
Frequent non-genic adaptation and gene birth through the

interplay of functionality and expression in a population model

Somya Mani
Center for Soft and Living Matter, Institute for Basic Science

Ulsan 44919, Republic of Korea
somyamn@gmail.com

Tsvi Tlusty
Center for Soft and Living Matter, Institute for Basic Science, and

Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology (UNIST)
Ulsan 44919, Republic of Korea
tsvitlusty@gmail.com

ABSTRACT

Over evolutionary timescales, genomic loci switch between functional and non-functional states
through processes such as pseudogenization and de novo gene birth. Here we ask about the likelihood
and rate of functionalization of non-functional loci. We simulate an evolutionary model to look at
the contributions of mutations and structural variation using biologically reasonable distributions of
mutational effects. We find that a wide range of mutational effects are conducive to functionalization,
thus indicating the ubiquity of this process. During functionalization, loci transition from a mutation
dominated ’learning’ phase to a selection dominated adaptation phase. Interestingly, in the special
case of de novo gene birth, whereby non-functional loci begin to express a functional product, we find
that expression level changes lead to rare, extreme jumps in fitness, whereas sustained adaptation is
driven by product functionality. Our work supports the idea that the potential for adaptation is spread
widely across the genome, and our results offer mechanistic insights into the process of de novo gene
birth.

Keywords spontaneous mutation · structural variation · distribution of fitness effects · adaptation · de novo gene birth

1 Introduction
At a very coarse level, a genome consists of multiple genomic loci which can be non-functional or loci with functions
such as genes, gene regulatory loci, sequences maintaining chromosome structure, etc Consortium et al. [2012].
Currently, genome annotation remains a formidable challenge for both prokaryotes Dimonaco et al. [2022] and
eukaryotes Salzberg [2019]. Nevertheless, it is reasonable to assume that on an evolutionary timescale, most genomic
loci are in flux across functional and non-functional categories. For example, genes can lose their functionality through
pseudogenization Albalat and Cañestro [2016]. In the other direction, there are also many examples across eukaryotes
of de novo gene birth Van Oss and Carvunis [2019]. In this work, we ask about the fate of non-functional genomic loci.

We approach this question using an evolutionary model and explore how the fitness contribution of a non-functional
genomic locus might increase over time due to the effects of accumulating mutations. The distribution of mutational
fitness effects (DFE) has been experimentally measured in mutation accumulation studies for various organisms Katju
and Bergthorsson [2019]. In our model, we sample biologically reasonable DFEs, using recently measured DFE
parameters for Chlamydomonas Böndel et al. [2019] as reference. Notably, observations in Böndel et al. [2019] indicate
that the DFE of specific regions of the Chlamydomonas genome, such as exons, introns or intergenic sequences, are
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similar to each other and to the DFE of the whole genome. In general, the DFE is known to vary across different regions
of the genome Racimo and Schraiber [2014], and across different species Huber et al. [2017]. We accommodate this
diversity by sampling a wide range of DFEs.

Now, over a time scale of millions of years, in addition to small mutations (< 50bp), one can also expect large structural
variations (from 50bp upto several megabases) to impact the evolution of genomic loci Mérot et al. [2020]. While the
rate of structural variation is estimated to be hundreds of times slower than the rate of small mutations, its effect is
likely to be much larger Trost et al. [2021]. Of particular importance to our question is the possibility that the entire
genomic locus under consideration gets deleted. Therefore, we test in our model whether sustained fitness increase can
occur in the face of locus deletion.

Finally, we consider the particular case of de novo gene birth. Recent studies report how new genes gain expression
Majic and Payne [2020] and functionality Zhang et al. [2015] over time. Measurements from mutational scans of
protein encoding genes indicate that the overall fitness contribution of a gene is a combination of the adaptive value of
the expression product, and its expression level Shen et al. [2022]. We envisage that equivalently, during the process
of de novo gene birth, mutational fitness effects can be decomposed into the effect on adaptive value and the effect
on expression level. In the model, we use the DFE, together with empirical measurements of mutational effects on
expression to extract a scenario of the evolution of the adaptive value of the expression product.

