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Abstract 

 

Endogenous viral elements (EVEs) are key to our understanding of the diversity, host 

range and evolutionary history of viruses. Given the increasing amounts of virus and 

host sequence data, a systematic search for EVEs is becoming computationally 

challenging. We used ElasticBLAST on the Google Cloud Platform to perform a 

comprehensive search for EVEs (kingdoms Shotokuvirae and Orthornavirae) across 

vertebrates. We provide evidence for the first EVEs belonging to the families 

Chuviridae, Paramyxoviridae, Nairoviridae and Benyviridae in vertebrate genomes. 

We also find an EVE from the Hepacivirus genus of flaviviruses with orthology across 

murine rodents. Phylogenetic analysis of hits closely related to reptarenavirus and 

filovirus ectodomains suggest three independent captures from a retroviral source. 

Our findings increase the family-level diversity of non-retroviral EVEs in vertebrates by 

44%. In particular, our results shed light on key aspects of the natural history and 

evolution of viruses in the phyla Negarnaviricota and Kitrinoviricota. 
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Viruses of all genome types can potentially integrate into host genomes and give rise 

to endogenous viral elements (EVEs) (1). An EVE forms when viral genetic information 

enters the host germline and is transmitted vertically to offspring. A novel EVE exists 

initially as an insertion polymorphism, but can eventually reach fixation subject to the 

forces of natural selection and genetic drift (1). These fixed EVEs have the highest 

chance of surviving long periods of time in host genomes, and therefore provide 

valuable information on virus-host associations over geological timescales. In 

particular, discovery of endogenous viruses can expand both taxonomic and 

biogeographical host range, as well as establish direct timelines of association 

between virus and host (2,3). As such, EVEs constitute a genomic fossil record 

preserving information on ancient viruses and their interactions. 

 

Although the majority of EVEs in vertebrate genomes are of retroviral origin, non-

retroviral EVEs have also been described. Currently, the non-retroviral EVEs found in 

vertebrates can be assigned to 5 viral kingdoms: Pararnavirae (family Hepadnaviridae) 

(4), Heunggongvirae (family Herpesviridae and Teratorns) (5,6), Bamfordvirae 

(Mavericks/Polintons) (7), Shotokuvirae (families Parvoviridae and Circoviridae) (8,9) 

and Orthornavirae (families Bornaviridae, Filoviridae and Flaviviridae) (10–12). Apart 

from Teratorns and Mavericks, other non-retroviral elements found in vertebrate 

genomes lack self-encoded integrases (5–7). In humans, the herpesvirus HHV6 can 

integrate a full copy of its genomes  into telomeric regions by homologous 

recombination (13), and these are known to be transmitted vertically (14). EVEs from 

other viral families tend to be found as fragmentary elements rather than full genomic 

copies, although full-length EVEs have been reported for hepadnaviruses, circoviruses 

and parvoviruses (4,9,15,16). 

 

In vertebrates, non-retroviral EVEs from the kingdoms Shotokuvirae and 

Orthornavirae are among the most abundant and diverse EVEs. The kingdom 

Shotokuvirae comprises 16 families of ssDNA and dsDNA viruses that descend from 

an ancestral HUH (histidine-hydrophobic-histidine endonuclease) encoding virus 

(17,18). The kingdom Orthornavirae comprises 112 families of RNA viruses which 

encode the RNA-dependent RNA polymerase (RdRp) (18). Both shotokuviruses and 

orthornaviruses include members which are pathogenic to vertebrates. For example, 

in parrots (Psittacidae), the circovirus Beak and feather disease virus can cause 
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immunosuppression and loss of feathers, with potentially fatal outcomes (19). Canine 

parvovirus is highly contagious and can cause serious illness in domestic and wild 

canids (20). Multiple families in the kingdom Orthornavirae are known to be highly 

pathogenic to humans and other vertebrates. Members of the families Filoviridae, 

Arenaviridae, and Nairoviridae can cause haemorrhagic fevers with high case fatality 

rates (up to 30-90%) in humans (21–23). Additional orthornaviruses in the families 

Paramyxoviridae (mumps, measles and parainfluenza viruses) (24–26), and 

Flaviviridae (yellow fever, Dengue and Zika viruses) (27), are also major contributors 

to human disease. 

 

Since the work of Katzourakis and Gifford in 2010, the diversity of vertebrate EVEs at 

the level of multiple viral families has not been systematically surveyed (1). We took 

advantage of the larger sequence data sets available today together with a cloud-

computing approach, to carry out a comprehensive search for non-retroviral EVEs 

(kingdoms Shotokuvirae and Orthornavirae) in vertebrate genomes. Using 24,478 viral 

protein queries, we identified 2,040 EVEs in 295 host species. These include the first 

EVEs belonging to the families Nairoviridae, Paramyxoviridae, Chuviridae and 

Benyviridae in vertebrate genomes, and from the Hepacivirus genus of flaviviruses. 

