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Abstract 

The leaf-associated microbiome plays a crucial role in plant health and persistence to biotic 
and abiotic perturbations. However, factors that drive long-term seasonal adaptations of the 
leaf microbiome, particularly in response to combined stresses, are not well understood. To 
investigate seasonal adaptation of the leaf microbiome over five years, we analyzed changes 
in bacterial, fungal and general eukaryotic communities in and on Arabidopsis thaliana leaves 
from natural populations using molecular markers.  We collected samples during spring and 
fall and used linear regression models and co-occurrence networks to examine the roles of 
abiotic perturbations, space, and time in shaping the microbiome. Consistent with previous 
studies, time, space, and host compartment explained more than 18% of microbial 
community variation. Moreover, we dissect environmental factors that significantly impact 
microbial community variation. Additionally, we explored the effects of diversity and 
environmental factors on microbial network complexity and found that decreased diversity 
was correlated with increased complexity of microbial networks over growing seasons. We 
were thus able to identify individual microbial taxa that are adapted to specific seasons and 
their response to abiotic perturbations. We conclude that seasonality adaptation of leaf 
microbiota is significantly shaped by three environmental factors: radiation, wind speed and 
drought. Based on our findings we therefore hypothesize that beside space, time and 
compartment, diversity and stability of microbe-microbe interactions in the phyllosphere are 
predominantly shaped by a small set of environmental perturbations. Our findings have 
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practical implications for the selection and development of field-adapted probiotics for 
agricultural applications. 

 
Keywords 

Leaf microbiome, seasonality, microbial network, environmental factors 

 
Introduction 

Leaves are colonized by a variety of microbes from various kingdoms, including bacteria, 
archaea, fungi, oomycetes, protists, and viruses [1]. Numerous studies have shown that leaf 
microbiota play a beneficial role in protecting against both biotic and abiotic stressors, 
ultimately promoting plant growth and fitness [2–6]. To leverage the current understanding 
of the plant microbiome for biotechnological purposes, such as developing plant-protective 
probiotics, improving productivity, and drive plant biodiversity, it is essential to identify the 
key factors that shape the composition of leaf microbiota and modulate complex microbe-
microbe interactions [7, 8]. The mechanisms that are essential for community assembly, 
diversity, and function can be categorized into stochastic and deterministic processes [9]. 
Stochastic processes, such as birth, death, immigration, speciation, and limited dispersal, 
shape the microbial community structure [10, 11]. However, these processes are difficult to 
study due to the challenges associated with defining and measuring stochasticity [12]. The 
second critical process is deterministic, which includes environmental factors and biotic 
interactions [9]. Apart from these factors, the microbiome can be impacted by sampling time 
point, geographical location and host genotype [13]. A comparison of root microbiota in 
various plants (maize, sorghum, and wheat) revealed that these plants had distinct 
community compositions. This demonstrates that the host plant genotype can impact the 
identity of its microbiome [14]. Additionally, it was shown that over the course of 
developmental stages, the microbiome becomes more tissue-specific [15].  Despite the 
dynamic nature of the microbiome, most studies focus on spatial snapshots without 
considering long-term temporal dynamics of microbial assembly. Consequently, our 
knowledge about the underlying mechanisms and factors driving temporal dynamics 
remains limited. Utilizing long-term microbiome data can help address fundamental 
questions regarding microbiome dynamics, such as variations in microbial interactions over 
time and the stability of the microbiome in response to environmental perturbations, as well 
as the microbial taxa mediating plant performance under changing environmental 
conditions. In the analysis of longitudinal microbiome data, a range of computational 
methods is employed, including microbial network analysis and machine learning algorithms 
[16–18]. Microbial network analysis facilitates the examination of microbe-microbe 
interactions, providing insights into co-occurrence patterns [19, 20]. Additionally, machine 
learning algorithms, such as classification and regression, play a crucial role in identifying the 
environmental or biological factors associated with diverse bacterial taxa. These algorithms 
enable predictions regarding outcomes, including the identification of key factors that drive 
changes in microbiome composition, and the revelation of patterns or trends in microbial 
community dynamics over time. These outcomes provide valuable insights into the 
interactions between the microbiome and environmental factors, aiding in the 
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understanding of microbial response to changing conditions and informing decision-making 
processes in various fields, including agriculture, biotechnology and ecological management 
[21–24]. Microbes often interact with each other through various relationships, such as 
mutualism, antagonism and develop a complex system which can change throughout the 
growing season of plants [25, 26].  The use of microbial interaction network analysis has 
been useful in understanding the structure of these interactions. Studies on the temporal 
dynamics of leaf microbiomes using co-occurrence networks over the growing season of 
plants have found that, although there is a high level of variability in the leaf microbiome, 
there are temporal patterns with communities and networks undergoing a stabilization 
phase of decreased diversity and variability at the beginning of the growing season [27, 28]. 
A recent study on crop microbiomes found that plant developmental stages had a stronger 
influence on the microbial diversity, composition, and interkingdom networks in the aerial 
parts of the plants compared to the soil [29].  The plant microbiome represents an open 
system susceptible to environmental perturbations, significantly shaping the microbiome of 
all plant organs, including the phyllosphere. These factors, such as precipitation, 
temperature and drought significantly affect all microbial communities found in different 
ecosystems [30, 31]. For example, heat can induce drought tolerance in Arabidopsis [32]. In 
an association analysis between climate data and microbiome composition in Arabidopsis 
thaliana populations, drought was identified as the best predictor of microbiome 
composition [33]. Drought in turn has been shown to alter the microbial community 
dynamics in grass root microbiomes [34]. Precipitation on the other hand can determine soil 
microbial community composition as well [35]. Given that extremes of such factors are 
becoming more frequent and the average temperature is constantly increasing, the 
potential impact of warming on the abundance and composition of the phyllosphere 
microbiome is still understudied [36]. Warming may decrease the presence of beneficial 
microbes or increase the transmission of pathogens as has been shown for grassland 
ecosystems [37]. As global climate change leads to a decrease in precipitation and an 
increase in drought frequency and duration [31], this could have significant impacts on global 
agricultural production by altering humidity and water availability for plants [38, 39].   
Machine learning methods have proven useful in this context, as they have been employed 
to associate climate data with crop productivity and predict wheat yield throughout the 
growing season based on climate data [40]. Given such critical conditions for the plants, a 
stable microbiome might be crucial to increase holobiont (assemblage of a plant and its 
microbiome living in or around it) plasticity. However, current investigations on the 
phyllosphere microbiome have primarily focused on bacterial and fungal communities, with 
limited attention given to other eukaryotes [1], especially in long-term studies. All these 
observations emphasize the importance of comprehending the potential outcomes of 
alterations to the phyllosphere microbiome on ecosystem functionality amidst a changing 
environment [36].  The aim of this study was to analyze long-term temporal dynamics in the 
leaf microbiome of natural Arabidopsis thaliana in response to naturally occurring 
environmental fluctuations in order to dissect individual biotic and abiotic perturbations 
affecting community diversity and quantitative composition over time. Amplicon sequencing 
was used to follow leaf microbial communities with a focus on bacteria, fungi and other 
eukaryotes over five consecutive years and two seasons. With respect to seasonality, we 
selected one sampling in fall when plants start their vegetative stage from seedlings before 
arresting over winter and one sampling in spring when the plants change from vegetative to 
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reproductive growth (beginning of flowering). Our findings demonstrate that the seasonality 
patterns of the leaf microbiome are not only influenced by ecological factors (site, season, 
and compartment), but also shaped by environmental factors. We identified various 
environmental factors that affect the diversity and abundance of the leaf microbiome. 
Furthermore, our study showed that the connectivity of microbe-microbe interactions 
increases during the growing season, while diversity decreases. These changes are 
significantly associated with environmental factors, indicating the role of abiotic factors in 
shaping biotic interactions. 

