

Article

UNRAVELLING THE PHYLOGENOMIC RELATIONSHIPS OF THE MOST DIVERSE AFRICAN PALM GENUS *Raphia* (CALAMOIDEAE, ARECACEAE)

Andrew J. Helmstetter ^{1,†}, Suzanne Mogue Kamga ², Kevin Bethune ³, Thea Lautenschläger ⁴, Alexander Zizka ⁵, Christine D. Bacon ⁶, Jan J. Wieringa ⁷, Fred Stauffer ⁸, Alexandre Antonelli ⁹, Bonaventure Sonké ¹⁰ and Thomas L.P. Couvreur ^{11,*}

- ¹ IRD, DIADE, Univ Montpellier, Montpellier, France; and rew.j.helmstetter@gmail.com
- ² Université de Yaoundé I, Ecole Normale Supérieure, Département des Sciences Biologiques, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047, Yaoundé Cameroon ; mogueblue@yahoo.com
- ³ IRD, DIADE, Univ Montpellier, Montpellier, France; kevin.bethune@hotmail.fr
- ⁴ Department of Biology, Institute of Botany, Faculty of Science, Technische Universität Dresden, 01062 Dresden, Germany ; thea.lautenschlaeger@tu-dresden.de
- ⁵ German Center for Integrative Biodiversity Research (iDiv) Halle -Leipzig-Jena, Leipzig, Germany
- ⁶ Department of Biological and Environmental Sciences and Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden; christine.bacon@bioenv.gu.se
- ⁷ Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands; jan.wieringa@naturalis.nl
- ⁸ Department of Botany and Plant Biology, Conservatory and Botanical Garden of the City of Geneva, University of Geneva, Geneva, Switzerland; Fred.Stauffer@ville-ge.ch
- ⁹ Department of Biological and Environmental Sciences and Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden; and Royal Botanic Gardens, Kew, Richmond, UK; a.antonelli@kew.org
- ¹⁰ Université de Yaoundé I, Ecole Normale Supérieure, Département des Sciences Biologiques, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047, Yaoundé Cameroon; bsonke_1999@yahoo.com
- ¹¹ IRD, DIADE, Univ Montpellier, Montpellier, France; Thomas.Couvreur@ird.fr
- * Correspondence: Thomas.Couvreur@ird.fr
- + Current address: FRB-Cesab, Institut Bouisson Bertrand, 5, rue de l'Ecole de médecine 34000 Montpellier, France

Version March 11, 2020 submitted to Plants

- Abstract: Palms are conspicuous floristic elements across the tropics. In continental Africa, even
- ² though there are less than 70 documented species, they are omnipresent across the tropical landscape.
- ³ The genus *Raphia* has 20 accepted species in Africa and one species endemic to the Neotropics. It is
- the most economically important genus of African palms with most of its species producing food
- and construction material. *Raphia* is divided into five sections based on inflorescence morphology.
- 6 Nevertheless, the taxonomy of Raphia is problematic with no intra-generic phylogenetic study
- ⁷ available. We present a phylogenetic study of the genus using a targeted exon capture approach
- sequencing of 56 individuals representing 18 out of the 21 species. Our results recovered five
- well supported clades within the genus. These reflect to a certain extent the sections as defined
- ¹⁰ based on inflorescence morphology. Overall, morphological based identifications agreed well with
- ¹¹ our phylogenetic analyses, with 12 species recovered as monophyletic based on our sampling.
- ¹² Species delimitation analyses recovered 17 or 23 species depending on the confidence level used.
- ¹³ Species delimitation is especially problematic in the Raphiate and Temulentae sections. In addition,
- our clustering analysis using SNP data suggested that individual clusters matched geographic
- distribution. The Neotropical species *R. taedigera* is supported as a distinct species, rejecting the
- ¹⁶ hypothesis of a recent introduction into South America. Our analyses support the hypothesis that
- the *Raphia* individuals from Madagascar are potentially a distinct species different from the widely

Version March 11, 2020 submitted to Plants

distributed *R. farinifera*. In conclusion, our results support the infra generic classification of *Raphia* based on inflorescence morphology, which is shown to be phylogenetically useful. Classification
 and species delimitation within sections remains problematic even with our phylogenomic approach.
 Certain widely distributed species could potentially contain cryptic species. More in-depth studies

should be undertaken using morphometrics, increased sampling and more variable markers.

²³ Our study provides a robust phylogenomic framework that enables further investigation on the

²⁴ biogeographic history, morphological evolution and other eco-evolutionary aspects of this charismatic,

²⁵ socially and economically important palm genus.

²⁶ Keywords: Africa, exons, Madagascar, rain forests, phylogenomics, *Raphia*, sequence capture

27 1. Introduction

Palms are iconic floristic elements across the tropics both in terms of diversity and the natural resources they provide, playing important roles for the welfare of rural and urban people at equatorial latitudes. Worldwide, there are an estimated 2500 palm species [1], mainly occurring in tropical rain forests. Africa, however, harbours less than 70 species (excluding Madagascar) [2,3], a pattern that contrasts strongly with the Neotropics or South East Asia, which contain 800 and 1200 species respectively [1,4,5]. Despite this low diversity, palms are omnipresent across the African landscape, particularly in the tropical rain forests of the continent [2,6].

Among African palms, the genus Raphia (subfamily Calamoideae, tribe Raphiaeae) is the most 35 species rich, with 21 species described to date [2,7]. Of these, one, R. taedigera, is endemic to the 36 Neotropics, with a disjunct distribution in Brazil and central America. The presence of this species 37 in the Neotropics was suggested as either pre-Colombian and natural (biogeographic long distance 38 dispersal/vicariance [8,9]) or as recently naturalized by Africans during the slave trade some 400 39 years ago [6,10,11]. Raphia species mainly occur in tropical rain forests, most often in swampy or periodically inundated areas where they can dominate the vegetation, producing dense monospecific 41 stands (known as "Raphiales" in French). A few species, however, have adapted to drier conditions 42 restricted to river systems in the Sahel or southern Africa. 43 Raphia is the most economically important genus of African palms across tropical African 44

communities. One recent study documented over 100 different uses across the genus, with the most important ones being extraction of palm wine, grubs and construction material [12,13]. Exploitation of 46 its species in the wild also represents an important source of income for populations across tropical 47 Africa, especially for low-income households [12,14,15]. In addition, Raphia species play vital ecological 48 roles in wet land ecosystems [16] where they dominate the landscape, such as in peatlands of the 49 Congo Basin where they are highly abundant [17]. Raphia dominated swamps are also important 50 ecosystems for the protection for critically endangered animals such as the lowland gorillas because 51 hard to access or cultivate (e.g. [18]). 52 Raphia species are massive palms with very long pinnate leaves. One species holds the record for 53

the longest measured leaf in angiosperms, reaching up to 25 meters (*R. regalis*). The trunk is generally 54 above-ground and is solitary or clustered, while two species (R. regalis and R. vinifera) have very short 55 or subterranean (acaulescent) trunks. When present, the trunk can be covered by old leaves or a 56 dense network of fibres, which can be curly or straight, an important character to identify species (e.g. 57 [19,20]). Raphia species are monoecious, with male and female flowers on the same individual and are 58 hapaxanthic, meaning that individual stems die after a single flowering event [1]. The inflorescences 59 structure is relatively simple and branched to two orders [1]. The first and second order branches, or 60 rachillae, are referred to as the "partial inflorescence" [21]. The shape and overall morphology of these 61 partial inflorescences are one of the most important taxonomic characters for species identification and 62

to define the different sections of the genus [20,21].

Version March 11, 2020 submitted to Plants

Despite its importance, Raphia remains one of the least understood palm genera in terms of 64 taxonomy and phylogenetic relationships [1,20]. This is mainly due to their massive size, making 65 them difficult to collect for non-specialists, which leads to few herbarium specimens or specimens that 66 are incomplete or fragmentary. Several attempts have been undertaken to tackle the taxonomy of the 67 genus, beginning in the early 1900s with the first complete monograph of the genus [22]. This was 68 followed by more regional attempts through the last century [23,24]. The last major revision of the 69 genus was undertaken by Otedoh [21], who placed species into five different sections based on the 70 structure of the partial inflorescence: Moniliformes (including the subsection Erectae), Temulentae, 71 Raphiate, Flabellatae and Obclavatae. 72 The six species within the Moniliformes section are characterized by thin and easily breakable 73 rachillae when fresh (1 B). Otedoh [21] also created a subsection, Erectae, where he placed two species 74 in which the inflorescences are defined as erect (*R. autralis*, *R. regalis*) (1 G, O). The Temulentae section 75 has robust and tightly appressed rachillea. The partial inflorescences are racquet-shaped with the 76 apical second order rachillae shorter than the basal ones (1 E). This section contains three (possibly 77 four) species, including one of the most widespread and important species R. hookeri. With seven 78 species, the Raphiate section is the most complex group of the genus. Several species are only known 79 from a few collections or just the type. This section is characterized by species having second order 80 rachillae that are robust (thick) but loosely disposed between them (1 D). The inflorescence within 81 this section can be semi-erect or drooping (1 I). The Flabellatae section contains two species with very 82 characteristic partial inflorescence structures. The second order rachillae are tightly packed in a single 83 plane being racket-shaped in appearance (1 F). The inflorescence also has very conspicuous bracts that 84 cover completely or partially the partial inflorescences (1 O). Finally, the Obclavatae section contains 85 one species (*R. sudanica*) with distinct club-shaped and compact partial inflorescences with large bracts 86 covering too (1 C). 8 To date, no in depth morphological or molecular phylogenetic study of Raphia has been 88 undertaken. The current phylogenetic analysis of the Calamoideae subfamily only included a single 89 species, namely *R. farinifera* [25]. The main objective of this study is to generate a densely sampled 90 phylogenetic tree of the genus and test the validity of the taxonomic sections of Otedoh [21]. In 91 particular, we test if the partial inflorescence structure has a phylogenetic signal and is useful for *Raphia* 92 species classification. In addition, by sampling several individuals per morphologically identified 93

species, we also tested species limits and monophyly. In order to achieve these objectives we sequenced

⁹⁵ more than 150 palm specific nuclear markers across 56 Raphia accessions. We used a species delimitation

⁹⁶ approach to define species limits and generated SNP data to study at fine-scale genetic relationships in

⁹⁷ identified species complexes.