We also discovered endogenous ectodomains closely related to those found in 

reptarenaviruses and filoviruses, which suggest a macroevolutionary scenario for the 

origin of glycoprotein ectodomains. Our analysis sheds light on the evolutionary history 

and ecology of multiple viral lineages, and shows the value of cloud-computing for 

revealing the diversity of EVEs in vertebrate genomes. 
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Results 

 

We identified a total of 2,040 EVEs in the genome assemblies of 295 vertebrates, in 

addition to 17 exogenous virus sequences (Supplementary figures 1 and 2, 

Supplementary excel file 1). Among these sequences, we report the first non-retroviral 

EVEs in vertebrate genomes belonging to the families Chuviridae (121 EVEs), 

Paramyxoviridae (19 EVEs), Benyviridae (22 EVEs) and Nairoviridae (1 EVE). We 

found the first evidence of an EVE from the Hepacivirus genus of flaviviruses (initially 

4 EVEs, extended to 21 EVEs). We also identified close hits to the ectodomains of 

reptarenaviruses in tarsier genomes, and to the ectodomains of filoviruses in the 

genomes of cartilaginous fish and the Komodo dragon, contained within retrovirus-like 

elements. 

 

Chuvirus EVEs in the genomes of fish, mammals and non-avian reptiles 

 

Chuviruses are negative-sense RNA viruses (Order Jingchuvirales) described mainly 

from metagenomic samples (28). They have been found in arthropods and associated 

with a number of vertebrates (28). Although chuvirus-like EVEs had been described in 

a number of arthropod genomes (29,30), the nature of the vertebrate associated 

viruses remained unclear. We found 28 EVEs similar to the RNA-dependent RNA 

polymerase in teleost fish, and 92 EVEs similar to the nucleoprotein in teleosts, 

amphibians, snakes and lizards (lepidosaurs), and marsupials (Figure 1). The 

vertebrate-associated chuviruses form a well-supported clade with the chuvirus EVEs 

(posterior probability = 1) in the RdRp phylogeny (Figure 1A), and occupy central 

nodes in the nucleoprotein network surrounded by the chuvirus EVEs found in 

vertebrates (Figure 1B). Examination of EVE loci from teleosts and marsupials 

revealed that some of these integrations are orthologous and date back to 11.9 - 35 

million years ago (MYA). 
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Figure 1. Chuvirus EVEs in vertebrate genomes. (A) Bayesian phylogenetic tree of the 

RdRps of exogenous chuviruses and the EVEs found in teleost fish (in red). Some species 

have multiple integrations suggesting a close interaction with these viruses. Note how the 

vertebrate-associated viruses and EVEs form a clade that is paraphyletic to the chuviruses 

found in arthropods. The tree was rooted with Hubei myriapoda virus 8 (Myriaviridae) and 

Megalopteran chu-related virus 119 (Crepuscoviridae) as outgroups. Tree inferred in 

MrBayes3 using the LG+F+I+G4 model and 4.74M generations (relative burn-in = 25%). EVEs 

are shown in red. (B) CLANS network of the nucleoprotein of exogenous chuviruses, 

vertebrate chuvirus EVEs and the two outgroups mentioned above. Edges are drawn between 

nodes with a significance of p < 1e-15. The vertebrate EVEs are well connected to the central 

network that includes vertebrate-associated chuviruses and a number of chuviruses from 

arthropods. (C) Syntenic arrangement of the most proximal genes was used to establish 

orthology of three integrations. Vertical red bars in the EVEs indicate internal stop codons, 

while black bars indicate indels. The minimum date of integrations in each species pair is 

based on the divergence of the host species in TimeTree (31). 

 

 

 

 

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2023. ; https://doi.org/10.1101/2023.10.26.564176doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564176
http://creativecommons.org/licenses/by/4.0/


 6 

Paramyxovirus EVEs in the genomes of teleost fish 

 

Paramyxoviruses are nonsegmented, negative-sense RNA viruses classified in the 

order Mononegavirales (32). Although paramyxoviruses infect a wide variety of 

vertebrate hosts (32), EVEs from paramyxoviruses had not been described. We found 

17 EVEs similar to the RdRp of paramyxoviruses, and 2 EVEs similar to the 

nucleoprotein in the genomes of teleost fish. Multiple integrations were found in 

species of fish from the family Labridae (Labrus, Notolabrus, Cheilinus), in the leopard 

coral grouper Plectropomus leopardus (Serranidae), and in the Mexican tetra 

Astyanax mexicanus (Characidae). Phylogenetic analysis placed most of the RdRp 

EVEs in a clade with Wenzhou pacific spadenose shark paramyxovirus (posterior 

probability = 0.9), while a single EVE from the coral grouper was placed between this 

clade and a clade composed of more widely known paramyxoviruses such as Measles 

virus, Hendra virus or human respiroviruses (Figure 2A). Structural comparison of an 

open reading frame fragment found in the genome of the Mexican tetra to 

Orthorubulavirus mammalis, revealed a conserved structure of the RdRp (Figure 2B). 

Interestingly, the nucleoprotein-like EVEs found in the Mexican tetra were placed next 

to a group of bat paramyxoviruses (Figure 2C).  
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Figure 2. Paramyxovirus EVEs in the genomes of teleost fish. (A) Bayesian tree of the 

RdRp of exogenous paramyxoviruses and the EVEs found in teleost fish (in red). Most EVEs 

form a clade together with Wenzhou pacific spadenose shard paramyxovirus. The tree was 

outgroup-rooted with RdRp sequences from pneumoviruses. Tree inferred in MrBayes3 using 

the LG+F+I+G4 model and 9.06M generations (relative burn-in = 25%). EVEs are shown in 

red. (B) Predicted structure of an RdRp fragment present in the genome of the Mexican tetra 

and comparison to the RdRp structure of Parainfluenza virus 5 (Orthorubulavirus mammalis). 