Overall, we find that a wide range of biologically reasonable DFEs allow functionalization of genomic loci, indicating
the ubiquity of this process. Moreover, this gain of functionality occurred despite the antagonistic effects of locus
deletion, particularly for the Chlamydomonas DFE parameters. In the special case of de novo gene birth, our model
reveals a short-tailed distribution for mutational effects on adaptive value, thus implying that the rare, extreme mutations
that are characteristic of DFEs are instead driven solely by mutational effects on expression level. In contrast, we
find that mutations in adaptive value are the major drivers for the sustained fitness increase over evolutionary time.
Our results can be tested experimentally using high throughput mutational scans on random initial sequences; such
experiments stand to offer quantitative insights into the process of de novo gene birth.

2 Model of non-functional locus adaptation

We set up a population genetic framework to model well-mixed populations of fixed size N , composed of asexually
reproducing haploid individuals. Fitness of an individual represents exponential growth rate, which is equivalent to the
quantities considered in experiments that measure DFEs (e.g., Böndel et al. [2019]). In this work, for any individual
i, we consider the evolution of the fitness contribution F (i) of a single locus in its genome. We are interested in the
probability that the locus persists in the population, and that its fitness contribution increases above some predetermined
threshold. In particular, we examine the special case of de novo gene birth, where the fitness contribution can be
decomposed into two quantities: functionality, or adaptive value of the expression product (A(i)), and its expression
level (E(i)). Our definition of fitness is not tied to any specific function, and we assume that F (i) = A(i)× E(i).

The locus of interest is non-genic, with initial fitness F0(i) = 0, and an initial expression level E0(i) = 0.001 for all
individuals. The initial expression level captures leaky expression of intergenic regions Clark et al. [2011], which is
estimated to be 1000-fold smaller than the level of highly expressed genes Hebenstreit et al. [2011].

Generations in the model are non-overlapping, and the population at time-step t + 1 is composed entirely of the
offspring of individuals in the time-step t (Fig1(A)). Offspring incur mutations at each time-step, which affect the locus
fitness (∆F (i)). In the case of de novo gene birth, ∆F (i) can be decomposed into mutational effects on adaptive value
(∆A(i)) and expression level (∆E(i)):

Ft+1(i) = Ft(i) + ∆Ft(i) (1)
and, Ft+1(i) = (At(i) + ∆At(i)) · (Et(i) + ∆Et(i)) (2)

The mutation rate sets the timescale of the model: a single time-step is roughly the time it takes for one mutation to occur
in the locus. For a locus of ∼100 base pairs, a single model time-step can range between 100 years to 100 000 years
for different organisms (Fig1(B), see also Supplementary Information: Table.1). Offspring can also incur structural
variations, which in the model leads to the deletion of the locus in that individual. The probability of locus deletion d
represents the rate of structural variation relative to mutation rate.

In the model, the probability that an individual leaves an offspring is proportional to the fitness F (i) of the locus
(see Supplementary Information: Section.2 for a discussion of the genomic background). Whenever F (i) ≤ −1, we
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Figure 1: Time-scale and fitness effects of mutations in the model. (A) Phylogenetic tree representing the evolution
of a non-genic locus. Time steps t count the generations in the model, which represent the average time for a mutation
to occur in the locus. The grey dot at t = 0 represents the initial non-genic sequence. Grey branches represent lineages
that die out, and colored branches represent the lineage that gets fixed in the population. Fitness levels of colored
branches in the fixed lineage are indicated in the color bar. The blue dot at t = n represents the most recent common
ancestor of all surviving lineages whose fitness contribution is above the threshold. (B) Estimates of the number of
years equivalent to a single time-step of the model in the different species listed on the x-axis. The point representing
Chlamydomonas reinhardtii, whose DFE is measured in Böndel et al. [2019], is circled in red. See Supplementary
Information: Table.1 for calculations. (C) Distribution of fitness effects (DFE) for different values of model parameters
(listed for each distribution). The top left panel represents the DFE with parameters closest to those of C reinhardtii.
The bottom left panel represents the DFE with the most deleterious and least beneficial mutations. The bottom right
panel represents the DFE with the most beneficial and least deleterious mutations sampled in this work.
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consider the locus lethal and such individuals cannot produce offspring. We update populations for 1000 time-steps,
equivalent to 0.1 to 100 million years, depending on the organism and size of the locus (Supplementary Information:
Table.1, Method to update population fitness).

