E).
Panels A and B extend only up to 80 along the x-axis, missing 63 data points
with values between 80 and 244. Gaussian noise with variance σ2 = 4 was
added to raw (blue) data points in panel D to improve their visibility.
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Figure 4: Correlations of measures of quantitative STB resistance between the first time
point (t1) and the second time point (t2). The degree of correlation was quan-
tified using Spearman’s correlation coefficient, rs. Each data point represents
an average over about 15 leaves within an individual plot.
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to at least one of the quantities: PLACL, ρlesion or ρleaf . We see from the Venn diagram
in Fig. 5D that the number of cultivars showing significant negative change in PLACL
(41 cultivars) is higher than in ρlesion (12 cultivars). Four cultivars showed significant
negative change with respect to ρleaf . The number of cultivars exhibiting significant
negative change in terms of only one quantity were: 38 for PLACL, 11 for ρlesion and
zero for ρleaf . Interestingly, none of the cultivars exhibited significant negative change
for both PLACL and ρlesion. PLACL decreased the most in cultivars Achat and Mewa
(by 54 and 41 units, respectively). ρlesion decreased the most in cultivars Parador and
Cetus (by about 33 and 26 units, respectively). ρleaf decreased the most in cultivars
Cetus and Urban (by 12 units and 1 unit, respectively). Lists of cultivars with their
corresponding magnitudes of changes are given in Supplemental Tables S9–11.
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Figure 5: Indicators of late-onset STB resistance. x-axes show differences between mean
values at time point t2 and time point t1 for the three quantities (yellow mark-
ers): PLACL (panel A), ρlesion (panel B) and ρleaf (panel C). y-axes represent
cultivar indices; cultivars are sorted in order of increasing differences. Solid
vertical lines show differences averaged over all cultivars; dashed vertical lines
show zero differences. Cultivars exhibiting significant negative differences (ac-
cording to Wilcoxon rank sum test with the FDR correction, p < 0.01) are
shown in red. Panel D depicts a Venn diagram of cultivars with significant
negative differences with respect to the three measures of resistance.
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Discussion

Novel aspects of the experimental design Although fungicides suppressed STB de-
velopment as compared to untreated plots, the most important benefit of the fungicide
applications in the context of this experiment was to eliminate competing diseases (rusts,
powdery mildew, tan spot, septoria nodorum blotch) that usually co-exist with STB in
naturally infected fields. This resulted in a nearly pure culture of STB across both repli-
cations. Virtually every disease lesion found on a leaf was shown to be the result of an
infection by Z. tritici. The widespread STB infection found in this experiment could be
explained by the cool and wet weather during the 2015-2016 growing season that was
highly conducive to development of STB coupled with a significant amount of resistance
to azoles in European populations of Z. tritici (Brunner et al., 2008).

This experimental design provided an unusual opportunity to directly compare levels
and development of STB infection and STB resistance across a broad cross-section of elite
European winter wheat cultivars. Combined with the novel automated image analysis
method, this allowed us to collect a large amount of high-quality data with a relatively
low workload.

The measures of resistance that we characterized here, on average, represent ”general”
or ”field” resistance because the experiment was conducted using natural infection in a
year that was highly conducive to STB. Cultivars that were highly resistant under these
conditions are more likely to be broadly resistant when exposed to the typical genetically
diverse Z. tritici populations (Linde et al., 2002; Zhan et al., 2003).

Comparison between datasets obtained from automated image analysis and visual
scoring. Conventional visual assessment typically quantifies leaf necrosis (host damage)
caused by the pathogen by integrating disease severity (as PLACL) and incidence (as the
proportion of leaves having necrotic lesions) into a single index. Pycnidia (an indicator of
pathogen reproduction) are typically considered as a presence/absence qualitative trait
that helps to separate STB lesions from lesions caused by other leaf spotting diseases (e.g.
tan spot or septoria nodorum blotch) occurring on the same plants. The conventional
visual assessment is fast: only about nine hours in total were needed to assess more than
700 small plots three times during the season by a single person (i. e., about three hours
at each measurement date).

Visual scoring benefits from a large sample size, as almost all leaves in a plot are
considered during a typical visual assessment compared to only 15 leaves used for image
analysis. However, due to the subjective nature of the conventional scoring process, the
sample size used is not clearly defined and we could not obtain statistically significant
differences between cultivars based on the conventional visual scores. Moreover, assess-
ment of changes in trait values between two time points is very difficult with conventional
visual scores. Uncertainty in detection of pycnidia in the conventional measurement may
lead to misclassification of resistance. The degree of STB resistance may be overesti-
mated on cultivars that are susceptible to host damage (have high PLACL) but suppress
pathogen reproduction (have low ρlesion), because failure to detect pycnidia may be in-
terpreted as an absence of the disease. On the other hand, if the visual assessment
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finds pycnidia (typically scored as present or absent), the resistance of a cultivar may
be underestimated if the degree of suppression of pycnidia production is not considered.

