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Abstract  16 

Motivation  17 

Outbreak investigations use data from interviews, healthcare providers, laboratories and surveillance 18 

systems. However, integrated use of data from multiple sources requires a patchwork of software that 19 

present challenges in usability, interoperability, confidentiality, and cost. Rapid integration, visualization 20 

and analysis of data from multiple sources can guide effective public health interventions. 21 

Results  22 

We developed MicrobeTrace to facilitate rapid public health responses by overcoming barriers to data 23 

integration and exploration in molecular epidemiology. Using publicly available HIV sequences and other 24 

data, we demonstrate the analysis of viral genetic distance networks and introduce a novel approach to 25 

minimum spanning trees that simplifies results. We also illustrate the potential utility of MicrobeTrace in 26 
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support of contact tracing by analyzing and displaying data from an outbreak of SARS-CoV-2 in South 27 

Korea in early 2020.  28 

Availability and Implementation  29 

MicrobeTrace is a web-based, client-side, JavaScript application (https://microbetrace.cdc.gov) that runs 30 

in Chromium-based browsers and remains fully-operational without an internet connection. MicrobeTrace 31 

is developed and actively maintained by the Centers for Disease Control and Prevention. The source code 32 

is available at https://github.com/cdcgov/microbetrace.   33 

Contact: ells@cdc.gov  34 

  35 
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 36 

1. Introduction   37 

The burgeoning field of public health bioinformatics has given rise to a plethora of specialized 38 

software for analysis and visualization of pathogen genomic data to aid outbreak investigations (Clément, 39 

et al., 2018; Leipzig, 2017). Implementation of these analytic tools can be complex and fraught with a 40 

variety of technical and administrative barriers, like faulty install procedures or the need for 41 

administrative credentials to install (Sussman, 2007). As a result, routine use of bioinformatic tools in 42 

public health can be delayed or blocked because users lack the wide range of skills necessary to install, 43 

operate, and integrate them (Pond, et al., 2018).  Historically, many public health workers with 44 

educational backgrounds in medicine, epidemiology, and laboratory sciences lack informatics skills 45 

needed to collect, analyze and display data (Applications of Clinical Microbial Next-Generation 46 

Sequencing: Report on an American Academy of Microbiology Colloquium held in Washington, DC, in 47 

April 2015, 2015). This skill mismatch tends to be more pronounced at local health departments, 48 

representing the frontlines of public health, which have limited capacity and funding for informatics, 49 

cyber security, and computational infrastructure (Gwinn, et al., 2017).   50 

The complex landscape of public health bioinformatics has necessitated the development of tools 51 

designed to sidestep hurdles that can hinder adoption or routine use. Technical and administrative barriers 52 

are often reduced by moving complex analytics and computation to off-site servers. However, while cloud 53 

computing has revolutionized the healthcare industry (Celesti, et al., 2019), state public health laws often 54 

prohibit the storage of sensitive data on off-site servers in the cloud. Tool accessibility can also be 55 

hampered by cluttered user interfaces (Bastian, et al., 2009; Hall, 1999; Maths, 2007; Smoot, et al., 2011) 56 

and unwieldy workflows that hamper human-computer interaction (Argimón, et al., 2016; Hadfield, et al., 57 

2019; Hadfield, et al., 2018; Pond, et al., 2018). Given the breadth of genetic sequencing technologies and 58 

bioinformatic methods, tool adoption can suffer when acceptable input and output file formats are limited, 59 

complicating or even preventing integration with existing systems and workflows. To foster adoption and 60 
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routine use, bioinformatic tools should be secure, easy to use, and capable of accepting or exporting data 61 

in commonly used formats.   62 

To accommodate the specific needs of local health departments, we developed a standalone but 63 

browser-based tool to integrate, visualize and explore data routinely collected during public health 64 

investigations of outbreaks and transmission clusters. These data can include case lists describing 65 

demographic and behavioral information, case lists with high-risk contacts, in addition to pathogen 66 

genomic data. MicrobeTrace was designed to enable users to construct pathogen genetic distance 67 

networks and visually integrate them with contact tracing networks to better characterize a transmission 68 

network. MicrobeTrace users can further characterize their integrated networks by mapping additional 69 

metadata to visual attributes like size, shape and color. In contrast with other tools commonly used for 70 

transmission analysis (Argimón, et al., 2016; Hadfield, et al., 2018), all visual attributes can be modified 71 

