Karyotype Description and Comparative

Chromosomal Mapping of 5S rDNA in 21 species

Running titile: Karyotyping of 64 Plants by FISH-5S rDNA

Xiaomei Luo ${ }^{1, \uparrow+\cdots,}$, Yunke Liu ${ }^{2, t}$, Xiao Gong ${ }^{1}$, Meng Ye ${ }^{1}$, Qiangang Xiao ${ }^{2}$, Zhen Zeng ${ }^{2}$
${ }^{1}$ National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River \& Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry in Sichuan Agricultural University, Chengdu 611130, China; xiaomei_luo@sicau.edu.cn (X.L.), gongxiao202209@163.com (X.G.); yemeng5581@163.com (M.Y.)
${ }^{2}$ Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; lykchengdu@sina.com (Y.L.); xiaoqg1992@163.com (Q.X.), 15882215544@126.com (Z.Z.)
* Correspondence: xiaomei_luo@sicau.edu.cn; Tel.: +86-028-86291456
+ These authors contributed equally to this work.

Abstract

S rDNA is essential component of all cell types. A survey was conducted to study the 5S rDNA site number, position, and origin of signal pattern diversity in 64 plants using fluorescence in situ hybridization. The species used for this experiment were chosen due to the discovery of karyotype rearrangement, and for species checked in which 5 S rDNA has not yet been explored. The chromosome number was 14-160, while the chromosome length was $0.63-6.88 \mu \mathrm{~m}$, with 37 plants (58%) had small chromosome ($<3 \mu \mathrm{~m}$). The chromosome numbers of three species and 5S rDNA loci of 19 species have been reported for the first time. 5 S rDNA was varied and abundant in signal site number (2-18), position (e.g., interstitial, distal, and proximal position, occasionally, outside chromosome), and even as intense (e.g., strong, weak, and slight). Our results exposed modifiability in the number and location of 5 S rDNA in 33 plants and demonstrated an extensive stable number and location of 5S rDNA in 31 plants. The potential origin of signal pattern diversity was probably caused by chromosome rearrangement (e.g., deletion, duplication, inversion, translocation), polyploidization, self-incompatibility, and chromosome satellites. These data characterized the variability of 5S rDNA within the karyotypes of the 64 plants that exhibited massive chromosomal rearrangements and provided anchor points for genetic physical maps. These data prove the utility of the 5S rDNA oligonucleotide as a chromosome marker in identifying plant chromosomes. This method provides a basis for developing similar applications for cytogenetic analysis in other species.

Key words: Chromosomes; Conservation; Diversity; FISH Oligonucleotides probes

Article Summary

A survey was exploited to study 5 S rDNA signal pattern diversity in 64 plants by FISH. The chromosome number of three species and 5S rDNA loci of 19 species have been reported by the first time. 5 S rDNA was really rather various and abundant in signal site number (2-18), position (interstitial, distal, proximal position, occasionally, outside chromosome), even as the intense (strong, week, slight). These data prove the utility of 5S rDNA oligonucleotide as chromosome marker in identifying plant chromosomes.

Introduction

Ribosomal DNA (rDNA) is essential to all cell types that code rRNA. rDNAs are generally detected by exercising considerable parts of chromosomes, including both 45S and 5S rDNA (Slidler 2016). The 5S rDNA structured numerous copies in genomes and has been far and widely used in hundreds of cytogenetic investigations as an important marker for fluorescence in situ hybridization (FISH) analysis (Heslop-Harrison 2000, Rodríguez-González et al. 2023), not only for essential crops (Kamisugi et al. 1994, Luo et al. 2018a, b, c), but also for woody plants, such as walnut (Luo and Chen 2020), the Chinese pepper (Luo et al. 2018d, He et al. 2023, Hu et al. 2023), and wintersweet (Luo and Chen 2019).

The lengths of the 5 S rDNA sequence ranged from 48 bp (Turner et al. 2005) to 854 bp (Liu et al. 2017) because of its high copies and variations when searching for " 55 rDNA" in the database Nucleotide of National Center for Biotechnology Information. Furthermore, the lengths of 5S rDNA as a FISH probe in the PubMed database from NCBI varied considerably: 41 bp (Luo et al. 2017, Islam-Faridi et al. 2020), 94 bp (Sergeeva et al. 2017), 117 bp (Lukjanová et al. 2023), 120 bp (Taketa et al. 2001, Symonová et al. 2017, Deon et al. 2022, de Moraes et al. 2023), 124 bp (Waminal et al. 2018), 131 bp (Sergeeva et al. 2017), 222 bp (Glugoski et al. 2018), 285 bp (Röser et al. 2001), 300 bp (Araya-Jaime et al. 2022), 302 bp (Zhang et al.2016), 303 bp (Mahelka et al. 2013), 320 bp (Khensuwan et al. 2023), 324 bp (Kamisugi et al. 1994), 326 bp (Robledo and Seijo 2008), 329 bp (Röser et al. 2001), $347 \mathrm{bp}, \sim 400 \mathrm{bp}$ (Pedrosa et al. 2002), 410 bp (Kovács et al. 2023), 456 bp (Röser et al. 2001), $468 \mathrm{bp}, 473 \mathrm{bp}, 477 \mathrm{bp}, 496 \mathrm{bp}$ (Martins et al. 2000), 497 bp (Alexandrov et al. 2022), 498 bp (Martins et al. 2000), 500 bp (de Barros et al. 2023), 556 bp (Gottlob-McHugh et al. 1990), 596 bp (Joshi et al. 2023), 702 bp (Glugoski et al. 2018), 871 bp (Amarasinghe and Carlson 1988), and 1193 bp (Glugoski et al. 2020).

Conversely, 5 S rDNA FISH signal sites in previous research ranged from 1 to 71 (Rodríguez-González et al. 2023). Quite of species conserve 5 S rDNA, including only two stable chromosomes with two 5 S rDNA signal sites (Zhang et al. 2016, Moraes et al. 2022, Yurkevich et al. 2022, Alexandrov et al. 2022, Khensuwan et al. 2023). Nevertheless, a few species occupy visible 5 S rDNA FISH signals, including the numbers of both major and visible dispersed sites. For example, four 5 S rDNA signal sites in six in Sinapidendron frutescens (Aiton) Lowe (Ali et al. 2005), eight in Prunus pseudocerasus (Lindl.) G. Don (Wang et al. 2022), 8-19 in Trifolium medium L. (Lukjanová et al. 2023), 10 in Brassica juncea (Linnaeus) Czernajew, 12 in Olimarabidopsis cabulica (J. D. Hooker \& Thomson) Al-Shehbaz et al., 14 in Brassica napus L. (Ali et al. 2005), 15 in Paphiopedilum sukhakulii Schoser \& Senghas (Lan and Albert 2011), 16 in Piptanthus concolor Harrow ex Craib (Luo et al. 2017), 19 in Paphiopedilum henryanum Braem, 20 in Paphiopedilum druryi (Bedd.) Stein, 22 in Paphiopedilum sangii Braem, 23 in Paphiopedilum tigrinum Koop. et Haseg., 26 in Paphiopedilum liemianum Fowlie, 27 in Paphiopedilum hirsutissimum (Lindl. ex Hook.) Stein, 28 in Paphiopedilum victoria-regina (Sander) M.W.Wood, 29 in Paphiopedilum primulinum M. W. Wood et P. Taylor, 30 in Paphiopedilum glanduliferum (Blume) Stein, 32 in Paphiopedilum adductum Asher, 34 in Paphiopedilum randsii Fowlie, 36 in Paphiopedilum parishii (Rchb. F.) Stein, and 38 in Paphiopedilum gigantifolium Braem, M.L.Baker \& C.O.Baker (Lan and Albert 2011). Notably, there were two 5S rDNA sites on the same chromosome, such as P. concolor (Luo et al. 2017), Brassica oleracea L. (Ali et al. 2005), O. cabulica (Ali et al. 2005), P. primulinum, P. liemianum, P. randsii, P. parishii, Paphiopedilum dianthum T. Tang et F. T. Wang (Lan and Albert 2011), Prunus cerasus L. (Wang et al. 2022), and Plantago maxima Juss. ex Jacq. (Kovács et al. 2023).

Conversely, the 5S rDNA FISH signal position was diverse and abundant. The 5S rDNA signal has been found in the chromosome interstitial position from Macroptilium bracteatum (Nees \& Mart.) Maréchal \& Baudet (de Barros et al. 2023), Deschampsia antarctica E. Desv (Amosova et al. 2022), Polemonium caeruleum Linnaeus (Samatadze et al. 2023), in the chromosome distal position from Pinus koraiensis Siebold et Zuccarini (Cai et al. 2006), Cannabis sativa L. (Alexandrov et al. 2022), Pseudotsuga menziesii (Mlrb.) Franco (Amarasinghe and Carlson 1988), or in the chromosome proximal position from Brassica rapa L. (Campomayor et al. 2021), even as far away the chromosome from Hedysarum setigerum Turcz. (Yurkevich et al. 2022), and P. cerasus (Wang et al. 2022).