In contrast, automated analysis of individual leaves enables independent measurement
of different aspects of conditional disease intensity. The advantage of the automated
method based on leaf images is that it accounts for both host damage and pathogen
reproduction in a reproducible, quantitative way with a well-defined sample size. This
alleviates the uncertainty in detecting pycnidia and also allowed us to find statistically
significant differences between cultivars. However, this method is more labor-intensive
than visual scoring. About 360 person-hours were needed to collect and process ≈ 22000
leaves and obtain the raw data.

Although this is an automated method, one needs to carefully determine its error
rate at every use (as we described in the Materials and Methods), because errors may
be cultivar-specific and also depend on environmental conditions. Sources of errors can
be minimized in the future by further improving the experimental methodology. For
example, leaves with severe defects can be excluded at the stage of mounting on paper
sheets, scanning errors can be minimized by introducing an additional control step after
scanning, and collector bias can be minimized by improved training of leaf collectors.
Importantly, we plan to further minimize current deficiencies in pycnidia and lesion
detection by incorporating the image analysis into a machine learning algorithm.

Manual generation of this large dataset that included more than two million pycnidia
would not be practical. However, we demonstrated that combining cheap flatbed scan-
ners with public domain software to conduct automated image analysis makes it feasible
to separate different components of epidemic outcome affected by presumably different
components of quantitative host resistance on a large scale.

Host damage vs. pathogen reproduction. Biologically, PLACL reflects the pathogen’s
ability to invade and damage (necrotize) the host leaf tissue, while ρlesion reflects the
pathogen’s ability to convert the damaged host tissue into reproductive structures and
eventually into offspring. From the host’s perspective, PLACL can be interpreted as the
degree of susceptibility to damage caused by the pathogen during the infection process
(e. g., through secretion of phytotoxins) or by host defense reactions (e. g., the hyper-
sensitive response) activated after detecting the pathogen. ρlesion can be interpreted as
measuring the host’s ability to suppress pathogen reproduction: a more susceptible host
enables more pathogen reproduction per unit of infected leaf area. Automated image
analysis enabled us to differentiate between host damage and pathogen reproduction
and hence to measure these as separate components of as STB epidemic that reflects
differences in components of resistance between wheat cultivars.

The phenotypic differences observed in our experiment may reflect different sets of
genes underlying the two resistance traits. We hypothesize that PLACL reflects the
additive actions of toxin sensitivity genes carried by different wheat cultivars that inter-
act with host-specific toxins produced by the pathogen, as shown for Parastagonospora
nodorum on wheat (e. g. Friesen et al., 2008; Oliver et al., 2012). We hypothesize that
pycnidia density reflects additive actions of quantitative resistance genes that recognize
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pathogen effectors (e.g. AvrStb6 recognized by Stb6; Zhong et al. (2017)) and activate
plant defenses in a quantitative way (Krattinger et al., 2009). Another possibility is
that pycnidia density reflects the availability of nutrients or the concentrations of an-
timicrobial compounds present in the necrotic host tissue. We anticipate testing these
hypotheses by combining the phenotypic data reported here with wheat genome data
(International Wheat Genome Sequencing Consortium, 2014) to conduct a genome-wide
association study (GWAS) aiming to identify chromosomal regions and candidate genes
underlying these components of quantitative STB resistance that may explain the ob-
served differences in epidemics.

The density of pycnidia per unit leaf area, ρleaf , is a measure of disease intensity that
incorporates both host damage and pathogen reproduction, reflecting the pathogen’s
overall ability to convert healthy host tissue into reproductive units that can drive a
new cycle of infection. The complex nature of quantitative host-pathogen interactions
may lead to high PLACL combined with low ρlesion or low PLACL combined with high
ρlesion. In both of these cases, the infection is less severe than when an interaction leads to
a high ρleaf . Therefore, we believe that ρleaf better characterizes overall host resistance,
pathogen fitness and STB intensity than PLACL or ρlesion.