Fitness effects of mutations (∆F (i)) are drawn from the characteristic DFE of the locus (Fig1(C)). Multiple studies
indicate that long-tails are important features of DFEs, which can be captured by the general form of long-tailed gamma
distributions Eyre-Walker and Keightley [2007]. Therefore, we choose to follow Böndel et al. [2019], and represent
DFEs as two-sided gamma distributions, and characterize them using four parameters: (i) average effect of beneficial
mutations p, (ii) fraction of beneficial mutations f , (iii) average effect of deleterious mutations n, and (iv) the shape
parameter s, where distributions with lower s are more long-tailed. Mutations in the model represent the mutation
types included in Böndel et al. [2019], which were single-nucleotide mutations and short indels (insertions or deletions
of average length ≤ 10 bp) Ness et al. [2015]. Note that here we assume the DFEs of single loci are similar to the
DFE across the whole genome, which is the quantity reported in experimental studies. We account for differences in
DFEs across species and locations along the genome by sampling across biologically reasonable values of these four
parameters p, f, n, s.

We also use empirical measurements to estimate the distribution of mutational effects on expression. Studies indicate
that mutational effects on expression from established promoters follow a heavy-tailed distribution Hodgins-Davis
et al. [2019]. More relevant to our study of de novo gene birth are the recent measurements of mutational effects on
expression from random sequences Vaishnav et al. [2022], which follow a power law distribution, Pr(∆E) ∼ ∆E−2.25.
At each time-step, we use the above power law distribution to draw ∆E(i). We then calculate values of mutational
effects ∆A(i) using equations (1) and (2), given distributions of mutational effects on fitness and on expression level
(see Method to update expression level and adaptive value; see also Supplementary Information: FigS.9 for possible
deviations from the power-law ∆E distribution due to the very small initial values E(i)).

In all, we survey 324 parameter sets – p, f, n, s, the DFE parameters , and d, the probability of locus deletion –
(Fig.1(C)). We run 100 replicate populations for each set of parameters for population sizes N = 100, 1000 (Surveying
the space of DFE and locus deletion parameters in populations of various sizes). At the end of each simulation, we trace
the ancestry of each locus in each individual (Tracing ancestry to find fixed mutations) in order to track fixation events:
a mutant is said to have fixed in the population if the ancestry of all individuals at some time-step t can be traced back to
a single individual at some previous time-step t− tfix. During the course of a simulation, populations undergo multiple
fixation events. We count the number of replicate populations in which the locus is still retained at time-step t = 1000,
and the most recent mutant that gets fixed is fitter than a predetermined fitness threshold of 0.1 (Fig1(A)).

Results

Most of the genome is fertile for adaptation
In the absence of locus deletion (d = 0), fitness of the last common ancestor crossed the threshold of 0.1 in at least 50%
of the replicate populations for a majority (55 out of 81) of DFE parameter sets in N = 1000 populations (Fig.2(A),
see Supplementary Information: FigS.2 for N = 100). The bimodality of the histogram in Fig.2(A) indicates that
DFE parameters tend to either be highly conducive, or highly repressive to adaptation. As one can anticipate, the
conducive DFE parameter sets tend to have high values for the magnitude (p) and the frequency of beneficial mutations
(f ), and low values for the magnitude of deleterious mutations (n) and the shape parameter (s) (Fig.2(A),inset and
Supplementary Information: FigS.2(A),inset). Particularly, for the Chlamydomonas DFE parameters, 97% of the
N=1000 replicate populations (52% of N=100 replicate populations) crossed the fitness threshold.

Notably, the four DFE parameters appear to act independently in determining the probability of crossing the fitness
threshold. This allows fitness to increase even in populations with small values of parameters f and p, provided the
DFE of mutations is long-tailed (i.e., small values of s) (see Supplementary Information: FigS.3). That is, large-effect
beneficial mutations are sufficient for adaptive evolution, even when they are rare.