As a consequence, the 5 S rDNA as a FISH probe was an excellent marker to label plant chromosomes in species and to distinguish closely related species among more than 300 plant species (listed in Supplementary Table 1), including more than 20 woody plant species (bold type in Supplementary Table 1). For example, in six species of Fabaceae: Amorpha fruticose L., Styphnolobium japonicum (L.) Schott, three species of Robinia L. (He et al. 2022a), P. concolor (Luo et al. 2017); in five Pinus L. species of Pinaceae (Cai et al. 2006); in four species of Oleaceae: Fraxinus pennsy/vanica Marsh., two species of Ligustrum L., Syringa oblata Lindl. (Luo and Liu 2019); in two Berberis L. species of Berberidaceae (Liu and Luo 2019); in two species of Malvaceae: Adansonia digitata L. (Islam-Faridi et al. 2020),

Hibiscus mutabilis L. (Luo and He 2021); and in Rutaceae of Zanthoxylum armatum DC. (Luo et al. 2018d, He et al. 2023).

However, the 5S rDNA as a FISH probe lacked discrimination (only stable two chromosomes with signal) in Pistia stratiotes L. of Araceae (Stepanenko et al. 2022); in Chimonanthus campanulatus R.H. Chang \& C.S. Ding of Calycanthaceae (Luo and Chen 2019); in four Citrullus Schrad. species of Cucurbitaceae (Li et al. 2016); in cultural/wild Hippophaë rhamnoides ssp. sinensis and three Hippophaë rhamnoides L. cultivars of Elaeagnaceae (Luo et al. 2022a); in Fabaceae of six Hedysarum L. species (Yurkevich et al. 2022); in Juglans regia L. and Juglans sigillata Dode (Luo and Chen) of Juglandaceae; in four Glechoma L. species of Lamiaceae (Jang et al. 2016); in three Bletilla Rchb. f. species of Orchidaceae (Huan et al. 2022); in three Zea L. species of Poaceae (Han et al. 2003); in four Citrus L. species of Rutaceae (He et al. 2020), Zanthoxylum bungeanum Maxim. and Z. armatum (Hu et al. 2023); in four Populus L. species of Salicaceae (Xin et al. 2019); in five Taxus L. species of Taxaceae (He et al. 2022b).

Summarily, 5S rDNA has been confirmed to be a significant cytogenetic symbol by tandem formatting and giving in multicopy numbers with unusual chromosomal allocation. Moreover, these discoveries may afford a responsible method to survey the locations and number of rDNA diversifications among respective species and their relational accessions. Such findings also let us further understand the developmental and phylogenetic links of exampled species. The patent oligonucleotide FISH (Oligo-FISH) technology is widely problematic in related cytogenetic investigations compared to conventional FISH analysis because of its low cost (Beliveau et al. 2012). Moreover, based on available DNA sequencing data, oligonucleotide probes (Oligo-probe) have been developed and successfully applied to many plants (He et al. 2020, Xin et al. 2020, Luo et al. 2022a, b, He et al. 2023). Therefore, examining the 5S rDNA sites by Oligo-FISH would efficiently contribute to further cytogenetic research on the 64 plants. This study aimed to analyze and compare the polymorphism of the signal pattern of 5S rDNA among species and genera in the 64 plants examined, including 5S rDNA signal number, position, and intensity, and the chromosome number of each plant. Furthermore, several contributing factors caused by the diversity of the 5S rDNA signal pattern remain to be addressed.

Materials and Methods

The species used for this experiment were chosen due to the discovery of karyotype realignments (Luo et al. 2017, Luo et al. 2018d, Liu and Luo 2019, Luo and Liu 2019, Luo ang Chen 2019, 2020, Luo and He 2021, Luo et al. 2022a, b, He et al. 2022a, b, c, 2023). Because these species were checked, their 5S rDNA has not yet been explored. Information on the seeds or seedlings of 64 plants (52 woody plants and 12 herbaceous plants belonging to 21 species, 18 genera, and 16 families) used in the present work is provided in Table 1. All 64 plants were collected from 23 counties or districts of six Chinese provinces.

Chromosome and Oligonucleotide Probe Preparation

Converged seeds were germinated in Petri dishes with moistened filter paper and stayed at $25^{\circ} \mathrm{C}$ in the daytime and at $18^{\circ} \mathrm{C}$ in the night until the roots touched $\sim 2 \mathrm{~cm}$ in length. Next, the roots were cut. The collected seedlings were grown in soil at room temperature $\left(15-25^{\circ} \mathrm{C}\right)$ until they had new roots and then cut again. The cut root tips were served with N2O (nitrous oxide) gas for 3-5 h, with processing time according to cell wall lignification and chromosome size. Afterward, the root tips were soaked in glacial acetic acid for 5 min and then in 75% ethyl alcohol. Chromosome preparation was executed based on the steps described by Luo et al. (2017). Since these procedures have been reported elsewhere, a brief description is available here. About 1 mm of the meristematic zone of the root tip (cut root cap) was in enzymolysis at $37^{\circ} \mathrm{C}$ for 45 min by using pectinase and cellulase (the buffer 50 mL was covered 0.4324 g citric acid +0.5707 g trisodium citrate, then 1 mL buffer +0.02 g pectinase +0.04 g cellulase). The enzymes were yielded by Kyowa Chemical Products Co., Ltd. (Osaka, Japan) and Yakult Pharmaceutical Ind. Co., Ltd. (Tokyo, Japan). The enzymes were then blended into suspension for dropping onto clean slides. These slides were air dried at room temperature and examined using an Olympus CX23 microscope (Olympus, Tokyo, Japan).

The oligoprobe of 5' TCAGAACTCCGAAGTTAAGCGTGCTTGGGCGAGAGTAGTAC 3' (41 bp) was initially reported in P. nepalensis (P. concolor, former name in Flora of China) of Fabaceae (Luo et al. 2017). Then, it has been steadily executed in two Berberis species of Berberidaceae (Liu and Luo 2019), C. campanulatus of Calycanthaceae (Luo and

Chen 2019), and in cultural/wild H. rhamnoides ssp. sinensis and three H. rhamnoides cultivars of Elaeagnaceae (Luo et al. 2022a), in A. fruticose and S. japonicum of Fabaceae and three Robinia species (He et al. 2022a), two Juglans species of Juglandaceae (Luo and Chen 2020), A. digitata and H. mutabilis of Malvaceae (Islam-Faridi et al. 2020, Luo and He 2021), F. pennsy/vanica of Oleaceae, two species of Ligustrum and S. oblata (Luo and Liu 2019), three Bletilla species of Orchidaceae (Huan et al. 2023), two Zanthoxylum species of Rutaceae (Luo et al. 2018, He et al. 2023), and five Taxus species of Taxaceae (He et al. 2022b). This oligoprobe was produced by Sangon Biotech Co., Ltd. (Shanghai, China) and conducted simultaneously in a single round of FISH . The oligo-probe was 50-labeled with 6-carboxy-fluorescein (6-FAM; absorption /emission wavelengths $494 \mathrm{~nm} / 518 \mathrm{~nm}$; green).

FISH Hybridization

Slides with well-spread chromosomes were used to hybridize. Chromosome samples first experienced a series of reinforcement (4\% paraformaldehyde, room temperature, 10 min), dehydration ($75 \%, 95 \%$, and 100% ethanol at room temperature for 5 min), denaturation (deionized formamide at $80^{\circ} \mathrm{C}$ for 2 min), and once again dehydration ($75 \%, 95 \%$, and 100% ethanol, at $-20^{\circ} \mathrm{C}$ for 5 min), and then hybridization ($0.375 \mu \mathrm{~L}$ of 5 S rDNA, $4.675 \mu \mathrm{~L}$ of $2 \times$ SSC, and $4.95 \mu \mathrm{~L}$ of $\mathrm{ddH}_{2} \mathrm{O}$ in total $10 \mu \mathrm{~L}$ hybridization mixture) for 2 h in an incubator at $37^{\circ} \mathrm{C}$. Then, hybridized spreads were rinsed with $2 \times \mathrm{SSC}$ and $\mathrm{ddH}_{2} \mathrm{O}$ twice for 5 min at room temperature and air-dried. Finally, the spreads were counterstained with 4,6-diamidino-2-phenylindole (DAPI, Vector Laboratories, Inc., Burlingame, CA, USA) for 5 min, according to the step described by Luo et al. (2017). Chromosomes were traced using an Olympus BX-63 microscope (Olympus Corporation, Tokyo, Japan), and FISH photographs were taken using a DP-70 CCD camera allocated to the microscope.

Karyotype Analysis

Raw data were executed using the Photoshop CC 2015 (Adobe Systems Inc., San Jose, CA, USA) and DP Manager (Olympus Corporation, Tokyo, Japan) software. More than eight slides of each plant were observed, and at least 15 well-spread cells were executed to count the chromosome number and length. All chromosomes examined were assembled from longest to shortest. The chromosome ratio was controlled by the length of the longest chromosome to that of the shortest chromosome. Exhaustive and deep karyotype analysis could not be conducted because of the obscure centromere position and small chromosome size of many of the species.

