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Abstract 1 

COVID-19 is a severe respiratory disease caused by SARS-CoV-2, a novel human 2 

coronavirus. The host response to SARS-CoV-2 infection is not clearly understood. Patients 3 

infected with SARS-CoV-2 exhibit heterogeneous intensity of symptoms, i.e., asymptomatic, 4 

mild, and severe. Moreover, effects on organs also vary from person to person. These 5 

heterogeneous responses pose pragmatic hurdles for implementing appropriate therapy and 6 

management of COVID-19 patients. Post-COVID complications pose another major 7 

challenge in managing the health of these patients. Thus, understanding the impact of disease 8 

severity at the molecular level is vital to delineate the precise host response and management. 9 

In the current study, we performed a comprehensive transcriptomics analysis of publicly 10 

available seven asymptomatic and eight severe COVID-19 patients. Exploratory data analysis 11 

using Principal Component Analysis (PCA) showed the distinct clusters of asymptomatic and 12 

severe patients. Subsequently, the differential gene expression analysis using DESeq2 13 

identified 1,224 significantly upregulated genes (logFC>= 1.5, p-adjusted value <0.05) and 14 

268 significantly downregulated genes (logFC<= -1.5, p-adjusted value <0.05) in severe 15 

samples in comparison to asymptomatic samples. Eventually, Gene Set Enrichment Analysis 16 

(GSEA) of upregulated genes revealed significant enrichment of terms, i.e., anti-viral and 17 

anti-inflammatory pathways, secondary infections, Iron homeostasis, anemia, cardiac-related, 18 

etc. Gene set enrichment analysis of downregulated genes indicates lipid metabolism, 19 

adaptive immune response, translation, recurrent respiratory infections, heme-biosynthetic 20 

pathways, etc. In summary, severe COVID-19 patients are more susceptible to other health 21 

issues/concerns, non-viral pathogenic infections, atherosclerosis, autoinflammatory diseases, 22 

anemia, male infertility, etc. And eventually, these findings provide insight into the precise 23 

therapeutic management of severe COVID-19 patients and efficient disease management. 24 

 25 
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1. Introduction 35 

Since its first reported case at the end of 2019, an acute respiratory syndrome causing novel 36 

Coronavirus (2019-nCoV) outbreak in the human population has taken the world by storm. 37 

The 2019-nCoV was later officially named SARS-CoV-2 (Severe Acute Respiratory 38 

Syndrome related novel Coronavirus 2), and the disease caused by it COVID-19 39 

(Coronavirus Disease 2019) [1-3]. The virus spread uncontrollably so much that in January 40 

2020, World Health Organization declared COVID-19 as a "public health emergency of 41 

international concern" (PHEIC) and eventually as a pandemic in March 2020 [1]. As of 1st 42 

April 2022, the total reported cases worldwide stand at 488,190,137 [4]. The SARS-CoV-2 is 43 

an enveloped, positive single-stranded RNA virus that belongs to the Coronaviridae family, 44 

β-coronavirus genus, and is believed to have a zoonotic to human transmission [3, 5, 6]. The 45 

trimeric spike (S) protein that forms the virus's envelope plays an essential role in the virus-46 

host cell interaction [7]. There are six other coronaviruses, i.e., 229E, OC43, NL63, HKU1, 47 

SARS-CoV, and MERS-CoV, which are already known to infect humans and cause 48 

respiratory and gastrointestinal problems [8]. These human coronaviruses (HCoVs) are 49 

generally considered inconsequential except for our experience with SARS-CoV in 2003, 50 

MERS in 2012, and SARS-CoV-2 with the ongoing pandemic [9]. 51 

The mutations in the viral spike protein components, especially in its receptor-binding 52 

domain, have resulted in the generation of multiple variants, of which Delta variant 53 

(B.1.617.2) became a "variant of concern" (VOC) and posed a significant threat to human 54 

health [10-12]. Our health sector has faced major challenges in tackling disease spread and 55 

providing management of symptoms in the patients [13]. Multiple drugs are introduced for 56 

symptomatic treatments, but none has been efficient to treat all symptoms caused due to the 57 

viral infection [14]. Even a few drugs that were believed to be helpful in COVID-19 disease 58 

management were later found to cause other health concerns in the patients administered with 59 

these [15]. The difficulty faced in devising standard therapeutic options is due to the high 60 

mutability rate of the virus, a complex interplay of virus-host interaction, and an individual's 61 

immune response to the infection [16-19]. 62 

SARS-CoV-2 impacts individuals in peculiar ways [16]. Most infected subjects are 63 

asymptomatic or mildly symptomatic, but some develop severe symptoms [16]. 64 

Comorbidities such as diabetes mellitus, hypertension, cardiovascular disease (CVD), and 65 

advanced age further increase the risk of disease severity [20-23]. As in many asymptomatic 66 

or mild cases, diagnostic test reports false-negative results even in the presence of infection, 67 
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and due to the shared spectrum of symptoms with other viral infections, it becomes difficult 68 

to discern COVID-19 from other viral infections [24]. This makes disease management 69 

further complicated. Another primary concern associated with COVID-19 is high infectivity 70 

as it spreads by human contact and through air droplets and aerosols, making it difficult to 71 

control [25, 26]. COVID-19 spread through fecal matter is speculated in some studies, though 72 

the presence of viral particles in the fecal samples of infected individuals is well documented 73 

and makes it an essential diagnostic tool [27, 28]. The main clinical manifestations of SARS-74 

CoV-2 in severe COVID-19 patients involve lower respiratory tract issues resulting in Acute 75 

Respiratory Distress Syndrome (ARDS) and hypoxia, fever, cytokine storm due to 76 

hyperactive immune system, brain fog, headache,  cardiac arrest, and muti-organ damage and 77 

even death in severe cases [22, 29-33]. Most disease symptoms may persist for 10-15 days, 78 

with some may exist for a prolonged time [34, 35]. It is well known that even after the viral 79 

load declines significantly, many health issues persist in the COVID-19 recovered patients 80 