Fitness trajectories involve a transition from a mutation dominated to a selection dominated phase
The fitness trajectories of populations where the fitness threshold is crossed have a typical shape: the population average
fitness is initially dominated by the effects of new mutations, which are mostly deleterious, and lead to a decrease in
fitness (see Supplementary Information: FigS.4). This is followed by a phase where the effects of selection become
visible and average fitness increases roughly linearly. These fitness trajectories are reminiscent of the dynamics of
learning through adaptive strategies in gambling problems, where an initial phase of loss of capital due to the cost of
learning is followed by recovery Despons et al. [2022].
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Figure 2: Probability of crossing fitness threshold via accumulating mutations. (A) Histogram for the the fraction
of replicate populations that cross the fitness threshold for various parameter sets (p, n, f, s), for d = 0 and population
size N = 1000. Inset: Histograms for the fraction of parameter sets with given values of parameters p, n, f , or s for
which more than half of the replicate populations cross the fitness threshold. (B) The trajectory of population average
fitness in one of the replicate populations with Chlamydomonas DFE parameters (indicated in legend), and no locus
deletion (d = 0). Average fitness is indicated by the black line, and the grey shading represents standard deviation. The
red point indicates the time step at which average fitness has reached minimum value. (C) Scatter plot showing how
populations where minimum average fitness is achieved later are more prone to be affected by locus deletion. Each
point represents a parameter set. The x-axis indicates the time at which minimum average fitness is achieved (where the
averaged is over all the populations with the same DFE parameters, p, n, f, s). Black (blue) points represent parameter
sets where ≥ 50% (< 50%) of replicate populations cross the fitness threshold. The dotted red line indicates the time
of minimum average fitness for Chlamydomonas parameters. (D) Scatter plot showing the distribution of minimum
average fitness and the time of minimum average fitness for populations which eventually crossed the fitness threshold.
The histograms are the marginal distributions of time of minimum fitness and minimum fitness.

Two numbers indicate the point in the trajectory at which selection leads to consistent improvement in fitness: minimum
average fitness and time at which minimum fitness is achieved (Fig. 2(B), Supplementary Information: FigS.5(A)).
The DFE parameters, notably p and f are significantly correlated with these quantities (Supplementary Information:
Table.2). Moreover, as expected, populations with lower minimum fitness achieve it at later times (Pearson correlation
coefficient between minimum fitness and time of minimum fitness = -0.73) (Fig.2(D)).
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Mutations can drive adaptation despite the effect of locus deletion
When d > 0, The effect of locus deletion can be understood in terms of a competition between two sub-populations:
the sub-population that has lost the locus, and therefore lacks any fitness contribution from it, and the sub-population
that retains it (Supplementary Information: FigS.6).

The probability that the sub-population that has lost the locus takes over increase with time of minimum fitness as
calculated for the case where d = 0: the longer the average fitness remains negative, the more probable is the loss of the
locus from the whole population. Therefore, fewer replicate populations with DFEs such that minimum fitness is reached
later go on to cross the fitness threshold of 0.1 (Fig. 2(C), Supplementary Information: FigS.5(B)). As a consequence,
the number of parameter sets for which fitness threshold was crossed in at least 50% of N = 1000 replicate populations
reduces from 55 at d = 0 to 51 at the plausible value of d = 0.005, and to 48 and 34 at the inordinately high values of
d = 0.01 and 0.05, respectively. Particularly, for the Chlamydomonas DFE, for which minimum fitness and time of
minimum fitness averaged across all replicate populations are −0.035 and 55.72 respectively, > 50% of the replicate
populations crossed the threshold for d = 0.005 (Fig. 2(C), red dotted line).

Functionality drives sustained adaptation, while expression drives extreme mutational events
Our decomposition of fitness into expression level and adaptive value yielded short-tailed exponentially distributed
mutational effects on adaptive value (Fig.3(A), Supplementary Information: FigS.7). This indicates that most mutations
have little effect on functionality, and mutations with large are extremely rare.