Results

Karyotype Analysis Revealed Differences among 64 Plants

We performed FISH analysis to visualize the chromosomal distribution of 5S rDNA in 64 plants, as shown in Figure 1 (A1-A16), Figure 2 (B1-B16), Figure 3 (C1-C16), and Figure 4 (D1-D16). We cut each chromosome distribution of the 5 S rDNA in Figures 1-4 and aligned them for display, as shown in Figure 5 (A1-A16), Figure 6 (B1-B16), Figure 7 (C1C16), and Figure 8 (D1-D16). For 19 species from 13 families, this is the first time that 5S rDNA testing has been analyzed (A1, A8-A11, A13-A16, B11, B14, C12, C14-C16, D6-D12, and D14-D15).

The chromosome numbers and lengths for the considered species are sorted in Table 2. The chromosome numbers in the 64 plants ranged from 14 (C. chinensis, A1) to 160 (Z. bungeanum 'Hanyuanhuajiao' 3, D11). Thirteen plants possessed 24 chromosomes (one-fifth), whereas another 13 plants possessed 34 chromosomes (one-fifth). The chromosome number of the three species was analyzed for the first time here (bold type in Table 2): P. sibiricum $(2 n=18)$, I. chinensis $(2 n=40)$, and T. sebifera $(2 n=88)$. The longest chromosome length of each plant ranged from $1.23 \mu \mathrm{~m}$ (T. sebifera, D6) to $6.88 \mu \mathrm{~m}$ ($T . \times$ media, B2; T. aestivum, D1). The shortest chromosome length of each plant ranged from $0.63 \mu \mathrm{~m}$ (J. sigillata 'Maerkang,' B16) to $3.85 \mu \mathrm{~m}$ (T. aestivum, D1). Thirty-seven plants (58\%) had a chromosome length of less than $3 \mu \mathrm{~m}$, thus falling into the small chromosome category. Detailed and deep karyotype analysis was not conducted because of the unclear position of centromeres and the small size of chromosomes in many of the exampled plants, such as long/short arm length and karyotype formula.

Karyotype asymmetry (Table 2) was assessed using the longest to shortest chromosome length ratio. The largest ratio was 4.61 in P. sibiricum (A10), while the smallest ratio was 0.74 in R. pseudoacacia 'Idaho' (A5). The ratio for 35 plants ranged from 2 to 3 (55\%), while that of 16 plants ranged from 1 to 2 (25%), and 10 plants ranged from 3 to 4 (16\%). The ratio was greater than 4 for two plants: P. sibiricum (A10) and B. striata f. 'Dujiangyan' (C4), while the ratio was less than 1 for R. pseudoacacia 'Idaho' (A5). These results indicate that abundant differences exist among 44 of the considered species.

The Diverse Signal Patterns of 5S rDNA Reveal the Complex Genome Architecture

Different types of ideograms for the 64 plants were drawn based on the FISH karyograms shown in Figures 5-8 to better investigate the diversity of 5S rDNA (Figures 9-12). The first diversity is signal location. Proximal signals were observed at several chromosomes in 39 plants (61%), while distal signals were observed at several chromosome terminus in 30 plants (47\%). Interstitial signals were observed at several chromosomes in 21 plants (33\%), while distal signals deviated from the chromosome in 4 plants (6\%, the fourth class): C. chinensis (A1), S. japonicum (A6), K. paniculata (B14), and Z. nitidum (D7). The second diversity is the signal number. The largest number of chromosomes with a 5S rDNA signal was 18 in T. sebifera (D6), while the smallest number was 2 in 31 plants (48\%). The number of chromosomes with a 5S rDNA signal for 11 plants ranged from 10 to 16 (17\%), while that of 21 plants ranged from 4 to $8(33 \%)$. The ratio of chromosomes with a 5S rDNA signal to total chromosome was assessed to signal cover. The largest ratio was 0.89 in P. nepalensis (A2), while the smallest ratio was 0.03 in Z. nitidum (D7) and Z. armatum 'Putaoqingjiao' (D16). The ratio for 50 plants ranged from 0.03 to 0.20 (78%), while the ratio for nine plants ranged from 0.20 to 0.50 (14\%). The ratio for only two plants ranged from 0.50 to 0.89 in R. pseudoacacia (A3) and T. wallichiana var. mairei (B5).

Furthermore, we summarized the results in Figures 9-12 to produce the 5S rDNA signal pattern in Figure 13. The results for 64 plants belonging to 20 families are shown, including 10 plants in Rutaceae (gray), nine in Orchidaceae (light blue), eight in Fabaceae (cyan), six in Elaeagnaceae (light yellow), five in Taxaceae (light pink), four in Juglandaceae (green), four in Oleaceae (orange), two in Asparagaceae (yellow), two in Berberidaceae (blue), two in Euphorbiaceae (red), two in Malvaceae (magenta), two in Lauraceae (pink), and one in each of Aquifoliaceae, Calycanthaceae, Cupressaceae, Podocarpaceae, Fagaceae, Poaceae, Salicaceae, and Sapindaceae, respectively. Except for Aquifoliaceae, Asparagaceae, Calycanthaceae, Cupressaceae, Elaeagnaceae, Juglandaceae, Orchidaceae, Podocarpaceae, and Salicaceae, which each presented a single signal pattern type, the other families (Berberidaceae, Euphorbiaceae, Fagaceae, Fabaceae, Lauraceae, Malvaceae, Oleaceae, Poaceae, Rutaceae, Sapindaceae, and Taxaceae) all presented at least two sites.

As shown in Figure 13, there were six 5 S rDNA signal pattern types in total: type I, chromosome includes the proximal signal location; Type II, chromosome includes the distal signal location; Type III, chromosome includes the proximal and distal signal locations; Type IV, chromosome only includes signal outside of the chromosome; Type V, chromosome includes the distal signal location and signal outside of the chromosome; and Type VI, satellite chromosome includes distal signal location. These types of signal patterns indicate that there is abundant diversity in the 5 S rDNA signal arrangement.

All 64 plants had the 10 signal pattern types or type combinations shown in Figure 13. The 26 plants only possessed signal pattern type I; nine plants only possessed signal pattern type II; 16 plants had a combination of type I + type II; six plants only had type III; R. pseudoacacia f. decaisneana had a combination of type I + type III; T. wallichiana var. mairei had a combination of type I + type II + type III; S. japonicum only had type IV; C. chinensis and K. bipinnata had a combination of type II + type IV; Z. nitidum only had type V; and P. nepalensis had a combination of type I + type II + type III + type VI.

There were diverse signal patterns of 5S rDNA among 44 species, indicating a complex genome architecture. For example, considering ($)$ in Rutaceae, four varieties of Zanthoxylum had type I, but five varieties of Zanthoxylum had a combination of type I + type II, and Z. nitidum had type V. (i) In Fabaceae, A. fruticose and E. crista-galli had type I, but R. pseudoacacia and R. pseudoacacia 'Idaho' had type III, R. pseudoacacia f. decaisneana had combination of type I + type III, S. japonicum only had type IV, C. chinensis had a combination of type II + type IV, and P. nepalensis had a combination of type I + type II + type III + type VI. (iii) In Taxaceae, four species of Taxus had type III, but T. wallichiana var. mairei had a combination of type I + type II + type III. (iv) In Oleaceae, F. pennsylvanica had type II, but L. Iucidum, L. \times vicaryi and S. oblata had a combination of type I + type III. (V) In Berberidaceae, B. diaphana had type II, but B. soulieana had a combination of type I + type II. (vi) In Malvaceae, F. simplex had type I, but H. mutabilis
had a combination of type I + type II. (vii) In Lauraceae, L. baviensis had type I, but L. baviensis had a combination of type I + type II.

Proposed Origin of 5S rDNA Signal Diversity

Based on Figures 9-13, the proposed origin of the 5 S rDNA signal diversity is illustrated in Figure 14. There are three major groups. ($\boldsymbol{\lambda}$ Signal number: signal number increases probably caused by the insertion of transposable elements, inversion, or translocation, and transposition events. Signal number decrease probably by elimination from the genome or conversion into pseudogenes and then loss, fusion event, and polyploidization followed by DNA sequence loss. (ii) Signal location on distal chromosome: polyploidization-related tendency toward the terminal location from an interstitial location. Signal location on proximal chromosome: interstitial or centromeric, a massive trend apparent in species with a single locus. The end signal deviation from the chromosome is probably caused by chromosome satellite, while transposon-mediated transpositional events and gene silencing probably cause end signal loss. (iii) Signal size: Signal size increase is probably caused by artificial selection, environmental induction, unequal crossing over recombination, illegitimate recombination, and duplication. The normal signal size indicates chromosome conservation. The signal size decrease is probably caused by self-incompatibility non-allelic homologous recombination. In brief, the signal number, location, and size variations were probably caused by chromosome rearrangement (deletion, duplication, inversion, and translocation), polyploidization, self-incompatibility, and chromosome satellites.