 

Results 

Seasonal dynamics of microbial communities in different geographical locations and host 
compartment  

To study the temporal and species dynamics of leaf microbiome, we collected samples from 
six locations with stable A.thaliana populations in the proximity to Tuebingen [27]. Leaf 
samples were collected over two seasons: in the fall and in the spring. Fall covers the early 
growth phase of A. thaliana under short day conditions before resting in winter. Spring 
includes samples just before the reproductive stage during increasingly longer days. 
Sampling was repeated over five consecutive years (Fig. 1; see also Table S1 in the 
supplemental material). From each sample, we recovered epiphytic and endophytic 
microbes, extracted genomic DNA, and performed bacterial 16S rRNA, fungal ITS2 and 
eukaryotic 18S rRNA amplicon sequencing, as described in [27]. To investigate the effect of 
season, compartment and site on diversity and variation between samples of microbial 
communities, we conducted multivariate approaches including principal coordinate analysis 
(PCoA) and permutational multivariate ANOVA (PerMANOVA) on the relative abundance of 
bacterial, fungal and eukaryotic taxa. The PCoA revealed a clear separation between samples 
of different seasons and compartments in microbial communities of bacteria, fungi and 
eukaryotes. Separation among the sites is more pronounced in eukaryotes, followed by fungi 
and last bacteria (Fig. 2B). PerMANOVA results indicate that season, compartment and site 
together explain 21.5% variation in bacterial (’season’ 3.0%, ’compartment’ 8.3% and ’site’ 
5.3%), 11.8% in fungal (’season’ 1.5%, ’compartment’ 1.8% and ’site’ 4.5%) and 22.4% in 
eukaryotic (’season’ 0.7%, ’compartment’ 9.6% and ’site’ 6.6%) communities. Furthermore, 
alpha diversity, as assessed by Shannon's H index, was examined using ANOVA to determine 
the effects of the different factors on microbial diversity. The results were consistent with 
previous observations, indicating significant effects of all factors on the diversity of bacteria, 
fungi, and eukaryotes, except for season in fungi (Table. S2). These diversity patterns were 
further visualized, showing significant differences between spring and fall samples for 
bacteria and eukaryotes, while no significant differences were observed for fungi (Fig. S1A). 
The epiphytic compartment consistently exhibited greater diversity across all microbial 
communities (Fig. S1B). The impact of the site factor on diversity patterns varied across taxa, 
with inconsistent effects observed (Fig. S1C). To correlate explained variations among 
seasons with composition of microbial communities, we compared relative abundance of 
the microbiome for highly abundant microbes aggregated at the order level between spring 
and fall samples. In bacteria relative abundance of Sphingomonadales, Propionibacteriales, 
Micrococcales increased in spring, while Burkholderiales, Enterobacterales, Flavobacteriales 
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tended to decrease. As for fungi, the relative abundance of Tubeufiales, Tremellales, 
Leucosporidiales, Helotiales and Cantharellales increased, while that of Pleosporales and 
Glomerellales decreased. In other eukaryotes Oomycota and Cercozoa_unc increased in 
spring, while Chlamydomonadales and Vannellida decreased (Fig. S2 and S3).  
 
 

 
Figure 1.  Microbial community collection in natural A. thaliana populations over time. Map showing 
the six sampling locations of natural A. thaliana in southern Germany near Tuebingen [27]. Heatmap 
of the map shows the spatial radiations.  Plants were collected in fall and spring of five consecutive 
years (start spring 2014 to spring 2019, eleven time points, dots represent the sampled plants). Leaf 
samples were taken for microbiome analysis of epiphytic and endophytic compartments with a total 
number of 703 samples (see Table. S1).  Microbiome analysis was conducted via Illumina-based 
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amplicon sequencing (Miseq 2´300 cycle). Environmental variables (Table. S3) used in this study were 
obtained from the TerraClimate [71] database. 
 
 

 
Figure 2. Multivariate analysis on factors structuring leaf microbial communities. (A) A PerMANOVA 
analysis on Bray-Curtis distances was conducted using the Adonis2 function in Vegan.  Circles depict 
the percentage of variance explained by factors 'season', 'compartment' and 'site', connecting lines 
depict the percentage of variance explained by interactions between factors. Only significant effects 
are shown (permutations 10,000, P < 0.05, explanatory categorical variables: Season x Compartment 
x Site). (B) Principal coordinates analysis of epiphytic and endophytic samples of different seasons and 
sites, measured by principal Bray-Curtis distances in bacterial, fungal and eukaryotes communities. 
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Figure 3.  The relationship between alpha diversity (as measured by Shannon's H index) and various 
environmental factors. Each plot shows a linear regression model fit to the data, with individual 
samples represented by dots. The bacterial community is represented in blue, the fungal community 
in orange, and other eukaryote communities in a different color. Grey lines indicate 95% confidence 
intervals, and the Spearman correlation coefficient (R) and significant correlations (P < 0.05) are also 
shown. 
 