98 2. Results

99 2.1. DNA sequencing

We sequenced 56 individuals representing 18 species or 87.5% of the species diversity within the 100 genus. A total of 15.4 million reads were generated and mapped to the reference exons belonging to 101 176 genes of the Heyduk et al. [26] bait kit. Across all Raphia and outgroup individuals the average 102 coverage depth was 139.6x. We identified 102 genes for which 75% of the exon length was recovered in 103 at least 25% of individuals. 20 loci were flagged by Hybpiper as paralogs because multiple assembled 104 contigs matched a single reference locus. Those that occurred in the 75/25 set were removed, resulting 105 in a final dataset of 85 supercontigs equalling 162kb of sequence data. Our SNP calling approach 106 applied filters on mapping quality (>40%) depth (>25), quality by depth (>2), minimum depth across 107 individuals (>10) minor allele frequency (>0.01) and we excluded monomorphic site. This ultimately 108 yielded 915 and 1,627 high-quality, biallelic SNPs for the R. hookeri and R. zamiana species complexes, 109 respectively (see below). 110

Version March 11, 2020 submitted to Plants

4 of 20

111 2.2. Evolutionary history of Raphia

We generated two phylogenetic hypotheses for *Raphia* using two distinct methods. The first analysis was conducted based on a gene-tree coalescent approach using ASTRAL while the second inferred phylogenetic relationships based on a concatenated approach using IQ-TREE.

Support varied throughout the *Raphia* ASTRAL tree - about 50% of branches had a local posterior probability (LPP) above 75% (see Figure 1 in the main text). Major clades were well supported (LPP > 80%) while relationships towards the tips of the tree generally had lower support. The final normalized quartet score, the proportion of quartet trees that agree with the species tree, was 65%, indicating that there is gene tree conflict in the genus.

The IQ-TREE concatenated approach (see Figure A1 in the supplementary materials) had increased bootstrap support compared to ASTRAL. More than 88% of branches had bootstrap support greater than 75%. The best partitioning scheme put the 85 loci into 20 different partitions. Major clades were again well-supported in this tree (bootstrap > 80%).

Our phylogenetic analyses recovered five well supported clades. Overall, these clades corresponded with the sections as defined by Otedoh [21]. *Raphia regalis* was always inferred with strong support as sister to the rest of the genus independent of the inference method (Figures 1, A1). When comparing the two phylogenetic approaches we identify a topological difference in the phylogenetic placement of the section Temulentae, the species *R. matombe* and the Moniliformes and Flabellatae sections 2. In the IQ-TREE we find weak support for the Temulentae to be sister to all *Raphia* (except *R. regalis*) (Figure 2a) yet the ASTRAL tree indicates with higher support that Temulentae is sister to a clade containing *R. matombe*, Moniliformes & Flabellatae (Figure 2b).

The relationships between species in the Raphiate section are weakly to moderately supported 132 in both analyses (Figures 1,A1). Nevertheless, we do recover monophyletic groups in some species 133 consistent with prior morphological identifications. This is the case for individuals of R. laurentii and 134 *R. monbuttorum*, which despite low support are monophyletic. Furthermore, both these species are recovered as sister, with moderate to high support. However, our species delimitation analysis suggests 136 that individuals identified under both species are conspecific (Figure 1 A). Support is generally higher 137 in the ASTRAL tree, even when taking into account different gene histories, so we suggest that the 138 ASTRAL tree represent a more accurate reconstruction of the phylogeny of *Raphia* (Fig. 2b) so we will 139 principally refer to the relationships in this tree from now on. 140

Version March 11, 2020 submitted to Plants

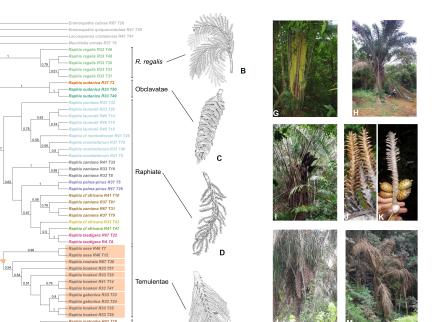
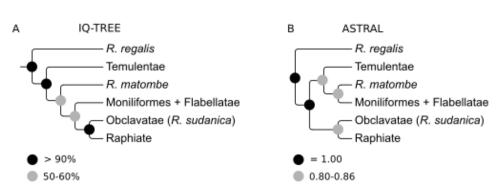



Figure 1. A: Cladogram of the genus Raphia inferred using 85 gene trees and ASTRAL. Values of local posterior probabilities are shown above the branches. Branch lengths are represented in Figure A2. Individuals are color coded based on the hypothesis of species delimitation inferred using SODA with $\alpha = 0.01$. A single clade, the Temulentae section marked with a star and referred to as "hookeri complex" in the main text, varied between our two values of α . The orange boxes represent the species limits using SODA with a more stringent value of $\alpha = 0.005$. Tip names contain the species name as well as the sequencing ID. B: R. regalis partial inflorescence representing the Moniliformes section, but see discussion. C: R. sudanica inflorescence, representing the Obclavatae section. D: R. palma-pinus inflorescence, representing the Raphiate section. E: R. hookeri inflorescence, representing the Temulentae section. F: R. farinifera inflorescence, representing the Flabellatae section. G: R. regalis, note the inflorescence subtended by the leaves (Couvreur 398, Cameroon). H: R. zamiana (Mogue Kamga 17, Gabon). I: R. monbuttorum (Couvreur 1212, Cameroon). J: detail of R. monbuttorum rachillae (Couvreur 1212, Cameroon). K: detail of R. laurentii rachillae (Mogue Kamga 39, Democratic Republic of Congo). L: R. hookeri (no voucher, Cameroon). M: R. gabonica (Mogue Kamga 22, Gabon). N: R. australis (no voucher, South Africa, Kirstenbosch Botanic Garden). O: Inflorescence of R. vinifera (Couvreur 638, Cameroon). B-F: Drawings reproduced from [23]; Photos G-J, L-O: T.L.P. Couvreur; Photo K: S. Mogue Kamga.

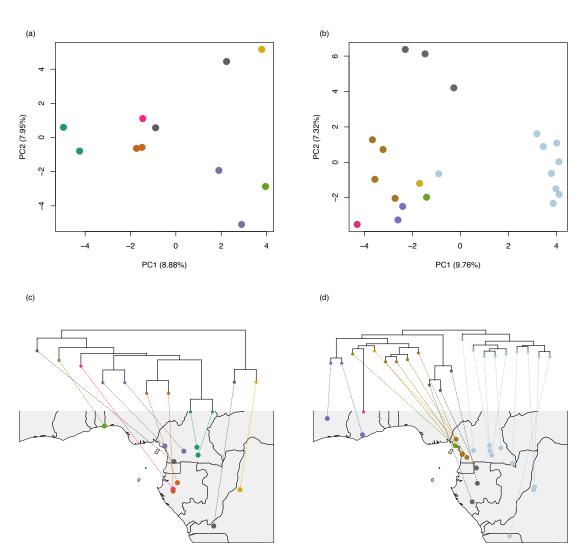
Moniliforme & Flabellatae

6 of 20

Version March 11, 2020 submitted to Plants

Figure 2. Major incongruences between the (**A**) concatenation (IQ-TREE) and (**B**) gene tree (ASTRAL) phylogenetic approaches. Both trees have been modified to show the relationships among major *Raphia* clades. Support values are indicated on the nodes as either (**a**) bootstrap or (**b**) local posterior probability.

141 2.3. Species delimitation


Our species delimitation approach yielded between 17 ($\alpha = 0.005$) and 23 ($\alpha = 0.01$) species in 142 *Raphia* genus (Figure 1). Higher values of α split a clade of closely related individuals (marked with a 143 star in Figure 1), predominantly belonging to *R. hookeri*, into seven different species. Generally, our 144 species delimitation results corresponded to in field morphological classification of Raphia species 145 using available floras (e.g. [19,20]). In some cases we found that SODA split individuals belonging 146 a priori to a single species into multiple species, for example R. farinifer a and R. sudanica (Fig. 1). 147 Conversely, individuals assigned to different species such as R. laurentii and R. monbottorum were 148 classified as the same species after SODA delimitation independent of α values. In general, the support 149 among different species as delimited by SODA was high (Figure 1). 150

151 2.4. Fine scale structure in two species-complexes

To further explore genetic structure among our two main species complex, namely the "zamiana 152 complex" and the "hookeri complex" (marked with a triangle and star in Figure 1), we used SNPs 153 extracted from the sequence data to look at the variation among individuals. The "hookeri" complex 154 showed little evidence of clustering, with most individuals evenly spread out on the first two principal 155 component (PC) axes (Figure 3a). We observed two major groups of >8 individuals in the "zamiana" 156 complex along PC1 (Figure 3b), separating all of the R. laurentii and R. monbuttorum from the rest of 157 the individuals. The first two PCs in both analyses explained 7-10% of the variance in the dataset. In 158 general, our SNP data supports SODA species delimitation as the assigned species grouped together 159 along one or both of the first two PCs in most cases (Figure 3a, b). Finally, our SNP data revealed that 160 individuals within the "hookeri" complex clustered into four major groups (Figure 3a, c): the single 161 individual from Togo; individuals from western Cameroon; individuals from East Cameroon and 162 individuals from Gabon. 163

The plotting of these complexes on maps of the sampling region reveals that the delimited species cluster geographically (Figure 3c, d). In the hookeri complex, the *R. sese* individuals were sampled at a great distance from each other and *R. gabonica* falls in the middle of the *R. hookeri* distribution range. Likewise, in the zamiana complex *R. laurentii* and *R. monbottorum* are widespread, overlapping with other taxa. Many of the delimited species co-occur or are adjacent to one another in Cameroon.