Discussion

Karyotype Analysis of the 64 Plants

Traditional karyotype analysis involves counting chromosome numbers, determining centromere location, and measuring chromosome length and long/short arm ratio. Based on this, the karyotype formula and cytotype are obtained to compare whether the species is evolving (Alberts et al. 2002). In this study, the chromosome numbers in the 64 plants ranged from $2 n=14$ to 160 . Most chromosome numbers are consistent with previous studies (Sun 1996, Chen and Zhou 2005, Luo et al. 2017, Sergeeva et al. 2017, Liu and Luo 2019, Luo and Liu 2019, Wang et al. 2019, He et al. 2022a, b, c, Yang et al. 2023). Only nine species had different chromosome numbers. In addition, the chromosome number of three species was the first time to be analyzed here: P. sibiricum $(2 n=18)$, I. chinensis $(2 n=$ $40)$, and T. sebifera ($2 \mathrm{n}=88$) in this study. More related information on T. sebifera was found in the chromosome number of the previous research. A stable chromosome number was found in the genus /lex. Ilex crenata Thunb. (2n $=40$), I. makinoi'Hara' $(2 n=40)$, I. leucoclada $(2 n=40)$, and I. yunnanensis var. gentilis Franch. $(2 n=160)$ (Geukens et al. 2023). Conversely, chromosome number varied greatly in four genera: i) Polygonatum anhuiense D. C. Zhang et J. Z. Shao $(2 n=24)$, Polygonatum langyaense D. C. Zhang et J. Z. Shao $(2 n=18)$, Polygonatum odoratum (Mill.) Druce ($2 \mathrm{n}=18$), Polygonatum zanlanscianense Pamp. $(2 n=28)$, P. cyrtonema $(2 n=22)$ (Sun 1996, Chen and Zhou 2005); i) Zanthoxylum acanthopodium Candelle ($2 \mathrm{n}=64$), Zanthoxylum dimorphophyllum Hemsley ($2 \mathrm{n}=36 / 68$), Zanthoxylum scandens Blume ($2 \mathrm{n}=68$), Zanthoxy/um oxyphyllum Edgeworth $(2 \mathrm{n}=72)$, Zanthoxy/um tomentellum J.D. Hance $(2 n=72)$, Zanthoxylum simulans Hance $(2 n=\sim 132, ~ Z . ~ n i t i d u m ~(~ 2 n ~=~ 68), ~ Z . ~ a r m a t u m ~(~ 2 n ~=~$ 66/98/128/132/136), Z. bungeanum ($2 n=132 / 136$) (Zhang and Hartley 2008, Chen et al. 2009, Yu et al. 2010, Luo et al. 2018d, Luo et al. 2022b, He et al. 2023, Hu et al. 2023); iii) Bletilla formosana $(2 n=32 / 36)$, B. striata $(2 n=$ $32 / 34 / 36 / 48 / 51 / 64 / 76)$, B. ochracea ($2 n=34 / 36$) (Miduno 1954, He et al. 2022c, Huan et al. 2022, Yang et al. 2023); ii) J. regia and J. sigillata $(2 n=34)$ (Luo and Chen 2020), Juglans $(2 n=32)$ (Woodworth 1930, Hans 1970, Tulecke et al. 1988, Mu and Xi 1988, Mu et al. 1990). In this study, P. cyrtonema $(2 n=18)$, Z. bungeanum $(2 n=76 / 134 / 136 / 160)$, Z. armatum $(2 n=96 / 100 / 102 / 104 / 132)$, Z. nitidum $(2 n=66)$, B. formosana, B. striata, B. ochracea, J. regia, and J. sigillata (all $2 \mathrm{n}=34$). These results contradict previous studies. The possible causes of inconsistency may be ℓ) improper chromosome count in the small and high chromosomes, i) root lignification limiting their chromosome preparation, iii) hybridization between closely related species, iv) natural or artificial polyploidization, and i) apomixis (polyembryo).

Intraspecific chromosome number variation, even as a population, has also been found in species such as Cuscuta epithymum (L.) L. and Cuscuta planiflora Ten. (García and Castroviejo, 2003). In this case, most variation is
attributable to auto- or allopolyploidy. The additional numbers can be explained by ascending or descending dysploidy. Thus, the accumulation of repetitive DNA can lead to an increase in chromosomes and, consequently, to an increase in genome size, especially in subgenus Monogynella (lbiapino et al. 2022). In the present study, chromosome numbers varied in interspecific and intraspecific populations of the genus Zanthoxy/um. The cause of the variation is probably similar to that of Cuscuta and Monogynella. Furthermore, the stable differentiation in the 5 S rDNA FISH pattern between the subgenera suggests that chromosomal rearrangements played a role in splitting the two subgenera. Rather than major structural changes, transpositional events are likely responsible for the variable rDNA distribution patterns among species of the same subgenus with conserved karyotypes (Cai et al. 2006). Zanthoxy/um genomes have complex chromosome rearrangements, such as chromosomal fission, reversal, and translocations (Hu et al. 2023). This result also further rationalizes the chromosome number variation in this genus. Chromosome polymorphisms within species in natural populations of vertebrates are far less common and are believed to be temporary transitions during chromosomal evolution (Damas et al. 2021, 2022). Likewise, the Zanthoxylum may be experiencing chromosomal evolution.

In this study of 64 plants evaluated, the longest chromosome length of each plant was $1.23-6.88 \mu \mathrm{~m}$, while the shortest chromosome length of each plant was $0.63-3.85 \mu \mathrm{~m}$, exhibiting strikingly different among the examined species. Previous research accumulated chromosome lengths of hundreds of plant species (Luo et al. 2022a, b, He et al. 2022a, b, d, Luo and He 2021, Liu and Luo 2019, Luo and Chen 2019, Luo et al. 2018d, Luo et al. 2017, Xing et al. 1989, Liu and Sheng 2011). By analyzing these data, it is not difficult to find that chromosome length was slightly different, even for the same accession of the same species. For example, R. pseudoacacia 1.12-1.74 $\mu \mathrm{m}$ (Luo et al. 2022b), 0.94-1.67 $\mu \mathrm{m}$ (He et al. 2022a). Nonetheless, chromosome length in the former two literatures was small for both chromosomes $(<3 \mu \mathrm{~m})$. Hence, chromosome length was more suitable for qualitative than for quantitative analyses. Thirty-seven plant species analyzed (more than half) had chromosome lengths lower than $3 \mu \mathrm{~m}$ in this study, consequently dividing them into the small chromosome rank. Because of the hazy centromere mark and tiny chromosomes in many plants investigated, the chromosome size was determined by metaphase and the measurement method. Still, a more delicate karyotype analysis (e.g., arm length, karyotype, and cytotype) was unavailable and limited.

Occurrence and Diversity of 5S rDNA in Plants

5S rDNA, which occurs in all cellular life forms, is a highly stable tandem repeat sequence that ubiquitously exists in plants (Said et al. 2018). With the evolution and development of the plant, 5S rDNA also underwent simultaneous changes. The length of 5 S rDNA in the NCBI database Nucleotide of NCBI was 48-854 bp (Turner et al. 2005, Liu et al. 2017), while its length as a FISH probe in the PubMed database of NCBI was 41-1193 bp (Luo et al. 2017, Islam-Faridi et al. 2020, Glugoski et al. 2020). This study is the first time 5 S rDNA testing has been analyzed for 19 species from 13 families. Overall, 5S rDNA occurred in at least two chromosomes in all 64 plants. With advances in science and technology, the occurrence of 5S rDNA has been confirmed in an increasing amount of species (de Barros et al. 2023, de Moraes et al. 2023, Kroupin et al. 2023, Rodríguez-González et al. 2023). Whether the reported length of 5S rDNA is a complete or partial sequence, there is no doubt there is a big difference among these 5 S rDNA, including the length and base pair (Röser et al. 2001, Kulak et al. 2002, Moraes et al. 2022).

Because of this, it is quite reasonable that the chromosomally diverse distribution of 5 S rDNA is visualized by FISH. Numerous previous studies showed that the numbers of 5S rDNA FISH signal sites ranged from 1 to 71 (Ali et al. 2005, Lan and Albert 2011, Luo et al. 2017, Kovács et al. 2023, Rodríguez-González et al. 2023). Their signal position was found in the chromosome interstitial position, distal position, proximal position, and far away from the chromosome (Amarasinghe and Carlson 1988, Cai et al. 2006, Campomayor et al. 2021, Wang et al. 2022, Rodríguez-González et al. 2023). In this study, 5S rDNA was rather diverse and abundant in signal site number (2-18), position (e.g., interstitial, distal, proximal position, occasionally, outside chromosome), and even as intense (e.g., strong, weak, slight). This is consistent with previous studies of the 5 S rDNA signal pattern of A. fruticose, B. formosana 'Leshan', C. campanulatus, H. mutabilis, P. nepalensis, S. oblata, two species of Berberis, two varieties of J. regia, two varieties of J. sigillata, two species of Ligustrum, two types of Robinia, and two varieties of Z. armatum, wild/cultural H. rhamnoides ssp. sinensis, three varieties of H. rhamnoides, four species of Taxus, and six types of B. striata (Luo et al. 2017, Luo et al. 2018d, Liu and Luo 2019, Luo and Liu 2019, Luo and Chen 2019, 2020, Luo et al. 2022a, b). On the contrary, it was different from the 5 S rDNA signal pattern of F. pennsy/vanica, R. pseudoacacia, S. japonicum, T. wallichiana var. mairei, Z. bungeanum 'Hanyuanhuajiao', two types of B. ochracea, and two varieties of
Z. armatum (Luo and Liu 2019, He et al. 2022c, Huan et al. 2022, He et al. 2023) from previous studies. The possible causes of the 5S rDNA signal pattern discrepancy are i) lost satellite chromosome with signal and it) variation in different batches of materials in the same species (i.e., intraspecific variation).