 
Environmental factors shaping the diversity of leaf microbial communities. 
To investigate the factors driving seasonal shifts in the leaf microbiome, we hypothesized 
that environmental factors are playing a deterministic role. We compared fourteen 
environmental factors (listed in Table. S3) across the sampling months and sites between 
spring and fall and found significant differences for all factors except four factors (Fig. S4). 
Multivariate analyses showed a significant contribution of all environmental factors (15.65% 
in bacteria, 11.5% in fungi and 8.87% in eukaryotes communities, Table S4). Of the 
environmental factors, radiation, wind speed and drought were the three most important 
factors influencing community variation (2.45% in bacteria, 1.32% fungi, and 1.23% in 
eukaryotes. Fig. 4). Furthermore, to visualize the relationships between environmental 
factors and community composition, we employed canonical correspondence analysis (CCA, 
Fig. S5). The CCA results reinforced the findings from the multivariate analyses and revealed 
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strong correlations between these factors and community composition. Notably, radiation 
exhibited the highest correlation with CCA2 in bacteria (R=-0.72, Fig. S7), while wind speed 
in fungi (R=0.53, Fig. S6) and drought in eukaryotes (R=-0.35, Fig. S6) were identified as the 
most correlated factors with CCA1. We also found a significant correlation between 
environmental factors and alpha-diversity. Specifically, radiation was positively correlated 
with alpha-diversity in bacteria (R=0.15), evapotranspiration was positively correlated with 
alpha-diversity in fungi (R=0.09), and for eukaryotes, vapor pressure correlated with alpha-
diversity (R=0.12) (Fig. 3).  

 
Figure 4. Permutation analysis of variance (PERMANOVA) to investigate the impact of 
environmental factors on the structure of leaf microbial communities. The analysis was performed 
using the Adonis2 function in the Vegan package, based on Bray-Curtis distances. The bar plots show 
the percentage of variance explained by each factor for the bacterial (blue), fungal (orange), and 
eukaryotes (green) communities. The highest level of explained variation for each microbial group is 
indicated by a vertical line. 
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Composition of the leaf microbiome is predictable by environmental factors. 
To examine whether environmental factors are associated with relative abundance of 
microbial communities (bacteria, fungi and eukaryotes), we employed a linear regression 
model. This model utilized environmental factors as independent variables to predict the 
aggregated relative abundances at the genus level. By calculating the average coefficient 
value for each environmental factor, we were able to determine the respective impact of 
these factors in predicting the relative abundance of microbial taxa. The results show that 
the factors max-temperature for bacterial and eukaryotes and radiation for fungal 
communities are the most important in predicting relative abundances of most genera (80% 
of the bacterial genus, 59% fungi and 71% in other-eukaryotes) (Fig. 5A). In bacteria 
Methylobacterium increases and Oxalobacteraceae decreases with max-temperature, in 
fungi Titaea increases and Cladosporium decreases and in eukaryotes Albugo increases and 
Oomycetes decreases with max-temperature (Fig. 5C). The results of the linear regression 
model for the effects of environmental factors on microbiome data were visualized as a 
network (Fig. 5C), with the nodes representing the microbes and environmental factors and 
the edges representing the coefficients of the linear model (positive and negative 
interactions according to coefficient values of the regression model, Fig. 5B). 

 

 

 

 



 
10 

 
Figure 5. Demonstrates how environmental factors can predict the relative abundance of 
microbiome taxa. (A) The histograms in the figure represent the average of the absolute coefficient 
values of each environmental factor that significantly (p<0.05) predicts the relative abundances of 
bacteria (blue), fungi (orange), and other eukaryotes (green). (B) In the figure, a network of 
interactions between environmental factors and the microbiome is also shown. The nodes (dots) 
represent environmental factors or microbes, and the edges (colored lines) depict potential positive 
and negative coefficient values from the linear regression model. (C) The histograms represent the 
coefficient values (absolute values ³ 0.01) calculated using the linear regression model at the genus 
level for differentially abundant microbes according to maximum temperature in bacteria and 
eukaryotes, and radiation in fungi. Negative coefficient values (gray bars) represent genera that 
decrease with these environmental factors, while positive values (pink bars) indicate genera that 
increase with these factors.   

 

 
The stability of microbe-microbe interaction networks in response to environmental 
factors over seasons. 
To investigate if observed associations between microbial diversity and environmental 
factors are correlated with microbe-microbe interactions in different seasons, we used 
microbial network analysis. We constructed microbial networks for every sampling time 
point (11) and compared Spring vs Fall networks (Fig. 6A). The SparCC [30] algorithm which 
is known to be robust for sparse data was used for correlation calculation implemented in 
FastSpar [31]. Network size (the number of nodes (OTUs) and the number of edges 
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(correlations between taxa; syn. Connections)) shows that, on average, spring has more 
edges compared to fall (Fig. 6B). We calculated the cohesion which quantifies the 
connectivity of the microbe-microbe interaction network. Positive and negative cohesions 
per sample measured by multiplying relative abundance of OTUs to average of positive and 
negative correlations respectively. First, we compared the cohesions (positive and negative) 
over seasons. The results show that in spring there are higher levels of cohesion compared 
to fall (Fig. 6C and Fig. S8). We measured the association of cohesion with alpha-diversity 
and results show that cohesion (positive and negative) negativity associates with alpha 
diversity in both seasons (Fig. 6D). A similar trend was observed for correlation between 
within-season variability (sample distance to the seasons centroid) and positive cohesion, 
but the significance was only observed for the spring season. Furthermore, within-sample 
variability exhibited a positive correlation with negative cohesion (Fig. 6E). As we observed 
before, diversity is affected by environmental factors and is associated with connectivity of 
the network. Next, to see if connectivity of the networks is associated with environmental 
factors, we correlated environmental factors with network cohesion (positive and negative).  
According to the findings, positive cohesion has a strong association with nine 
environmental factors, with radiation having the highest positive correlation and vapor 
pressure having the highest negative correlation with positive cohesion (Fig. S9). Negative 
cohesion also displays a significant correlation with eight environmental factors (as shown 
in Fig. S10), with radiation having the highest positive correlation and vapor pressure having 
the highest negative correlation.  
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Figure 6. Changes in microbial interaction networks throughout the growing season of A. thaliana 
over multiple years. (A) Data from each time point was used to reconstruct co-abundance networks 
for each season using the SparCC algorithm. The nodes (dots) represent OTUs, and the edges (colored 
lines) depict potential positive and negative interactions between OTUs (connections). Gray lines 
connecting the networks show nodes that are conserved in networks from one time point to the next 
(inherited nodes). (B) Shows the number of nodes and edges in each time point and then the averages 
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per season.  (C) Box plots represent the negative and positive cohesions in each time point. (D) Shows 
the correlation between positive and negative cohesions with alpha-diversity (as measured by 
Shannon's H index) over seasons. (E) Shows the correlation between positive and negative cohesions 
and within-season variability (distance to the group centroid; beta-dispersion) over seasons. The grey 
lines indicate 95% confidence intervals, and the Spearman correlation coefficient (R) and significant 
correlations (P < 0.05) are also shown. Individual samples are represented by dots. 
 