Ranking of cultivars. The overall differences among cultivars were relatively small,
except for a small number of cultivars at each extreme. These small differences are
reflected in the limited number of significantly different groups of cultivars. However,
our analyses showed that ranking of cultivars differs considerably with respect to the
two measures of quantitative resistance: resistance to host damage and resistance to
pathogen reproduction (Fig. 2D). More specifically, we identified cultivars that strongly
exhibit one component of epidemic outcome, while the other component is virtually
absent (points in the upper-left and lower-right corners of Fig. 2F). We expect that
resistance that lowers pycnidia production will have a greater overall impact on reducing
damaging STB epidemics because it will reduce the rate of epidemic increase more
than resistance to host damage. Conventional phenotyping based on visual assessment
does not enable separation of these different components of epidemic outcome and the
underlying components of resistance.

We expected that conventional visual assessment (based on AUDPC) would correlate
best with the measurement of host damage (PLACL), as conventional assessment con-
sists mainly of quantifying leaf necrosis, while using pycnidia mainly to confirm the pres-
ence of STB. Surprisingly, the AIA measure that combines host damage and pathogen
reproduction (ρleaf) gave the best correlation with the conventional visual assessment.
A possible explanation for this high correlation is that the conventional assessment may
actually quantify pycnidia, but in a subjective way. An alternative explanation is that
because conventional assessment includes both disease severity and incidence, it captures
the overall pathogen population size that depends on both host damage and pathogen
reproduction.

The correlation between our combined measure (ρleaf) and the conventional measure
(AUDPC) in Fig. 3 indicates that breeders may have selected for cultivars that combine
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resistance to host damage and resistance to pathogen reproduction. This hypothesis is
supported by the small but significant positive correlations between PLACL and ρlesion in
terms of both means and medians over individual cultivars (Fig. 2F). See Appendix A.4
for a discussion on the use of means vs. medians in the analysis.

Our rankings are based on conditional measures of disease intensity and do not take
into account resistance that might lead to a decreased number of diseased leaves. In order
to include this aspect of resistance in future rankings, our conditional measurements will
need to be complemented by measurements of STB incidence.

Predictors of epidemic development. PLACL on the upper leaves is a key determi-
nant of disease-induced yield loss (e.g., Brokenshire, 1976). Hence, the ability to predict
PLACL on the upper leaves late in the growing season based on an early season measure-
ment may improve disease control. Our results suggest this possibility: the measure that
quantifies pathogen reproduction, ρlesion, evaluated early in the season (at t1, approxi-
mately GS 41) predicts the late-season host damage (PLACL at t2, approximately GS
75-85) better than early-season PLACL or ρleaf (see Fig. 4, compare panel B with panels
A and C). We postulate that this finding could improve decision-making for fungicide
application: one may need to apply fungicides only if ρlesion exceeds a certain threshold
early in the season.

Increase of resistance to STB between t1 and t2. Negative changes with respect to
traits characterizing host susceptibility (PLACL, ρlesion, and ρleaf) suggest an increase in
host resistance over time. We found that none of the cultivars exhibited this property
for both PLACL and ρlesion. Accordingly, none of the cultivars showed a significant
decrease only for the combined measure ρleaf . This may indicate that the genetic basis
of the late-onset resistance differs for host damage and pathogen reproduction. These
outcomes may help to reveal the genetic basis of “late-onset” resistance to STB (e.g.
using GWAS or QTL mapping).

Conclusions. We utilized a novel phenotyping technology based on automated analysis
of digital leaf images to compare quantitative resistance to STB in 335 European wheat
cultivars naturally infected by a highly variable local population of Z. tritici. This
method allowed us to distinguish between resistance components affecting host damage
(PLACL) and resistance components affecting pathogen reproduction (ρlesion). Since
measurements of pycnidia density cannot be accomplished on such a large scale with
traditional assessment methods, our new method provides a powerful tool for measuring
quantitative resistance to STB.

As suggested by Simko et al. (2017), digital phenotyping reduces subjectivity in trait
quantification and may reveal small but meaningful differences that would not be ob-
served with conventional visual assessment. Further development of this method could
involve adjustment of the analysis parameters to be optimized for each cultivar sepa-
rately, machine learning for more precise detection of symptoms and combining it with
incidence data gathered by image analysis of high-quality canopy images produced by
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devices like the phenomobile (Deery et al., 2014) or the ETH field phenotyping platform
(Kirchgessner et al., 2017).