Potential Origin of 5S rDNA Diversity in Plants

Due to the diversity of signal patterns, 5S rDNA was used as an excellent and dynamic marker in the species of F. pennsylvanica, Iris versicolor L., L. \times vicaryi, L. lucidum, P. nepalensis (P. concolor, former name in Flora of China), R. pseudoacacia, S. oblata (Lim et al. 2007, Luo et al. 2017, Luo and Liu 2019, He et al. 2022a). After comparing the 5S rDNA in previous studies and in ours, both perfectly reflect the extensive diversity in P. nepalensis, which can distinguish all 18 chromosomes according to the signal position, signal intensity, and signal number. Nevertheless, 5S rDNA was quite conserved and dormant in numerous species, such as C. campanulatus, C. sativa, H. rhamnoides, J. regia, M. atropurpureum, P. stratiotes, P. trichocarpa, and Sanguisorba L. (Mishima et al. 2002, Luo and Chen 2019, 2020, Xin et al. 2020, Alexandrov et al. 2022, Luo et al. 2022a, Stepanenko et al. 2022, de Barros et al. 2023). Why is there such a big difference in 5S rDNA among the above species? There are several plausible hypotheses under investigation, such as i) chromosome rearrangement (e.g., deletion, duplication, inversion, translocation), ii) polyploidization, iii) self-incompatibility, and iv) chromosome satellites.

The 5S rDNA position is a hot issue for chromosomal realignment because of its system into long reaches of the standpat tandem repetition unit and its active transcription. This feature implies they are impressionable to chromosomal destruction or non-allelic homologous recombination, thus raising the feasibility of chromosomal realignments, such as fissions, inversions, and fusions (Rosa et al. 2012; Barros et al. 2017; Potapova and Gerton 2019; Warmerdam and Wolthuis 2019; Deon et al. 2020). The 5S rDNA diversification was regarded as variable genomic areas, compliant with double-strand break and chromosomal realignment, facilitating karyotypic reconstruction (Glugoski et al., 2018; Deon et al., 2020, 2022). The 5S rDNA position was also diversified by translocation or transposition events of repeats in those chromosomes (Venancio Neto et al. 2022). An interstitial 5S rDNA position with a diverse location is current, presumably because of a thin inversion. A plus 5S rDNA likely implies the presence of a replication (Coluccia et al. 2020). The 5S rDNA site of one parent was either excluded from the chromosome or shifted into gene silencing and then disappeared, which could decrease the 5S rDNA site number (de Melo and Guerra 2003, Volkov et al. 2017). These studies demonstrate that chromosome rearrangement causes variation in 5S rDNA diversity.

The 5S rDNA has a polyploidization-relevant preference to the distal from a proximal position but keeps a stable loci number (Zhang et al. 2016). The 5S rDNA sites are largely proximal, a highly transparent direction in chromosomes with a single site (Garcia et al. 2016). Consequently, the presence of the 5S rDNA site in the distal chromosomes and the abundance of microsatellites in adjacent areas provide friendly conditions for adding realignments. These results emphasize the effect of variable chromosomal 5S rDNA loci in generating assignments (Gkugoski et al. 2022). No associations between the number of 5 S loci and chromosome number, but correspondence with ploidy level and genome size (Adams et al. 2000, Lan and Albert 2011, Garcia et al. 2016), but disputes still occurred (Hasterok et al. 2005, Said et al. 2018, Chai et al. 2022), such as the genus Cuscuta L. (García et al., 2017). These studies demonstrate that polyploidization causes variation in 5S rDNA diversity.

Conclusion

This study conducted FISH-based chromosomal mapping of 5S rDNA markers to provide valid karyotype landmarks to reveal the chromosome number and 5 S rDNA signal pattern distribution in 64 plants. Furthermore, we established chromosome physical mapping of each species. Finally, we discuss the proposed origin of 5S rDNA diversity in plants. We are devoted to developing universal oligosequence markers (GAA) ${ }_{6}$, (TTG)6, (ACT) ${ }_{6}$, 45S, ITS, and combinatory analysis of additional plant species, particularly woody plants. Altogether, the results reported here enhance the assumption that cytogenetic characteristics (conventional and molecular) could be regarded as excellent markers for chromosome distinction and the presentation and profile of the existing biodiversity in woody plants.

Data availability

The authors affirm that all data necessary for confirming the conclusions of the article are present within the article,
figures, and supplemental figures.
Supplemental material available at GENETICS online.

Acknowledgments

We thank Zhou Yonghong for laboratory equipment support.

Funding

This work was supported by the Natural Science Foundation of China (31500993).

Conflicts of interest statement

The authors declare no conflict of interest.

Literature cited

Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR. 2000. Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot. 87(11): 1578-1583. https://doi.org/10.2307/2656733. PMID: 11080107.
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular Biology of the Cell. 4th edition. New York: Garland Sci. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21054/.
Alexandrov OS, Romanov DV, Divashuk MG, Razumova OV, Ulyanov DS, Karlov GI. 2022. Study and physical mapping of the species-specific tandem repeat CS-237 linked with 45 S ribosomal DNA intergenic spacer in Cannabis sativa L. Plants (Basel). 11(11): 1396. doi: 10.3390/plants11111396. PMID: 35684169.

Ali HB, Lysak MA, Schubert I. 2005. Chromosomal localization of rDNA in the Brassicaceae. Genome. 48(2): 341-346. doi: 10.1139/g04-116. PMID: 15838557.
Amarasinghe V, Carlson JE. 1998. Physical mapping and characterization of 5S rRNA genes in Douglas-fir. J Hered. 89(6): 495-500. doi: 10.1093/jhered/89.6.495. PMID: 9864860.
Amosova AV, Yurkevich OY, Bolsheva NL, Samatadze TE, Zoshchuk SA, Muravenko OV. 2022. Repeatome analyses and satellite DNA chromosome patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae). Genes (Basel). 13(5): 762. doi: 10.3390/genes13050762. PMID: 35627148.
Araya-Jaime CA, Silva DMZA, da Silva LRR, do Nascimento CN, Oliveira C, Foresti F. 2022. Karyotype description and comparative chromosomal mapping of rDNA and U2 snDNA sequences in Eigenmannia limbata and E. microstoma (Teleostei, Gymnotiformes, Sternopygidae). Comp Cytogenet. 16(2): 127-142. doi: 10.3897/Comp Cytogen.v16i2.72190. PMID: 36761809.
Barros AV, Wolski MA, Nogaroto V, Almeida MC, Moreira-Filho O, Vicari MR. 2017. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role? Gene. 608: 20-27. doi: 10.1016/j.gene.2017.01.013. PMID: 28111257.
Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, Rouillard JM, Wu CT. 2012. Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1213818110. PMID: 23236188.
Cai Q, Zhang D, Liu ZL, Wang XR. 2006. Chromosomal localization of 5 S and 18 S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot. 97(5): 715-722. doi: 10.1093/aob/mcl030. PMID: 16481361.
Campomayor NB, Waminal NE, Kang BY, Nguyen TH, Lee SS, Huh JH, Kim HH. 2021. Subgenome discrimination in Brassica and raphanus allopolyploids using microsatellites. Cells. 10(9): 2358. doi: 10.3390/cells10092358. PMID: 34572008.

Chai J, Luo L, Yu Z, Lei J, Zhang M, Deng Z. 2022. Repetitive sequence barcode probe for karyotype analysis in Tripidium arundinaceum. Int J Mol Sci. 23(12): 6726. doi: 10.3390/ijms23126726. PMID: 35743180.
Chen CW, Chen SB. 2005. Karyotype analysis of three species of Polygonatum Mill from Tiantangzhai, West Anhui. J Anhui Nor Univ (Nat Sci). 28(3): 324-327. doi: 10.14182/j.cnki.1001-2443/2005.03.019. Available from: http://qikan. cqvip.com/Qikan/Article/Detail?id=20326016.

Chen RY, Chen CB, Song WQ, Liang GL, Li XL, Chen L. 2009. Chromosome atlas of major economic plants genome in China (Tomus V). In Chromosome Atlas of medicinal Plants in China, Li SW, Wang J, Eds. Science Press: Beijing, China, p. 636. ISBN: 978-7-03-022915-1. Available from: https://www.hceis.com/home/book_view.aspx?id=6683.
Coluccia E, Deidda F, Lobina C, Melis R, Porcu C, Agus B, Salvadori S. Chromosome mapping of 5S Ribosomal genes in indo-pacific and atlantic Muraenidae: comparative analysis by dual colour Fluorescence In Situ Hybridisation. Genes (Basel). 2020. 11(11): 1319. doi: 10.3390/genes11111319. PMID: 33172170.
Damas J, Corbo M, Kim J, Turner-Maier J, Farré M, Larkin DM, Ryder OA, Steiner C, Houck ML, Hall S, Shiue L, Thomas S, Swale T, Daly M, Korlach J, Uliano-Silva M, Mazzoni CJ, Birren BW, Genereux DP, Johnson J, Lindblad-Toh K, Karlsson EK, Nweeia MT, Johnson RN; Zoonomia Consortium; Lewin HA. 2022. Evolution of the ancestral mammalian karyotype and syntenic regions. Proc Natl Acad Sci USA. 119(40): e2209139119. doi: 10.1073/pnas. 2209139119. PMID: 36161960.