 
 
 
 
Discussion 
 
The leaf microbiome is a dynamic and complex ecosystem that changes its structure in 
response to various ecological and abiotic factors. Geographical locations, plant 
compartment and growing season are among the main ecological factors that shape the 
microbial communities in natural plants. Despite some research has been conducted on the 
impact of geographical locations, compartment and short period of time on the formation 
of microbial communities in natural plants [13, 41–44], there is still a lack of studies exploring 
the role of abiotic factors in shaping microbial communities throughout the plants growing 
seasons over several plant generations. A further question not studied so far is to what 
extent does the stability of biotic interaction networks are susceptible to abiotic factors? To 
address these fundamental ecological questions, we conducted a five-year study on the leaf 
microbiome of Arabidopsis thaliana from natural populations in six geographical locations in 
the region of Tuebingen Germany [27]. Our findings showed that plant compartment, 
season, and geographical location significantly impact the microbial communities, explaining 
12-22% of their variability (including bacteria, fungi, and other eukaryotes) (Fig. 2A). These 
results are consistent with previous studies on the variation of microbial communities in 
different plant compartments and growing seasons [13, 24, 38–41]. The surge in microbial 
time series investigations provides novel understandings of the stability and dynamics of 
microbial communities [17]. It’s important to note that temporal variations are not limited 
to global diversity, as evidenced by long-term marine microbiota studies that have 
uncovered compelling seasonal patterns in the behavior of individual community 
constituents, among other revelations [45]. It has been demonstrated that the leaf 
microbiome of Arabidopsis thaliana is highly dynamic during the growing seasons from 
November to March and exhibits conserved patterns. These dynamic changes are observed 
in the microbial communities of bacteria, fungi, and oomycetes [28]. In this study we 
showed, although significant variability was observed between seasons, certain microbial 
groups displayed differences between seasons. Notably, Sphingomonadales, Pleosporales, 
and Oomycota showed high seasonal differences and were found to be relevant for plant 
growth over developmental stages (Fig. S2 and S3). Previous research has shown that species 
of the Sphingomonadales group promote plant growth by producing essential hormones and 
protecting the plants from pathogens [4]. The decrease of Sphingomonas in the cold period 
and increase in the warmer seasons could be explained by the finding that the species of this 
group promote plant growth by producing essential hormones and protecting the plants 
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against pathogens that develop with an increase in temperature [46, 47]. Similarly, unknown 
Pleosporales isolates showed plant growth-promoting ability [48], while the Oomycota 
group contains many known plant pathogens, such as Albugo and Hyaloperonospora. This is 
consistent with the disease patterns of downy mildew in Brassicaceae, which are typically 
facilitated by cold and damp weather conditions. This observation suggests that the plant 
experiences higher levels of pathogenic pressure during the early stages of growth, 
particularly in Arabidopsis populations within the Germany where the growing season 
occurs during winter [28]. The results of our study were consistent with this pattern, as we 
observed an increase in pathogenic microbes (Oomycota) in Arabidopsis plants during the 
warmer season in spring. Therefore, we examined how different environmental factors 
influence diversity, variation and biotic interaction networks in microbial communities over 
growing seasons. 
 
Environmental factors positively and negatively correlated with the diversity and 
variability of the leaf microbiome 

In this study, we investigated the impact of environmental factors on the plant microbiome. 
Our results indicate that the selected environmental factors have a significant effect on the 
microbial communities associated with the plant. Specifically, we found that radiation has a 
significant effect on bacterial communities, while wind speed influences fungal 
communities. On the other hand, eukaryotic communities are strongly influenced by 
drought (Fig. 4). Plants have evolved functional strategies to cope with environmental 
stressors, and this is reflected in the composition of their microbiome. For instance, bacteria 
in the plant microbiome produce pigments that protect against reactive oxygen species 
(ROS), a defense mechanism that is particularly important in the presence of high levels of 
UV radiation [5, 49]. Additionally, biofilms may also play a role in protecting microorganisms 
against UV radiation [50]. Furthermore, existing studies have characterized that wind can 
facilitate the spread of fungal diseases through the dispersal of microscopic spores among 
crops [51]. Our findings also suggest that the composition of the plant microbiome is strongly 
influenced by drought-associated metrics, which are known to be a major selective agent on 
A. thaliana populations. The reproducible and predictable associations between specific 
microbes and water availability suggest that drought not only directly shapes genetic 
variation in A. thaliana but also indirectly through its effects on the leaf microbiome [33].  
Moreover, previous studies have reported that drought can have a significant impact on the 
dynamics of microbial communities in grass root microbiomes [34]. Our modeling analysis 
revealed that maximum temperature is the main driver of microbial community composition 
in both bacteria and eukaryotes, while radiation has the strongest influence on fungi 
communities (Fig. 5A). Methylobacterium and Oxalubacteracceae groups are highly 
correlated with maximum temperature in bacteria, while Albugo and Oomycota are 
associated with other eukaryotes. Fungi relative abundances in communities are primarily 
affected by radiation and are associated with the genera Titaea and Cladosporium (Fig. 5C). 
Temperature influences endophytic bacteria composition in above-ground and below-
ground organs of Vitis vinifera, with seasonal temperature variations having a stronger effect 
on stem bacteria than root bacteria. This suggests that root environments are more stable 
[52]. Members of the genus Methylobacterium are referred to as pink-pigmented facultative 
methylotrophs because they produce carotenoids and can grow on one-carbon compounds 
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such as methanol and methylamine as well as on multi-carbon compounds [53]. Upon plant 
colonization, these facultative methylotrophs can benefit from the methanol released by the 
plant during pectin demethylation [54]. Seasonal variations in temperature, day length, and 
light intensity have significantly impacted the adaptive differentiation between two 
populations of Arabidopsis thaliana in northern and southern Europe [55]. While studies 
have shown that stability of plant microbial networks can vary over time, little is known 
about how the diversity of the microbiome is associated with the stability of microbial 
networks over the growing season of plants, and how the complexity of microbial networks, 
including both negative and positive interactions, is associated with environmental factors. 
Therefore, in this study, we investigated the fundamental question of how microbial 
networks maintain their ecological stability over the growing season using cohesion, a 
recently introduced method for measuring the complexity of microbial networks [56]. 