Outlook. Our approach can be readily applied to classical phenotype-based selection
and breeding. Cultivars that show high resistance to both host damage and pathogen
reproduction will be most likely to strongly suppress the pathogen population at the field
level and result in less overall damage due to STB. Importantly, cultivars that show the
highest resistance based on either host damage or pathogen reproduction can be used
in breeding programs as independent sources of different components of resistance. We
believe our approach provides a powerful method to specifically breed wheat cultivars
carrying resistance that suppresses pathogen reproduction.

While the ability to separate phenotypes associated with two different aspects of resis-
tance provides new avenues for resistance breeding, our hypothesis that the components
of resistance explaining the two components of epidemic outcome are under separate
genetic control remains to be confirmed by further research. We anticipate that future
genetic studies (e.g. using GWAS) based on these phenotypic data will enable us to iden-
tify genetic markers that are linked to the different types of resistance. These markers
could then enable joint selection of the different forms of resistance via marker-assisted
breeding or in a genomic selection pipeline. If we can validate our hypothesis that toxin
sensitivity genes underlie differences in PLACL among cultivars, the breeding objective
would be to remove these sensitivity genes (Friesen et al., 2008; Oliver et al., 2012).
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A. Appendix

A.1. Estimation of the number of pathogen generations

We estimated the number of asexual cycles of pathogen reproduction (number of gener-
ations) using data on the dependency of the latent period of Z. tritici on temperature
Fig. 5 in Shaw (1990). We are interested in the overall relationship between the latent
period and the temperature and would like to use the largest amount of data available.
For this reason, we pooled together the data available for two cultivars, Avalon and
Longbow, recorded by Shaw (1990). Next, we fitted the polynomial function

1/∆tl = aθ − bθ4 (A.1)
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to the resulting data. Here, ∆tl is the latent period, θ is the temperature, a and b are
fitting parameters. The outcome is shown in Fig. A1. Best-fit values of parameters are:

a = (4.5 ± 0.6) × 10−3, b = (3.9 ± 1.0) × 10−7. (A.2)

Uncertainties in Eq. A.2 represent the 95 % confidence intervals calculated from standard
errors. Goodness of fit: R2 = 0.7; standard error of regression s = 5.5 × 10−3.

We then used average daily temperatures and the amount of rainfall measured at the
Lindau weather station located close to our experimental site to estimate the number of
pathogen generations, ng. We performed estimation of ng from the period of most active
vertical growth until harvest (March 1 until July 27) and between the two sampling dates
(from May 1 until July 4). First, we determined the average latent period from the daily
temperature averaged over the growing season using Eq. A.1 with the parameter values
from Eq. A.2. This resulted in the value ∆tl = 21 days. After that, we introduced a
constraint on the number of pathogen generations using the rainfall data. According to
our current understanding, rainfall is the most efficient way to release and disperse the
asexual pycnidiospores. For this reason, we assumed that a cycle of asexual reproduction
could only be completed after a day with at least 5 mm rainfall (similar to Zhan et al.
(2002)). In this way we estimated an average of about six cycles of asexual reproduction
between March 1 and July 27 and about two cycles between the two sampling dates t1
and t2 (Fig. A2).
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Figure A1: Inverse of latent period of Z. tritici as a function of the temperature based on
data from Fig. 5 by Shaw (1990). Data from controlled-environment exper-
iments for cultivars Longbow (circles) and Avalon (squares). Dashed curve
is the best fit using the function in Eq. A.1 (see text for details).
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Figure A2: Temperature and rainfall data recorded at the Lindau weather station (data
from http://www.agrometeo.ch/de/meteorology/datas) for the period be-
tween March 1 and July 27, 2016. Red vertical lines indicate the estimated
generation times and black vertical lines show the sampling dates t1 and t2.

A.2. Calculation of AUDPC based on visual assessments

We denote the values of visual scores recorded on the first, τ1, second, τ2 and third, τ3,
dates (20th of May, 21th of June and 29th of June, 2016) of visual assessments as A1,
A2 and A3. Area under the disease progress curve (AUDPC) was calculated for each
cultivar using the visual scores in the following manner:

AUDPC =
1

2
(τ2A1 + (τ3 − τ1)A2 + (τ3 − τ2)A3) , (A.3)

where τ1 = 14 days, τ2 = 44 days, τ3 = 52 days. Here, we assumed that disease started
from zero 14 days before the first scoring, values of A1, A2 and A3 are taken as average
scores over the two replicate plots. Eq. A.3 uses a trapezoidal function to interpolate
between the time points in order to calculate the area under the curve. This assumes
that score values are connected by linear segments. Values of AUPDC are shown for
each cultivar in Fig. 3D of the main text.