[36-38]. These post-COVID effects are observed mainly in hospitalized and severe patients 81 

and add to another layer of disease mismanagement [39, 40]. So, the significant challenges of 82 

disease management include SARS-CoV-2's high infectivity rate, poor efficacy of available 83 

treatments, the complexity of symptoms, and less understanding of disease progression [41]. 84 

SARS-CoV-2, upon entry into the nasopharyngeal tract, interacts with the transmembrane 85 

serine protease 2 (TMPRSS2) and Angiotensin-Converting Enzyme 2 (ACE2) receptors 86 

present on the endothelial cells of the respiratory tract [42]. ACE2 receptors are also present 87 

in other organs, such as the gastrointestinal tract, lymph nodes, thymus, bone marrow, spleen, 88 

liver, kidney, skin, and brain. This might be the possible reason for the viral impact on these 89 

organs [33, 43-46]. As extensively studied, virus entry in these organs is mediated through 90 

the interaction of receptor-binding domain on spike protein of virus and the ACE2 receptors 91 

present on host cells [45, 47]. Upon infection, the virus replicates inside the host cell using 92 

the host replication machinery. In response to all this, the host immune system fights to 93 

reduce the viral load by inhibiting the replication of viral RNA. The diverse symptoms results 94 

from the involvement of various biochemical pathways triggered by viral entry and 95 

replication, the host cellular response to control the spread of the infection [48]. 96 

With the advancement in the RNA sequencing technology, one can view the transcriptomic 97 

landscape under a given condition and for a particular cell type. It is also instrumental in 98 

understanding the pathogenesis of a disease in the host [49]. Diverse scientific groups across 99 

the globe have developed numerous resources and tools to compile and analyze the data from 100 

host and pathogen [50-73]. 101 
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Due to the systemic effects of COVID-19 infection, it becomes more challenging to treat 102 

patients with complex symptoms. Hence, we believe studying the differential mechanism 103 

operating in asymptomatic and severe COVID-19 patients can help us manage disease 104 

manifestations in severe patients. Thus, we performed a comparative analysis of 105 

transcriptomics profiles of severe and asymptomatic COVID-19 patients using PCA and 106 

DESeq2. Exploratory analysis based on PCA of samples shows two clear, distinct clusters of 107 

severe and asymptomatic samples. The differential gene expression analysis revealed 108 

significantly altered transcriptomics patterns between these two groups. Subsequently, Gene 109 

Set Enrichment Analysis (GSEA) identified some of the key altered pathways and biological 110 

processes involved in severe patients compared to asymptomatic patients. 111 

 112 

2. Methods  113 

2.1. Dataset and Experimental design  114 

In the current study, we obtained publicly available data (GSE178967) from the NCBI GEO 115 

(Gene Expression Omnibus). This dataset comprises RNA-Seq read counts and metadata 116 

information conducted on 108 SARS-CoV-2 subjects by the Stanford COVID-19 CTRU [74]. 117 

These COVID-19 subjects, confirmed by RT-PCR, were administered Peginterferon Lambda 118 

and placebo on day00. Peginterferon Lambda is a therapeutic drug for reducing the viral 119 

particles in COVID-19 patients [75]. Whole blood samples for RNA extraction for high 120 

throughput sequencing were collected on day 00 (untreated) and day 05 (treated) from the 121 

day of drug administration. The available RNA sequencing data are the read counts aligned to 122 

transcripts or genes for 180 samples from day 00 and day 05 of 108 subjects. In the series 123 

matrix file (provided in GEO), the COVID-19 subjects are categorized as asymptomatic, 124 

moderately symptomatic, and severe [74]. We have also used the same categorization of 125 

subjects for our analysis. The series matrix file contains other clinically significant 126 

information such as age, gender, day from drug administration (Peginterferon Lambda and 127 

placebo), and viral shedding value. The details and data structure of the study are summarized 128 

in Table 1 and Supplementary Table S1, respectively. The summary of clinical information 129 

extracted from the GEO series matrix is provided in Supplementary Table S2. 130 

 131 

 132 

 133 

 134 
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Table 1: Detail of the study as derived from GEO [1] 135 

GEO accession Series GSE178967 

Study title Baseline signatures associated with clinical, virologic, and 

immunologic outcomes in patients with mild to moderate COVID-19 

Organism Homo Sapiens 

Bio project PRJNA741686 

SRA SRP325729 

Platform   GPL24676  

Illumina NovaSeq 6000 

 136 

2.2. Data Preparation and normalization 137 

2.2.1. Data Pre-processing  138 

The data contains sample IDs in row 1, transcript IDs (ENST ID) in column 1, gene symbols 139 

in column 2, and corresponding non-normalized read counts in the matrix as integer values. 140 

The sample IDs belong to asymptomatic, moderately symptomatic, or severe subjects from 141 

day 0 or day 5 of peginterferon lambda and placebo administration. The RNA sequencing 142 

expression values of the dataset are non-normalized read counts (as mentioned in 143 

supplementary file information of the original dataset submitted in GEO) [74]. These read 144 

counts are the number of reads mapped and aligned to a particular transcript/gene region 145 

identified from the human reference genome. It is generally required to pre-process the read 146 

count data to get statistically significant results [76-80]. We followed common pre-processing 147 

steps for both PCA and Differential Gene Expression (DGE) analysis, but the normalization 148 

steps were different based on the downstream analyses. The Principal Component Analysis is 149 

a dimensionality reduction unsupervised machine learning method that requires normalized 150 

data [78, 79, 81, 82]. While DESeq2 is a DGE analysis tool that mandates data to be 151 

unprocessed read counts as integer values [83]. DESeq2 uses inbuilt methods to normalize for 152 

library size and hence does not require prior normalization [83-85]. 153 

The summary of workflow, including pre-processing and normalization, is depicted in Figure 154 