Damas J, Corbo M, Lewin HA. 2021. Vertebrate chromosome evolution. Annu Rev Anim Biosci. 9: 1-27. doi: 10.1146/annurev-animal-020518-114924. PMID: 33186504.
de Barros D, Montenegro C, Gomes M, Ferraz ME, Miotto STS, Pedrosa-Harand A. 2023. Cytogenetic characterization and karyotype evolution in six Macroptilium species (Leguminosae). Genome. 66(7): 165-174. doi: 10.1139/gen-2022-0101. PMID: 37094381.
de Melo NF, Guerra M. 2003. Variability of the 5 S and $45 S$ rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot. 92(2): 309-316. doi: 10.1093/aob/mcg138. PMID: 12876193.
de Moraes RLR, Sassi FMC, Marinho MMF, Ráb P, Porto JIR, Feldberg E, Cioffi MB. 2023. Small body, large chromosomes: centric fusions shaped the karyotype of the Amazonian miniature fish Nannostomus anduzei (Characiformes, Lebiasinidae). Genes (Basel). 14(1): 192. doi: 10.3390/genes14010192. PMID: 36672933.
Deon GA, Glugoski L, Hatanaka T, Sassi FMC, Nogaroto V, Bertollo LAC, Liehr T, AI-Rikabi A, Moreira Filho O, Cioffi MB, Vicari MR. 2022. Evolutionary breakpoint regions and chromosomal remodeling in Harttia (Siluriformes: Loricariidae) species diversification. Genet Mol Biol. 45(2): e20210170. doi: 10.1590/1678-4685-GMB-2021-0170. PMID: 35604463.
Deon GA, Glugoski L, Vicari MR, Nogaroto V, Sassi FMC, Cioffi MB, Liehr T, Bertollo LAC, Moreira-Filho O. 2020. Highly rearranged karyotypes and multiple sex chromosome systems in armored catfishes from the genus Harttia (Teleostei, Siluriformes). Genes (Basel). 11(11): 1366. doi: 10.3390/genes11111366. PMID: 33218104.
García HH, Gonzalez AE, Evans CA, Gilman RH. 2003. Cysticercosis working group in Peru. Taenia solium cysticercosis. Lancet. 362(9383): 547-556. doi: 10.1016/S0140-6736(03)14117-7. PMID: 12932389.
Garcia S, Kovařík A, Leitch AR, Garnatje T. 2017. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant J. 89(5): 1020-1030. doi: 10.1111/tpj.13442. PMID: 27943584.
Geukens E, Haegeman A, Van Meulder J, Van Laere K, Smolders E, Ruttink T, Leus L. 2023. Exploring genetic diversity in an //ex crenata breeding germplasm. Horticul. 9(4): 485. Available from: https://doi.org/10.3390/horticulturae 9040485.

Glugoski L, Deon G, Schott S, Vicari MR, Nogaroto V, Moreira-Filho O. 2020. Comparative cytogenetic analyses in Ancistrus species (Siluriformes: Loricariidae). Neotrop Ichthyol. 18(2): e200013. Available from: https://doi.org/10. 1590/1982-0224-2020-0013.
Glugoski L, Deon GA, Nogaroto V, Moreira-Filho O, Vicari MR. 2022. Robertsonian fusion site in Rine/oricaria pentamaculata (Siluriformes: Loricariidae): involvement of 5S Ribosomal DNA and satellite sequences. Cytogenet Genome Res. 162(11-12): 657-664. doi: 10.1159/000530636. PMID: 37054691.
Glugoski L, Giuliano-Caetano L, Moreira-Filho O, Vicari MR, Nogaroto V. 2018. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene. 650: 49-54. doi: 10.1016/j.gene.2018.01.099. PMID: 29408629.
Gottlob-McHugh SG, Lévesque M, MacKenzie K, Olson M, Yarosh O, Johnson DA. 1990. Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome. 33(4): 486-494. doi: 10.1139/g90-072. PMID: 2227404.
Han YH, Li LJ, Song YC, Li ZY, Xiong ZY, Li DY. 2002. Physical mapping of the 5S and 45S rDNA in teosintes. Hereditas. 137(1):16-9. doi: 10.1034/j.1601-5223.2002.1370103.x. PMID: 12564628.
Hans AS. 1970. Chromosomal numbers in Juglandeceae. J Arnold Abroretum 51: 534-539. Available from: https://www.jstor.org/stable/43781708.

Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen WK, Maluszynska J. 2006. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot. 97(2): 205-216. doi: 10.1093/aob/mcj031. PMID: 16357054.
He L, Zhao H, He J, Yang Z, Guan B, Chen K, Hong Q, Wang J, Liu J, Jiang J. 2020. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting. Plant J. 103(6): 2225-2235. doi: 10.1111/tpj.14894. PMID: 32578280.
He Z, Zhang W, Luo X, Huan J. 2022a. Five Fabaceae karyotype and phylogenetic relationship analysis based on oligo-FISH for 5S rDNA and ($\left.\mathrm{AG}_{3} \mathrm{~T}_{3}\right)_{3}$. Genes (Basel). 13(5): 768. doi: 10.3390/genes13050768. PMID: 35627153.
He Z, Luo X, Lei Y, Zhang W. 2022b. Five species of Taxus karyotype based on oligo-FISH for 5S rDNA and (AG3T3)3. Genes (Basel). 13(12): 2209. doi: 10.3390/genes13122209. PMID: 36553477.
He Y, Yang L, Zhang Y, Liang Q. 2022c. Ploidy level, karyotype, and genome size of Bletilla species (Orchidaceae) from China. HortSci. 57(1): 48-55. Available from: https://doi.org/10.21273/HORTSCI16122-21.
He J, Zhao Y, Zhang S, He Y, Jiang J, Chen S, Fang W, Guan Z, Liao Y, Wang Z, Chen F, Wang H. 2022d. Uneven levels of 5S and 45S rDNA site number and loci variations across wild Chrysanthemum accessions. Genes (Basel). 13(5): 894. doi: 10.3390/genes13050894. PMID: 35627279.

He Z, Lei Y, Gong W, Ye M, Luo X. 2023. Karyotype and phylogenetic relationship analysis of five varieties and cultivars of Zanthoxylum armatum based on oligo-FISH. Genes (Basel). 14(7): 1459. doi: 10.3390/genes14071459. PMID: 37510363.
Heslop-Harrison JS. 2000. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell. 12(5): 617-636. doi: 10.1105/tpc.12.5.617. PMID: 10810139.
Hu L, Xu Z, Fan R, Wang G, Wang F, Qin X, Yan L, Ji X, Meng M, Sim S, Chen W, Hao C, Wang Q, Zhu H, Zhu S, Xu P, Zhao H, Lindsey K, Daniell H, Wendel JF, Jin S. 2023. The complex genome and adaptive evolution of polyploid Chinese pepper (Zanthoxylum armatum and Zanthoxylum bungeanum). Plant Biotechnol J. 21(1): 78-96. doi: 10.1111/pbi.13926. PMID: 36117410.

Huan J, He Z, Lei Y, Li W, Jiang L, Luo X. 2022. The genetic diversity of Bletilla spp. based on SLAF-seq and oligo-FISH. Genes (Basel). 13(7): 1118. doi: 10.3390/genes13071118. PMID: 35885901.
Ibiapino A, García MA, Amorim B, Baez M, Costea M, Stefanović S, Pedrosa-Harand A. 2022. The evolution of cytogenetic traits in Cuscuta (Convolvulaceae), the genus with the most diverse chromosomes in angiosperms. Front Plant Sci. 13: 842260. doi: 10.3389/fpls.2022.842260. PMID: 35432411.
Islam-Faridi N, Sakhanokho HF, Dana Nelson C. 2020. New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - "The Tree of Life". Sci Rep. 10(1): 13174. doi: 10.1038/s41598-020-68697-6. PMID: 32764541.