To analyze differences between cultivars, we weighted scores A1, A2 and A3 in the
following manner: a1 = 3τ2A1/2, a2 = 3(τ3 − τ1)A2/2, a3 = 3(τ3 − τ2)A3/2. The
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coefficients were chosen such that weighted scores a1, a2 and a3 give proportionate
contribution to the AUDPC and the arithmetic average over them gives the AUDPC.
The weighted scores from each replicate and each time point were given as a set of points
corresponding to each cultivar (total of six measurement points per cultivar). One score
was missing for one of the replicates in several cultivars. For these cultivars, we used
only five measurement points for statistical analysis. We also calculated grand means
over raw (not weighted) visual scores for each cultivar by taking arithmetic means over
measurements in two replicates and three time points (six measurement points). Similar
to the case of weighted scores, when scores were missing in one of the replicates at one of
the time points, we calculated arithmetic means over the five values that were present.

Statistical differences between cultivars based on visual scoring could, in principle,
be tested in a similar manner as based on image analysis data. We tested differences
between distributions based on the weighted visual scores of the cultivars. The global
Kruskal-Wallis test (R Core Team, 2016) revealed no differences (Kruskal-Wallis chi-
squared = 194.39, df = 335, p = 1). Surprisingly, when using unweighted visual scores
there were differences between cultivars (Kruskal-Wallis chi-squared = 642.4, df = 335,
p < 2.2 ·10−16). Pairwise multiple comparison with a false discovery rate p-value correc-
tion (Benjamini and Hochberg, 1995) found that the 23 most susceptible cultivars were
different from the most resistant cultivar and the 155 most resistant cultivars were differ-
ent from the most susceptible cultivar. However, there were 157 cultivars that were not
significantly different from either extreme. The slight but significant difference between
unweighted and weighted data may arise from the short time interval between τ2 and τ3.
Thus cultivars cannot be distinguished by weighted scores, as the last scoring time, likely
resulting in the greatest differences between visual scorings of cultivars, had the smallest
effect on AUDPC and consequently differences arising from the latest scores were sup-
pressed. Despite differences between statistical properties of unweighted and weighted
data, the ranking based on them is pretty similar: Spearman’s correlation between mean
ranks of unweighted and weighted scores of cultivars is high (rs = 0.97, p < 2.2 · 10−16).
Also Spearman’s correlations between AUDPC, mean rank of unweighted scores and
arithmetic mean of unweighted scores are high (AUDPC vs. mean ranks: rs = 0.97;
AUDPC vs. means: rs = 0.97; mean ranks vs means rs = 0.998; p < 2.2 · 10−16 for
each).

A.3. Correlation between replicates

Correlations between the biological replicates ranged from 0.23 to 0.66 for AIA mea-
surements (Fig. A3). The highest correlation between the two replicates was found in
pycnidia numbers at t2. The lowest correlation was in PLACL at t1. PLACL showed
the largest difference in correlation coefficients between replicates. The exceptionally
low correlation between replicates at t1 for PLACL may have arisen from making the
collection at a critical point in the epidemic: if the last infection cycle had been just
entering the necrotic phase (as suggested in Fig. A2), there could have been a large
variation between replicates by chance due to the highly variable length of the latent
period for STB infection. Correlation between visual scores was not significant in first
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assessment but was significant and in similar range as for AIA in the second and third
assessment (rs = 0.37, p = 6 · 1012; rs = 0.18, p = 9 · 104, respectively).

Spearman’s correlation describes the linear relationship between rankings based on the
two replicates. Moderate but highly significant correlations between replicates for each
measure imply that resistance rankings based on these measures may differ considerably
between replicates. We expect this to result from the shape of the quantitative resistance
distributions (Fig. 2 and 3 of the main text). For all three main measures of resistance,
PLACL, ρlesion and ρleaf , means of the measure are quite similar for all cultivars except
for a small number of cultivars at the phenotype extremes. Thus, even a small variation
in these measures between replicates may result in a large change in ranking of a cultivar
for one replicate to other. This is also implied by the small statistical differences between
cultivars in the middle of the distributions (Fig. 2 and 3 of the main text). The same
arguments hold for low (and not significant) correlations between visual scores of the
replicates.
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Figure A3: Spearman’s correlation coefficient between the mean values (taken over leaves
belonging to the same cultivar) in two replicates for six different AIA mea-
surements. All results are highly significant (p < 10−7).