1. In pre-processing, we removed rows with NA, taken the average of duplicates genes using 155 

aggregate function in R, and filtered out the genes having zero or low expression. Studies 156 
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suggest that low expression genes negatively impact the Differentially Expressed Gene 157 

analysis [86]. Thus, genes with low or zero variance filtered out using the nzv (non-zero 158 

variance) function of the "Caret package" available in R [87]. Genes with zero variance 159 

across all samples are considered insignificant as these do not contribute to statistical 160 

significance and only increase time in the analysis [77, 88]. After removing genes with low 161 

expression values, we performed further pre-processing specific to PCA, and for DESeq2, we 162 

continued with the pre-processed and non-normalized data. Notably, we performed 163 

exploratory data analysis using PCA on normalized data while differential gene expression 164 

analysis using DESeq2 on raw read count values. 165 

2.2.2. Data Normalization 166 

After the abovementioned pre-processing, subsequently, for PCA, we normalized the read 167 

counts by transforming them to log values and then performing center and scaling using the 168 

"Caret package" available in R [87]. The data matrix that resulted from PCA normalization 169 

contains 180 samples with log-transformed read counts for 35,587 gene rows. 170 

 171 

 172 

 173 

Figure 1. The Complete workflow of the study.  174 
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2.3. Analysis Methodology 175 

2.3.1. Exploratory Data Analysis using Principal Component Analysis 176 

We performed Principal Component Analysis (PCA) to identify the patterns in the dataset 177 

and variations between the samples in a group. PCA reduces the dimensions of a large dataset 178 

while retaining most of the variations. Hence, PCA assists in identifying sample clusters in a 179 

particular group and outliers [89]. We performed PCA on normalized data (comprising 180 180 

samples with log-transformed read counts for 35,587 gene rows) using the ggfortify package 181 

in R. The first PCA includes all 180 samples of asymptomatic, moderately symptomatic, and 182 

severe subjects. Then we performed PCA for various groups as mentioned in Supplementary 183 

Table S3. One of these PCA, consists of asymptomatic and severe patients at Day 00 184 

(untreated) which we believe will help us understand the host response mechanism in severe 185 

patients in comparison to asymptomatic. The total number of samples belonging to this group 186 

was 15, with seven asymptomatic and eight severe samples. With the help of scatterplots 187 

based on PCA components, we identified outliers, which were subsequently removed from 188 

the data for the downstream PCA and DGE analysis on untreated (Day 00) group. 189 

2.3.2. Differential gene expression analysis 190 

After outliers removal using PCA, we performed differential gene expression analysis 191 

between severe and asymptomatic patients' samples using the DESeq2 package in R [83]. 192 

Notably, we considered only those genes as significantly expressed between groups with a p-193 

adjusted value <0.05. This criterion of p-adjusted value is used in numerous studies [83, 90-194 

98]. Further, we applied another filter, i.e., Log2 fold change (Log2FC) to identify 195 

significantly upregulated (Log2FC >=1.5) and downregulated (Log2FC <=-1.5) genes in the 196 

severe patients in comparison to asymptomatic patients. Additionally, to understand patterns 197 

in gene expression between asymptomatic and severe patients, we constructed heatmaps 198 

using the heatmap function in R [99]. Heatmap is a grid-like graphical representation of the 199 

expression of genes (in rows) in all the samples (in columns) taken into consideration [100]. 200 

2.3.3. Biological annotation 201 

Subsequently, to understand the biological implication of significantly differentially 202 

expression genes obtained from DESeq2 analysis in severe patients, we performed gene 203 

enrichment analysis using the Enrichr [101-103]. We queried the upregulated and 204 

downregulated gene sets independently in the Enrichr search engine [104]. Enrichr gives 205 

various Gene Set Enrichment terms as output which can be analyzed for significance based 206 

on four ranking parameters, i.e., p-value, adjusted p-value, odds ratio, combined scores [103]. 207 
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Enrichr visualization bar graph shows top enrichment terms with significance depicted by the 208 

length and color of the bar. An enrichment term with a more extended bar and a lighter shade 209 

of red indicate higher significance than a term with a shorter bar and darker red color or grey 210 

color [103].  A few of the top Gene Set Enrichment terms are, i.e., KEGG Human, 211 

WikiPathway, Gene Ontology (GO) terms, Jensen diseases, Human phenotype ontology, etc., 212 

based on p-value (<0.05). To identify significant pathways involved in each enrichment term, 213 

we used the q-value (adjusted p-value) < 0.05. Besides, we searched for the top significant 214 

and differentially expressed genes (from our analysis) in the literature to understand their 215 

already known role in COVID-19 pathogenesis. 216 

 217 

3. Results 218 

In the current study, we analyzed the transcriptomic profiles of asymptomatic and severe 219 

COVID-19 patients to compare the transcriptional changes and understand the biological 220 

implications of infection. A publicly available RNA sequencing read count dataset was 221 

extracted, pre-processed, and normalized. We performed exploratory data analysis using PCA 222 

to understand variations between groups and to identify outliers. Subsequently, we performed 223 

differential gene expression analysis between these identified groups (Severe vs. 224 

Asymptomatic). Eventually, gene enrichment analysis was performed using the significantly 225 

differentially expressed gene sets to discern their biological involvement in viral immuno-226 

pathogenesis.  227 

3.1. Data Pre-processing 228 

After the pre-processing, we are able to remove genes without identifiers, zero expression, 229 

and low variance in the data. Thus, the total number of genes reduced from 188,753 to 35,587 230 

in the data. Subsequently, this dataset was used for exploratory and DGE analysis. 231 

3.2. Exploratory Data Analysis 232 

We analyzed each group's scatter plot and principal components to identify if any of the top 233 

Principal Components (PC) showed significant variations. The scatter plots for all Principal 234 

Component Analysis performed are provided in Figure 2 and Supplementary Figure 1 A-C. 235 