 
The complexity of microbial network (internal dynamic) partially increases in response to 
environmental factors (external dynamic) over growing seasons 

The organization of species interaction networks and the processes behind their assembly 
are fundamental to understanding patterns of biodiversity, community stability, and 
ecosystem functioning [57]. Correlations in microbial networks can provide insights into the 
mechanisms underlying these patterns, particularly in response to external perturbations 
[58, 59]. Positive correlations may result from facilitation mechanisms such as cross-feeding, 
metabolite exchange, and information exchange, while negative interactions could be due 
to competition for niche and resources [60, 61]. Under environmental pressure, positive 
interactions may reflect the functional similarity of the taxa, while negative interactions 
could represent the taxa with divergent niche requirements [58, 62]. Here, comparing 
networks between spring and fall reveals that spring networks are more interconnected, 
with higher numbers of positive and negative interactions (Fig. 6B). Higher complexity, such 
as larger networks, higher connectivity, and higher connectedness, can render the system 
more resistant to external perturbations [27]. However, more cohesive and complex 
communities may also be more susceptible to homogenizing selection, while less complex 
communities are more susceptible to dispersal [63]. By understanding the relationship 
between internal dynamics and community structuring processes, we can gain insight into 
microbial population development in natural systems [58]. Cohesion metrics were used to 
predict community dynamics, with cohesion being significantly related to the rate of 
compositional turnover (Bray–Curtis dissimilarity) in microbial communities [56]. We show 
that cohesion (positive and negative) is negatively correlated with diversity, with fewer 
variable communities tending to be more interconnected and more stable (Fig. 6D and E). 
We found that spring networks are more stable than fall networks, likely due to external 
factors affecting the complexity of the microbial networks. Cohesion (positive and negative) 
is highly correlated with radiation and vapor pressure, suggesting that increased connectivity 
in response to radiation may be due to interactions that protect the community (Fig. S9 and 
S10). Temperature has also been shown to increase the complexity of microbial networks 
over time [64]. Our results show that vapor pressure and the radiation have the highest 
association with network cohesiveness (Fig. S9 and S10). Overall, our results suggest that 
environmental factors have differential effects on microbial interconnectivity in different 
seasons, highlighting the need to consider seasonality in plant microbiome research. 
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Conclusions 

In this study, we have demonstrated the significant roles of environmental factors in shaping 
the leaf microbial community over time. Our findings are consistent with previous studies, 
which suggest that while stochasticity is initially important in shaping the community, later 
on deterministic processes become dominant (e.g., ref. [65, 66]). Additionally, we have 
established a link between the dynamics of microbial community networks and the diversity 
and stability of the communities. Specifically, we found that microbial community 
interconnectivity is negatively correlated with diversity. Furthermore, we demonstrated that 
environmental factors, beyond biotic interactions due to microbial function, also influence 
the interactions among the microbiome. Our study represents a novel approach to exploring 
time-informed community dynamics in natural host-associated microbiomes. In the long 
term, this research could facilitate the modeling and prediction of microbial community 
dynamics over time by taking into account external perturbations. By understanding these 
processes, we may be able to drive microbial communities towards desired states. 

 
Method 

Collection of Arabidopsis thaliana samples. 

Sample collections of wild Arabidopsis thaliana samples were collected from six sites near 
Tuebingen. In the fall and spring of 2014, 2015, 2016, 2017, 2018 and spring of 2019 (11 time 
points, Table. S1). Epiphytic and endophytic microorganisms were collected from each leaf 
sample as described in Aglar et al. [27]. In brief, leaves were washed gently with water for 
30 sec, then in 3-5 ml epiphyte wash (0.1% Triton X-100 in 1x TE buffer) for 1 min, epiphytic 
microorganisms collected by filtering the solution through a 0.2 mm nitrocellulose 
membrane filter (Whatman, Piscataway, NJ, USA). The filter was placed in a screw-cap tube 
and frozen in ice. For collecting endophytic fractions, the same leaves were surface sterilized 
by washing with 80% ethanol for 15 sec followed by 2% bleach (sodium hypochlorite) for 30 
sec. Leaves were rinsed three times with sterile autoclaved water for 10 sec and samples 
were placed in a screw-cap tube and frozen on dry ice. DNA extraction and amplicon 
sequencing Phenol-chloroform based DNA extraction was performed according to a custom 
protocol as described in Agler et al. [27]. The extracted DNA was used for two-step PCR 
amplification of the V5-V7 region of bacterial 16S rRNA (primers 799F/1192R), the ITS2 
region of fungi (primers fITS7/ITS4), 18S rRNA region of eukaryotes (primers F1422/R1797). 
Blocking oligos were used to reduce amplification of plant DNA. Purified PCR products were 
pooled in equimolar amounts before sequencing in Illumina MiSeq runs (600-cycle) with PhiX 
control. 