(C) Bayesian tree of the nucleoprotein of paramyxoviruses and the EVEs found in the Mexican 

tetra. The EVEs are nested within the Paramyxoviridae with high support (posterior probability 

= 1), and are closest to a group of bat paramyxoviruses with a posterior probability = 0.75. 

Tree inferred in MrBayes3 using the LG+I+G4 model and 1M generations (relative burn-in = 

25%). EVEs are shown in red. 
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Plant and fungal-like EVEs (family Benyviridae) in vertebrate genomes 

 

 

Benyviruses are multipartite, positive-sense RNA viruses which have been known to 

infect plants (33), but more recently have also been isolated from fungi and some 

insects (34). We found 19 EVEs with similarity to the RdRp of benyviruses in the 

genomes of caecilians (Rhinatrema, Microcaecilia), lizards (Podarcis, Gekko), snakes 

(Python), the West African lungfish (Protopterus annectens) and the Great white shark 

(Carcharodon carcharias). In the phylogeny of benyvirus RdRps (Figure 3), the EVEs 

of vertebrates were placed in a clade with two benyviruses isolated from insects 

(Diabrotica undecimpunctata virus 2, and Bemisia tabaci beny-like virus 6), thus 

forming a clade of animal viruses. The phylogeny also recovered a clade of 

benyviruses that infect land plants and another that infects mostly fungi (with the 

exception of some viruses isolated from the silverleaf whitefly, Bemisia tabaci). A 

tanglegram of the benyvirus RdRps and the host phylogeny, was able to recover the 

split between land plants and fungi + animals (Opisthokonta). In the animal infecting 

group, the inconsistency of both phylogenies suggest a dynamic history of cross-

species transmissions (Figure 3). We also found 6 EVEs with similarity to the coat 

protein of benyviruses in lizards (Podarcis, Lacerta, Zootoca), and the small-spotted 

catshark (Scyliorhinus canicula). 
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Figure 3. Tanglegram of the phylogenies benyviruses (including vertebrate EVEs) and 

their eukaryotic hosts. The benyvirus RdRp and host phylogenies point at deep 

codivergences and more recent cross-species transmissions in the three main groups (plant, 

fungi, animal benyviruses). The more basal position of Chara australis virus in the RdRp 

phylogeny could be interpreted as an ancient virus jump between photosynthetic organisms 

and the ancestors of animals and fungi (Opisthokonta). The maximum-likelihood trees were 

inferred in RAxML-NG (eEF1A: LG+I+G4, RdRp: LG+F+I+G4), and the tanglegram inferred 

using the maximum incongruence algorithm (MIC) in RTapas. EVEs are shown in red. 
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Nairovirus EVE in the genome of the Etruscan shrew 

 

Nairoviruses are negative-sense RNA viruses with 3 genomic segments S, M and L. 

The S segment carries the gene that encodes the nucleoprotein (35). Nairoviruses 

infect arthropods and can be transmitted to humans via tick bites (35). Some 

nairoviruses can cause disease in humans, but the Crimean-Congo Haemorrhagic 

Fever (CCHF) viruses are noteworthy for being highly pathogenic (36). Previously, 

EVEs similar to the nucleoprotein of nairoviruses had been described in the genome 

of the black-legged tick Ixodes scapularis (1). However, they were distantly related to 

the nucleoproteins of CCHF viruses. We found an EVE in the genome of the Etruscan 

shrew (Suncus etruscus), which is the closest EVE to CCHF virus and which can be 

placed in the same genus, Orthonairovirus (Figure 4A). Using this sequence to query 

the nr protein database (NCBI), we were able to identify new EVEs in the genomes of 

additional species of ticks (Rhipicephalus sanguineus, Dermacentor silvarum, 

Dermacentor andersoni), and in other chelicerates (scorpions and spiders). 

Comparison of the predicted EVE protein structures, show the high similarity between 

the nucleoproteins from the Etruscan shrew EVE and CCHFV, and between the black-

legged tick and South Bay virus (Figure 4B). 
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Figure 4. Nairovirus EVEs in the genome of the Etrsucan shrew and ticks. (A) Bayesian 

phylogeny of the nairovirus nucleoprotein gene including EVEs from the Etrsucan shrew, ticks 

and other chelicerates, together with exogenous nairoviruses. The element found in the 

Etrsucan shrew genome forms a clade with the Crimean Congo Hemorrhagic Fever 

viruses/Haza virus, sister to the Erve/Thiafora and Wufeng Crocidura attenuatta 

orthonairovirus 1 clade, known to infect soricid shrews of the subfamily Crocidurinae. Tree 

inferred in MrBayes3 with a codon-partitioned model (1st and 3rd positions: GTR+G4, 2nd 

position: GTR+I+G4), and 5M generations (relative burn-in = 25%). EVEs are shown in red. 