The scatter plot in Supplementary Figure 1.A represents all three groups, i.e., untreated and 236 

treated asymptomatic, moderately symptomatic, and severe. However, three outliers can be 237 

observed at the bottom left of the plot; the clustering does not show any clear distinction 238 

between the three groups. PCA for remaining groups, i.e., severe male v/s female, severe 239 

below 45 years age v/s above 45 years age (Supplementary Figure S1 B and C also did not 240 
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show any clear groups. The top principal components in these groups also did not show 241 

significant variations. Thus, we mainly shifted our focus to two critical groups, i.e., 242 

asymptomatic (untreated or day 00) and severe (untreated or day 00), since these are two 243 

contrasting viral infection conditions and interestingly, they also represent lesser within-244 

group variation. The PCA between untreated asymptomatic (n=7) and untreated severe 245 

samples (n=8) represent nearly 61.8% variation in the data, wherein PC1 contributes 49.49%, 246 

and PC2 contributes ~ 12.39% variation (Figure 2A). Using the clustering patterns in PCA, 247 

we identified seven samples as outliers. We removed these outlier samples and then 248 

performed PCA on the remaining eight samples (four severe and four asymptomatic), that 249 

represented nearly 48.61% variation in the data, where PC1 represents 34.64%, and PC2 250 

represents 13.97% variation. So, Scatterplots based on the PC1 and PC2 of untreated 251 

asymptomatic and severe samples show clear distinction, and we got down to 4 samples in 252 

each group (Figure 2B). For a significant DGE analysis, the minimum number of samples in 253 

each group must be three, so we considered these four samples from both groups for further 254 

downstream analysis. 255 

 256 
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Figure 2. Principal Component Analysis between untreated asymptomatic and severe groups. 257 

A. PCA between asymptomatic (n=7, Day00) v/s severe samples (n=8, Day00) B. PCA 258 

between asymptomatic (n=7, Day00) v/s severe samples (n=8, Day00) after outlier removal. 259 

 260 

3.3. Differential gene expression analysis 261 

Differential gene expression analysis between untreated severe and asymptomatic samples 262 

using DESeq2 identified 2,837 genes as significantly differentially expressed (p adjusted 263 

value < 0.05). From these 2,837 genes, 1224 genes were found to be significantly upregulated 264 

(Log2FC>= 1.5, p-adjusted value <0.05) and 268 genes as significantly downregulated 265 

(Log2FC<= -1.5, p-adjusted value <0.05) in severe samples in comparison to asymptomatic 266 

samples. The list of the total up-and downregulated genes is provided in Supplementary 267 

Tables S4 and S5, respectively. The volcano plot represents the pattern of differentially 268 

expressed genes (Figure 3). Each dot in the plot represents a single gene with log2FC along 269 

the x-axis and -Log10 (p-value) along the y-axis. In the volcano plot, the genes depicted in 270 

black color are nonsignificant, while genes in blue and red color represent most significantly 271 

differentially expressed genes with padj <0.01 and padj <0.05, respectively. Further, heatmap 272 

(Figure 4) represents the expression pattern of the top 50 genes (25 upregulated and 25 273 

downregulated genes) in untreated severe COVID-19 samples in comparison to 274 

asymptomatic samples. The color scale denotes the expression values in the heatmap. The red 275 

color's intensity represents upregulated genes, and the yellow color's intensity represents 276 

downregulated genes in the sample under consideration. The top 25 upregulated and down 277 

regulated genes ae mentioned in Table 2. with respective gene description.  278 

 279 
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 280 

Figure 3. Volcano plot based on p-value and log2FC. Each dot here represents a single gene. Black 281 

represents nonsignificant genes, blue and red represent genes differentially regulated at padj <0.01 282 

and padj <0.05. 283 

 284 
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 285 

Figure 4. Heatmap based on top 25 upregulated and downregulated genes from DESEQ2 of 286 

asymptomatic and severe samples. 287 

 288 

Table 2: List of top 25 upregulated (Log2FC>= 1.5, p-adjusted value <0.05) and downregulated 289 

(Log2FC<= -1.5, p-adjusted value <0.05) genes in severe COVID-19 subjects in comparison to 290 

asymptomatic subjects with their gene description.  291 

TOP 25 UPREGULATED GENES TOP 25 DOWNREGULATED GENES 

Gene name Gene description Gene name Gene description 

HLA-DRB1 Protein coding, Major 

Histocompatibility Complex, 

Class II, DR Beta 1 [105, 106] 

AC105052.3 sense overlapping [107] 

HLA-DRB5 Protein coding, Major 

Histocompatibility Complex, 

FMC1-

LUC7L2 

Protein coding, FMC1-

LUC7L2 Readthrough [105, 
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Class II, DR Beta 5 [105, 106] 106] 

IGHV3-7 Protein coding, Immunoglobulin 

Heavy Variable 3-7 [105, 106] 

CTAGE8 Protein coding, CTAGE 

Family Member 8 [105, 106] 

ACTBP8 Pseudogene, ACTB Pseudogene 

8 [105, 106] 

AL139415.2 Processed pseudogenes [107] 

AC008763.3 Novel protein [108, 109] ADAMTS5 Protein coding, ADAM 

Metallopeptidase with 

Thrombospondin Type 1 

Motif 5 [105, 106] 

CD177 Protein coding, CD177 Molecule 

[105, 106] 

MED28P7 Pseudogene, Mediator 

Complex Subunit 28 

Pseudogene 7 [105, 106] 

AL442003.2 NA MUC20P1 Pseudogene, Mucin 20, Cell 

Surface Associated 

Pseudogene 1 [105, 106] 

IGHV3-74 Protein coding, Immunoglobulin 

Heavy Variable 3-74 [105, 106] 

RCC2P4 Pseudogene, Regulator Of 

Chromosome Condensation 2 

Pseudogene 4 [105, 106] 

ISG15 Protein coding, ISG15 Ubiquitin 

Like Modifier [105, 106] 

PFN1P4 Pseudogene, Profilin 1 

Pseudogene 4 [105, 106] 