Version March 11, 2020 submitted to *Plants*

Figure 3. (a) Scatterplot of *R. hookeri* complex based on 915 SNPs. (b) Scatterplot of *R. zamiana* complex based on 1627 SNPs. Clades representing the (c) *R. hookeri* and (d) *R. zamiana* complexes were extracted from the ASTRAL (Figure 1) tree and linked to their locations on a map of central Africa. Individuals are coloured by the colours corresponding to SODA species delimitation for $\alpha = 0.01$ in (a) & (c) and $\alpha = 0.005$ in (b) & (d). An individual belonging to *R. taedigera* (RA_TA) is not shown in panels (a) & (c) due to missing data.

Version March 11, 2020 submitted to Plants

169 3. Discussion

¹⁷⁰ 3.1. Synthesizing morphology and molecules: the sections of Otedoh reevaluated.

Our phylogenomic analyses of *Raphia* provide a novel and overall well supported phylogenetic 171 framework for this important African genus (Figure 1). Although some of the morphology based 172 sections of Otedoh [21] were recovered, we also recovered some topological differences (Figure 1). 173 The Moniliformes and Flabellatae are not recovered as monophyletic. The Moniliformes are 174 split into two clades (Figure 1), while the two Flabellatae species (Raphia regalis, R. australis) are not 175 recovered as sister. In all analyses, the acaulescent central African species Raphia regalis is recovered 176 with strong support as sister to the rest of the genus (Figures 1, A1). This species, together with R. 177 *australis*, were placed within the subsection "erectae" [20,21] because the inflorescences were suggested 178 to be "erect", in contrast to the rest of the Raphia species whose inflorescences are hanging or semi-erect. 179 Our results do not support this classification, as R. australis is recovered as sister to R. farinifera (of the 180 Flabelattae section, Figure 1) and phylogenetically divergent from R. regalis. A closer observation in 181 the field showed that only the inflorescences of *R. australis* are truly erect (Figure 1 N). In contrast, the 182 inflorescences of *R. regalis* appear erect but are in fact "supported" by the large leaves and not truly 183 erect (Figure 1 G). 184

The phylogenetic placement of the Moniliformes species *R. matombe* from the Democratic Republic of the Congo and Angola is different between the two types of analyses. The close relationships between these two sections is not surprising. The inflorescences, although different in some aspects such as the clearly racket-shaped partial inflorescences in the section Flabellatae, show certain similarities not encountered in other *Raphia* species. Both have thin rachillae and the partial inflorescences are subtended by large showy bracts at least in the younger stages of development. These morphological similarities thus support the close phylogenetic relationships recovered here between these two sections.

The Obclavate section, composed of the sole species *R. sudanica*, is recovered with strong or moderate support as sister to the Raphia section. This species presents a unique inflorescence structure within the genus that is reduced and compressed into a cylindrical shape (Figure 1 C), with large bracts covering the inflorescences almost completely [20,21,27]. In addition, and in contrast to most species, *R. sudanica* thrives within the drier regions of the Sahel. These distinctive characters and its phylogenetic position support it being placed in its own section, confirming the classification of Otedoh [21].

Finally, the two remaining sections, Raphiate and Temulentae, are recovered as monophyletic, although with varying levels of support from strong to moderate (Figures 1,A1). This also confirms the classification of Otedoh [21] and the usefulness of partial inflorescence shapes in the classification of *Raphia* species.

Our results suggest that certain sections erected by Otedoh [21] are not monophyletic and need to 203 be re-evaluated. Differences in phylogenetic relationships between the concatenated and coalescent 204 approaches have been increasingly reported in the genomic era [28]. Our results were similar to those 205 in Couvreur et al. [19] where higher bootstrap support were obtained when using the concatenation 206 approach, despite the coalescent approach highlighting considerable gene tree conflict. Here, we 207 favour the phylogenetic hypothesis recovered when using the coalescent approach (Figure 1) because 208 these methods allow gene history to be taken into account [Some theoretical paper + [29]] and provide 209 an arguably more realistic reconstruction of phylogenetic relationships when using a large number 210 of independently evolving nuclear markers as used here. Our analyses suggest that we can retain 211 five sections, only slightly different than those initially defined by Otedoh [21]. Three sections have 212 been reconstructed in the phylogeny: Obclavatae (with its only species *R. sudanica*), Raphiate and 213 Temulentae. The latter two sections are internally complicated, and more discussion about the 214 phylogenetic relationship within sections is provided below. The main problem thus comes from the 215 Moniliformes and Flabellatae sections, which are not monophyletic. *Raphia regalis* should be placed 216 in a section of its own, linked to its unique morphology being an acaualescent species with large 217

Version March 11, 2020 submitted to Plants

9 of 20

inflorescences subtended in between large leaves (Figure 1 G). Finally, the last section should regroup
all the other species from both the Moniliformes and Flabellatae. In both cases, we shall refrain here
from erecting a new section because it is out of the scope of this paper.

221 3.2. Species delimitation and species complexes

Phylogenetic relationships between species are well to weakly resolved depending on the section,as discussed below.

3.2.1. The Moniliformes/Flabellatae section

Within the Moniliformes/Flabellatae section species relationships are generally strongly supported (Figures 1, A1) and several species are recovered as monophyletic (*R. australis, R. farinifera, R. matombe*) while species limits in others are less clear (*R. textilis, R. vinifera*).

Once again, there is a conflict between the concatenated and coalescent analyses. *Raphia textilis* is recovered as monophyletic with strong support (Figure 1). Nevertheless, there is little doubt that these samples represent the same species as they are morphologically similar. This is also confirmed by the species delimitation analysis at both levels of α (Figure 1,A2).

Another result recovered is the close relationship of the two montane species of Raphia: R. 232 ruwenzorica been included within R. vinifera. Both species occupy a similar ecological and altitudinal 233 range, despite being geographically separated by ca. 2,500 km. Raphia vinifera, which has long 234 been mis-identified with R. mambillensis (now a synonym of R. vinifera [30]), is very common in the 235 Cameroon Volcanic Line (CVL) in Cameroon and Nigeria, where it grows between 1,200 and 2,000m in 236 grassland/open vegetation and is very abundant along streams and rivers [10,30]. Raphia ruwenzorica 237 occurs between 800 and 1,500 m in the Albertine rift region in eastern Democratic Republic of the 238 Congo and Burundi and has been suggested to grow in "savanna country" along valleys [20,21,31,32]. 239 In addition, both species present similar partial inflorescence that is flat and racket shaped. However, 240 both species differ markedly in their port with *R. ruwenzorica* reported to have a distinct tall truck 241 reaching up to 15 m [10,21,31] whereas as *R. vinifera* is acaulescent or with a short trunk (less than 1 m; 242 [30]). This, in addition to the 2,500+ km separating these species, suggests that they could be recognized 243 as distinct, despite our results. Interestingly, an intraspecific CVL / Albertine rift disjunction has been 244 documented in different taxa such as *Isolona congolana* (Annonaceae, [33]) and *Prunus africana* [34]. 245

Raphia farinifera is the most widespread species of Raphia, occurring from West Africa to East Africa 246 and Madagascar, and has also been reported from the Republic of Congo and Angola [23,32,35–40]. 247 Our limited (3) but widespread sampling (West Africa and Madagascar) of individuals clustered together with maximum support (Figures 1,A1). However, our species delimitation analysis suggests 249 that the Malagasy individual (R41_T15) is a different species (Figure 1). Raphia individuals from 250 Madagascar were initially described as a different species (R. ruffia) [22] and the name subsequently 251 synonymized with R. farinifera [32]. In Madagascar, Raphia is widely used (one of the most useful 252 palms) and, today at least, not found in natural forests across the island [41]. This has led to the hypothesis that Raphia was introduced 1,500 years ago during the first wave of human colonization of 254 the island [41]. However, Beccari [22] (p. 53) writes that the Malagasy species "prefers the vicinity of 255 the sea where it forms whole forests in swampy places especially on the East coast" suggesting that 256 it did at one point in time occur naturally and abundantly. Our sampling is not extensive enough to 257 answer this question conclusively, but our results suggest that Malagasy individuals might indeed belong to a different species (R. ruffia) as concluded by Beccari [22] (p. 53). Finally, R. farinifera is 259 recovered as sister to R. australis, a relationship already suggested based on morphology [32]. 260