A.4. The use of means vs. medians in the analysis of STB
resistance

As our data was clearly non-normal, the central tendency of the data may be better
described by medians than means. Comparing medians is also biologically reasonable:
total yield is more likely determined by the large number of moderately damaged wheat
plants than by the few heavily diseased or dead plants. We also found stronger corre-
lations between AUDPC and the medians of PLACL and ρlesion than between AUDPC
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and the means of PLACL and ρlesion. Nevertheless, when comparing AUDPC and ρleaf
we found stronger correlation between AUDPC and the means of ρleaf than the medi-
ans. This may indicate that mean values better describe the way breeders traditionally
assess diseases caused by necrotrophs. If this insight proves to be true, it may help us to
understand and counteract the subjective nature of visual assessment with its tendency
to overweight fully diseased plants and thereby overestimate the overall disease severity.
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E. eXtra

E1. Description of eXtra tables and figures

Supplemental File S1 describes content of each supplemental file and table. Supplemen-
tal File S2 shows full range versions of ranking figures (Figs. 2 and 3 of the main text)
and also additional comparisons between PLACL and ρleaf , PLACL and AUDPC, and
ρlesion and AUDPC. Supplemental File S3 shows comparison between means, medians
and mean ranks of PLACL, ρlesion, and ρleaf . Supplemental File S4 shows detailed anal-
ysis of predictive power of PLACL, ρlesion, and ρleaf at t1 on those variables at t2 and
considers separately ”cultivar effect” and ”pathogen effect”. Supplemental File S5 shows
additional instructions and information about modifications made to the image analysis
macro.

Supplemental Table S1 provides the parameter values used in the ImageJ macro and
can be used directly as the input to the macro. Supplemental Table S2 defines the scale
used for visual scoring of STB symptoms.

Supplemental tables supporting Fig. 2 and Fig. 3 of the main text display information
on ranking of cultivars in tab-delimited text files. Supplemental Tables S3–S5 show
cultivar names in first column; genetic identification number in second column; mean
of observable (PLACL, ρlesion, ρleaf ; respectively) over all the leaves of a cultivar in the
third colum; standard error of the mean in the fourth column and median in the fifth
column. The tables are sorted according to descending mean. In Supplemental Tables
S6–S8 cultivars are ranked according to mean rank of leaves of a cultivar according
to corresponding measurement. First column shows cultivar names; second genetic id;
third mean rank of the data and fourth grouping code, regarding statistical differences
between cultivars according to multiple pairwise Kruskal-Wallis comparison with false
discovery rate p-value correction (cultivars having same letter in the grouping code are
not significantly different). The tables are sorted according to descending mean rank.
All tables contain a header row naming the columns.

Supplemental Tables S9–S11 supporting Fig. 5 of the main text display information
on cultivars that exhibit significant negative change between t1 and t2 in mean values
of PLACL, ρlesion and ρleaf , respectively. Cultivars are sorted according to the difference
between the mean values in t1 and t2. First column shows cultivar names; second column
shows mean values in t1; third column shows mean values t2; fourth columns shows the
difference between means in t1 and t2; fifth col: W statistic of the Wilcoxon rank sum
test; 6th col: p-value of the Wilcoxon rank sum test with FDR correction.
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E2. Ranking of cultivars

In Fig. E2.1 cultivars are ranked as in Fig. 2 of the main text and the full range of
raw data is shown for ρlesion. Significantly differing groups of cultivars are labeled with
different colors (excluding gray). Fig. E2.2 has the same organizing principle except that
Fig. E2.2E shows ranking according to ρleaf . Details of correlations are shown in insets
(F, G, H) as in Fig. 2 of the main text.

In Figs. E2.3 and E2.4 the connection between traditional resistance measurement
(AUDPC) and either PLACL or ρlesion, respectively, are given similarly to what was
shown in Fig. 3 of the main text. Spearman’s correlation coefficients are higher between
medians of PLACL or ρlesion and AUDPC than between means of those and AUDPC.
Details of correlations are given in the insets (E, F).
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Figure E2.1: This figure is the same as Fig. 2 of the main text except that panel E shows
the full range of data points of ρlesion.
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Figure E2.2: The organzation of the figure is the same as in Fig. 2 of the main text, but
here panel E shows data of ρleaf and correspondingly insets F, G and H
show correlations between PLACL and ρleaf .