CCL2 Protein coding, C-C Motif 

Chemokine Ligand 2 [105, 106] 

AL353597.2 processed transcript, 

transcribed processed 

pseudogene [107] 

CCL8 Protein coding, C-C Motif 

Chemokine Ligand 8 [105, 106] 

HBG1 Protein coding, Hemoglobin 

Subunit Gamma 1 [105, 106] 

OTOF Protein coding, Otoferlin [105, 

106] 

GOLGA8O Protein coding, Golgin A8 

Family Member O [105, 106] 
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RSAD2 Protein coding, Radical S-

Adenosyl Methionine Domain 

Containing 2 [105, 106] 

TM4SF19-

TCTEX1D2 

RNA Gene, TM4SF19-

DYNLT2B Readthrough 

(NMD Candidate) [105, 106] 

METTL7B Protein coding, 

Methyltransferase Like 7B [105, 

106] 

DERPC Protein coding, DERPC 

Proline and Glycine Rich 

Nuclear Protein [105, 106] 

HES4 Protein coding, Hes Family 

BHLH Transcription Factor 4 

[105, 106] 

TRBV13 Protein coding, T Cell 

Receptor Beta Variable 13 

[105, 106] 

CDK2AP2P2 Pseudogene, PTGER4P2-

CDK2AP2P2 Readthrough, 

Transcribed Pseudogene [105, 

106] 

AC108676.2 Processed pseudogenes [107] 

IFIT1 Protein coding, Interferon 

Induced Protein With 

Tetratricopeptide Repeats 1 

[105, 106] 

AC009299.1 Processed pseudogenes [107] 

AL121835.1 Processed pseudogenes [107] HIGD1C Protein coding, HIG1 

Hypoxia Inducible Domain 

Family Member 1C [105, 

106] 

CCNA1 Protein coding, Cyclin A1 [105, 

106] 

PTBP1P Pseudogene, Polypyrimidine 

Tract Binding Protein 1 

Pseudogene [105, 106] 

DEFB1 Protein coding, Defensin Beta 1 

[105, 106] 

EIF3CL Protein coding, Eukaryotic 

Translation Initiation Factor 3 

Subunit C Like [105, 106] 

AC104837.2 Processed pseudogenes [107] KIF4CP Pseudogene, Kinesin Family 
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Member 4C, Pseudogene 

[105, 106] 

AC020765.1 Processed pseudogenes [107] NPIPA7 Protein coding, Nuclear Pore 

Complex Interacting Protein 

Family Member A7 [105, 

106] 

AC005943.1 nonsense mediated decay [107] AC091390.3 unprocessed pseudogene 

[107] 

EXOC3L1 Protein coding, Exocyst 

Complex Component 3 Like 1 

[105, 106] 

GLYATL1B Protein coding, Glycine-N-

Acyltransferase Like 1B 

[105, 106] 

CXCL11 Protein coding, C-X-C Motif 

Chemokine Ligand 11 [105, 

106] 

AC026436.1 Processed pseudogenes [107] 

 292 

3.2.5. Biological annotation - Gene Enrichment analysis 293 

We queried all significantly up and down regulated genes obtained from DGE analysis to the 294 

Enrichr search engine independently. The resulting bar plots represent the top enriched terms 295 

for upregulated genes (Figures 5, Supplementary Figure S2-S4) and downregulated genes 296 

(Figures 6, Supplementary Figure S5). We also extracted the complete results of all enriched 297 

terms for both upregulated (see Table S6-S21, Supplementary File 2) and downregulated 298 

gene sets (see Table S22-S36, Supplementary File 2) as tables. Besides, we also studied the 299 

significant terms and searched in the literature whether these are associated with COVID-19 300 

pathogenesis previously. The key terms are briefly explained below: 301 

3.2.5.1. Gene Set Enrichment Analysis of upregulated Genes 302 

Association with the viral infection and inflammatory response 303 

Immune response terms that were found to be enriched for upregulated gene set include 304 

decreased interleukin-12b secretion MP:0008670; decreased B cell proliferation 305 

MP:0005093; abnormal interleukin level MP:0008751; impaired natural killer cell-mediated 306 

cytotoxicity MP:0005070; increased prostaglandin level MP:0009814; lymph node 307 

hyperplasia MP:0008102, Oncostatin M Signalling Pathway WP2374. Further, enriched 308 
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terms found to  associated with response to viral infection like Type II interferon signaling 309 

(I.F.N.G.) (WP619), IL-18 signaling pathway (WP4754), IL8 signaling (WP4754), Structural 310 

Pathway of Interleukin 1 (IL-1) (WP2637), IL-6 signaling pathway (WP364), decreased 311 

interferon-alpha secretion (MP:0008563), IL-4 signaling pathway (WP395), decreased 312 

interleukin-1 beta secretion (MP:0008658), abnormal T-helper 2 physiology (MP:0005466), 313 

abnormal macrophage physiology (MP:0002451), abnormal T-helper 1 physiology 314 

(MP:0005465), abnormal granulocyte physiology (MP:0002462), sepsis (MP:0005044). 315 

While the enriched terms related to anti-inflammatory and immune response are Activation of 316 

NLRP3 Inflammasome by SARS-CoV-2 (WP4876), abnormal inflammatory response 317 

(MP:0001845), IL-10 Anti-inflammatory Signaling Pathway WP4495.  318 

Association with secondary infections 319 

Interestingly, we found the enrichment of upregulated genes with terms that are associated 320 

with various infections other than COVID-19. These enriched terms are Influenza A, Epstein-321 

Barr virus infection, Kaposi sarcoma-associated herpesvirus infection, Staphylococcus aureus 322 

infection, Measles, Human immunodeficiency virus 1 infection, Hepatitis C, increased 323 

susceptibility to bacterial infection (MP:0002412), Recurrent gram-negative bacterial 324 

infections (HP:0005420), increased susceptibility to fungal infection (MP:0005399), 325 

increased susceptibility to bacterial infection (MP:0002412), increased susceptibility to 326 