²⁶¹ 3.2.2. The Raphiate section

²⁶² One of the most complex and least understood sections is the Raphiate section, which contains ²⁶³ seven to eight species. Some of these species are poorly known and rarely collected, sometimes only ²⁶⁴ known from a single poor quality specimen (*R. mannii*; *R. longiflora*; *R. africana*). In our study we were

Version March 11, 2020 submitted to Plants

not able to sample *R. mannii* and *R. longiflora*, thus our results for this section are still incomplete. 265 Indeed, these species are morphologically similar [19], having clustering stems covered with straight 266 fibres in addition to having semi-erect inflorescences when young (Figure 1 I), a unique character for the genus. Nevertheless, it is hard morphologically to consider these two species as conspecific. 268 Indeed, the shape of the rachillae is quite different between these species (Figure 1 J,K). Raphia laurentii 269 is characterized by rather thick rachillae covered by numerous tightly packed rachis bracts leading to 270 an overall digitate aspect of the rachillae (Figure 1 J). In *R. monbuttorum* the rachillae are thinner and 271 the rachis' bracts are less tightly packed around the rachillae (Figure 1 K). These differences appear to be consistent and provide useful identification characters [19]. 273

- *Raphia zamiana* was recently described [7]. Our broad sampling of this species, however, recovers *R. zamiana* as polyphyletic, with individuals grouping into two main clades, flagged as two different
 species by our species delimitation analysis (Figures 1, A2). Interestingly, these two species are
 geographically distinct, with one clade sampled across Gabon and one across Cameroon (Figure 3b, d),
 the latter containing the type of *R. zamiana*. The Gabon cluster is particularly well supported in both
 analyses. At this point, however, it is hard to pin point clear morphological characters differentiating
 these two clusters, as extensive field observations have yet to distinguish them properly.
- We sampled two individuals of the Neotropical species *R. taedigera*, both from Brazil. As expected 281 from the morphology of the partial inflorescence [21], this species grouped within the Raphiate section 282 (Figure 1). Both individuals clustered together with strong support, and, in turn, were recovered as 283 sister to either *R. africana* (Figure 1) or *R. palma-pinus* (Figure A1, in both cases with weak support 284 values. Otedoh [21], following certain authors [23,42] suggested that R. taedigera was very close 285 morphologically to a species identified as R. vinifera. However, early on the taxonomic concept of 286 *R. vinifera* has been confusing, erroneously mistaking this species for a Raphiate type species [23,42]. 287 Mogue Kamga et al. [30] clarified the situation showing that the name *R. vinifera* refers to a Flabelattae 288 species mainly occurring in the CVL. To date, it remains unclear to what species Otedoh and others 289 [21,23,42] were referring to when invoking *R. vinifera*. 290

Despite these taxonomic confusions, our results provide some results as to the origin of *R. taedigera*. 291 It has been hypothesised that this species originated as a result of vicariance during the breakup of 292 Gondwana [4]. If this were the case we would have expected that *R. taedigera* to be sister to the African 293 species. The deeply nested position of *R. taedigera* within the genus does not support this hypothesis. 294 Instead, our results lend some support to the conclusion of Otedoh [10] who suggested that R. taedigera 295 did not show any "primitive" characters within the genus. Otedoh went further to suggest that R. 296 taedigera was the result of a recent introduction in South and Central America during the slave trade 297 some 400 years ago [10,11]. Our species delimitation results suggest, however, that R. taedigera is a 298 valid species (Figure 1), at least based on the individuals sampled from Brazil. Finally, Otedoh also 299 suggested the presence of *R. taedigera* in coastal west-central Africa [10,11]. However, to date we have 300 not been able to locate this species in African collections and this hypothesis remains doubtful [1]. Our 301 phylogenetic analyses suggest that R. taedigera is genetically quite different from other Raphia species 302 (Figure A2) supporting the hypothesis that it must have dispersed to the Neotropics more than 400 303 years ago. This would fit with paleoecological data from Nicaragua documenting R. taedigera pollen 304 over the last 2,500 years [9]. A more detailed sampling of *R. taedigera* from the Neotropics together 305 with a dated molecular phylogeny approach will provide a better understanding of the biogeographic 306 history of this interesting trans-Atlantic disjunction. 307

308 3.2.3. The Temulentae section

This section contains the species referred to as the "wine" palms [20,21] with three species previously included in this section (*R. hookeri*, *R. rostrata*, *R. sese*), all of which are sampled here. In addition, our results show that the newly described species, *R. gabonica* [7], is also part of the Temulentae section. This was not clear at the time of the publication as the partial inflorescence suggested a possible relationship with the Moniliformes section [7]. Overall, species identified based

Version March 11, 2020 submitted to Plants

on morphology clustered together (e.g. R. gabonica, R. sese) with strong or low support. Nevertheless, 314 all four species show a very close phylogenetic proximity, suggesting that this section could be regarded 315 as one large species complex. Indeed, depending on the level of stringency, our species delimitation analysis recovered either seven distinct species or one single species (Figures 1, A2). It is important to 317 note that changing levels of α did not impact species delimitation in the other sections. Morphologically, 318 however, these species are different and can easily be identified in the field, which is partly supported 319 by our phylogenetic analysis. For example, *R. gabonica* resembles *R. hookeri* in the clearly visible single 320 stem covered with characteristic curly fibers, but differs markedly by being a terra firma low-density 321 species with thin (Moniliformes-like) and densely packed rachillae. In contrast, R. hookeri is a swampy 322 species, growing in large, monodominant stands with robust and more evenly-spaced rachillae [7,19]. 323 In the same way, R. rostrata is characterized by a small but clustering stem with curly mixed with 324 straight hanging fibers and occurs along rivers with strong currents [19]. 325

Raphia hookeri is recovered here as polyphyletic, possibly including four different cryptic species.
This is one of the most important, abundant and widespread *Raphia* species and its overall morphology
is rather constant across its range. However, individuals appear to be geographically structured like in *R. zamiana* (see above). Interestingly, this mirrors patterns of genetic structure recovered across a wide
range of central African plant species [43,44], including *R. zamiana*.

331 4. Conclusions

Our results provide a new step forward in understanding the phylogenetic relationships and 332 taxonomy within this major African palm genus. We show that the morphological sections based 333 on partial inflorescence shape defined by Otedoh [21] are relatively robust overall, even though two 334 sections will need to be grouped and redefined morphologically. Our results also uncover important 335 species delimitation problems defined here as species complexes (R. hookeri, R. zamiana) that must 336 be solved if we are to have a thorough understanding of Raphia systematics. Given the economic 337 and ecological importance of *R. hookeri*, clarifying its species delimitation will be important in the 338 future. Different approaches could rely on more in-depth population level studies using more variable 339 markers (e.g. microsatellites) combined with detailed morphometric measurements as has been done 340 in other African tree species [45]. We show here that the Heyduk et al. bait kit [26] is useful for 341 understanding relationships within the *Raphia* genus and between species as in other groups [?], 342 although it appears to be limited for untangling species complexes. Resolving relationships within 343 Raphia will thus rely on more data, including increased intra-species sampling, detailed morphological 344 studies in certain species and larger baiting kits e.g. [46]. 345

346 5. Materials and Methods

347 5.1. Species sampling, library preparation and DNA sequencing

We sampled a total of 56 individuals (see A1 for details) representing 18 out of the 21 species 348 accepted to date [7,19] and representing all sections described by Otedoh [21]. In order to collect 349 proper material for sequencing, several field trips were undertaken across several African countries 350 including Ivory Coast, Ghana, Gabon, Cameroon, Angola and the Demographic Republic of the 351 Congo between 2012 and 2017. We were not able to access material from three accepted species: R. 352 gentiliana, R. mannii and R. longiflora. We sampled two to seven individuals per species in order to 353 test for monophyly. However, only a single specimen was available for *R. ruwenzorica*. Finally, we 354 sampled four species within Calamoideae as outgroups: Eremospatha cabrae, Eremospatha quiquecostulata, 355 Laccosperma cristalensis and Mauritiella armata following [25,47]. We extracted DNA from leaves dried 356 in silicagel, except for one individual of *R. taedigera* and the only individual of *R. ruwenzorica* for which 35 DNA was extracted from herbarium dried material. 358

Methods for DNA extraction, preparation of sequencing libraries, hybridization, Illumina MiSeq DNA sequencing and read cleaning followed [19]. In brief, barcoded Illumina libraries were

Version March 11, 2020 submitted to Plants

constructed based on a modified protocol of Rohland and Reich [48]. We hybridized DNA to defined
exons using the palm-specific nuclear baiting kit of Heyduk et al. [26]. This kit allows to sequence
exons from 176 nuclear genes across the palm family.