 
Amplicon sequencing data analysis. 
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Amplicon sequencing data was processed in Mothur (Version=1.42.3) [67] environments 
described in Almario et al. [28]. Single-end reads were combined to make paired-end reads, 
and paired reads with less than 5 bases overlap between the forward and reverse reads were 
removed. Only 100-600 bases long reads were kept. Chimeras were detected using Vsearch 
in Mothur with more abundant sequences as reference. Cutadapt 2.10 [68] was used to trim 
adapter sequences from 16S rRNA and 18S reads in case short amplicons were completely 
sequenced through and again recovered matching pairs and “orphan” reads. For fungal 
reads, we used ITSx 1.1b [69] to trim reads to only the ITS2 region with defaults except that 
we preserved sequence headers, checked against fungi, oomycete and plant profiles, 
allowed single domain matching with an e-value cutoff of 1e-5.0, allowed matching of only 
one HMM gene profile and turned on saving partial ITS regions. Sequences were clustered 
into Operational Taxonomic Units (OTUs) at the 97% similarity threshold using the VSEARCH 
program in Mothur. Individual sequences were taxonomically classified using the rdp 
classifier method (consensus confidence threshold set to 80, method=wang) and the Silva 
database (version 138.1) for 16S rRNA data, the UNITE_public database (version 
02_02_2019) for fungal ITS2 and the Pr2 (version 4.12.0) for eukaryotes. The PhiX genome 
was included in each of the databases to improve the detection of remaining PhiX reads. 
Each OTU was then taxonomically classified (consensus confidence threshold set to 80), 
OTUs with unknown taxonomy at the kingdom level were removed, as were low abundance 
OTUs (≤ 50 reads). 

 
Diversity analysis. 

Sample alpha-diversity analysis was conducted on OTU abundance tables, using Shannon’s H 
diversity index (estimate-richness function in phyloseq package in R). Data normality was 
checked (Shapiro-Wilk’s test) and means were compared using a non-parametric test for two 
(Wilcoxon Rank Sum and Signed Rank Tests, P < 0.05) and multiple groups (Dunn’s test, 
Bonferroni corrected, P adj. < 0.05). Beta-diversity analyses were conducted on transformed 
(log10 (x + 1)) relative abundance tables. Bray-Curtis dissimilarities between samples were 
computed and used for principle coordinate analysis (PCoA, function ‘ordinate’, Phyloseq 
package) and canonical correspondence analysis (CCA, function ’cca’, Vegan package). A 
PerMANOVA analysis on Bray-Curtis dissimilarities was conducted to identify the main factors 
(season, site, compartment and environmental factors) influencing the structure of the leaf 
microbiome (‘Adonis2’, Vegan package, 10,000 permutations, P < 0.05). All analyses were 
conducted in R 4.1.2. 

 
Linear model analysis. 
The environmental variables used in this study were obtained from TerraClimate [70], a 
database with monthly temporal resolution and approximately 4 km spatial resolution. The 
following environmental variables (Table. S3) were included in the analysis: aet, Actual 
Evapotranspiration, monthly total; def, Climate Water Deficit, monthly total; pet, Potential 
evapotranspiration, monthly total; ppt, Precipitation, monthly total; q, Runoff, monthly total; 
soil, Soil Moisture; srad, Downward surface shortwave radiation; swe, Snow water equivalent; 
tmax, Max Temperature; tmin, Min Temperature; vap, Vapor pressure; ws, Wind speed; vpd, 
Vapor Pressure Deficit; PDSI, Palmer Drought Severity Index. Association between 
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independent variables (environmental factors) and different dependent variables (alpha 
diversity, canonical correspondence, cohesion) were assessed using linear models. The 
association between the z-transformed environmental factors and the dependent variables 
was examined by constructing models using the stat_smooth() function in R. The models were 
created with the lm (y ~ Xi) notation, where Xi represents each environmental factor 
individually and y represents the corresponding dependent variable. Additionally, 
correlations were calculated using the stat_cor(method=’pearson’) function in R. To identify 
importance of environmental factors in prediction of relative abundance of OTUs aggregate 
at genus level linear regression was conducted (statsmodels.api.OLS packages in python as 
follow: statsmodels.api.OLS(yi,X).fit() in python). Yi is each time one genus and X is the vector 
of all environmental factors.  The absolute average of significant (p < 0.05) coefficients of each 
environmental factor for all the microbes were calculated to show which environmental 
factor is associated with the majority of microbiome relative abundances. In this study, the 
coefficients in the linear regression model represent the strength and direction of the 
relationship between environmental factors (predictor variables) and the relative abundances 
of bacteria, fungi, and other eukaryotes (response variables). A positive coefficient indicates 
a positive relationship, meaning that as the value of the predictor variable increases, the 
response variable also tends to increase. Conversely, a negative coefficient indicates a 
negative relationship, where an increase in the predictor variable is associated with a 
decrease in the response variable. 
 
 

 
Microbial network calculations and properties 

Bacteria, fungi and eukaryote OTU tables were merged and used for correlations calculation 
using the SparCC algorithm [71] which relies on Aitchison’s log-ratio analysis and is designed 
to deal with compositional data with high sparsity. OTU tables were filtered to OTUs present 
in at least 5 samples with > 10 reads per OTU. The filtered OTU tables (OTU raw abundances) 
were used to calculate SparCC correlation scores (with default parameters) in FastSpar 
platform [72]. Pseudo P-values were inferred from 1000 bootstraps. Only correlations with 
P < 0.001 and absolute correlation > 0 were kept for further analyses. Cytoscape (version 
3.7.1) was used for network visualization. Cohesion measuring the complexity of the 
network which is associated with number and strength of connections could help to predict 
the dynamic of community [56]. We calculated cohesion, a method to quantify the 
connectivity of a community. For each sample (j), two cohesions positive and negative 
(equation1) were calculated by multiplying OTUs relative abundances to average of the 
positive or negative correlations of OTUs. 
 
equation1: 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛! =)𝑅𝐴" ∗ 𝑐𝑜𝑟#$%,"

'

"()

 