Picornaviridae infection (MP:0020937), Kaposi sarcoma-associated herpesvirus infection, 327 

increased susceptibility to Riboviria infection (MP:0020913), increased susceptibility to 328 

Herpesvirales infection (MP:0020916). Enrichment terms related to nutrients for upregulated 329 

gene set were Copper homeostasis WP3286, Vitamin B12 Disorders WP4271, and Zinc 330 

homeostasis WP3529. Iron homeostasis enrichment terms in upregulated gene sets are 331 

Ferroptosis WP4313, Folate Metabolism WP176, abnormal iron homeostasis MP:0005637, 332 

decreased spleen iron level MP:0008808, Abnormality of iron homeostasis (HP:0011031). 333 

Association with organs other than the respiratory system 334 

We also observed enriched pathways related to various organs, such as kidney-related 335 

glomerulonephritis MP:0002743; renal glomerular immunoglobulin deposits MP:0020519; 336 

and liver-related increased liver iron level MP:0008807. Heart-related Adrenergic signaling 337 

in cardiomyocytes (KEGG), myocarditis MP:0001856, Extracellular vesicles in the crosstalk 338 

of cardiac cells WP4300, ApoE, and miR-146 in inflammation and atherosclerosis WP3926, 339 

arrhythmogenic right ventricular dysplasia (Diseases) [implication of JUP gene in ARVD], 340 

Arrhythmogenic right ventricular cardiomyopathy (KEGG), cholesterol level (OMIM 341 

Diseases) [implication of VNN1 gene], myocardial infarction (OMIM Diseases) [implication 342 
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of PSMA6 gene], cardiomyopathy, (OMIM Diseases) [implication of MYBPC3 gene], 343 

Chronic obstructive pulmonary disease (HP:0006510), Abnormality of lateral ventricle 344 

(HP:0030047), Abnormality of the carotid arteries (HP:0005344); Arteriovenous 345 

malformation (HP:0100026); Arterial thrombosis (HP:0004420). Pathways enriched for the 346 

intestine are "Duodenal and small intestinal stenosis," "abnormal gut flora balance" 347 

MP:0010377, and those related to the skin were hypopigmented skin patches (HP:0001053), 348 

Urticaria (HP:0001025), Recurrent skin infections (HP:0001581), Hyper melanotic macule 349 

(HP:0001034), Recurrent bacterial skin infections (HP:0005406), Eczematoid dermatitis 350 

(HP:0000976) skin hemorrhage MP:0011514. Brain related neurological and behavioral 351 

pathways found were Inappropriate behavior (HP:0000719), Personality changes 352 

(HP:0000751), Diminished motivation (HP:0000745), Dementia (HP:0000726), Memory 353 

impairment (HP:0002354), Restlessness (HP:0000711), Vertigo (HP:0002321), 354 

Neuroinflammation WP4919, Galanin receptor pathway WP4970, Meningitis (HP:0001287).  355 

Association with male infertility 356 

Enrichment analysis of upregulated genes set shown the association with the male infertility 357 

WP4673, Abnormality of the preputium (HP:0100587), and Erectile abnormalities 358 

(HP:0100639).  359 

Association with other important pathways for understanding host response 360 

Further, we found the enrichment of upregulated genes in Ferritin, an inflammatory marker 361 

used in COVID-19 prognosis, Transcriptional cascade regulating adipogenesis WP4211, 362 

Fibrin Complement Receptor 3 Signalling Pathway WP4136. Other WikiPathway that are 363 

observed to be significantly upregulated in severe patients are IL1 and megakaryocytes in 364 

obesity (WP2865); Adipogenesis (WP236); Non-genomic actions of 1,25 dihydroxy vitamin 365 

D3 (WP4341); Vitamin D Receptor Pathway (WP2877); Myometrial relaxation and 366 

contraction pathways (WP289); Extracellular vesicles in the crosstalk of cardiac cells 367 

(WP4300). Pathways enriched related to blood cells are thrombocytopenia MP:0003179; 368 

abnormal myelopoiesis MP:0001601; impaired hematopoiesis MP:0001606; increased spleen 369 

weight MP:0004952. Descartes_Cell_Tissue_2021 shows Myeloid cells, Microglia, Antigen-370 

presenting cells in the Thymus, Erythroblasts, Megakaryocytes in the Heart, Corneal and 371 

conjunctival epithelial cells in Eye, Vascular endothelial cells enrichment. Jensen diseases 372 

database indicates the association of upregulated genes with Arthritis, Peritonitis, Vasculitis, 373 

Periodontitis, Tularemia, Lupus Erythematosus, Boutonneuse fever, Hemochromatosis. The 374 

enriched GO cellular function(s) were azurophil granule (GO:0042582); ficolin-1-rich 375 

granule (GO:0101002); platelet alpha granule (GO:0031091). KEGG Human 2021 terms 376 
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enriched in upregulated gene sets are NOD-like receptor signaling pathway; Osteoclast 377 

differentiation; Legionellosis; Lipid and atherosclerosis; Staphylococcus aureus infection; 378 

Measles; C-type lectin receptor signaling pathway; TNF signaling pathway; Rheumatoid 379 

arthritis; IL-17 signaling pathway. 380 

3.2.5.2. Gene Set Enrichment Analysis of downregulated Genes 381 

We observed that downregulated genes in severe patients are significantly associated with 382 