5.2. Contig assembly and multi-sequence alignment

We used HybPiper (v1.2) [49] to process our cleaned reads (following [19]) to obtain sequences 365 corresponding to the target exons plus associated intronic sequence data (referred to as supercontigs). We aligned each set of supercontigs using MAFFT (v7.305) [50] with the -auto option and cleaned these 367 alignments with GBLOCKS (v0.91b) [51] using the default parameters and all allowed gap positions. 368 To identify a suitable set of loci for phylogenetic inference we selected only those supercontigs 369 that had 75% of their exon length reconstructed in at least 25% of individuals (referred to as 75/25). 370 We used only those loci in which at least 75% of the exon length was recovered because the use of 371 fragmented sequences is known to increase gene tree error, whereas the number of individuals has 372 little effect as long as the gene tree is accurate [52]. 373

374 5.2.1. Paralog identification

HybPiper flags potential paralogs when multiple contigs are discovered mapping well to a 375 single reference sequence. We ran hybpiper on the 837 exons that made up the baiting kit [26], 376 identified flagged loci and constructed exon trees using RAxML (v8.2.9) [53]. We examined each tree to 377 determine whether putative paralogs formed a species clade. When sequences concerning more than 378 three individuals were flagged for a locus, we examined whether the 'main' and alternative sequences 379 formed separate clades. If so this locus was classified as a paralog and discarded from the dataset. For 380 each gene, we then calculated at the proportion of exons that we confirmed as paralogs after inspection. 381 If this proportion was <%50 we removed the entire gene from our analyses. 382

383 5.3. Coalescent phylogenetic inference

Individual gene trees were constructed with 100 bootstraps and the GTRGAMMA model using RAxML (v8.2.9) [53] (option "-f a"). If after inference, branches had bootsrap support values >10 they were collapsed using the program nw_ed [54] because this approach has been shown to improve the accuracy of ASTRAL [29]. We used the selected 75/25 gene trees as our input to run ASTRAL-III (v5.5.11) [29] using the default options.

389 5.4. Species delimitation

After constructing our ASTRAL tree we used the associated approach SODA [55]. Simulations using this approach have shown it to be of similar accuracy or more accurate [55] than other popular species delimitation methods such as BPP [56] at a fraction of the computational cost. SODA uses frequencies of quartet topologies to determine if each branch in a guide tree inferred from gene trees (i.e. the ASTRAL tree from above) is likely to have a positive length. This identifies where in the tree coalescence is random, and where it is non-random. It then uses the results to infer a new, extended species tree that defines boundaries among species. We used two cut-off values of α (confidence level): 0.01 and 0.005.

398 5.5. Maximum-likelihood phylogenetic inference

After suitable loci were identified we filled any missing individuals in each alignment with an empty sequence. We then concatenated all aligned loci using the *pxcat* function in the program phyx [57]. We used IQ-TREE (v1.6.8; [58])to infer a maximum likelihood tree of all individuals. We partitioned our dataset so that each supercontig had a separate substitution model and used the following options when running the program: "-m MFP+MERGE -rcluster 10 -bb 1000 -alrt 1000". We selected the optimal partitioning scheme using ModelFinder [59], choosing the best model based on

Version March 11, 2020 submitted to Plants

Bayesian Information Criterion (BIC) score and merging genes until model fit stopped increasing. We
also used rcluster [60] to decrease computational load. We made use of the ultrafast bootstrapping
([61]; 1000 replicates) and the SH-like approximate likelihood ratio test ([62]; 1000 replicates) to assess
branch support in the tree.

5.6. SNP calling

To call SNPs we first used SeCaPr (v1.1.4; [63]) to build a psuedoreference. After filtering out low coverage and paralogous loci, consensus sequences are built and combined to form a reference file that is closer to the study group than the original, and will recover more data. We mapped our cleaned, paired reads to this new, dataset-specific reference using BWA (v0.7.12; [64]). Duplicates were removed and we called SNPs using the program HaplotypeCaller in GATK (v4.0; [65]). We applied thresholds to mapping quality (>40%) depth (>25), quality by depth (>2), minimum quality across all individuals (>10) and minor allele frequency (>0.01) to filter SNPs using bcftools (v1.8; [66]). We kept only biallelic SNPs and excluded monomorphic sites.

418 5.7. Genetic clustering

We performed Discriminant Analysis of Principal Components (DAPC) [67] to identify genetic clusters in two species complexes of *Raphia*. We used the function *find.clusters* in the R package 'adegenet' [68] to infer the number of clusters using successive K-means with 100,000 iterations per value of k up to k = 20. We used BIC to identify the best-fitting number of clusters. We then used the function *dapc* [67] to define the diversity among the clusters identified. We chose the optimum number of axes to use with the function *optim.a.score*.

Author Contributions: Conceptualization, AJH, TLPC and BS; methodology KB and AH; validation AJH, KB
and MKS; formal analysis AJH; resources LT, FS, CDB, AZ, AA, MKS, TLPC; data curation KB, AJH and MKS;
writing-original draft preparation AJH and TLPC; writing-review and editing, TO COMPLETE; supervision,
TLPC and BS; project administration, TLPC; funding acquisition, TLPC. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported by Agropolis Fondation (RAPHIA project) under the reference ID 1403-026 430 through the «Investissements d'avenir» program (ANR-10-LABX-0001-01; ISITE MUSE: ANR-16-IDEX-0006) 431 and Agence Nationale de la Recherche (ANR-15- CE02-0002-01), both to TLPC. This work was also part of the 432 PALM-A-GOV (project number: 1702-007) project to TLPC, publicly funded through the ANR (the French National 433 Research Agency) under the "Investissements d'avenir" program with the reference ANR-10-LABX001-01 Labex 434 Agro and coordinated by Agropolis Fondation within the I-SITE MUSE (ANR-16-IDEX-0006). AZ is funded by 435 iDiv via the German Research Foundation (DFG FZT 118), specifically through sDiv, the Synthesis Centre of iDiv. 436 C.D.B. is funded by the Swedish Research Council (2017-04980). A.A. is funded by the Swedish Research Council, 437 the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation and the Royal Botanic 438 Gardens, Kew. ADD funding others here 439

Acknowledgments: The authors acknowledge the IRD itrop HPC (South Green Platform) at IRD Montpellier 440 for providing HPC resources that have contributed to the research results reported within this paper. We are 441 grateful to the Centre National de la Recherche Scientifique et Technique (CENAREST) in Gabon and the Agence 442 National des Parques Nationaux (ANPN) for delivering the necessary research permits for our field work in 443 Gabon in 2015 and 2016 (permits AR0020/16; AR0036/15 (CENAREST) and AE16014 (ANPN)). Prof. Paul Henri 444 Bourobou Bourobou is thanked for his assistance in obtaining these research permits. Fieldwork in Cameroon was 445 undertaken under the "accord cadre de cooperation" between the IRD and Ministère de la Recherche Scientifique 446 et Technique (MINRESI). TU Dresden maintains a Memorandum of Understanding with the Instituto Nacional 447 da Biodiversidade e Áreas de Conservação (INBAC) of the Ministério do Ambiente da República de Angola 448 that includes collection and export permits.. FOR THOSE HOW HAVE PERMITS PLEASE ADD OR SEND TO 449 THOMAS 450

451 Conflicts of Interest: The authors declare no conflict of interest.

452 Abbreviations

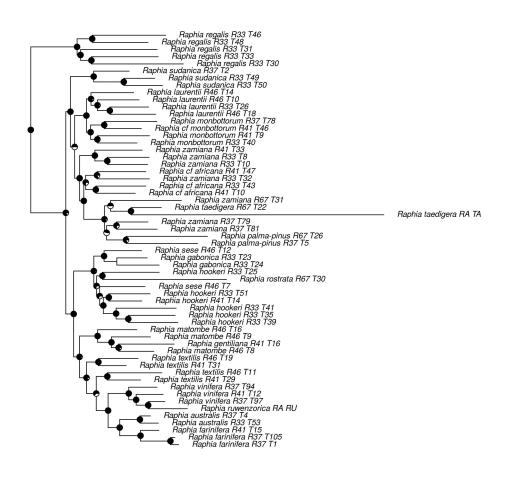
⁴⁵³ The following abbreviations are used in this manuscript:

454

Version March 11, 2020 submitted to Plants

- CVL Cameroon Volcanic Line
- 455 SNP Single Nucleotide Polymorphism
 - PC Principal Components Analysis
- 456 Appendix A Supplementary Tables