by the user via simple interactions (e.g., dropdown menus, toggle buttons, and color pickers) in real-time, 72 

without modification of the underlying data. MicrobeTrace is well suited for working with personally 73 

identifiable information (PII) because it performs all computations and visualizations on the user’s 74 

computer and does not store or transmit any data from the user’s computer. When using a supported and 75 

updated web browser (e.g., Chrome, Firefox, or Edge) all cached files are cleared when the browser 76 

session ends unless caching is explicitly enabled by the user. At no time are user data transmitted 77 

anywhere over the internet. As a result, MicrobeTrace can be accessed from the CDC website initially and 78 

thereafter used with data stored on the user’s computer without an internet connection, making it ideal for 79 

rapid visualization of data in the field.  80 

Here, we present MicrobeTrace and describe its utility across multiple public health use cases 81 

including retrospective analyses and outbreak response. We also report on its use in transmission analysis 82 

for a broad spectrum of infectious diseases, such as tuberculosis, viral hepatitis, sexually transmitted 83 

diseases as well as special pathogens like SARS-CoV-2 and Ebola.  84 

 85 

2. Methods  86 
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2.1 Development  87 

MicrobeTrace has been developed according to an agile and open source model, with all code available 88 

via GitHub.com (Boyles and Kim, 2018). This enables users to directly observe the rate of development 89 

as well as submit and monitor feature requests and system bug reports. MicrobeTrace development has 90 

been guided  by requirements and features requested by  public health practitioners who will  use  the 91 

application in their routine field work. All code is indexed by the federal open source repository 92 

(Code.gov, 2019) and promoted by Code.gov (Code.gov, 2019). The MicrobeTrace codebase is regularly 93 

scanned by Fortify Software (HP Enterprise Security Products, 2020)  and SonarQube (SonarQube.org, 94 

2020) to ensure security and code stability. Further, all related modules of code that depend on each other  95 

are automatically monitored for vulnerabilities and updated by GitHub’s Dependabot service. This 96 

automated monitoring service ensures that security vulnerabilities are rapidly detected, reported to our 97 

development team, and addressed. GitHub’s Actions service is used to automate the process of testing 98 

newly developed features before official release. This process of automated testing ensures that each time 99 

new features are added into MicrobeTrace, all pre-existing functionality are automatically tested prior to 100 

an official release.  101 

2.1 Outreach  102 

Training and outreach are important factors in refining a software product through interaction with the 103 

user base. Training is provided through three modalities: (1) small ad-hoc webinar sessions (5-20 104 

attendees) to support specific outbreak and cluster investigations, (2) large in-person training sessions 105 

(20-100+), and (3) a recorded webinar available via YouTube (CDC, 2020) that is compliant with Section 106 

508 of the Rehabilitation Act of 1973. A detailed, 508-compliant >100-page manual is also available for 107 

download on the GitHub website (Shankar, et al., 2019) . Finally, a brief ‘flyer’ describing the tool’s 108 

general functionality (Campbell, 2019) is available in PDF format, for handout at public health and 109 

academic conferences.  110 

3. Results  111 

3.1 Data Formats  112 
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MicrobeTrace handles a variety of file types and formats that are traditionally collected during public 113 

health investigations. Pathogen genomic information can be integrated as raw genomic sequences, genetic 114 

distance matrices, pairwise genetic distances, or phylogenetic trees. Epidemiologic and other metadata 115 

about cases (node lists) and their high-risk contacts (edge or link lists) can be integrated as spreadsheets. 116 

Importable in a variety of file formats, these file types can be visualized independently or in-concert to 117 

achieve different analytic goals (Fig. 1). Early in an outbreak investigation, high-risk contacts can be 118 

combined with other epidemiologic information to visualize and characterize a risk network. When 119 

genomic data become available later in the investigation, genetic networks can be integrated to visualize 120 

concordance between epidemiologic and laboratory data sources. Alternatively, all available data sources 121 

can be integrated to construct a more holistic visualization of an ongoing public health investigation.   122 