32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/129353doi: bioRxiv preprint 

https://doi.org/10.1101/129353
http://creativecommons.org/licenses/by/4.0/


0 20 40 60 80 100
PLACL

0

50

100

150

200

250

300

B

60 80 100 120 140 160 180 200
AUDPC

0

50

100

150

200

250

300

D

C

10 20 30 40 50 60

PLACL

80

90

100

110

120

130

140

150

AU
DP

C

F
Means: rs = 0.36, p = 6.7e-12

20 40 60

80

90

100

110

120

130

140

150

AU
DP

C

E
Medians: rs = 0.38, p = 5.6e-13

A

Figure E2.3: The organzation of the figure is the same as in Fig. 3 of the main text, but
here panel B shows data of PLACL and correspondingly insets E and F
show correlations between PLACL and AUDPC.
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Figure E2.4: The organzation of the figure is the same as in Fig. 3 of the main text, but
here panel B shows data of ρlesion and correspondingly insets E and F show
correlations between ρlesion and AUDPC.
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E3. Correlation between means, medians and mean rank of PLACL,
ρlesion and ρleaf

Resistance ranking of cultivars according to means, medians and mean ranks (Kruskal-
Wallis test statistics) for PLACL, ρlesion and ρleaf are very strongly correlated (r ≥ 0.95)
(Fig. E3.1). Thus differences between mean ranks revealed by Kruskal-Wallis compar-
isons (cf. Fig. 2 and Fig. 3 of the main text) are correlated to differences between ranking
of cultivars according to means or medians of PLACL, ρlesion and ρleaf .
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Figure E3.1: Pearson correlations between ranked means and medians and mean ranks
(Kruskal-Wallis test statistics) of PLACL, ρlesion and ρleaf .
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E4. Predictors of epidemic development: separating effects of
cultivar and pathogen

In the section ”Predictors of epidemic development” of the main text, we presented
correlations between two time points for PLACL, ρlesion and ρleaf (Fig. 4 of the main text).
These correlations were based on means over leaves belonging to each individual plot
(with two plots per cultivar). Here, we disentangle two factors that may be responsible
for the observed correlations. First is the effect of the host. In this case, the correlation
is explained by differences between cultivars that remain constant over the two time
points. For example, when cultivars that are susceptible early in the season (t1) remain
susceptible late in the season (t2). Second, is the effect of pathogen. In this case,
correlations may arise due to the highly local progression of epidemics characteristic of
splash-dispersed pathogens or other cultivar-independent factors. For example, plots
that had more disease early in the season would also have more disease late in the
season. In other words, when considering the effect of pathogen, we investigate how
well differences between plots (of the same cultivar, but located in separate lots) early
in the season correlate with differences late in the season. These differences between
plots may arise due to different amount of local inoculum or due to different local
microenvironmental conditions. We note that genotype-environment interactions may
contribute to both of these effects, but for simplicity we will refer to the two effects as
”host effect” and ”pathogen effect”. To separate the two effects, we performed a more
detailed analysis of the correlation.

To determine the effect of host, instead of using two values per cultivar that correspond
to two replicate plots (as we did in Fig. 4 of the main text), we used the average of these
two values for each cultivar (by averaging over about 32 leaves belonging to each cultivar
at each time point, with the exception of cultivar CH Claro that had about 670 leaves
per time point). We then determined correlations between these average values in t1
and in t2. The resulting correlations are shown in Fig. E4.1 and in columns ”cv” of the
Table E4.1. The highest correlation is observed between ρlesion at t1 and ρleaf at t2 The
best predictor for late-season PLACL is ρlesion .

To determine the effect of pathogen, we normalized means over each plot in the fol-
lowing way. At each time point, we subtracted from each mean over plot (averaged over
maximum 16 leaves) a grand mean over both plots (averaged over maximum 32 leaves)
that belong to the same cultivar and time point. To balance the dominating effect of
cultivar CH Claro, we used only two data points for it so that each point represents the
difference between the mean over all 21 plots of CH Claro in one lot and the grand mean
over 42 plots from both lots. The resulting correlations are shown in Fig. E4.2 and in
columns ”normed” in Table E4.1. The highest correlation is observed between PLACL
at t1 and ρlesion at t2 The best predictor for late-season PLACL is ρlesion .

Correlations corresponding to the effect of host with respect to the same measure
(PLACL, ρlesion, or ρleaf) reveal the degree to which cultivars keep their ranking according
to this particular measure between t1 and t2 (see diagonal panels in Fig. E4.1). In these
cases, correlation coefficients quantify the degree of consistency between t1 and t2 of host
resistance to PLACL (Fig. E4.1A), ρlesion (Fig. E4.1E) and ρleaf (Fig. E4.1H). As we see
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from Fig. E4.1A, PLACL at t1 has no significant correlation to PLACL at t2. Hence, we
cannot predict differences in host damage between two cultivars late in the season based
on differences in host damage early in the season. Such prediction is more likely to be
achieved if we considered differences between one of the most susceptible and one of the
most resistant cultivars. However, when we take into account all cultivars, on average
there is no significant correlation. In contrast, the correlation between ρlesion at t1 and
ρlesion at t2 is moderately strong and highly significant. We conclude that differences
between cultivars according to ρlesion are more consistent than differences according to
PLACL.