We also looked at correlations between the population averaged fitness trajectories and the average trajectories of
expression level and adaptive value. These correlations indicate the contributions of expression level and adaptive value
towards the increase of fitness over evolutionary time. We find that in most cases where fitness crosses the 0.1 threshold,
the increase in fitness was driven more by the adaptive value than by expression level: the distribution of Pearson’s
correlation coefficients for adaptive value is sharply peaked at 1, whereas that of expression level is spread broadly
(Fig.3(B), Supplementary Information: FigS.8).

As an interesting aside, the empirical measurements that we base our study on do not indicate the level of correlation
between the fitness effect and changes in expression level due to mutations; therefore, we proceed with the assumption
that ∆A(i) and ∆E(i) are independent of each other. In spite of this, over evolutionary time, selection and heri-
tability effectively link fitness and expression level, and impose correlations between their evolutionary trajectories
(Supplementary Information: FigS.9).

Overall, we find that sustained adaptation during gene birth is driven more by the product’s adaptive value rather than
its expression level. At the same time, the extreme mutational effects on fitness, which underlie the long-tails of DFEs,
are not driven by changes in the adaptive value of the product, and are instead likely to be entirely driven by changes in
expression level. As noted earlier, extreme mutational events become important in facilitating adaptation in cases where
beneficial mutations are small and infrequent on average (i.e. small f and p).

Discussion
A majority of studies in genomics and genetics are concerned with the function and evolutionary course of known
genes and their regulation. Recent discoveries have attracted focus towards the evolution of non-genic loci; particularly,
experimental studies that demonstrate the adaptive potential of random sequences Hayashi et al. [2003], Yona et al.
[2018], Lagator et al. [2022]. Furthermore, genomics studies that indicate the frequent occurrence of de novo gene birth
demonstrate a need for general, theoretical investigations of the evolution of non-genic loci Tautz and Domazet-Lošo
[2011].

In this work, we attempt to describe the process of functionalization of non-genic genomic loci in a simple population
genetic model. We make use of experimentally measured effects of spontaneous mutations in order to obtain biologically
reasonable estimates for the frequency of locus functionalization.

Our model suggests that a wide range of parameters that govern mutational fitness effects (DFE) are conducive to locus
functionalization. We find this to be the case despite the antagonistic effects of structural variation that leads to locus
deletion. Although the extent of diversity of DFEs across genomic loci and different organisms is not well-known,
the range of DFEs surveyed in this work indicates that large swathes of the genome are conducive to adaptation on
evolutionary timescales. This result is in line with observations that 80% of the human genome is likely to be functional,
while only 3% of the genome contains well-known protein coding exons Consortium et al. [2012]. Our result also
supports the proposed prevalence of orphan genes born through de novo gene birth Vakirlis et al. [2020].
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Figure 3: Distribution of ∆A(i) and the mode of fitness increase. We used the distribution reported in Vaishnav
et al. [2022] to generate ∆A in order to obtain trajectories of expression level, e, and adaptive value, a, from which we
infer values of ∆A. (A) Histogram of 108 ∆A values pooled across all individuals in all replicate populations with
Chlamydomonas DFE parameters [p, n, f, s] = [0.001,−0.01, 0.75, 0.3]. The black line represents an exponential fit.
(B) Scatter plot showing how correlated the population averaged fitness trajectory is with the trajectory of population
averaged expression level (x-axis) and with the population averaged adaptive value (y-axis). The black points represent
populations that cross the fitness threshold, and blue points indicate populations that do not. Overall, the plot contains
81× 100 points for each replicate, across all parameter sets for N = 1000 populations. The red lines demarcate regions
where fitness change is driven by changes in expression level (bottom right), driven by changes in adaptive value (top
left), or by both expression level and adaptive value (top right). As expected, there are no black points that lie in the
bottom left region, where both adaptive value and expression level are negatively correlated with the fitness trajectory.