Hematopoietic cell lineage and Primary immunodeficiency. Besides, they were involved in 383 

lipid metabolism, adaptive immune response, translation, recurrent respiratory infections, 384 

heme biosynthetic pathways, etc.  385 

Association with metabolic pathways 386 

Notably, some of the downregulated genes were found to be associated with metabolic 387 

pathways such as Arachidonic acid metabolism, Inositol phosphate metabolism, Histidine 388 

metabolism, Glycosylphosphatidylinositol (GPI)-anchor biosynthesis, Linoleic acid 389 

metabolism, beta-Alanine metabolism, Fructose, and mannose metabolism, 390 

Glycerophospholipid metabolism, Carbohydrate digestion, and absorption, through 391 

enrichment was not significant. 392 

Association with Adaptive immune Response 393 

Next, we observed downregulated genes are significantly enriched in GO biological 394 

processes that are associated with adaptive immune response, including regulation of antigen 395 

receptor-mediated signaling pathway (GO:0050854), response to interleukin-6 396 

(GO:0070741), adaptive immune response based on somatic recombination of immune 397 

receptors built from immunoglobulin superfamily domains (GO:0002460), regulation of B 398 

cell receptor signaling pathway (GO:0050855), regulation of antigen receptor-mediated 399 

signaling pathway (GO:0050854), response to interleukin-6 (GO:0070741), adaptive immune 400 

response based on somatic recombination of immune receptors built from immunoglobulin 401 

superfamily domains (GO:0002460), regulation of B cell receptor signaling pathway 402 

(GO:0050855). 403 

Association with translation 404 

Some of the downregulated genes, i.e., EIF3CL, EIF4B, EIF5AL1, PASK, were found to be 405 

involved (although not significantly enriched) in translation processes such as the formation 406 

of the translation preinitiation complex (GO:0001731), regulation of translational initiation 407 

(GO:0006446), positive regulation of translation (GO:0045727), regulation of translational 408 
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elongation (GO:0006448), cytoplasmic translational initiation (GO:0002183), translation 409 

Factors WP107.  410 

Association with recurrent respiratory diseases and abnormal Heme biosynthesis 411 

Recurrent lower respiratory tract infections (HP:0002783), Agammaglobulinemia 412 

(HP:0004432), Abnormality of the heme biosynthetic pathway (HP:0010472). 413 

Other signaling pathways 414 

Further, the TGF-beta signaling pathway, Notch signaling pathway, and Ferroptosis pathways 415 

were also associated with downregulated genes. Besides, downregulated genes are related to 416 

Cutaneous finger syndactyly (HP:0010554), Cutaneous syndactyly (HP:0012725), and 417 

Increased number of teeth (HP:0011069). 418 

 419 

 420 
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 421 

Figure 4: Ontologies and pathways upregulated in DESeq2 analysis of severe and asymptomatic 422 

COVID-19 subjects using Enrichr database. 423 

 424 

 425 
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 426 

Figure 6: Ontologies and pathways downregulated in DESeq2 analysis of severe and asymptomatic 427 

COVID-19 subjects using Enrichr database. 428 

 429 

Discussion 430 

The primary concern with highly transmissible COVID-19 disease is the lack of 431 

understanding of the disease-causing mechanisms, resulting in poor treatments and post 432 

COVID-19 complications [110]. Clinical observations and scientific studies indicate that 433 

SARS-CoV-2 infection impacts not only respiratory organs but also other organs such as the 434 

brain, heart, kidney, gastrointestinal tract, etc. [8, 111-114]. The risk factors for COVID-19 435 

severity include pre-existing comorbidities, particular age group of subjects, demographics, 436 

gender, etc. [5, 8, 23, 115, 116]. The heterogeneous effects of the infection on various 437 

individuals pose a significant hurdle in the therapeutic management of COVID-19 patients. 438 

Thus, it is vital to delineate the molecular alterations occurring in different groups of patients 439 

based on the impact of infections. This study extensively explored the transcriptomics 440 

profiles of two contrasting groups of COVID-19 patients, i.e., severe, and asymptomatic. The 441 

RNA sequencing data is derived from whole blood cells, a pool of immune cells, and 442 

significant biochemical products result of biochemical processes, making it a considerable 443 

tissue sample for transcriptomic profiling. Hence, we believe that the whole blood serves as a 444 

good source for understanding the immunopathology of COVID-19 subjects. Identifying 445 

significant pathways involved in the patients might help manage the severity of the disease. 446 

Exploratory analysis using Principal Component Analysis (PCA) shows distinct 447 

asymptomatic and severe subjects clusters. Subsequently, differential gene expression 448 
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analysis was performed between these two groups employing the DESeq2. We identified 449 

2,837 genes as significantly differentially expressed between severe and asymptomatic 450 

COVID-19 subjects. To reduce false discovery rate (FDR) and increase statistical 451 

significance, we used a stringent filter (Bonferroni-padj value <0.05 and Log2fold Change 452 

(Log2FC)) and found 1,224 upregulated (Log2FC >= 1.5 and p-adjusted value <0.05) and 453 

268 downregulated (Log2FC <= -1.5 and p-adjusted value <0.05) genes in severe in 454 

comparison to asymptomatic COVID-19 subjects. Further, to understand the alterations at the 455 

molecular and biological level, we queried differentially regulated genes in the Enrichr 456 

database.  457 

Our study found pathways known to express in viral response, in general, and specific to 458 

COVID-19 infection. We observed the type II interferon (IFNG) pathway upregulated in 459 

severe subjects. While type I IFNG is generally activated in viral response, studies have 460 

found suppression of Type I IFN in SARS-CoV infections [117, 118]. The enrichment studies 461 

observed an increased population of myeloid cells (in the pancreas, intestine, kidney, lung, 462 

liver) and microglia (in the brain), which form part of the innate immune response against the 463 

virus. These cell types have a known role in phagocytosis and anti-inflammation, biochemical 464 

pathways commonly observed in response to viral infection [119, 120]. Antigen-presenting 465 

cells (A.P.C.) in thymus enriched in severe patients also indicate an immune response to the 466 

virus. G.O. cellular components show increased ficolin and azurophil-rich granules secretion 467 

in severe subjects. These are also associated with the COVID-19 immune response [121-468 