Correlations corresponding to the effect of pathogen reveal the degree to which plots
of the same cultivar keep their ranking between t1 and t2. In contrast to the ”host effect”
described above, PLACL at t1 has a significant slightly negative correlation to PLACL
at t2 with respect to ”pathogen effect” (Fig. E4.2A). ρleaf at t1 and ρleaf at t2 exhibit a
moderate correlation (Fig. E4.2I). Hence, differences between plots of the same cultivar
are more consistent between t1 and t2 with respect to ρleaf than with respect to PLACL.

To determine their relative contributions to the overall correlations shown in Fig. 4
of the main text, we compare contributions of ”host effect” (Fig. E4.1) and ”pathogen
effect” (Fig. E4.2). Correlation between PLACL at t1 and ρlesion at t2 due to ”pathogen
effect” is positive and significant (Fig. E4.2D), while the same correlation due to cultivar
effect is not significant (Fig. E4.1D). Hence, we conclude that the overall positive rela-
tionship between PLACL t1 and ρlesion t2 (Fig. 4D of the main text) is caused mainly by
”pathogen effect”. In contrast, there is no significant relationship between ρlesion at t1
and ρleaf at t2 due to pathogen effect (Fig. E4.2G), but there is a strong positive correla-
tion due to ”host effect” (Fig. E4.1G). This indicates that the overall positive correlation
arises due to ”host effect”. Interestingly, ρlesion exhibits a moderate positive correlation
between t1 and t2 due to ”cultivar effect” but a negative correlation due to ”pathogen
effect”. Reason for that phenomenon remains an open question.

Since cultivar CH Claro was replicated more than any other cultivar (a total of 42
plots), we analyzed it separately to see if the ”pathogen effect” discussed above is visible
in data from one cultivar. However, Spearman’s correlation test did not show any
significant correlation with respect to means over each of 42 plots between t1 and t2 for
any combination of the three quantities (PLACL, ρlesion and ρleaf).

Thus, separating the ”host effect” and ”pathogen effect” allowed us to gain insight into
the source of the correlations over time between different measures of host resistance and
to better assess their predictive power. Although this analysis did not reveal extremely
strong correlations, we expect, that disease forecasting models could benefit from having
pathogen reproduction, not only host damage, as an explanatory variable. Combined
with incidence measurements, the method presented allows for detailed quantification
of pathogen population and its reproductive potential.

37

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/129353doi: bioRxiv preprint 

https://doi.org/10.1101/129353
http://creativecommons.org/licenses/by/4.0/


PLACL(t1) ρlesion (t1) ρleaf (t1)
raw cv normed raw cv normed raw cv normed

PLACL(t2) (-0.02) (0.03) -0.11 0.39 0.41 0.27 0.30 0.37 (0.081)
ρlesion (t2) 0.25 (0.07) 0.44 0.22 0.41 -0.20 0.44 0.43 0.35
ρleaf (t2) 0.17 (0.06) 0.38 0.39 0.53 (-0.062) 0.50 0.52 0.39

Table E4.1: Spearman’s correlations between measures of resistance in t1 and t2. Non-
significant correlations in parentheses (p > 0.01). Correlations in columns
”raw” are calculated using means of each plot for each time point, in columns
”cv” using mean over all plots of a cultivar for each timepoint and in columns
”normed” using difference of plot mean from cultivar mean for each time
point as explained in the text.
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Figure E4.1: Correlation of measures of resistance (means over plots of the same cultivar)
between the first time point (t1) and the second time point (t2). Each data
point represents an average over about 30 leaves of one cultivar belonging
to two replicates plots. Degree of correlation is quantified using Spearman’s
correlation coefficient, rs.
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Figure E4.2: Correlation of measures of resistance between t1 and t2 within cultivars.
Data from each cultivar is represented by two data points. For each point,
the x-value represents the difference between the mean over an individual
plot and the grand mean over two plots at t1 and the y-value is the same
difference taken at t2. Each data point represents an average over about 15
leaves of one cultivar belonging an individual plot. The degree of correlation
is quantified using Spearman’s correlation coefficient, rs.
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