The fitness contribution of a gene is a composite function of various molecular mechanisms, for example the accessibility
and affinity of the locus to polymerases, the stability, foldability, and interactions of its expression products, etc. Our
study of the adaptive value and expression level of de novo genes exemplifies how the fitness effects of mutations can
be resolved into contributions from underlying mechanisms. Our result also shows how the process of adaptation can
be different for de novo genes and established genes: we find that in the case of de novo gene birth, the increase in
fitness was driven more by the adaptive value than by expression level. This effect is likely to be a special feature
of de novo gene birth, where initially both adaptive value and expression levels are very low. Whereas in the case of
established genes, evolution of expression level is known to play a role in adaptation Fraser [2013], Nourmohammad
et al. [2017], Blanc et al. [2021].

We built our model to represent naturally evolving populations, where the timescale varies across different organisms,
and is set by their respective mutation rates. We assume here that the genomic background, being much larger, evolves at
a much faster rate, allowing selection to be solely based on the fitness contribution of the locus of interest. Alternatively,
our model can also be used to represent mutation scan experiments such as in Vaishnav et al. [2022], where the genomic
background is kept constant. In this case, the generations in the model represent rounds of experiments involving
mutagenesis and artificial selection.

The generality of our results is likely to be limited due to dearth of relevant data. Most importantly, we use experimental
measurements of DFE and mutational effects on expression that are taken from different organisms: in different
organisms, distinct mechanisms produce mutations, therefore the frequencies of different mutation types and its effects
may vary across organisms. Although, the leptokurtic nature of DFEs Eyre-Walker and Keightley [2007] and long tailed
nature of mutational effects Hodgins-Davis et al. [2019], Vaishnav et al. [2022] on expression have both been observed
in independent studies, measurements performed in the same organism could provide important details, for instance the
correlations between the effect of a mutation on expression and on fitness. Secondly, the DFE of loci remain constant in
our model, while mutational fitness effects are known to vary over evolutionary time due to various causes, such as
change of environment, diminishing returns epistasis, etc Sane et al. [2020], Wünsche et al. [2017], Aggeli et al. [2020].
An extended model that includes a consideration of DFE variability would provide valuable insight into the robustness
of our results.

We anticipate that our results can be tested and the shortcomings of our model can be addressed through experiments,
especially mutational scans such as those in Vaishnav et al. [2022]: For example, one could design experiments that
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monitor the fitness effects of mutations on random sequences which also concomitantly detect expression from these
random sequences. Alternatively, the evolution of adaptive value of expression products can be directly examined in
experiments where random sequences are placed under constitutive, high expression promoters (such as in Hayashi
et al. [2003]); in this case the fitness effects of mutations directly correspond to the adaptive value of the product. These
experiments, together with theoretical approaches like ours, provide us with means to test and compare the adaptive
potential of non-functional genomic sequences, and the general mechanisms of de novo gene birth across various
organisms.

Methods

2.1 Surveying the space of DFE and locus deletion parameters in populations of various sizes

We scan across DFEs with p = [0.001, 0.003, 0.005], f = [0.25, 0.5, 0.75], n = [0.001, 0.005, 0.01] and s =
[0.3, 0.6, 0.9]. We look at locus deletion probabilities d = [0, 0.001, 0.005, 0.01]. And we look at populations of
sizes N = [100, 1000]. For each parameter set, we simulate 100 replicate systems. In all, we look at 64 800 systems.
All codes used to generate and analyze data are written in Python3.6.

2.2 Method to update population fitness

For a population of size N , fitness of individuals at time-step t are stored in the vector Ft ∈ RN×1, where the fitness of
any individual i is Ft(i). We also keep track of the individuals that have lost the locus due to deletion in the vector
Lt ∈ [0, 1]N×1, such that Lt(i) = 1 implies that individual i contains the locus at time-step t, and Lt(i) = 0 implies
individual i has lost the locus. Note that Lt(i) = 0 automatically implies Ft(i) = 0.

In the model, only individuals with fitness > −1 are viable, and capable of producing progeny. And individuals in the
current population that produce progeny are chosen on the basis of their relative fitness. Let minfitt be the minimum
fitness among viable individuals in Ft.

We define allfitt =
∑

j (1 + Ft(j)− minfitt), for j such that Ft(j) > −1. The normalized relative fitness of individuals
is then given by relfitt ∈ [0, 1]NX1, where

relfitt(i) =
1 + Ft(i)− minfitt

allfitt
, ∀i s.t. Ft(i) > −1

and, relfitt(i) = 0, ∀i s.t. Ft(i) ≤ −1

Therefore, even if Ft(i) = 0, relfitt(i) can be non-zero if minfitt < 0.