  123 

Figure 1: MicrobeTrace accepts input data in a variety of formats. This figure displays the most common 124 

use cases and their required files. 125 

3.2 Preserving Data Security and Confidentiality  126 

The information processing technology within MicrobeTrace is well adapted for use in a public health 127 

setting because it prioritizes the confidential but effective use of sensitive data collected during an 128 
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outbreak investigation. MicrobeTrace was developed as a client-side only application that is incapable of 129 

transmitting any user data over the internet. In contrast, most web-based bioinformatic applications 130 

require the user’s data be submitted over the internet for processing by a remote server-side application 131 

before results can be returned to the user. Local processing is achieved through open source development 132 

and translations of traditional bioinformatic algorithms to align (Boyles, 2019a; Li, 2014; Smith, et al., 133 

1981), compare (Boyles, 2019b; Pond, et al., 2018; Tamura and Nei, 1993) , and evaluate genomic 134 

sequences and their relationships to one another (Boyles, 2019d; Fourment and Gibbs, 2006; Knyazev, 135 

2020; Kruskal, 1956). Importantly, sequence (a) alignment, (b) comparisons, (c) phylogeny, and (d) 136 

network evaluations are recapitulations of established methods and do not constitute novel development. 137 

Therefore, to the best of our knowledge, the results derived from these JavaScript methods are 138 

interchangeable with results derived from their respective, native implementations. A novel extension of 139 

the network evaluation method is described below in section 3.4 as the ‘Nearest Connected Neighbor’. 140 

Visualizations must be generated with care during an outbreak investigation to ensure 141 

confidential and narrow use of sensitive data. PII and other sensitive information like geospatial 142 

coordinates, zip codes, and phone numbers should only be accessible to Disease Investigation Specialists 143 

conducting contact tracing interviews. However, an epidemiologist performing a retrospective analysis 144 

can use the same visualization layout with remapped labels, colors, shapes and sizes. Indeed, sensitive 145 

geocoordinates can still be used confidentially to produce informative maps by applying the random 146 

‘jitter’ function in MicrobeTrace to reduce the precision of the displayed map marker. In concert, these 147 

diverse and accessible controls enable public health experts to safely and confidently leverage sensitive 148 

data without risk to the public’s confidentiality.   149 

3.3 Genetic Distance Networks  150 

To demonstrate the bioinformatics capacity of MicrobeTrace, we used a publicly available HIV-1 data set 151 

consisting of 1,164 sequences of the partial polymerase (pol) region (GenBank accession numbers 152 

KX465238-KX467180) from a recent study in Germany in addition to associated metadata describing 153 

behavioral risk factors and gender (Pouran Yousef, et al., 2016) . Partial pol sequences are typically 154 
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collected for determination of antiretroviral drug resistance monitoring for care and treatment for persons 155 

living with HIV infection.   156 

The bioinformatics workflow of genetic distance networks in MicrobeTrace begins with a pairwise 157 

sequence alignment of each input sequence against a reference, according to the Smith-Waterman 158 

algorithm (Boyles, 2019a; Li, 2014; Smith, et al., 1981). Multiple sequence alignments are too time 159 

constrained and are not used. A user can align to a curated reference, an arbitrary custom reference, or the 160 

first input sequence. For HIV-1, the strain HXB2 from the United States (U.S.) is a common reference 161 

sequence (GenBank accession number K03455). Once aligned, pairwise genetic distances are calculated 162 

according to either a raw hamming distance or the Tamura-Nei substitution model (TN93) (Boyles, 163 

2019d; Pond, et al., 2018; Tamura and Nei, 1993) . When the TN93 substitution model is selected, 164 

handling of ambiguous bases can be configured as previously described (Pond, et al., 2018) . Pairwise 165 

genetic distances can be easily filtered by a threshold defined by the user, in this case 1.5% nucleotide 166 

substitutions per site (Fig 2A). Notably, users are empowered with the tools necessary to identify and 167 

select the distance threshold value that best fits their public health use case (Wertheim, et al., 2017) . In 168 

some situations for HIV-1, a conservative threshold of 1.5% genetic distance might be appropriate to best 169 

understand the historical evolution of recent transmission events (Wertheim, et al., 2014) . A more 170 

stringent TN93 threshold of 0.5% is often used to identify the most recent and rapid clusters of HIV-1 171 

transmission (Fig 2B). Threshold determinations are often informed by cluster size and growth rate 172 

criteria (Erly, et al., 2020; France and Oster, 2020; Oster, et al., 2018). MicrobeTrace offers the ability to 173 

filter by genetic distance and cluster size thresholds in the same ‘Global Settings’ menu. Here, using the 174 