Genus	Species epithet	ID	Collector (herbarium)	Country	Latitude	Longitude	Run	Tag	No. mapp	Mean dep	Stdev dep
Eremospatha	cabrae	R227	Couvreur 1165 (WAG)	Cameroon	-1.03044	10.51881	RUN67	TAG-28	441790	315.48	469.205
Eremospatha	quiquecostulata	R162	Couvreur 1079 (WAG)	Gabon	-5.02068	15.1545	RUN41	TAG39	91982	46.1243	68.317
Laccosperma	cristalensis	R164	Couvreur 1142 (WAG)	Gabon	-5.73485	14.2162	RUN41	TAG41	105250	54.4592	86.7057
Mauritiella	armata	R135	Couvreur 257 (NY)	Bolivia	-1.45585	12.5863	RUN37	TAG6	406142	213.159	1244.61
Raphia	africana (cf)	R072	Couvreur 971 (WAG)	Cameroon	5.48034	10.05056	RUN41	TAG10	121972	63.533	69.0331
Raphia	africana (cf)	R174	No	Cameroon	-0.8852	18.1337	RUN41	TAG47	50272	26.0156	28.656
Raphia	africana (cf)	R77	voucher, close to Couvreur 971 (WAG) No	Cameroon	-2.37125	11.16443	RUN33	TAG43	315915	159.931	188.084
Raphia	australis	R130	voucher, close to Couvreur 971 (WAG) MBC 99 874D (SANBI)	Cultivated, Kirstenbosch National Botanical Garden, South	-33.9878	18.43262	RUN37	TAG4	913167	473.13	627.945
Raphia	australis	R92	MBC 99 874D (SANBI)	Africa Cultivated, Kirstenbosch National Botanical Garden, South	-33.9878	18.43262	RUN33	TAG53	255329	129.65	156.525
				Africa							
Raphia Raphia	farinifera farinifera	R127 R128	Baker 1357 (K) Baker 1410 (K)	Cultivated, Royal Botanic Gardens, Kew, U.K. Burkina Faso	N/A 5.39625	N/A -1.38278	RUN37 RUN37	TAG105 TAG1	486723 476130	250.42 245.7	309.47 292.787
Raphia	farinifera	R132	Dransfield	Madagascar	-1.84988	13.85903	RUN41	TAG15	133441	68.7643	85.4757
			7516 (K)	0							
Raphia Raphia	gabonica gabonica	R34 R36	Kamga Mogue 22 (WAG) Kamga Mogue 23 (WAG)	Gabon Gabon	2.49409 3.4825	10.34844 13.59469	RUN33 RUN33	TAG23 TAG24	284243 212852	143.822 108.979	174.031 136.141
Raphia	hookeri	R124	Couvreur	Cameroon	3,52108	11,74376	RUN41	TAG14	78554	40.8646	44.4911
			984 (WAG)								
Raphia Raphia	hookeri hookeri	R37 R63	Kamga Mogue 25 (WAG) Kamga Mogue 1 (WAG)	Gabon Cameroon	3.59972 1.59848	11.2877 11.62294	RUN33 RUN33	TAG25 TAG35	278678 319096	142.219 162.68	175.028 210.004
Raphia	hookeri	R69	Kamga Mogue 12 (WAG)	Cameroon	4.11224	9.56915	RUN33	TAG39	197508	102.00	122.815
Raphia	hookeri	R71	Kamga Mogue 26 (WAG)	Cameroon	4.87064	9.26582	RUN33	TAG41	292201	149.509	181.385
Raphia	hookeri	R89	Michon 01 (G)	Togo	-2.25428	11.14284	RUN33	TAG51	201880	103.103	124.193
Raphia	laurentii	R186	Kamga Mogue 39 (WAG)	Democratic Repubic of Congo	-7.94817	15.83894	RUN46	TAG10	87838	47.1055	51.2042
Raphia	laurentii	R198	Kamga Mogue 42 (WAG)	Democratic Repubic of Congo			RUN46	TAG14	86786	46.5246	51.1853
Raphia	laurentii	R208	Lautenschläger 806 (JACQ)	Angola	3.137672	9.971397	RUN46	TAG18	64379	34.3542	37.7478
Raphia	laurentii	R40	Ayole 01 (YA)	Cameroon	3.19962	10.51772	RUN33	TAG26	272509	138.397	168.066
Raphia	matombe	R134	19392103 (BR)	Cultivated, Meide Botanical Garden, Belgium	-0.1473	11.726	RUN41	TAG16	76250	39.5975	44.2225
Raphia	matombe	R181	Kamga Mogue 37 (WAG)	Democratic Repubic of Congo	-0.8642	18.1458	RUN46	TAG8	55883	29.9284	31.68
Raphia	matombe	R183	Kamga Mogue 38 (WAG)	Democratic Repubic of Congo	-0.60673	18.2468	RUN46	TAG9	66676	35.6465	38.4587
Raphia	matombe	R206	Lautenschläger 1095 (JACQ)	Angola	2.339	10.6025	RUN46	TAG16	59006	31.6789	34.7279
Raphia	monbottorum	R173	Kamga Mogue 31 (WAG)	Cameroon	-5.65308	14.3181	RUN41	TAG46	98860	50.8202	56.6257
Raphia	monbottorum	R059	Kandem 211 (WAG)	Cameroon	6.366477	10.8946	RUN41	TAG9	104568	54.2312	58.009
Raphia	monbottorum	R66	Kamga Mogue 04 (WAG)	Cameroon	3.58237	13.14197	RUN37	TAG78	407023	208.475	245.939
Raphia	monbottorum	R70	Kamga Mogue 13 (WAG) Ouatara &	Cameroon	4.87036	9.26579	RUN33	TAG40	352731	180.143	231.782
Raphia	palma-pinus	R133	Stauffer 14 (G)	Ghana	-1.40695	12.5712	RUN37	TAG5	792856	411.261	507.288
Raphia	palma-pinus	TC-S1328	Stauffer 857 (G)	Ivory Coast	7.24598	-5.39625	RUN67	TAG-26	459813	318.875	309.014
Raphia	regalis	R55	Couvreur 685 (WAG)	Cameroon	3.885056	14.39931	RUN33	TAG30	184893	94.4991	128.908
Raphia	regalis	R56	Couvreur 753 (WAG)	Cameroon	3.07485	13.3663	RUN33	TAG31	210853	107.898	137.475
Raphia	regalis	R58	Couvreur 398 (WAG)	Cameroon	3.97037	13.2367	RUN33	TAG33	388670	196.877	269.794
Raphia	regalis	R81	Weiringa 8539 (WAG)	Gabon	-2.3714	11.16399	RUN33	TAG46	161079	81.8365	100.151
Raphia	regalis	R83	Weiringa 8333 (WAG)	Gabon	7.55826	2.19247	RUN33	TAG48	150544	76.7195	98.4529
Raphia	rostrata	R229	Kamga Mogue 43 (WAG)	Cameroon	-0.82955	10.52294	RUN67	TAG-30	476709	329.286	313.366
Raphia Raphia	ruwenzorica sese	RA_RU R179	Robyns 4039 (BR) - herbarium sample Kamga Mogue 36 (WAG)	Democratic Repubic of Congo Democratic Repubic of Congo	-0.88513	18.1337	N/A RUN46	N/A TAG7	N/A 62972	N/A 33.7432	N/A 37.0717
Raphia Raphia	sese	R195	Kamga Mogue 41 (WAG)	Democratic Republic of Congo Democratic Republic of Congo	-0.88515 -6.74019	16.20117	RUN46 RUN46	TAG7 TAG12	88659	47.5337	50.4421
Raphia	sudanica	R199	Bayton 70 (K)	Burkina Faso	10.59388889	5.30694444	RUN37	TAG12	471997	246.119	299.37
Raphia	sudanica	R86	Michon 09 (G)	Benin	8.98317	1.49297	RUN33	TAG2 TAG49	379755	193.881	231.648
Raphia	sudanica	R88	Michon 56 (G)	Togo	6.39183	2.67703	RUN33	TAG50	355099	181.913	220.289
Raphia	taedigera	Env0563	MBC 94803 A (MBC)	Cultivated, Montgomery Botanical Garden	N/A	N/A	RUN67	TAG-22	666580	446.883	465.14
Raphia	taedigera	RA TA	Noblick 5015 (K) - (herbarium sample)	Brazil	-1.5666	-48,73333	N/A	N/A	N/A	N/A	N/A
Raphia	textilis	R149	Couvreur 743 (WAG)	Gabon	0.6059	10.4118	RUN41	TAG29	132014	68.4236	80.0799
Raphia	textilis	R151	Couvreur 1075 (WAG)	Gabon	4.18332	13.10538	RUN41	TAG31	80524	41.722	45.5424
Raphia	textilis	R192	Kamga Mogue 40 (WAG)	Democratic Repubic of Congo	-6.14997	15.40333	RUN46	TAG11	78738	42.0848	46.2868
Raphia	textilis	R209	Lautenschläger 1086 (JACQ)	Angola	-0.07916	11.00836	RUN46	TAG19	50163	26.882	30.0834
Raphia	vinifera	R105	Couvreur 638 (WAG)	Cameroon	10.59389	-5.30694	RUN41	TAG12	87308	45.4189	49.1511
Raphia	vinifera	R113	No voucher, but close to Couvreur 638 (WAG)	Cameroon	10.59389	-5.30694	RUN37	TAG94	286322	145.81	177.287
Raphia	vinifera	R116	No voucher, but close to Couvreur 638 (WAG)	Cameroon	10.59389	-5.30694	RUN37	TAG97	367120	189.172	220.664
Raphia	zamiana	R07	Kamga Mogue 17 (WAG)	Gabon	6.27413	10.51091	RUN33	TAG8	217692	110.68	136.444
Raphia	zamiana	R09	Kamga Mogue 17 (WAG)	Gabon	3.52108	11.74376	RUN33	TAG10	228828	116.278	144.853
Raphia	zamiana	R154	Couvreur 1122 (WAG)	Gabon	4.12977	9.21399	RUN41	TAG33	56712	29.1983	31.1171
Raphia	zamiana	R230 R57	Kamga Mogue 45 (WAG)	Cameroon	2.15329	15.7367	RUN67	TAG-31	468825 411897	318.682	376.272 268.899
Raphia Bauluia	zamiana	R57 R93	Couvreur 427 (WAG)	Cameroon	3.07684 3.23685	13.36761 10.02514	RUN33 RUN37	TAG32	411897 300001	209.629 153.527	268.899 177.289
Raphia Raphia	zamiana zamiana	R93 R95	Ayole 20 (YA) Ayole 32 (YA)	Cameroon Cameroon	3.23685 2.80897	10.02514 10.52734	RUN37 RUN37	TAG79 TAG81	300001 420757	215.428	250.534
карпии	zamunu	K73	Ayole 32 (IA)	Cameroon	2.00097	10.027.04	KUIN3/	14001	420737	213.420	200.004


Table A1. Table 1: Herbarium specimen collector and number and herbarium deposited, coordinates of collection and country for all samples included in our study. All samples were extracted from silicagel dried leaves, expect when stated otherwise. The last five columns refer to the sequencing identification (TAG and INDEX used) and different sequencing statistics.