 
Where 𝑅𝐴!  is relative abundance of OTU!  in sample j and 𝑐𝑜𝑟"#$,!  is average of significant 
positive (range from 0 to +1) or negative (range from -1 to 0) correlations for OTU!. 
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Figure 1.  Microbial community collection in natural A. thaliana populations over time. Map showing 
the six sampling locations of natural A. thaliana in southern Germany near Tuebingen [27]. Heatmap 
of the map shows the spatial radiations.  Plants were collected in fall and spring of five consecutive 
years (start spring 2014 to spring 2019, eleven time points, dots represent the sampled plants). Leaf 
samples were taken for microbiome analysis of epiphytic and endophytic compartments with a total 
number of 703 samples (see Table. S1).  Microbiome analysis was conducted via Illumina-based 
amplicon sequencing (Miseq 2´300 cycle). Environmental variables (Table. S3) used in this study were 
obtained from the Terraclimate [71] database. 
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Figure 2. Multivariate analysis on factors structuring leaf microbial communities. (A) A PerMANOVA 
analysis on Bray-Curtis distances was conducted using the Adonis2 function in Vegan.  Circles depict 
the percentage of variance explained by factors 'season', 'compartment' and 'site', connecting lines 
depict the percentage of variance explained by interactions between factors. Only significant effects 
are shown (permutations 10,000, P < 0.05, explanatory categorical variables: Season x Compartment 
x Site). (B) Principal coordinates analysis of epiphytic and endophytic samples of different seasons and 
sites, measured by principal Bray-Curtis distances in bacterial, fungal and eukaryotes communities. 
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Figure 3.  The relationship between alpha diversity (as measured by Shannon's H index) and various 
environmental factors. Each plot shows a linear regression model fit to the data, with individual 
samples represented by dots. The bacterial community is represented in blue, the fungal community 
in orange, and other eukaryote communities in a different color. Grey lines indicate 95% confidence 
intervals, and the Spearman correlation coefficient (R) and significant correlations (P < 0.05) are also 
shown. 
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Figure 4. Permutation analysis of variance (PERMANOVA) to investigate the impact of 
environmental factors on the structure of leaf microbial communities. The analysis was performed 
using the Adonis2 function in the Vegan package, based on Bray-Curtis distances. The bar plots show 
the percentage of variance explained by each factor for the bacterial (blue), fungal (orange), and 
eukaryotes (green) communities. The highest level of explained variation for each microbial group is 
indicated by a vertical line. 
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Figure 5. Demonstrates how environmental factors can predict the relative abundance of 
microbiome taxa. (A) The histograms in the figure represent the average of the absolute coefficient 
values of each environmental factor that significantly (p<0.05) predicts the relative abundances of 
bacteria (blue), fungi (orange), and other eukaryotes (green). (B) In the figure, a network of 
interactions between environmental factors and the microbiome is also shown. The nodes (dots) 
represent environmental factors or microbes, and the edges (colored lines) depict potential positive 
and negative coefficient values from the linear regression model. (C) The histograms represent the 
coefficient values (absolute values ³ 0.01) calculated using the linear regression model at the genus 
level for differentially abundant microbes according to maximum temperature in bacteria and 
eukaryotes, and radiation in fungi. Negative coefficient values (gray bars) represent genera that 
decrease with these environmental factors, while positive values (pink bars) indicate genera that 
increase with these factors.   
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Figure 6. Changes in microbial interaction networks throughout the growing season of A. thaliana 
over multiple years. (A) Data from each time point was used to reconstruct co-abundance networks 
for each season using the SparCC algorithm. The nodes (dots) represent OTUs, and the edges (colored 
lines) depict potential positive and negative interactions between OTUs (connections). Gray lines 
connecting the networks show nodes that are conserved in networks from one time point to the next 
(inherited nodes). (B) Shows the number of nodes and edges in each time point and then the averages 
per season.  (C) Box plots represent the negative and positive cohesions in each time point. (D) Shows 
the correlation between positive and negative cohesions with alpha-diversity (as measured by 
Shannon's H index) over seasons. (E) Shows the correlation between positive and negative cohesions 
and within-season variability (distance to the group centroid; beta-dispersion) over seasons. The grey 
lines indicate 95% confidence intervals, and the Spearman correlation coefficient (R) and significant 
correlations (P < 0.05) are also shown. Individual samples are represented by dots. 
 
 
Supplementary figures legends 
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Supplementary figure 1. Changes in alpha-diversity of leaf microbial communities are presented in 
this figure, with Shannon's H index used as the diversity metric. The alpha diversity of bacteria (a), 
fungi (b), and other eukaryotes (c) are shown for different seasons, compartments, and sites. The box 
plots display individual samples as dots, with whiskers representing the dispersion of the data (1.5 x 
interquartile range). Significance values, based on Wilcoxon’s test comparisons of alpha diversity 
indexes between samples, are denoted as ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), or *** (p ≤ 0.001). 
Different letters indicate significant differences between groups (Dunn test, P < 0.05). 

***

0
2

4
6

8

Fa
ll

Sp
rin

g

Sh
an

no
n 

in
de

x

Season Fall Spring

Bacteria 16s rRNA
ns

0
2

4
6

8

Fa
ll

Sp
rin

g

Sh
an

no
n 

in
de

x
Season Fall Spring

Fungi ITS2
**

0
2

4
6

8

Fa
ll

Sp
rin

g

Sh
an

no
n 

in
de

x

Season Fall Spring

Eukaryotes 18s

****

0
2

4
6

8

En
do Ep

i

Sh
an

no
n 

in
de

x

Compartment Endo Epi

Bacteria 16s rRNA
****

0
2

4
6

8

En
do Ep

i

Sh
an

no
n 

in
de

x

Compartment Endo Epi

Fungi ITS2
****

0
2

4
6

8

En
do Ep

i

Sh
an

no
n 

in
de

x

Compartment Endo Epi

Eukaryotes 18s

b ab ab ab a a

0
2

4
6

8

ER
G EY JU
G

K6
9

PF
N

W
H

Sh
an

no
n 

in
de

x

Site
ERG
EY

JUG
K69

PFN
WH

Bacteria 16s rRNA

ab b a ab ab ab

0
2

4
6

8

ER
G EY JU
G

K6
9

PF
N

W
H

Sh
an

no
n 

in
de

x

Site
ERG
EY

JUG
K69

PFN
WH

Fungi ITS2

c bc ab ab a ab

0
2

4
6

8

ER
G EY JU
G

K6
9

PF
N

W
H

Sh
an

no
n 

in
de

x

Site
ERG
EY

JUG
K69

PFN
WH

Eukaryotes 18s

A B C



 
35 

 

Supplementary figure 2 The composition of the Arabidopsis leaf microbiome changes throughout 
plant growth. The bar chart displays the aggregated relative abundance of bacteria, fungi, and other 
eukaryotic communities at the order level, grouped by season across five years (11 time points) for 
each microbial group. Arrowheads indicate taxa exhibiting marked seasonal patterns. 
 