(B) Structural comparison of nucleoproteins from EVEs in the Etrsucan shrew and black-

legged tick genomes with exogenous nairoviruses. Structures were modelled in Alphafold2 to 

a good backbone accuracy (pLDDT > 80) or downloaded from PDB. The Etruscan shrew 

element adopts a structure highly similar to the structure of Crimean-Congo Hemorrhagic 

Fever virus determined by X-ray crystallography. The black-legged tick predicted structure is 

more similar to the South Bay virus structure as predicted from phylogenetic analysis.  
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Hepacivirus EVE in the genomes of murine rodents 

 

Hepaciviruses are positive-sense RNA viruses in the family Flaviviridae, which are 

classified in the genus Hepacivirus (37). People chronically infected with Hepatitis C 

virus (HCV) are at a significant risk of liver disease including fibrosis, cirrhosis and 

hepatocellular carcinoma (38). We found hits homologous to a ~67 aa fragment of the 

positive-sense single-stranded RNA (ps-ssRNA) polymerase domain (Superfamily 

cl40470) of Rodent hepacivirus ETH674/ETH/2012, in the genomes of rodents in the 

subfamily Murinae (Figure 5A, 5B). Examination of the genomic context across 21 

species, showed that the integration was orthologous but degraded in murine 

genomes (Figure 5C). Given that the hepacivirus EVE is shared between mice (Mus 

spp.) and rats (Rattus spp.), this suggests a minimum age of 11.7–14.2 MYA. 

Intriguingly, we have only been able to identify this sequence in the polymerase 

domain of the Rodent hepacivirus ETH674/ETH/2012, isolated from the Ethiopian 

white-footed mouse (Stenocephalemys albipes). 
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Figure 5. Hepacivirus EVE in the genomes of rodents from the subfamily Murinae. (A) 

Conserved domain annotation of the Rodent hepacivirus ETH674/ETH/2012 (QLM02864.1) 

polyprotein. The region of homology to the EVEs is embedded within the ps-ssRNA domain. 

(B) Comparison of the region of homology between Rodent hepacivirus ETH674/ETH/2012 

and the consensus sequence obtained from 21 murine genomes. Identical amino acids at a 

given position are highlighted in a red box (the two sequences are 75% pair-wise identical at 

the amino acid level). The sequence logo shows variation at the given position proportional to 

frequency (0-100%). (C) Orthology across 5 representative species in 5 tribes (Murini, 

Praomyini, Apodemini, Arvicanthini, Hydromyini, Rattini) of the subfamily Murinae, together 

with a phylogeny of the group. Flanking genes were identified in the mouse (Mus musculus) 

assembly, and used to annotate the region in the other assemblies. Red bars: internal stop 

codons, black rectangles: indel mutations. 
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Ancient captures of the retroviral ectodomain by filoviruses and reptarenaviruses 

 

The envelope proteins of retroviruses, and the glycoproteins of some filoviruses 

(Ebolavirus, Marburgvirus, Cuevavirus, Dianlovirus and Tapjovirus), contain an 

ectodomain with heptad-repeat sequences and an immunosuppressive domain (ISD) 

region (39). Interestingly, the glycoproteins of arenaviruses in the genus 

Reptarenavirus also contain a similar ectodomain (40). We found hits closely related 

to the ectodomain of reptarenaviruses in the genomes of the Philippine tarsier (Carlito 

syrichta) and the Western Tarsier (Cephalopachus bancanus) (Supplementary excel 

file 1). We noticed that these hits were in close proximity to other retroviral domains 

(gag, RT, RNaseH, rve), they were flanked by direct repeats, and occurred at the 

expected relative position of the env gene, establishing that these were hits to retroviral 

elements. By searching for other hits related to filovirus and reptarenavirus 

ectodomains, we found additional ectodomains surrounded by retroviral features (or 

annotated as such) in the genomes of lizards (Mabuya, Varanus), and cartilaginous 

fish (Chiloscyllium, Scyliorhinus, Amblyraja, Leucoraja). After confirming that 

additional retrovirus ectodomains fell outside this clade, we focused on the ingroup to 

construct a time-calibrated tree (Figure 6, Supplementary figure 4).  

 

The posterior evolutionary rate of the ectodomains was estimated at 3.2 × 10-9 amino 

acid substitutions per site per year (± 4.4 x 10-10 aa subs./site/year, Supplementary 

figure 5). This is consistent with the higher neutral evolutionary rates reported for 

immunoglobulin kappa (3.7 × 10-9 aa subs./site/year) and gamma C chains (3.1 × 10-

9 aa subs./site/year), and the complement C3a anaphylatoxin (2.7 × 10-9 aa 

subs./site/year) (41). It is also consistent with the time-dependency of viral 

evolutionary rates, which tend to converge on the host rate over geological timescales 