German HIV-1 dataset we have filtered for clusters of size N ≥ 5 after the 1.5% genetic distance threshold 175 

is applied. This filter hides 73.1% (N = 851) of individuals that are too genetically distant to cluster with 176 

any other sequences in the sample as well as 17.9%(N = 208) of individuals whose HIV-1 sequences 177 

reside in clusters of size N ≤ 4. HIV-1 sequences from the remaining 9.0% (N = 105) of individuals are 178 

displayed as genetic distance networks in Figure 2. Variables of interest can be readily mapped to the 179 
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nodes or links, including HIV-1 pol drug resistance mutations to identify clusters of transmitted drug 180 

resistance (Fig 2C).   181 

3.4 Arbitrary Genetic Distance Networks  182 

A simple nucleotide substitution model is not always suitable to understand phylogenetic relationships. 183 

Rather than require the use of a single model, MicrobeTrace supports the integration of precomputed 184 

distance matrices and pairwise distance lists. A user can provide any pre-computed pairwise distances, 185 

regardless of the underlying nucleotide substitution model, as a list or a matrix in order to render those 186 

data as a network. For distance matrices, both full matrix and PHYLIP formats are accepted. 187 

MicrobeTrace also provides a novel and simple filtering algorithm to render only the nearest connected 188 

genetic neighbor(s) for each node, while still maintaining cluster connectivity. Where any two genetically 189 

equidistant neighbors are possible, both links are rendered when the ‘Nearest Connected Neighbor’ filter 190 

is applied. This approach is particularly useful to understand the historical context of an entire cluster, 191 

while focusing on the part of the cluster exhibiting the most concerning and rapid growth. For example, 192 

an HIV cluster in rural southeastern Indiana grew rapidly in 2015 but underwent slow growth for nearly a 193 

decade prior (Campbell, et al., 2017). The nearest connect neighbor method yields results similar to a 194 

non-exhaustive search for all minimum spanning trees, as has been previously described (Bbosa, et al., 195 

2020; Campbell, et al., 2017). The threshold and nearest connected neighbor filters are not mutually 196 

exclusive and can therefore be applied simultaneously to ensure that genetically distant nodes remain 197 

disconnected. This enables the inclusion of related, but more distant sequences in a cluster visualization 198 

while minimizing the information overload typically accompanied by increased distance thresholds (as 199 

shown in Fig. 2A). HIV-1 genetic distance links that fell below the 1.5% threshold but were not included 200 

as a nearest connected neighbor link are shown at reduced opacity (Fig. 2C).  201 
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 202 

Figure 2: MicrobeTrace excels at rendering pathogen genetic distance networks and mapping visual 203 

characteristics to user-provided metadata. (2A) The HIV-1 partial polymerase (pol) distance network, 204 

with a genetic distance threshold (d) of 1.5%. (2B) The same HIV-1 pol network shown in 2A with node 205 

positions held constant, but with a more stringent genetic distance threshold (d) of 0.5%. (2C) The same 206 

HIV-1 pol network shown in 2A with node positions held constant. Nearest connected neighbor links have 207 

been superimposed as dashed lines. The transparency of links that do not connect nearest neighbors has 208 

been increased. Gender and transmission risk factors have been mapped to node shape and color, 209 

respectively. 210 

3.5 Patristic Distance Networks  211 

Phylogenies are ubiquitous in public health and bioinformatics, but a phylogeny may be difficult to 212 

integrate with more traditional contact tracing data. While powerful new tools are available to integrate 213 

taxa-level characteristics into phylogenies, integration of paired contacts is unavailable. Instead, the 214 

genetic distances encoded on the phylogeny must be measured and recast as pairwise patristic distances of 215 
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a phylogeny. Specifically, these are tip-to-tip measurements between individuals on an evolutionary tree 216 

that account for the most recent common ancestor. This step is necessary, because it results in a pairwise 217 

genetic distance list that is readily integrated with pairwise contact data. Provided a phylogenetic tree in 218 

Newick format, MicrobeTrace will traverse the phylogeny to calculate and render the pairwise patristic 219 

distance network corresponding to that phylogeny.   220 

3.6 Epidemiologic Networks  221 

Importantly, phylogenies or pathogen genetic sequence data are not required to leverage MicrobeTrace to 222 

visualize public health data. MicrobeTrace supports the visualization of arbitrary networks, such as those 223 

collected during contact tracing during an outbreak or cluster investigation. Acceptable networks are not 224 

limited to person-to-person links but can include person-to-place or place-to-place. To visually 225 

differentiate persons from places, MicrobeTrace can style the shape of any network node according to a 226 

node type column (e.g., nodeType = ‘Person’ or ‘Place’) defined in the data set. If additional metadata are 227 

available to describe a link, it can be colored according to user-defined categorical variables. 228 