 
Supplementary figure 3 Seasonal changes in high abundance microbial taxa colonizing A. thaliana’s 
leaves. Boxplots show the relative abundance of the bacterial, fungal and eukaryotic orders in single 
samples aggregated by ‘season’. Whiskers depict the dispersion of the data (1.5 x interquartile range), 
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Significance values show the differences of microbes between seasons based on Wilcoxon’s test 
(ns: p value > 0.05, *p < = 0.05, **p < = 0.01, ***p < = 0.001).  
 
 
 

 
Supplementary figure 4. Environmental factors over sampling time points. (A) Lines show the 
average of each environmental factor for sampling month over years. (B) Box plot represents 
differences of average of environmental factor for sampling month in spring and fall. Significance 
values show the differences of environmental factors between seasons based on Wilcoxon’s test 
(ns: p value > 0.05, *p < = 0.05, **p < = 0.01, ***p < = 0.001). 
 

 
Supplementary figure 5.  Canonical correspondence analysis (CCA) to examine the relationship 
between environmental factors and bacterial, fungal, and eukaryotic communities. 
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Supplementary figure 6.  Canonical correspondence analysis (CCA) to examine the relationship 
between environmental factors and microbiome data. The plots illustrate the relationship between 
the first canonical correspondence axes and various environmental factors. Each plot includes a linear 
regression model fitted to the data, with individual samples represented by dots. The bacterial 
community is represented in blue, the fungal community in orange, and other eukaryote communities 
in green. The grey lines indicate 95% confidence intervals, while the Spearman correlation coefficient 
(R) and significant correlations (P < 0.05) are also provided. 
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Supplementary figure 7.  Canonical correspondence analysis (CCA) to examine the relationship 
between environmental factors and microbiome data. The plots illustrate the relationship between 
the second canonical correspondence axes and various environmental factors. Each plot includes a 
linear regression model fitted to the data, with individual samples represented by dots. The bacterial 
community is represented in blue, the fungal community in orange, and other eukaryote communities 
in green. The grey lines indicate 95% confidence intervals, while the Spearman correlation coefficient 
(R) and significant correlations (P < 0.05) are also provided. 
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Supplementary figure 8. Box plot of the negative and positive cohesions over seasons. 
Significance values, based on Wilcoxon’s test comparisons of alpha diversity indexes between 
samples, are denoted as ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), or *** (p ≤ 0.001). 
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Supplementary figure 9. The relationship between positive cohesion and various environmental 
factors. Each plot shows a linear regression model fit to the data, with individual samples represented 
by dots. Grey lines indicate 95% confidence intervals, and the Pearson correlation coefficient (R) and 
significant correlations (P < 0.05) are also shown. 

R = 0.19 , p < 0.05

R = 0.035 , p = 0.4

R = 0.182 , p < 0.05

R = 0.156 , p < 0.05

R = 0.134 , p < 0.05

R = 0.031 , p = 0.4

R = −0.135 , p < 0.05

R = −0.117 , p < 0.05

R = −0.012 , p = 0.8

R = 0.153 , p < 0.05

R = 0.249 , p < 0.05

R = −0.065 , p = 0.1

R = −0.014 , p = 0.7

R = −0.21 , p < 0.05

Vapor_Pressure_Deficit Wind_Speed

Snow_Water_Equivalent Soil_Moisture Vapor_Pressure

Potential_Evapotranspiration Precipitation Runoff

Max_Temperature Min_Temperature Palmer_Drought_Severity_Index

Actual_Evapotranspiration Climate_Water_Deficit Downward_Surface_Shortwave_Radiation

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

−2.5 0.0 2.5 5.0

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

envvalue

co
he
si
on



 
41 

 
Supplementary figure 10. The relationship between negative cohesion and various environmental 
factors. Each plot shows a linear regression model fit to the data, with individual samples represented 
by dots. Grey lines indicate 95% confidence intervals, and the Pearson correlation coefficient (R) and 
significant correlations (P < 0.05) are also shown. 
 
 
 
Supplemental Material 
 
Table S1. Experimental set-up and sampling locations. Numbers indicate sampled plants by 
condition. 
Table S2. ANOVA results to determine the effects of the ‘Site’, ‘Season’ and ‘Compartment’ on 
microbial diversity of bacteria, fungi and eukaryotes.  

R = 0.099 , p < 0.05

R = −0.006 , p = 0.9

R = 0.107 , p < 0.05

R = 0.176 , p < 0.05

R = 0.081 , p < 0.05

R = 0.025 , p = 0.5

R = −0.132 , p < 0.05

R = −0.13 , p < 0.05

R = −0.024 , p = 0.5

R = 0.046 , p = 0.2

R = 0.206 , p < 0.05

R = −0.006 , p = 0.9

R = 0.029 , p = 0.4

R = −0.222 , p < 0.05

Vapor_Pressure_Deficit Wind_Speed

Snow_Water_Equivalent Soil_Moisture Vapor_Pressure

Potential_Evapotranspiration Precipitation Runoff

Max_Temperature Min_Temperature Palmer_Drought_Severity_Index

Actual_Evapotranspiration Climate_Water_Deficit Downward_Surface_Shortwave_Radiation

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

−2.5 0.0 2.5 5.0

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

envvalue

ab
s(
co
he
si
on
)



 
42 

Table S3.  The environmental variables obtained from TerraClimate [70], a database with 
monthly temporal resolution and approximately 4 km spatial resolution.  
Table S4.  Results of PERMANOVA to investigate the impact of environmental factors on the 
structure of bacteria, fungi and eukaryotic communities. 