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.984351; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Version March 11, 2020 submitted to Plants

16 of 20

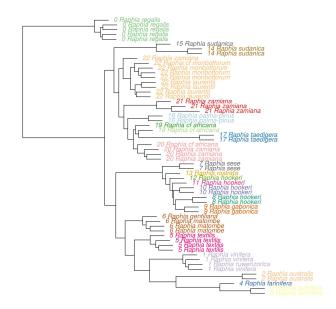

457 Appendix B Supplementary Figures

Figure A1. IQTREE *Raphia* inferred using 162kb of sequence data. Values for ultrafast bootstrap support are depicted on nodes.

Version March 11, 2020 submitted to *Plants*

17 of 20

Figure A2. ASTRAL tree of *Raphia* including inferred branch lengths (except terminal branch lengths) and tip labels coloured with species delimitation as inferred with SODA ($\alpha = 0.01$).

458 References

- Dransfield, J.; Uhl, N.; Asmussen, C.B.; Baker, W.; Harley, M.M.; Lewis, C.E. *Genera Palmarum: The evolution and classification of palms*; Kew Publishing: Kew, 2008.
- Stauffer, F.W.; Ouattara, D.N.; Roguet, D.; da Giau, S.; Michon, L.; Bakayoko, A.; Ekpe, P. An update to the
 African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region.
 Webbia 2017, 72, 1–14. doi:10.1080/00837792.2017.1313381.
- Cosiaux, A.; Gardiner, L.M.; Stauffer, F.W.; Bachman, S.P.; Sonké, B.; Baker, W.J.; Couvreur, T.L.P. Low
 extinction risk for an important plant resource: Conservation assessments of continental African palms
 (Arecaceae/Palmae). *Biological Conservation* 2018, 221, 323–333. doi:10.1016/j.biocon.2018.02.025.
- Moore, H. Palms in the tropical forest ecosystems of Africa and South America. In *Tropical forest ecosystems* of Africa and South America: a comparative review; Meggers, B.; Ayensu, E.; Duckworth, W., Eds.; Smithsonian Institution Press: Washintong DC, 1973; pp. 63–88.
- Couvreur, T. Odd man out: Why are there fewer plant species in African rain forests? *Plant Systematics and Evolution* 2015, *301*, 1299–1313. doi:10.1007/s00606-014-1180-z.
- ⁴⁷² 6. Dransfield, J. The palms of Africa and their relationships. In *Modern systematic studies in African botany*;
 ⁴⁷³ Goldblatt, P.; Lowry, P.P., Eds.; Missouri Botanical Garden Press, 1988; pp. 95–103.
- 474 7. Mogue Kamga, S.; Niangadouma, R.; Stauffer, F.W.; Sonké, B.; Couvreur, T.L.P. Two new
 475 species of Raphia (Palmae/Arecaceae) from Cameroon and Gabon. *PhytoKeys* 2018, 111, 17–30.
 476 doi:10.3897/phytokeys.111.27175.
- 8. Urquhart, G.R. Long-term Persistence of Raphia taedigera Mart. Swamps in Nicaragua1. *Biotropica* 1999, 31, 565–569. doi:10.1111/j.1744-7429.1999.tb00403.x.
- 9. Urquhart, G.R. Paleoecological evidence of Raphia in the Pre-Columbian Neotropics. *Journal of Tropical Ecology* 1997, *13*, 783–792. doi:10.1017/S0266467400010993.
- 10. Otedoh, M. Systematic Studies in Raphia Palms. Doctoral Thesis, University of Reading, UK., 1976.
- 11. Otedoh, M.O. The African origin of Raphia taedigera Palmae. J. Niger. Inst. Oil Palm Res 1977, 42, 11–16.
- 483 12. Kamga, M.; Brokamp, G.; Cosiaux, A.; Awono, A.; Fürniss, S.; Barfod, A.S.; Muafor, F.J.; Le Gall, P.; Sonké,
- B.; Couvreur, T. Use and cultural significance of Raphia palms. *Economic Botany*.

Version March 11, 2020 submitted to Plants

485 486 487	13. 14.	Lautenschläger, T.; Neinhuis, C., Eds. <i>Riquezas naturais de Uíge – uma breve introdução sobre o estado atual, a utilização, a ameaça e a preservação da biodiversidade</i> , technische universität dresden ed.; 2014. Obahiagbon, F.I. A review of the origin, morphology, cultivation, economic products, health and
488	11.	physiological implications of raphia palm. <i>African Journal of Food Science</i> 2009 , <i>3</i> , 447–453. 00011.
489	15.	Couvreur, T.L.P.; Fumtim, J. A l'Echelle du Raphia / On Raphia and Man, 2017.
490	16.	Profizi, J.P. Swampy Area Transformations by Exploitation of Raphia hookeri (Arecaceae) in Southern
491		Benin (West Africa). <i>Human Ecology</i> 1988 , <i>16</i> , 87–94.
492	17.	Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age,
493		extent and carbon storage of the central Congo Basin peatland complex. Nature 2017, 542, 86–90.
494		doi:10.1038/nature21048.
495	18.	Rainey, H.J.; Iyenguet, F.C.; Malanda, G.A.F.; Madzoké, B.; Santos, D.D.; Stokes, E.J.; Maisels, F.; Strindberg,
496		S. Survey of Raphia swamp forest, Republic of Congo, indicates high densities of Critically Endangered
497	10	western lowland gorillas Gorilla gorilla gorilla. <i>Oryx</i> 2010 , <i>44</i> , 124–132. doi:10.1017/S003060530999010X.
498	19.	Couvreur, T.L.P.; Helmstetter, A.J.; Koenen, E.J.M.; Bethune, K.; Brandão, R.D.; Little, S.A.; Sauquet, H.;
499		Erkens, R.H.J. Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes. <i>Frontiers in Plant Science</i> 2019 , <i>9</i> , 1941. doi:10.3389/fpls.2018.01941.
500	20.	Tuley, P. <i>The palms of Africa</i> ; The Tendrine Press, Trendrine Press: Zennor, 1995.
501 502	20.	Otedoh, M.O. A revision of the genus Raphia Beauv. (Palmae). J. Niger. Inst. Oil Palm Res 1982 , 6, 145–189.
503	21.	00011.
504	22.	Beccari, O. Studio monografico del genere "Raphia". Webbia 1910 , 3, 37–130.
505		doi:10.1080/00837792.1910.10669558.
506	23.	Russell, T.A. The Raphia Palms of West Africa. Kew Bulletin 1965, 19, 173–196. doi:10.2307/4108027.
507	24.	Tuley, P.; Russell, T.A. The Raphia palms reviewed. <i>Nigerian Field</i> 1966 , <i>31</i> , 54–65.
508	25.	Baker, W.J.; Dransfield, J.; Hedderson, T.A. Phylogeny, character evolution, and a new classification of the
509		calamoid palms. Systematic Botany 2000, 25, 297–322.
510	26.	Heyduk, K.; Trapnell, D.W.; Barrett, C.F.; Leebens-Mack, J. Phylogenomic analyses of species relationships
511		in the genus Sabal (Arecaceae) using targeted sequence capture. Biological Journal of the Linnean Society
512		2016 , <i>117</i> , 106–120. doi:10.1111/bij.12551.
513	27.	Ouattara, D.N.; Stauffer, F.W.; Bakayoko, A. Lectotypification de Raphia sudanica A. Chev.(Arecaceae,
514		Calamoideae), et commentaires sur la biologie et la conservation de l'espèce. <i>Adansonia</i> 2014 , <i>36</i> , 53–61.
515	•	
516 517	28.	Liu, X.; Fu, Y.X. Exploring population size changes using SNP frequency spectra. <i>Nature Genetics</i> 2015 , 47, 555–559. doi:10.1038/ng.3254.
518	29.	Zhang, C.; Sayyari, E.; Mirarab, S. ASTRAL-III: Increased scalability and impacts of contracting low support
519		branches. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
520		and Lecture Notes in Bioinformatics), 2017, Vol. 10562 LNBI, pp. 53–75. doi:10.1007/978-3-319-67979-2_4.
521	30.	Mogue Kamga, S.; Sonké, B.; Couvreur, T.L.P. Raphia vinifera (Arecaceae; Calamoideae): Misidentified for
522		far too long. <i>Biodiversity Data Journal</i> 2019 , <i>7</i> , e37757. doi:10.3897/BDJ.7.e37757.
523	31.	Robyns, W.; Tournay, R. Monocotylées nouvelles ou critiques de la région du Parc National Albert (Congo
524	20	belge). Bulletin du Jardin botanique de l'État a Bruxelles 1955 , 25, 239–260. doi:10.2307/3667057.
525	32.	Stauffer, F.W.; Ouattara, D.; Stork, A.L. Palmae. In <i>Tropical African Flowering Plants: Monocotyledons</i> 2;
526		Lebrun, J.P.; Stork, A.L., Eds.; Conservatoire et Jardin botaniques de la Ville de Genève, Switzerland.: Genève, 2014; Vol. 8, pp. 326–354.
527	33.	Couvreur, T. Monograph of the syncarpous African genera <i>Isolona</i> and <i>Monodora</i> (Annonaceae). <i>Systematic</i>
528	55.	Botany Monographs 2009 , <i>87</i> , 1–150.
529 530	34.	Kadu, C.a.C.; Schueler, S.; Konrad, H.; Muluvi, G.M.M.; Eyog-Matig, O.; Muchugi, A.; Williams, V.L.;
530		Ramamonjisoa, L.; Kapinga, C.; Foahom, B.; Katsvanga, C.; Hafashimana, D.; Obama, C.; Geburek, T.
532		Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East
533		and West African highlands. <i>Molecular Ecology</i> 2011 , 20, 165–178. doi:10.1111/j.1365-294X.2010.04931.x.
534	35.	Dale, I.R. Palms of Kenya. The Journal of the East Africa and Uganda Natural History Society 1938 , 23, 183–186.
535	36.	Russell, T.A. Palmae. In Flora of West Tropical Africa, 2 ed.; Hutchinson, J.; Dalziel, J.M.; Hepper, F., Eds.;
536		Crown Agents for Oversea Governments and Administrations: London, 1968; Vol. 3, pp. 159–169.
		**