Jang TS, McCann J, Parker JS, Takayama K, Hong SP, Schneeweiss GM, Weiss-Schneeweiss H. 2016. rDNA loci evolution in the genus Glechoma (Lamiaceae). PLoS One. 11(11): e0167177. doi: 10.1371/journal.pone.0167177. PMID: 27870903.
Joshi P, Ansari H, Dickson R, Ellison NW, Skema C, Tate JA. 2023. Polyploidy on islands - concerted evolution and gene loss amid chromosomal stasis. Ann Bot. 131(1): 33-44. doi: 10.1093/aob/mcac051. PMID: 35390127.
Kamisugi Y, Nakayama S, Nakajima R, Ohtsubo H, Ohtsubo E, Fukui K. 1994. Physical mapping of the 5S ribosomal RNA genes on rice chromosome 11. Mol Gen Genet. 245(2): 133-138. doi: 10.1007/BF00283259. PMID: 7816019.
Khensuwan S, Sassi FMC, Moraes RLR, Jantarat S, Seetapan K, Phintong K, Thongnetr W, Kaewsri S, Jumrusthanasan S, Supiwong W, Rab P, Tanomtong A, Liehr T, Cioffi MB. 2023. Chromosomes of Asian cyprinid fishes: genomic differences in conserved karyotypes of 'Poropuntiinae' (Teleostei, Cyprinidae). Animals (Basel). 13(8): 1415. doi: 10.3390/ani13081415. PMID: 37106978.

Kovács Z, Mlinarec J, Höhn M. 2023. Living on the edge: morphological, karyological and genetic diversity studies of the Hungarian Plantago maxima populations and established ex situ collection. Bot Stud. 64(1): 2. doi: 10.1186/s 40529-022-00365-6. PMID: 36692644.
Kroupin PY, Ulyanov DS, Karlov GI, Divashuk MG. 2023. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma. 132(2): 65-88. doi: 10.1007/s00412-023-00789-4. PMID: 36905415.

Kulak S, Hasterok R, Maluszynska J. 2002. Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers. Hereditas. 136(2):144-150. doi: 10.1034/j.1601-5223.2002.1360209.x. Erratum in: Hereditas. 2002;137(1):79-80. PMID: 12369100.

Lan T, Albert VA. 2011. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid. BMC Plant Biol. 11: 126. doi: 10.1186/1471-2229-11-126. PMID: 21910890.
Li KP, Wu YX, Zhao H, Wang Y, Lü XM, Wang JM, Xu Y, Li ZY, Han YH. 2016. Cytogenetic relationships among Citrullus species in comparison with some genera of the tribe Benincaseae (Cucurbitaceae) as inferred from rDNA distribution patterns. BMC Evol Biol. 16: 85. doi: 10.1186/s12862-016-0656-6. PMID: 27090090.
Lim KY, Matyasek R, Kovarik A, Leitch A. 2007. Parental origin and genome evolution in the allopolyploid Iris versicolor. Ann Bot. 100(2): 219-224. doi: 10.1093/aob/mcm116. PMID: 17591610.
Liu J, Luo X. 2019. First report of bicolour FISH of Berberis diaphana and B. soulieana reveals interspecific differences and co-localization of (AGGGTTT) $)_{3}$ and rDNA 5 S in B. diaphana. Hereditas. 156: 13. doi: 10.1186/s41065-019-0088-6. PMID: 31057346.

Liu T, Song M, Xia Y, Zeng X. 2017. A tandemly arranged pattern of two 5S rDNA arrays in Amolops mantzorum (Anura, Ranidae). Cytogenet Genome Res. 151(3): 161-170. doi: 10.1159/000464128. PMID: 28334717.
Liu, H.Z.; Sheng, L.X. 2011. Studies on karyotype of three sea buckthorn. J Jilin Agr Univ. 33: 628-631, 636. Available from: http://qikan.cqvip.com/Qikan/Article/Detail?id=39921155.
Lukjanová E, Hanulíková A, Řepková J. 2023. Investigating the origin and evolution of polyploid Trifolium medium L. karyotype by comparative cytogenomic methods. Plants (Basel). 12(2): 235. doi: 10.3390/plants12020235. PMID: 36678948.

Luo X, Liu, J, Zhao A, Chen X, Wan W, Chen L. 2017. Karyotype analysis of Piptanthus concolor based on FISH with an oligonucleotide for rDNA 5S. Sci Hortic. 226: 361-365. Available from: https://doi.org/10.1016/j.scienta. 2017.09.003.

Luo, X., Tinker, N.A., Zhou, Y. Liu J, Wan W, Chen L. 2018a. A comparative cytogenetic study of 17 Avena species using Am1 and (GAA) ${ }_{6}$ oligonucleotide FISH probes. Acta Physiol Plant. 40: 145. Available from: https://doi.org/10.1007/ s11738-018-2721-9
Luo X, Tinker NA, Zhou Y, Wight CP, Liu J, Wan W, Chen L, Peng Y. 2018b. Genomic relationships among sixteen species of Avena based on (ACT) 6 trinucleotide repeat FISH. Genome. 61(1):63-70. doi: 10.1139/gen-2017-0132. PMID: 29190130.
Luo, X., Tinker, N.A., Zhou, Y. Liu J, Wan W, Chen L. 2018c. Chromosomal distributions of oligo-Am1 and (TTG)6 trinucleotide and their utilization in genome association analysis of sixteen Avena species. Genet Resour Crop Evol. 65: 1625-1635. Available from: https://doi.org/10.1007/s10722-018-0639-0
Luo X, Liu J, Wang J, Gong W, Chen L, Wan W. 2018d. FISH analysis of Zanthoxylum armatum based on oligonucleotides for 5S rDNA and (GAA)6. Genome. 61(9): 699-702. doi: 10.1139/gen-2018-0009. PMID: 30067086.

Luo X, Chen J. 2019. Physical map of FISH 5S rDNA and ($\left.\mathrm{AG}_{3} \mathrm{~T}_{3}\right)_{3}$ signals displays Chimonanthus campanulatus R.H. Chang \& C.S. Ding chromosomes, reproduces its metaphase dynamics and distinguishes its chromosomes. Genes (Basel). 10(11): 904. doi: 10.3390/genes10110904. PMID: 31703401.
Luo X, Liu J. 2019. Fluorescence In Situ Hybridization (FISH) analysis of the locations of the oligonucleotides 5S rDNA, (AGGGTTT) 3_{3}, and (TTG) $)_{6}$ in three genera of Oleaceae and their phylogenetic framework. Genes (Basel). 10(5): 375. doi: 10.3390/genes10050375. PMID: 31108932.
Luo X, Chen J. 2020. Distinguishing Sichuan walnut cultivars and examining their relationships with Juglans regia and J. sigillata by FISH, early-fruiting gene analysis, and SSR analysis. Front Plant Sci. 11: 27. doi: 10.3389/fpls. 2020.00027. PMID: 32161605.

Luo X, He Z. 2021. Distribution of FISH oligo-5S rDNA and oligo-(AGGGTTT) 3 in Hibiscus mutabilis L. Genome. 64(6):655-664. doi: 10.1139/gen-2019-0142. PMID: 33797299.
Luo X, Liu J, He Z. 2022a. Oligo-FISH can identify chromosomes and distinguish Hippophaë rhamnoides L. taxa. Genes (Basel). 13(2): 195. doi: 10.3390/genes13020195. PMID: 35205242.
Luo X, He Z, Liu J, Wu H, Gong X. 2022b. FISH mapping of telomeric and non-telomeric $\left(A G_{3} T_{3}\right)_{3}$ reveal the chromosome numbers and chromosome rearrangements of 41 Woody plants. Genes (Basel). 13(7): 1239. doi: 10.3390/genes13071239. PMID: 35886022.

Mahelka V, Kopecky D, Baum BR. 2013. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol Biol Evol. 30(9): 2065-2086. doi: 10.1093/molbev/mst106. PMID: 23741054.

Martins C, Wasko AP, Oliveira C, Wright JM. 2000. Nucleotide sequence of 5S rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the Tilapiine cichlid fish, Oreochromis niloticus. Hereditas. 133(1): 3946. doi: 10.1111/j.1601-5223.2000.00039.x. PMID: 11206852.

Miduno T. 1954. Chromosome studies an Orchidaceae V. The study of cytology between Bletilla striata ($\mathrm{n}=16$) and $B /$. formosana ($\mathrm{n}=18$). Cytologia. 19(2-3): 239-248. Available from: https://doi.org/10.1508/cytologia.19.239
Mishima M, Ohmido N, Fukui K, Yahara T. 2002. Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma. 110(8): 550-558. doi: 10.1007/s00412-001-0175-z. PMID: 12068972.

Moraes JN, Viana PF, Favarato RM, Pinheiro-Figliuolo VS, Feldberg E. 2022. Karyotype variability in six Amazonian species of the family Curimatidae (Characiformes) revealed by repetitive sequence mapping. Genet Mol Biol. 45(2): e20210125. doi: 10.1590/1678-4685-GMB-2021-0125. PMID: 35766400.
Mu YL, and Xi RT. 1988. Microsporogenesis studying and karyotype analysis of Juglans regia L. and J. hopeiensis Hu. J Agric Univ Hebei. 11 (4): 48-55. Available from: https://plantscience.cn/cn/article/id/1255.
Mu YL, Xi RT, and Lv ZS. 1990. Microsporogenesis observation and karyotype analysis of some species in genus Juglans L. J Wuhan Bot Res. 8 (4): 301-310. Available from: https://plantscience.cn/cn/article/id/1255.
Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A. 2002. Chromosomal map of the model legume Lotus japonicus. Genetics. 161(4): 1661-1672. doi: 10.1093/genetics/161.4.1661. PMID: 12196409.
Potapova TA, Gerton JL. 2019. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Res. 27(1-2):109-127. doi: 10.1007/s10577-018-9600-5. PMID: 30656516.
Robledo G, Lavia GI, Seijo G. 2009. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet. 118(7): 1295-1307. doi: 10.1007/ s00122-009-0981-x. PMID: 19234686.
Rodríguez-González R, Gutiérrez ML, Fuentes I, Gálvez-Prada F, Sochorová J, Kovařík A, Garcia S. 2023. Release 4.0 of the plant rDNA database: a database on plant ribosomal DNA loci number, their position, and organization: an information source for comparative cytogenetics. Methods Mol Biol. 2703: 237-245. doi: 10.1007/978-1-0716-3389-2_18. PMID: 37646950.