Alternatively, an option is provided to scale link width according to a user-defined numeric variable or its 229 

reciprocal.  230 

3.7 Multi-Layer Networks  231 

Epidemiologic and genetic networks often offer complementary perspectives about transmission clusters 232 

(Campbell, et al., 2020) . MicrobeTrace can render an arbitrary number of networks simultaneously by 233 

representing multiple overlapping links between pairs of nodes (e.g., hyperlinks) as color-mapped, dashed 234 

lines. In addition to independent color-mappings according to underlying data, the effect of a particular 235 

network layer can either be hidden or accentuated via independent transparency controls.  For example, to 236 

protect individual privacy, public health experts may choose to make epidemiologic reports of high-risk 237 

contact invisible while rendering only close genetic links when producing figures for public consumption.  238 

3.8 Maps with Network Overlay  239 

Integrated epidemiologic and genetic networks are abstract diagrams that can be used to inform policy 240 

and prevention efforts when augmented with additional information. MicrobeTrace can generate 241 
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choropleth maps, globe diagrams, or more common map projections. MicrobeTrace mapping functions 242 

offline with pre-computed shapefiles describing countries, as well as U.S. states and counties. Should 243 

internet access be available, MicrobeTrace can be configured to request high-resolution geospatial map 244 

tiles from a JavaScript map service called Leaflet (Agafonkin, 2014). MicrobeTrace also enables users to 245 

contextualize their maps with a network overlay that maintains all color mappings defined in the network 246 

visualization. Users can select from various geographic units, ranging from Country, and – at present – 247 

state, county, and zip codes for the U.S. or paired latitude and longitude values. For each geographic 248 

level, a marker is placed at the geographic centroid. Over-plotting can be addressed by a combination of 249 

automated aggregation or manual transparency tools. Maps can also be customized with user-provided 250 

geospatial data in the GeoJSON format.  251 

3.9 Customization and Interactive Exploration  252 

To demonstrate the generalized visualization capacity of MicrobeTrace, we present a publicly available 253 

data set describing clinical, demographic and contact tracing data derived from the Korean Centers for 254 

Disease Control (KCDC) investigation of the COVID-19 outbreak (Kim, 2020). The data set does not 255 

contain coronavirus sequence data, but instead details 383 transmission histories between 510 cases. It 256 

also contains an additional 1,627 cases of COVID-19 with no documented transmission histories. As 257 

before, using filtering capabilities unique to MicrobeTrace, we limit our visualizations to transmission 258 

clusters of size ≥ 5 cases (Fig. 3).  259 

MicrobeTrace is centered around integration and visualization of pathogen genomic and network data but 260 

is accompanied by an array of customizable tables, charts, and geospatial maps that facilitate exploration 261 

and communication of public health data. Each view is interactive and interoperable so nodes in one view 262 

are propagated to other tiled views. For example, a node selected by search or click in the Table View is 263 

highlighted both there and in relevant adjacent views. Similarly, all choices on color-mappings for nodes 264 

and links are propagated to all relevant adjacent views. All views are resizable and can be tiled to produce 265 

rich, interactive and exploratory dashboards as demonstrated below. We have tiled the COVID-19 266 

transmission network, the symptom onset incidence curve, and a geospatial map with transmission 267 
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network overlay (Fig. 3). Here, we perform the following visual manipulations within MicrobeTrace: (1) 268 

automatically calculate and map the number of contacts for each case to the label that is centered over 269 

each node (Fig. 3A), (2) map the node color to the case’s province (Fig. 3A-D), (3) map link color to the 270 

mode of exposure (Fig. 3A-D), (4) map node shapes to the case’s gender (Fig. 3A) (5) superimpose the 271 

network onto a high-resolution geospatial 2D map projection (Fig. 3B-C), (6) tailored color, size and 272 

transparency to desired values (Fig. 3B-C), and (7) generated an incidence curve according to the date of 273 

symptom onset (Fig 3E).   274 

 275 

Figure 3: MicrobeTrace allows the creation of informative dashboard visualizations. (3A) Reports of 276 

high-risk contact between COVID-19 cases in clusters of size N ≥ 5, nodes are (i) colored by province,  277 