(42). These observations indicate that the timescale of evolution was calibrated 

properly; misspecified priors would have resulted in a significant departure from the 

time-dependent and neutral expectations. 
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In the Bayesian phylogeny (Figure 6), the ectodomains of reptarenaviruses were 

placed as the sister group to the ectodomains in tarsiers with high confidence 

(posterior probability = 0.98). The ectodomains from ebola-, cueva-, marburg- and 

dianloviruses were placed as the sister clade to the ectodomains of retroelements 

found in cartilaginous fish (posterior probability = 0.83). On the other hand, the 

ectodomain from the filovirus Tapajos virus (Tapjovirus), which was found in the 

venom gland of the Common lancehead viper (Bothrops atrox) (43), was placed 

forming a strongly supported clade with ectodomains found in lizard retroelements 

(posterior probability = 1). These findings suggest that ectodomains have been 

captured from retroviral elements 3 times independently, twice by filoviruses and once 

by reptarenaviruses, over a timescale of hundreds of millions of years. 
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Figure 6. Bayesian timetree of the ectodomain homologues found in retroviruses, 

filoviruses and reptarenaviruses. The ectodomains of reptarenaviruses form a highly 

supported clade (posterior probability = 0.98) with the endogenous ectodomains found in 

tarsiers (Carlito syrichta, Cephalopachus bancanus). The ectodomains of ebolaviruses, 

cuevaviruses, marburgviruses and dianloviruses, form a clade which is the sister group to the 

endogenous ectodomains found in cartilaginous fish. However, the ectodomain of Tapajos 

virus forms a distinct clade (posterior probability = 1) with endogenous ectodomains found in 

lizards (Mabuya, Varanus), suggesting that the Tapajos virus ectodomain was captured 

independently from the ectodomains of other filoviruses. The tree was inferred in BEAST2 with 

the JTT+G4 site model, using the Optimised Relaxed Clock (ORC) and 20M generations 

(relative burn-in = 25%). The red arrows indicate pairs of tarsier orthologues. A diagram with 

the genomic context of the endogenous ectodomains is shown to the right, and suggests that 

the endogenous ectodomains form part of endogenous retroviral elements. 
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Discussion 

 

We discovered novel EVEs in vertebrate genomes belonging to the families 

Chuviridae, Paramyxoviridae, Benyviridae and Nairoviridae. This represents a 44% 

increase in the family-level diversity of vertebrate non-retroviral EVEs (9 to 13 

families). In addition, we identified the first Hepacivirus EVE in the genomes of murine 

rodents, and found retroviral elements with ectodomains related to those of 

reptarenaviruses and filoviruses. Endogenous viral elements in the families 

Circoviridae, Parvoviridae, Bornaviridae, Filoviridae and Flaviviridae, accounted for 

91% of the EVEs (1,858/2,040) found during our search. Therefore, in a single 

systematic search, our strategy allowed for both increased sensitivity and detection of 

novel and less abundant EVEs (9%), as well as reproduction of previous and recent 

findings in the field. 

 

Chuviruses, which are a family of RNA viruses discovered in metagenomes, have 

been found associated mainly with arthropods (28). Chuvirus EVEs have been 

described in the genomes of arthropods, further supporting infection of this group of 

invertebrates by chuviruses (30). A number of chuviruses have also been found 

associated with vertebrates, but having been isolated only from metagenomic 

samples, the nature of the association with vertebrates was uncertain (44). We show 

evidence that chuviruses actively infect vertebrates, by the discovery of 121 EVEs in 

teleost fish, lepidosaurs, amphibians and marsupials. The vertebrate-associated 

chuviruses formed a clade with the chuvirus EVEs in vertebrates (posterior probability 

= 1), strongly supporting that there is a vertebrate-specific clade of chuviruses. The 

detection of orthology of several chuvirus EVEs on the order of 11-35 million years, 

indicate that chuviruses have infected vertebrates from at least the Eocene epoch. 

These results are in line with recent evidence that chuviruses can infect and cause 

lymphocytic meningoencephalomyelitis in wild species of turtles (44). 

 

Surprisingly, we found 22 vertebrate EVEs that could be assigned to the family 

Benyviridae. Benyviruses are plant pathogens, but a few viruses have been identified 

from insect metagenomes (45,46). Our study uncovered endogenous benyviruses in 

vertebrate genomes, which form an animal-specific clade with four benyviruses 

isolated from insects (Diabrotica undecimpunctata, Sesamia inferens and Harmonia 
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axyridis, Supplementary figure 3). This implies that a clade of benyviruses exhibits 

tropism for animals, extending its range to a new host kingdom. As shown in Figure 3, 

the benyviruses of animals seem to undergo frequent cross-species transmissions. 

Additionally, we uncovered 19 EVEs from paramyxoviruses in both freshwater and 

marine teleost fish. Paramyxoviruses are known to infect fish (47), and some have 

been associated with disease including epidermal/gill necrosis, gill inflammation and 

buccal/opercular haemorrhage (48). Our results highlight the need to better 

characterise the diversity of paramyxoviruses in fish hosts, in particular pointing to 

close interactions with the orders Perciformes (most diverse order of fish), 

Cyprinodontiformes (toothcarps) and Pleuronectiformes (flatfish). 