Let Anct+1 ∈ NNX1 be the list of individuals chosen from the current time-step t to leave progeny. In other words,
Anct+1 is the list of ancestors of the population at time-step t+ 1. Here, Pr(Anct+1(j) = i) ∝ relfitt(i),∀i, j ≤ N .

Progeny of the current population incur mutations. The mutation effects are drawn from 2-sided gamma distributions
governed by the parameters p (average effect of beneficial mutations), f (fraction of beneficial mutations), n (average
effect of deleterious mutations), and s (shape parameter). The values of fitness effects of mutations incurred by each
individual at time-step t is stored in mutt ∈ RN×1, where

mutt(i) = Γ
(
s,

p

s

)
⇐⇒ Ber(f) = 1 ,

and, mutt(i) = Γ
(
s,

n

s

)
⇐⇒ Ber(f) = 0 .

Here Γ (κ, θ) represents a number drawn from the gamma distribution with shape parameter κ and scale parameter θ,
and Ber(f) is the Bernoulli random variable which equals 1 with probability f .

Progeny can also lose the locus with probability d. Thus, the updated fitness levels of the population is given by
Ft+1(i) = 0, if Anct+1(i) did not contain the locus, or if the individual loses the locus in the current time step.
Otherwise, Ft+1(i) = Ft (Anct+1(i)) + mutt(i).
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2.3 Method to update expression level and adaptive value
In the model, we assume F (i) = A(i) ∗ E(i) for any individual i. For a population of size N , expression levels of the
locus at time-step t are stored the vector Et ∈ RN×1, where the expression level of some individual i is Et(i). For an
individual that has lost the locus due to deletion, Lt(i) = 0, which automatically implies Et(i) = 0.

Initially, the expression level of the locus across the population is distributed around 0.001, and reflects leaky expression.
At each time step, the expression levels across the population change as individuals are selected and their progeny incur
mutations.

The effect of mutations on expression level incurred by each individual at time-step t is stored in ∆Et ∈ RN×1. The
magnitude of ∆Et(i) are drawn from a power law distribution such that Pr(|∆Et(i)| = x) = x−2.25 for x ≥ 0. We
assume that a ∆Et(i) is negative with probability 0.5.

The updated expression levels of the population are therefore given by Et+1(i) = 0, if Anct+1(i) did not contain
the locus, or if the individual loses the locus in the current time step. If the individual does contain the locus,
Et+1(i) = Et (Anct+1(i)) + ∆Et(i).

Note that the values of expression level in the model are bounded within [0.001, 1] corresponding to leaky expression
and maximal possible expression respectively. In the simulation, whenever Et+1(i) < 0.001 or Et+1(i) > 1, we reset
it to 0.001 and 1, respectively. Since the initial expression levels are very low, Et+1(i) never crossed 1 in any simulation.
In a run of 1000 time steps, Et+1(i) crosses 0.001 on average 40 times (Supplementary Information: FigS.10).

We then calculate the corresponding changes in the adaptive value of the locus at each time step: At(i) = Ft(i)/Et(i).
From this, we can calculate the change in adaptive value due to mutation as ∆At(i) = At+1(i)−At (Anct+1(i)).

2.4 Tracing ancestry to find fixed mutations
In order to find the fitness value of the mutant fixed in the population at time-step t, we start with the list of ancestors of
individuals Anct at time-step t.
Let Xt = {i,∀i ∈ Anct} be the set of unique ancestor identities. We then recursively find Xt−n = {i,∀i ∈
{Anct−n(j), ∀j ∈ Xt−n+1}} as the set of unique ancestor identities for n = 1, 2, 3...t0, where Xt−t0 is the first
singleton set encountered. This set contains a single individual at time-step t− t0− 1, whose mutations are inherited
by every individual at time-step t. And the fitness value of the mutant fixed in the population at time-step t is then
Ft−t0−1(i), where i ∈ Xt−t0.
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