(ii) shaped by gender, and (iii) labeled with the total number of high-risk contacts. (3B) Geospatial map 278 

of clusters of size N ≥ 5 zoomed to show only Seoul, South Korea.  (3C) Geospatial map of clusters of size 279 

N ≥ 2. Node positions have been randomly altered, via MicrobeTrace’s ‘jitter’ functionality, to preserve 280 

patient privacy. (3D) In-application color and shape keys that offer interactive color-pickers and 281 

labeling. (3E) Incidence curve showing symptom onset date. 282 

 283 
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As with genetic data, networks are not required to leverage most of the visualizations in MicrobeTrace. 284 

Indeed, MicrobeTrace can be used to achieve rich visualizations using a list of nodes with a handful of 285 

variables like age, gender, province, city, exposure type, symptom onset date, test confirmation date and 286 

hospital release data. We demonstrate the construction of complex figures like a Flow Diagram, Gantt 287 

Chart, Cross-tabulation, Aggregation, and Histogram with simple dropdown menus (Fig. 4). 288 

Additional diagrams can be achieved with the 2D Network, 3D Network, Scatter Plot, Heatmap, 289 

Bubbles, Choropleth, and Globe Views with relevant data types selected with simple dropdown menus. 290 

Operation of each view is documented in detail in the MicrobeTrace user manual (Shankar, Campbell, et 291 

al., 2019).  292 

  293 

Figure 4: MicrobeTrace visualization does not require genomic or contact tracing data and calculate 294 

aggregation and cross-tabulation tables in addition to visualizing histograms, alluvial/flow diagrams and 295 

Gantt charts. Each diagram has an inset settings menu that describes the settings changes necessary to 296 

achieve them. (4A) City-level aggregation achieved via a single dropdown selection. (4B) Alluvial 297 

diagram of associations between the Type of Exposure to COVID-19, Province, and Symptom Onset 298 

Date. (4C) Gantt charts to describe the span of time between Symptom Onset, Positive Test Confirmation, 299 
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and Hospital Release Date. (4D) Age histogram, binned by decade and colored by gender. This 300 

histogram illustrates a trend identified during the early Korean outbreak, wherein a disproportionate 301 

number of middle-age female cases was diagnosed (4E) Cross-tabulation table of cases by City and Age 302 

categories. 303 

3.10 Sequence alignment and phylogenetic tree views  304 

When sequence data are available, a variety of additional diagrams and views are available. For example, 305 

the Sequences View can be used to export or check the quality of the pairwise alignment. The 306 

Phylogenetic Tree View will construct a tree via a neighbor-joining algorithm according to the provided 307 

pairwise distance calculations. The Phylogenetic Tree View has robust customization controls that have 308 

been modularized in a separate JavaScript library called TidyTree (Boyles, 2019c).   309 

3.11 Reproducibility  310 

Public health investigations are iterative and the underlying data sources tend to grow over time. Once 311 

MicrobeTrace workspaces have been customized they can be saved in two ways: (1) as a custom. 312 

MicrobeTrace file or (2) as a “stashed” (cached) browser session. As new data arrives, a user can choose 313 

to add new files and recompute the network while pinning nodes to their original positions on-screen. 314 

This capability enables a greater understanding of transmission dynamics by enforcing continuity between 315 

visualization and exploration sessions over time. Styling parameters and custom visualizations can be 316 

stored independently from the underlying data as a MicrobeTraceStyle file to facilitate communication 317 

between collaborators and preserve confidentiality. Style files can also be used to ensure continuity 318 

between public health investigations, such that different investigations yield identically styled 319 

visualizations even with different underlying data.  320 

3.12 Data and visualization exports  321 

Communicating data arising from public health investigations is a complex process that requires many 322 

fine adjustments, as messages are tuned to their audiences. To meet this need, MicrobeTrace is designed 323 

to provide users maximum control over visualization customization and export capabilities. For example, 324 

communication to academic and public health audiences often involves poster presentations that require 325 
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images be scaled-up for large printer formats. We accommodate this requirement by enabling users to set 326 

specific export resolutions for PNG and JPEG formats. Alternatively, visualizations can be exported as 327 

Scalable Vector Graphics (SVGs) that can be enlarged to any arbitrary size without a loss of resolution. 328 