123]. Neutrophil count increases in COVID-19 infection [115, 124]. Our enrichment analysis 469 

also found neutrophil activation and neutrophil mediated immunity. Neutrophil degranulation 470 

is enhanced in response to inflammatory reactions in the body [125-127]. And previous 471 

studies have also reported increased neutrophil degranulation in response to COVID-19 472 

infection in organisms other than humans [125]. One such study performed on the Rhesus 473 

macaque model shows increased neutrophil degranulation in young subjects compared to old 474 

subjects [125]. As observed in severe patients, we propose that the upregulation of neutrophil 475 

degranulation occurs in response to the disease severity. Our subjects fall in the mean age of 476 

around 45 years, the old age group; we need to compare neutrophil degranulation in COVID-477 

19 response in an age-dependent study. 478 

Further, our analysis observed "negative regulation of viral process" in the upregulated G.O. 479 

biological process, possibly explaining that the increased host immune response (anti-viral) 480 

reduces other viruses' multiplication. The possible reason for this is the activation of the anti-481 

viral immune response that reduces the risks of other infections. Increased STING (stimulator 482 
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of interferon genes), which mediates interferon expression, is a known prognosis of COVID-483 

19 [128]. Interestingly, we also observed that COVID-19 severe patients might have an 484 

increased risk of bacterial, fungal infection compared to asymptomatic patients. This 485 

observation of reduced viral infection but increased secondary infection aligns with previous 486 

studies on COVID-19 patients [129, 130]. The immune response involved in viral and 487 

bacterial infection shares different immune components [131-136]. A study reveals 488 

simultaneous expression of both IFNα and IFNγ inhibits the expression of biomarkers 489 

associated with viral and bacterial infection [131]. We believe that the complex interplay of 490 

viral and bacterial response factors and activation of viral response in the host inhibits the 491 

expression of host immune machinery to tackle bacterial infection and might be the probable 492 

reason for increased susceptibility to bacterial infections post COVID-19 infection. Previous 493 

research shows that NOD-like receptor signaling enhanced in response to SARS-CoV-1 494 

infection results in disturbances in microbiota and increased secondary infection [118, 137]. 495 

We also observed NOD-like receptor signaling enrichment in the upregulated gene set, which 496 

might indicate gastrointestinal manifestations and increased susceptibility to bacterial 497 

infection in severe patients. This observation needs to be further confirmed by studying the 498 

host response expression induced by infections with various microorganisms.   499 

Another significant observation in enriched terms for upregulated genes is the high 500 

coincidence of cardiac complications in COVID-19 patients, as evident in severe COVID-19 501 

patients [17, 29]. Our study has observed coagulation dysfunction upregulated in severe 502 

patients, which could be the reason for the cardiac manifestation of COVID-19 infection. As 503 

mentioned previously, we have observed enrichment of Antigen-presenting cells in the 504 

thymus, and there are studies linking the thymus' role in Arrhythmia [138-140]. We have also 505 

confirmed many "Disease-specific laboratory values" upregulated in severe patients. These 506 

are related to immunological response, inflammation response, and hypercoagulable state, 507 

increased aspartate aminotransferase (AST), and alanine aminotransferase (ALT), and 508 

increased interleukin 6 (IL-6), and decreased thrombocytes, reduced blood sodium. 509 

We have also found that COVID 19 disease severity might impact fertility in the patients. It 510 

is known that ACE2 receptors are present in human male testicles [141], but the studies 511 

related to COVID-19's impact on testicular functionality are contradictory [142-144]. Studies 512 

done to detect viral RNA in semen showed different results, with the majority indicating the 513 

absence of SARS-CoV-2 RNA [145-149]. So, we propose that if the viral particles are absent 514 

in the semen, the possibility of infertility in COVID-19 patients could be an inflammatory 515 

response to COVID-19 infection [150]. The enrichment pathways related to downregulated 516 
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gene sets also support the previous research findings, such as reduced notch binding 517 

signaling, absent mature B cells, CD4+, alpha, and beta T cells, etc. [125, 151].  518 

As COVID-19 disease has a multifactorial response on the body, we need more clinical 519 

features for prognosis, which can help us manage the diverse impact of COVID-19 on health. 520 

To address future novel virus disease management, we must not limit ourselves to real-time 521 

therapeutics. Instead, we must continuously build the concepts of generalized host response 522 

and disease progression on diverse tissues and subject groups. 523 

 524 

Conclusion 525 

Our unpreparedness with SARS-CoV-2 indicates the need for more stringent research to help 526 

us understand disease progression and devise strategies for other such outbreaks in the future. 527 

Our comparative study based on two contrasting COVID-19 infection conditions, i.e. severe 528 

and asymptomatic patients identified the alteration of key pathways and biological processes 529 

associated with various comorbidities. We observed upregulation of viral-specific immune 530 

response and inflammatory pathways. Besides, heightened organ-specific responses related to 531 

blood, heart, brain, intestine, and kidney enriched in severe subjects not limited to respiratory 532 

organs. Also, our study suggests that severe COVID-19 subjects become more prone to 533 

bacterial infections and less prone to viral infections. Besides, we found the downregulation 534 

of lipid metabolism, adaptive immune response, translation, heme-biosynthetic pathways, etc. 535 

The major pathways highlighted in our study are associated with cardiac complications, 536 

autoinflammatory conditions, secondary infections, iron homeostasis and anemia, lipid 537 

metabolism, male infertility, etc. These altered pathways in severe patients might be 538 

indicative of post-COVID effects. We anticipate our study will facilitate clinicians in 539 

managing COVID-19 patients and post-COVID complications, essentially, researchers in 540 

finding better therapeutic targets. However, analyzing more samples in both groups will help 541 

validate our findings. 542 

Limitation of the Study 543 

We face multiple challenges in the transcriptomic analysis of COVID-19 patients. There are 544 

limited host response data available. The lack of diversity of data (tissues, demographics, 545 

patient clinical characteristics) is also another limitation. Also, we need more data available 546 

from infection studies to establish a correlation between secondary infection and SARS-CoV-547 

2. The study can be improved in the following ways. As observed in COVID-19 patients, the 548 
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immune response components also vary during infection, and hence many of these 549 

complications may also change with the course of disease progression. 550 
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