Version March 11, 2020 submitted to Plants

537	37.	Dransfield, J. Palmae. In Flora of Tropical East Africa; Polhill, R., Ed.; A.A. Balkema: Rotterdam, 1986; pp.
538		1–58.
539	38.	Dransfield, J.; Beentje, H.J. <i>The palms of Madagascar</i> ; Royal Botanic Gardens and International Palm Society:
540		Kew, 1995. 00134.
541 542	39.	Baker, W.; Smith, G.F. Palmae. In <i>Plants of Angola</i> ; Figueiredo, E., Ed.; Number 23 in Strelitzia, 2008; pp. 172–173.
543	40.	Faye, A.; Moutsamboté, J.; Couvreur, T. Palms in southern Republic of Congo. PALMS 2016, 59, 181–190.
544	41.	Dransfield, J.; Rakotoarinivo, M. The biogeography of Madagascar palms. In <i>The Biology of Island Floras</i> ,
545		Cambridge University Press ed.; Bramwell, D.; Caujapé-Castells, J., Eds.; 2011; pp. 179–196.
546	42.	Mann, G.; Wendland, H. On the Palms of Western Tropical Africa. <i>Transactions of the Linnean Society of</i>
547	10	London 1864 , 24, 421–440. doi:10.1111/j.1096-3642.1863.tb00165.x.
548	43.	Hardy, O.J.; Born, C.; Budde, K.; Daïnou, K.; Dauby, G.; Duminil, J.Ô.; Ewédjé, E.E.B.; Gomez, C.; Heuertz,
549		M.; Koffi, G.K.; Lowe, A.J.; Micheneau, C.; Ndiade-Bourobou, D.; Piñeiro, R.; Poncet, V. Comparative
550		phylogeography of African rain forest trees: A review of genetic signatures of vegetation history in the
551		Guineo-Congolian region. <i>Comptes Rendus - Geoscience</i> 2013 , 345, 284–296. doi:10.1016/j.crte.2013.05.001.
552	44.	Helmstetter, A.J.; Amoussou, B.E.N.; Bethune, K.; Kandem, N.G.; Kakaï, R.G.; Sonké, B.; Couvreur, T.L.P.
553		Phylogenomic data reveal how a climatic inversion and glacial refugia shape patterns of diversity in an
554	45	African rain forest tree species. <i>bioRxiv</i> 2019 , p. 807727. doi:10.1101/807727.
555	45.	Lissambou, B.J.; Couvreur, T.L.P.; Atteke, C.; Stévart, T.; Piñeiro, R.; Dauby, G.; Monthe, F.K.; Ikabanga,
556		D.U.; Sonké, B.; M'batchi, B.; Hardy, O.J. Species delimitation in the genus Greenwayodendron based on
557	16	morphological and genetic markers reveals new species. <i>TAXON</i> 2019 , <i>68</i> , 442–454. doi:10.1002/tax.12064.
558	46.	Loiseau, O.; Olivares, I.; Paris, M.; de La Harpe, M.; Weigand, A.; Koubínová, D.; Rolland, J.; Bacon, C.D.; Palalay, H.; Parahanning, F.; Cana, A.; Couvraur, T.L.P.; Dalactta, C.; Fardin, F.; Canat, M.; Maifa, F.;
559		C.D.; Balslev, H.; Borchsenius, F.; Cano, A.; Couvreur, T.L.P.; Delnatte, C.; Fardin, F.; Gayot, M.; Mejía, F.; Mota-Machado, T.; Perret, M.; Roncal, J.; Sanin, M.J.; Stauffer, F.; Lexer, C.; Kessler, M.; Salamin, N. Targeted
560		Capture of Hundreds of Nuclear Genes Unravels Phylogenetic Relationships of the Diverse Neotropical
561		Palm Tribe Geonomateae. <i>Frontiers in Plant Science</i> 2019 , <i>10</i> . doi:10.3389/fpls.2019.00864.
562	47.	Baker, W.J.; Savolainen, V.; Asmussen-Lange, C.B.; Chase, M.W.; Dransfield, J.; Forest, F.; Harley, M.M.; Uhl,
563 564	ч,	N.W.; Wilkinson, M. Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons
565		of supertree and supermatrix approaches. <i>Systematic Biology</i> 2009 , <i>58</i> , 240–256. doi:10.1093/sysbio/syp021.
566	48.	Rohland, N.; Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target
567	101	capture. <i>Genome Research</i> 2012 , <i>22</i> , 939–946. doi:10.1101/gr.128124.111.
568	49.	Johnson, M.G.; Gardner, E.M.; Liu, Y.; Medina, R.; Goffinet, B.; Shaw, A.J.; Zerega, N.J.C.; Wickett, N.J.
569		HybPiper: Extracting Coding Sequence and Introns for Phylogenetics from High-Throughput Sequencing
570		Reads Using Target Enrichment. <i>Applications in Plant Sciences</i> 2016 , <i>4</i> , 1600016. doi:10.3732/apps.1600016.
571	50.	Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in
572		performance and usability. <i>Molecular Biology and Evolution</i> 2013 , <i>30</i> , 772–780. doi:10.1093/molbev/mst010.
573	51.	Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.
574		Molecular Biology and Evolution 2000, 17, 540–552. doi:10.1093/oxfordjournals.molbev.a026334.
575	52.	Sayyari, E.; Mirarab, S. Fast Coalescent-Based Computation of Local Branch Support from
576		Quartet Frequencies. Molecular biology and evolution 2016, 33, 1654–1668, [1601.07019].
577		doi:10.1093/molbev/msw079.
578	53.	Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of
579		large phylogenies. Bioinformatics 2014, 30, 1312–1313, [arXiv:10.1093/bioinformatics/btu033].
580		doi:10.1093/bioinformatics/btu033.
581	54.	Junier, T.; Zdobnov, E.M. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX
582		shell. Bioinformatics 2010, 26, 1669-1670. doi:10.1093/bioinformatics/btq243.
583	55.	Rabiee, M.; Mirarab, S. SODA: Multi-locus species delimitation using quartet frequencies. <i>bioRxiv</i> 2019, p.
584		869396. doi:10.1101/869396.
585	56.	Yang, Z. The BPP program for species tree estimation and species delimitation. Current Zoology 2015,
586		61, 854–865. doi:10.1093/czoolo/61.5.854.
587	57.	Brown, J.W.; Walker, J.F.; Smith, S.A. Phys: Phylogenetic tools for unix. <i>Bioinformatics</i> 2017, 33, 1886–1888.
588		doi:10.1093/bioinformatics/btx063.

Version March 11, 2020 submitted to Plants

- 58. Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution* 2015, 32, 268–274. doi:10.1093/molbev/msu300.
- 592 59. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model
- selection for accurate phylogenetic estimates. *Nature Methods* 2017, *14*, 587–589. doi:10.1038/nmeth.4285.
 Lanfear, R.; Calcott, B.; Kainer, D.; Mayer, C.; Stamatakis, A. Selecting optimal partitioning schemes for
- phylogenomic datasets. BMC Evolutionary Biology **2014**, 14, 82. doi:10.1186/1471-2148-14-82.
- ⁵⁹⁶ 61. Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast
 ⁵⁹⁷ bootstrap approximation. *Molecular Biology and Evolution* 2018, 35, 518–522. doi:10.1093/molbev/msx281.
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms
 and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0.
 Systematic Biology 2010, *59*, 307–321. doi:10.1093/sysbio/syq010.
- 63. Andermann, T.; Cano, Á.; Zizka, A.; Bacon, C.; Antonelli, A. SECAPR—a bioinformatics pipeline for the
 rapid and user-friendly processing of targeted enriched Illumina sequences, from raw reads to alignments.
 PeerJ 2018, *6*, e5175. doi:10.7717/peerj.5175.
- 64. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 2009, 25, 1754–1760, [1303.3997]. doi:10.1093/bioinformatics/btp324.
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.;
 Altshuler, D.; Gabriel, S.; Daly, M.; DePristo, M.A. The Genome Analysis Toolkit: a MapReduce
 framework for analyzing next-generation DNA sequencing data. *Genome research* 2010, 20, 1297–303.
 doi:10.1101/gr.107524.110.
- 66. Li, H.; Barrett, J. A statistical framework for SNP calling, mutation discovery, association mapping and
 population genetical parameter estimation from sequencing data. *Bioinformatics* 2011, 27, 2987–2993.
 doi:10.1093/bioinformatics/btr509.
- ⁶¹³ 67. Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the ⁶¹⁴ analysis of genetically structured populations. *BMC Genetics* **2010**, *11*, 94. doi:10.1186/1471-2156-11-94.
- 68. Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. *Bioinformatics* 2008, 24, 1403–1405. doi:10.1093/bioinformatics/btn129.
- © 2020 by the authors. Submitted to *Plants* for possible open access publication under the terms and conditions
 of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).