By default, a MicrobeTrace watermark is placed on images exported from MicrobeTrace; however, the 329 

transparency of the watermark can be increased using a menu slider to render it invisible. Taken together, 330 

these capabilities offer publication-ready image exports for scientific journals.  331 

MicrobeTrace maximizes interoperability with other applications by enabling the export of all 332 

calculated and integrated datasets. The Table View renders tabular data which can be exported to comma-333 

separated (CSV) and Excel (XLS, XLSX) formats. The node-level table includes all information joined 334 

from multiple input data sources as well as calculated fields like a node’s number of neighbors (‘degree’) 335 

and its cluster ID. The link-level table also includes calculated fields; for example, whether a link was 336 

identified as a ‘nearest connected neighbor’ as a Boolean result. MicrobeTrace offers robust filtering and 337 

selection capabilities that are also reflected in exported tables, ‘Selected’ and ‘Visible’ states are shown as 338 

Boolean results. Tables produced in the Aggregation View can be exported as formatted PDFs, CSVs, a 339 

zipped collection of CSVs, or an XLS/XLSX workbook where each aggregation is shown on 340 

independently named worksheets (Fig. 4A). Data derived from the Map, Globe, and Choropleth Views 341 

can be exported as GeoJSON files for interoperability with other Geographic Information System (GIS) 342 

software. Genomic sequence alignment can be exported in the FASTA or MEGA file formats in the 343 

Sequences View.  344 

3.13 Statistics and analysis of MicrobeTrace usage 345 

While some public health investigations that leveraged MicrobeTrace have been reported in the 346 

academic literature, many use cases supporting public health missions are never intended for publication 347 

or dissemination (Cranston, et al., 2019; Hogan, et al., 2017; John, et al., 2019; Shankar, et al., 2019; 348 

Falade-Nwulia, et al., 2018)  . To better understand that broad base of engagement, MicrobeTrace usage 349 

statistics are captured and reported by region via Google Analytics. When MicrobeTrace is accessed 350 

while the user is online, an anonymous Google Analytics cookie is sent along with information about the 351 
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user’s rough geolocation and usage time. It is important to note that, offline usage is not tracked by 352 

Google Analytics. Since the launch of MicrobeTrace in March 2018, 2,642 unique users have connected 353 

for a total of 6,501 sessions (2.46 sessions per user) for a combined 738.6 hours of use (6.8 per session 354 

and 16.7 minutes per user). The overwhelming majority of users connect from the U.S. (N = 2,323, 355 

87.8%) with the most prevalent international use coming from China (N = 55, 2.1%), the United 356 

Kingdom (N = 38, 1.4%), and Vietnam (N = 30, 1.1%). 50 additional countries account for the remaining 357 

6.6% (N = 196) of users. Usage increases on weekdays, as the public health workforce goes to work, and 358 

the mean number of weekday users has increased from 1.1/weekday in February 2018 to highs of 20.5 359 

and 14.6 per weekday in February and March 2020, respectively. (Fig. 5). Notably, as much of the 360 

world’s public health workforce has turned its attention to COVID-19 in February and March of 2020, 361 

MicrobeTrace usage peaked (Fig. 5).  362 

 363 

 364 

Figure 5: MicrobeTrace’s primary user base are public health officials during the work week, as 365 

opposed to during the weekend. In red, are the number of monthly weekday users. In teal, are the number 366 
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of monthly weekend users. Each month’s mean daily user count is mapped to the size of the circle and 367 

colored by day type. A local regression for each day type is shown to smooth the month-to-month effects 368 

and highlight the increasing trend.  369 

 370 

A notable influx of MicrobeTrace usage occurred in late April 2020 (data not included in figure), 371 

simultaneously across nine cities in Vietnam over a span of two local afternoon hours. This brief influx of 372 

traffic from a single country, spread across disparate geography, is suggestive of workforce development 373 

efforts. If true, this would represent the first clear evidence of a training webinar held by non-CDC staff. 374 

Following on from this training event, the fraction of returning users was three times higher than 375 

MicrobeTrace’s historical fraction of returning users (64% versus 21%). Further, the average session 376 

duration was also nearly three times higher (20.1min versus 7.3min) than the historic average session 377 

duration.  378 

4. Discussion  379 

MicrobeTrace has been used to investigate a broad variety of infectious diseases. It has been used during 380 

CDC-assisted HIV cluster investigations in multiple states (Cranston, et al., 2019; Hogan, et al., 2017; 381 