 

We provide the first evidence for an EVE from the genus Hepacivirus in murine 

rodents. This EVE shares high homology (75% amino acid identity) across a segment 

of the polymerase domain with Rodent hepacivirus ETH674/ETH/2012. Further 

confirmation of orthology across rodents of the Murinae subfamily, constitute direct 

evidence that hepaciviruses have infected murine rodents for at least 11.7–14.2 million 

years. Rodents in the subfamily Murinae are inferred to have shared a most recent 

common ancestor in Southeast Asia 15.9 (14.1–18.2) MYA (49), while the sequence 

of Rodent hepacivirus ETH674/ETH/2012 was isolated from an Ethiopian white-footed 

mouse (Stenocephalemys albipes) in Africa (50), suggesting a close coevolutionary 

history with murine rodents. These observations agree with recent findings that 

highlight murid rodents as important hepacivirus hosts (50,51), together with molecular 

estimates based on present-day sequences that suggest an origin of the Hepacivirus 

genus ~22 million years ago (51). Given that the homologous sequence found in 

Rodent hepacivirus ETH674/ETH/2012, and the murine rodent EVE seem to be a 

unique derived feature (synapomorphy), it appears likely that hepaciviruses as a whole 

are older than 22 million years, which can be considered a minimum conservative 

estimate. 

 

Although nairovirus-like EVEs had been described in black-legged ticks (Ixodes 

scapularis) (1), we identified the first vertebrate nairovirus EVE in the genome of the 

Etruscan shrew (Suncus etruscus). Discovery of this element points to the importance 

of shrews as reservoirs of potentially pathogenic orthonairoviruses. This EVE is the 

closest to the group of the Crimean-Congo Hemorrhagic Fever (CCHF) viruses, and 
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sits between this clade and a group which includes Erve virus which is suspected to 

cause severe headache and intracerebral haemorrhage in humans (52). The related 

Erve and Thiafora viruses found in France and Senegal, were initially isolated from 

shrews (Crocidura russula, Crocidura sp.) (53,54). A number of recently discovered 

orthonairoviruses have also been isolated from shrews including: Wufeng 

orthonairovirus 1 from Crocidura attenuata in China, Lamusara and Lamgora viruses 

from Crocidura goliath in Gabon (55), and Cencurut virus from Suncus murinus in 

Singapore (56). These data indicate that shrews in the subfamily Crocidurinae are 

important natural reservoirs of orthonairoviruses in Europe, Africa and Asia. Similarly, 

our discovery of EVEs related to Nayun tick nairovirus in Rhipicephalus sanguineus, 

Dermacentor andersoni and Dermacentor silvarum, implicate these tick species as 

additional vectors of orthonairoviruses. This agrees with the isolation of Nayun tick 

nairovirus from a Rhipicephalus tick (57). Together, these observations suggest a 

close interaction between multiple species of ticks with nairoviruses, and support the 

role of crocidurine shrews as important mammalian reservoirs for orthonairoviruses. 

 

There is potential for non-retroviral EVEs to function in EVE-derived immunity. In the 

thirteen-lined squirrel (Ictidomys tridecemlineatus), an endogenous  bornavirus-like N 

gene (416 aa long) can inhibit Borna disease virus (BDV) replication, and block de 

novo infection by BDV (58). Recently, a parvoviral-like Rep gene in the genome of 

degus (Octodon degus), encoding a 508 amino acid product, was shown to inhibit 

replication of the model parvovirus Minute virus of mice (MVM) (59). We noticed that 

multiple EVEs in our data set contain large (>400 amino acid) open reading frames, 

which show similarity to nucleoprotein and polymerase genes of exogenous viruses. 

In particular, we describe EVE loci for the families Nairoviridae, Paramyxoviridae and 

Chuviridae, which seem like interesting candidates for exploration of potential EDI 

function. However, some of these genes may have acquired other unexpected 

functions in host biology. For example, in pea aphids (Acyrthosiphon pisum), 

expression of an endogenous densovirus (Parvoviridae) EVE has been co-opted to 

trigger wing development as an environmentally plastic trait (60). 

 

Our findings also shed light on the origin of ectodomains in the glycoproteins of 

filoviruses and reptarenaviruses. The presence of an ectodomain containing an 

immunosuppressive region in Ebola and Marburg viruses, and homology to the 
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ectodomain of retroviruses, had been noted by Bénit et al. (39). Similarly, the 

glycoproteins of reptile arenaviruses (genus Reptarenavirus), were reported to be 

highly similar to the glycoproteins of filoviruses (40). We could not detect presence of 

the ectodomain in fish filoviruses (Oblavirus, Striavirus, Thamnovirus), nor in other 

arenaviruses aside from Reptarenavirus. This patchy distribution suggests that 

presence of the ectodomain is a derived character (apomorphy) in some filoviruses 

and Reptarenavirus, and not an ancestral trait for the families Filoviridae and 

Arenaviridae. Here, we propose a macroevolutionary scenario whereby retroviral 

ectodomains were captured by filoviruses and arenaviruses three times 

independently: 1) by the common ancestor of Ebolavirus, Marburgvirus, Cuevavirus 

and Dianlovirus, 2) by Tapajos virus (or its direct ancestor), and 3) by the common 

ancestor of reptarenaviruses. This degree of convergence argues in favour of a strong 

selective advantage gained by acquisition of the ectodomain, probably driven by 

improved suppression of the tetrapod immune system. 

 

Our study demonstrated the capacity of cloud-based, highly parallelised approaches 

to harness the vast amounts of sequence data, revealing novel insights into the biology 

of viruses. Specifically, we increased the diversity of non-retroviral EVEs known in 

vertebrate genomes from 9 to 13 families, and presented the first evidence of 

endogenous chuviruses, paramyxoviruses, plant-like viruses (benyviruses), 

orthonairovirus and hepacivirus in vertebrate genomes. These results suggest the 

extension of the host range of chuviruses and benyviruses to vertebrates, and highlight 

the close evolutionary association of crocidurine shrews and murine rodents with 

orthonairoviruses and hepaciviruses, respectively. We also propose a 

macroevolutionary model for the acquisition of ectodomains in filovirus and 

reptarenavirus glycoproteins from a retroviral source. These discoveries open rich 

grounds to study the potential function of diverse non-retroviral EVEs on host biology. 

We foresee that with ever increasing availability in genomic sequence data, and the 

advance in computing power and algorithms, our knowledge of the genomic fossil 

record of viruses will continue to increase. 

 

 

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2023. ; https://doi.org/10.1101/2023.10.26.564176doi: bioRxiv preprint 

https://journals.asm.org/doi/full/10.1128/jvi.75.23.11709-11719.2001#con1
https://doi.org/10.1101/2023.10.26.564176
http://creativecommons.org/licenses/by/4.0/


 21 

Methods 

 

We used cloud computing on the Google Cloud Platform, to search for homology to a 

comprehensive set of protein sequences derived from viruses in the kingdoms 

Shotokuvirae (ssDNA and dsDNA viruses) and Orthornavirae (RdRp-containing RNA 

viruses), across all representative vertebrate genomes. Hits were extracted and 

processed for taxonomic assignment into their respective viral groups (hits that did not 

return 50% reciprocal hits to viruses were considered ambiguous and not considered 

further). Hits showing high sequence similarity to known viruses or otherwise present 

in small contigs (<10,000 bp) without nearby host genes were considered exogenous 

viruses. Confirmed endogenous viral elements were then annotated, aligned and used 

in phylogenetic inference together with homologues from exogenous viruses. A more 

detailed description of the methods is described in the following sections. 

 

 

Selection of viral queries and sequence clustering 

 

We downloaded 439,594 protein sequences from complete viral genomes available at 

NCBI Virus (61) during September, 2022. The sequences were partitioned according 

to their viral family and clustered using MMSeqs2 (62). Clustering was performed 

using a minimum pairwise identity (--min_seq_id) of 65% at the amino acid level and 

the default cover (80%). Sequence centroids were extracted from each cluster and 

used as representative sequences for downstream analyses. This representative set 

contained 24,478 sequences. 

 

Elastic-BLAST searches on the Google Cloud Platform 

 

Cloud searches for each viral family were conducted on the Google Cloud Platform 

(63) using the Elastic-BLAST algorithm (64) in September, 2022. Each search was 

performed with tblastn (tblastn-fast option) against the entire database of 

representative vertebrate genomes (ref_euk_rep_genomes, taxid: ‘7742’), and using 

an e-value of 1e-5. The output was saved in tabular format (-outfmt ‘7’). The analysis 

returned 196,899 hits to the viral queries. 
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Curation of non-redundant loci 

 

Hits to host genomes were merged with bedtools2 (65) in order to reduce redundancy 

in the data set. Strictly overlapping hits and hits that were at a maximum distance of 

200 nt (based on their genomic coordinates) were merged to give a single range in the 

host genome (-d 200). We thus obtained a set of 26,324 non-redundant genomic 

regions. We then downloaded the genomic sequences from the merged ranges in 

fasta format using efetch (66).  

 

DIAMOND reciprocal searches and taxonomic assignment 

 

To assess the origin of the host sequences (whether viral or host), we downloaded 

and compiled the complete non-redundant (nr) protein database with taxonomic 

information on the High-Performance Computing cluster at the University of Oxford. 

We then performed a reciprocal similarity search using the host sequences as queries 

and the nr database with DIAMOND blastx (67), keeping only the top 25 hits. We 

obtained 558,589 reciprocal hits in total. Next, we used custom scripts written in 

Python 3 to parse the taxonomic labels obtained for each query sequence and assign 

them to the majority-rule viral family. Sequences were considered viral if ≥50% of the 

reciprocal hits were to “Viruses”. Viral sequences falling on short contigs or with high 

similarity to known exogenous viruses (>99% identical) were considered exogenous 

viruses present in the assemblies (and not EVEs). 