John, et al., 2019; Shankar, et al., 2019), investigations of hepatitis C virus (HCV) (Falade-Nwulia, et al., 382 

2018) ), integrated into the Global Hepatitis Outbreak and Surveillance Technology (GHOST) that is used 383 

for viral hepatitis investigations (Longmire, et al., 2017) (S. Sims, personal communication), and is 384 

broadly used to integrate genomic and epidemiologic data for tuberculosis outbreak investigations 385 

(Springer, 2020). It has also been used to integrate partner services, epidemiologic and whole genome 386 

data to better understand transmission during a retrospective public health investigation of Neisseria 387 

gonorrhoeae (Town, et al., 2020). Outside of its intended domain of sexually transmitted diseases, 388 

MicrobeTrace has also been applied to integrate epidemiologic and laboratory data in outbreaks of 389 

foodborne pathogens, such as Escherichia coli O157:H7 (Allen, 2020). It is currently being evaluated for 390 

integration and visualization of epidemiologic and genetic data from cases of Ebola and COVID-19 (S. 391 

Whitmer, personal communication; S. Tong, personal communication).   392 
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MicrobeTrace offers a suite of capabilities to a public health expert that are typically only 393 

achievable with an array of software, tools, and custom scripts, and substantive computational experience. 394 

A putative MicrobeTrace user, such as epidemiologists or disease investigation specialist, typically 395 

achieves proficiency after one brief training session and aided by a cursory understanding of common 396 

browser interactions, such as ‘dropdown menus’, ‘slider bars’, and ‘drag-and-drop’. Many standalone 397 

tools are available to calculate pairwise genetic distances with varying degrees of specificity to the 398 

pathogen of interest. MEGA is a bioinformatic tool broadly used in public health, but new users can be 399 

overwhelmed by dense interfaces with scores of options that are often dense with jargon and required 400 

inputs (Kumar, et al., 2008). HIV-TRACE, which is specific to HIV sequence data, now offers rich 401 

visualization capabilities but its installation requires a keen understanding of Unix and the Git protocol  402 

for local installation and use (Pond, et al., 2018) . An iteration of HIV-TRACE is available on the internet 403 

but at a web server which has concomitant data security issues (Weaver, et al., 2015). Patristic distance 404 

calculations are available via the APE package in R or the Java application PATRISTIC, but these require 405 

programming expertise and software installations (Fourment and Gibbs, 2006; Paradis, et al., 2004) . 406 

Once genetic relationships have been calculated and contacts have been traced, integration and 407 

visualization of these links with individual-level data can be a complex task requiring tools like Gephi or 408 

Cytoscape (Bastian, et al., 2009; Smoot, et al., 2011) . For those with programming expertise, integrated 409 

visualizations can be otherwise achieved with decade-old libraries in R with the iGraph package or in 410 

Python with the NetworkX and MatPlotLib packages (Csardi and Nepusz, 2006; Hagberg, et al., 2008; 411 

Hunter, 2007). Even so, these visualizations are not interactive with any additional figures, charts, tables, 412 

and maps that a public health expert might need to generate through the use of over a half dozen other 413 

applications (Figs. 2-4). If independently created, these visualizations must be augmented with network-414 

level calculations and manipulations like threshold changes, minimum spanning tree calculations and 415 

filters, cluster membership, cluster size, and the number of neighbors for each node, all of which are 416 

easily performed in MicrobeTrace. These metrics can be manually calculated (e.g., R+iGraph, 417 

Python+NetworkX) or generated via opaque plug-ins in Gephi or Cytoscape that offer minimal 418 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.22.216275doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.216275


customizations. Anecdotally, use of MicrobeTrace and its network layout interface can be playful; which 419 

has been shown to improve the user experience and increase their motivation to use the tool (Kuts, 2009).  420 

While MicrobeTrace has been developed for a public health user base, it also has many 421 

applications in academia. It is adept at integrating arbitrary networks with independent node- and edge-422 

level characteristics that are necessary to evaluate social, behavioral, biochemical, cellular, technological 423 

and physical networks. MicrobeTrace also offers rich customizations that reduce the time and effort to 424 

achieve insights and discoveries when grappling with a novel data set. The MicrobeTrace development 425 

team is not aware of another tool that offers all of these capabilities in a secure, interoperable, and light-426 

weight format that requires no installation prior to use.  427 
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