 

Phylogenetic inference and structural predictions 

 

We focused on elements which had not been described as EVEs in the literature for 

the phylogenetic and structural analyses. Predicted protein sequences for each locus 

were obtained and annotated manually using blastx / conserved domain search on the 

NCBI web server (68–70), GeneWise on the EBI web server (71,72) or HHpred on the 

Max Planck Institute’s web server (73,74). Exogenous virus homologues were 

searched against the nr database using blastp online. Multiple sequence alignments 

were obtained using MAFFT (75) or MACSE (76). Trees were estimated from amino 

acid data, except for nairoviruses which were based on a nucleotide alignment. We 

selected the best substitution models in Modeltest-NG (77). Trees were estimated in 
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RAxML-NG (78) with 200 starting trees and up to 2,000 bootstraps (autoMRE{2000}), 

until convergence in MrBayes3 (79) (standard deviation of split frequencies < 0.01) 

and in BEAST2 (80) (after inspecting the runs for good mixing, stationarity and 

effective sample sizes > 200). For the inference of the time tree of ectodomains, we 

used orthology of the tarsier elements and their estimated ages (based on LTR 

divergence, Supplementary excel file 2) to calibrate internal nodes in the tree, and 

used a prior distribution on the root of the tree assuming that the retroelements present 

in cartilaginous fish/tetrapods codiverged with their gnathostome hosts (prior mean 

462, prior 95% CI: 436-489 MYA). Cophylogenetic analysis for benyviruses was 

performed and plotted in RTapas using the maximum incongruence algorithm (81). 

We predicted select paramyxovirus and nairovirus protein structures for de novo using 

AlphaFold2 (82) as implemented in ColabFold (83). We used amber relaxation on the 

top ranked structure, and either 24 or 48 recycles. Network analysis of chuvirus capsid 

proteins was performed using CLANS 2.0 (84,85),  with a p-value < 1e-15.  
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Pacific coast tick nairovirus
Tacheng Tick Virus 1
Tamdy virus
Wanowrie virus

Huangpi Tick Virus 1
Yezo virus

Tillamook virus
Clo Mor virus

Taggert virus
Paramushir virus

Avalon virus
Artashat virus

Dermacentor silvarum (EVE)
Dermacentor andersoni (EVE)

Dermacentor silvarum (EVE)
Rhipicephalus sanguineus (EVE)

Nayun tick nairovirus
Dermacentor silvarum (EVE)

Erve virus
Thiafora virus

Wufeng Crocidura attenuatta orthonairovirus 1
Suncus etruscus (EVE)
Hazara virus

Tofla virus
Meihua Mountain virus

Nairobi sheep disease virus
Meram virus
Crimean-Congo Hemorrhagic Fever virus strain China
Crimean-Congo Hemorrhagic Fever orthonairovirus

Crimean-Congo Hemorrhagic Fever virus 2
Crimean-Congo Hemorrhagic Fever viruses

A B
Suncus etruscus (EVE)

Ixodes scapularis (EVE)

CCHFV NP (4AQF)

South Bay virus NP

pLDDT =  90.51

pLDDT = 82.60

R-value free = 0.23
Z-score = 55.2

Z-score = 64.7  

pLDDT = 82.85 



Homologous region (67 aa)

Hepatitis C virus NS3 protease (cl03772)

DEAD-like helicase (cl28899/cl38915)

ps-ssRNA virus RdRp (cl40470) 

Rodent hepacivirus
(QLM02864.1)

2616 aa
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Homologous region

Rodent hepacivirus

Host consensus

Host sequence logo
(n = 21 species)

67 aa

B

C

Tmem200c Epb41l3285 kb 81 kb

Tmem200c Epb41l3274 kb 91 kb

Tmem200c Epb41l3283 kb 152 kb

Tmem200c Epb41l3218 kb 147 kb

Tmem200c Epb41l3305 kb 96 kb

Tmem200c Epb41l3304 kb 140 kb

Mus musculus

Tokudaia osimensis

Pseudomys desertor

Arvicanthis niloticus

Rattus rattus

Mastomys coucha

04812
Million years ago (MYA)

Rattini

Hydromyini

Arvicanthini

Apodemini

Praomyini

Murini



Amblyraja radiata 1
Amblyraja radiata 2
Leucoraja erinacea 1
Leucoraja erinacea 2
Scyliorhinus canicula 1
Scyliorhinus canicula 3
Scyliorhinus canicula 2
Scyliorhinus canicula 4
Chiloscyllium plagiosum 2
Bombali ebolavirus
Bundibugyo ebolavirus
Taï Forest ebolavirus
Zaire ebolavirus
Reston ebolavirus
Sudan ebolavirus
Lloviu cuevavirus
Marburg virus
Ravn virus
Mengla dianlovirus
Aramboia boa virus 1
Porto Alegre virus 1
CAS virus
Golden Gate virus
ROUT virus
Tavallinen soumalainen mies virus
University of Giessen virus
Cephalopachus bancanus 10
Carlito syrichta 9
Cephalopachus bancanus 1
Carlito syrichta 6
Cephalopachus bancanus 20
Carlito syrichta 21

Carlito syrichta 23
Cephalopachus bancanus 23

Cephalopachus bancanus 22
Carlito syrichta 22
Cephalopachus bancanus 4
Carlito syrichta 13
Mabuya sp. 1 (Syncytin) 
Mabuya sp. 2 (Envelope protein) 
Varanus komodoensis 1
Tapajos virus

50 My

Palaeozoic Mesozoic Cenozoic
Cretaceous Pg NgJurassicTriassicPermianCarboniferousDevonianSOrdovicianCambrian

Reptarenavirus:
Arenaviridae

Ebolavirus, Cuevavirus, 
Marburgvirus, Dianlovirus:

Filoviridae

Tapjovirus: Filoviridae

ectodomainRNase H rveRTGag5’ LTR 3’ LTR