Rosa KO, Ziemniczak K, de Barros AV, Nogaroto V, Almeida MC, Cestari MM, Artoni RF, Vicari MR. 2012. Numeric and structural chromosome polymorphism in Rineloricaria lima (Siluriformes: Loricariidae): fusion points carrying 5S rDNA or telomere sequence vestiges. Rev Fish Biol Fisheries 22: 739-749. Available from: https://doi.org/10.1007/ s11160-011-9250-6
Röser M, Winterfeld G, Grebenstein B, Hemleben V. 2001. Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). Mol Phylogenet Evol. 21(2): n198-217. doi: 10.1006/mpev. 2001.1003. PMID: 11697916.

Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill BS, Vrána J. 2018. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor Appl Genet. 131(10): 2213-2227. doi: 10.1007/s00122-018-3148-9. PMID: 30069594.

Samatadze TE, Yurkevich OY, Khazieva FM, Basalaeva IV, Konyaeva EA, Burova AE, Zoshchuk SA, Morozov AI, Amosova AV, Muravenko OV. 2022. Agro-morphological and cytogenetic characterization of colchicine-induced tetraploid plants of Polemonium caeruleum L. (Polemoniaceae). Plants (Basel). 11(19): 2585. doi: 10.3390/plants11192585. PMID: 36235449.

Sergeeva EM, Shcherban AB, Adonina IG, Nesterov MA, Beletsky AV, Rakitin AL, Mardanov AV, Ravin NV, Salina EA. 2017. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome. BMC Plant Biol. 17(Suppl 1): 183. doi: 10.1186/s12870-017-1120-5. PMID: 29143604.
Slidler C. 2016. Chapter 29 - Genome stability and Aging: Causes and Consequences. Edited by: Kovalchuk I and Kovalchuk O. Genome Stability: From Virus to Human Application. Academic Press. p 511-525. ISBN: 9780128033098. Available from: https://doi.org/10.1016/B978-0-12-803309-8.00029-X.

Stepanenko A, Chen G, Hoang PTN, Fuchs J, Schubert I, Borisjuk N. 2022. The ribosomal DNA loci of the ancient monocot Pistia stratiotes L. (Araceae) contain different variants of the 35S and 5S ribosomal RNA gene units. Front Plant Sci. 13: 819750. doi: 10.3389/fpls.2022.819750. PMID: 35310643.
Sun YG. 1996. Preliminary study of the kayotype of Polygonatum anhuiense and P. langaense. J. Anhui Nor Univ (Nat Sci). 2: 144-150. doi: 10.14182/j.cnki.1001-2443.1996.02.011. Available from: http://qikan.cqvip.com/Qikan/ Article/Detail?id $=2174862$.

Symonová R, Ocalewicz K, Kirtiklis L, Delmastro GB, Pelikánová Š, Garcia S, Kovařík A. 2017. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics. 18(1): 391. doi: 10.1186/s12864-017-3774-7. PMID: 28521734.
Taketa S, Ando H, Takeda K, von Bothmer R. 2001. Physical locations of 5S and 18S-25S rDNA in Asian and American diploid Hordeum species with the I genome. Heredity (Edinb). 86(Pt 5): 522-530. doi: 10.1046/j.1365-2540.2001.00768.x. PMID: 11554968.

Tulecke, W., McGranahan, G., and Ahmadi, H. 1988. Regeneration by somatic embryogenesis of triploid plants from endosperm of walnut, Juglans regia L. cv manregian. Plant Cell Rep. 7 (5): 301-314. doi: 10.1007/BF00269923. PMID: 24241869.

Turner DJ, Brown TA. 2005. Abridged 5S rDNA units in sea beet (Beta vulgaris subsp. maritima). Genome. 48(2): 352354. doi: 10.1139/g04-107. PMID: 15838559.

Venancio Neto S, Noleto RB, Azambuja M, Gazolla CB, Santos BR, Nogaroto V, Vicari MR. 2023. Comparative cytogenetics among Boana species (Anura, Hylidae): focus on evolutionary variability of repetitive DNA. Genet Mol Biol. 45(4): e20220203. doi: 10.1590/1678-4685-GMB-2022-0203. PMID: 36622243.
Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V. 2017. Evolutional dynamics of 45 S and 5 S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Plant Biol. 17(1): 21. doi: 10.1186/s12870-017-0978-6. PMID: 28114894.

Waminal NE, Pellerin RJ, Kim NS, Jayakodi M, Park JY, Yang TJ, Kim HH. 2018. Rapid and efficient FISH using pre-labeled oligomer probes. Sci Rep. 8(1): 8224. doi: 10.1038/s41598-018-26667-z. PMID: 29844509.
Wang L, Feng Y, Wang Y, Zhang J, Chen Q, Liu Z, Liu C, He W, Wang H, Yang S, Zhang Y, Luo Y, Tang H, Wang X. 2022. accurate chromosome identification in the Prunus subgenus Cerasus (Prunus pseudocerasus) and its relatives by oligo-FISH. Int J Mol Sci. 23(21):13213. doi: 10.3390/ijms232113213. PMID: 36361999.
Wang Z, Du F, Zhang L, Wang S, Wei S. 2019. Advances in classification and identification of the plants of Polygonati Rhizoma and Its adulterants. North Horticult. 24: 130-136. doi: 10.11937/bfyy.20191881. Available from: http://qikan.cqvip.com/Qikan/Article/Detail?id=7100712585.
Warmerdam DO, Wolthuis RMF. 2019. Keeping ribosomal DNA intact: a repeating challenge. Chromosome Res. 27(1-2): 57-72. doi: 10.1007/s10577-018-9594-z. PMID: 30556094.
Woodworth, R. H. 1930. Meiosis of micro-sporogenesis in the Juglandaceae. Am J Bot. 17: 863-869. Available from: https://doi.org/10.2307/2435868.
Xin H, Zhang T, Wu Y, Zhang W, Zhang P, Xi M, Jiang J. 2020. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. Plant J. 101(2): 253-264. doi: 10.1111/tpj.14536. PMID: 31529535.

Xing MS, Xue CJ, Li RP. 1989. Karyotype analysis of sea buckthorn. J Shanxi Univ (Nat Sci Ed). 12: 323-330. Available from: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=cjfd1989\&filename=sxdr198903014\&dbcode=cjfq.
Yang Y, Huang M, Wang D, Ruan B, Yang Q, Yang Y, Luo Y, Tan Y. 2023. Analysis of genome size and characteristics of Bletilla striata based on flow cytometry and genomic survey. Chinese Tradit Patent Med. 45(11): 3677-3682. Available from: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=cjfdtemp\&filename=zcya202311028.
Yu LY, Tan XM, Zhou YQ. 2010. Karyotype analysis of Zanthoxylum nitidum. Lishizhen Med. Mater Med Res. 21: 3284 3285. Available from: http://qikan.cqvip.com/Qikan/Article/Detail?id=2000017695.

Yurkevich OY, Samatadze TE, Selyutina IY, Suprun NA, Suslina SN, Zoshchuk SA, Amosova AV, Muravenko OV. 2022. Integration of genomic and cytogenetic data on tandem DNAs for analyzing the genome diversity within the genus Hedysarum L. (Fabaceae). Front Plant Sci. 13: 865958. doi: 10.3389/fpls.2022.865958. PMID: 35574118.
Zhang ZT, Yang SQ, Li ZA, Zhang YX, Wang YZ, Cheng CY, Li J, Chen JF, Lou QF. 2016. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome. 59(7): 449-457. doi: 10.1139/gen-2015-0207. PMID: 27334092.
Zhang DX, Hartley GT. 2008. Zanthoxylum Linnaeus. In Flora of China, Flora of China Editorial Committee, Ed. Science Press: Beijing, China. Missouri Botanical Garden Press: St Louis, MO, USA. p 53-66. Available from: http://foc.eflora.cn/content.aspx?Taxonld=135262 (accessed on 4 January 2024).

5 S rDNA
Taxus yunnanensis
Taxus \times media $2 \mathrm{n}=24$ n $=24$
$3 \mu \mathrm{~m}$
mairei
$2 \mathrm{n}=24$

B6
cultural Hippophae rhamnoides subsp. sinensis
$2 \mathrm{n}=24$

B10

B11
B12
Taxus wallichiana
wild Hippophae rhamnoides
subsp. sinensis
$2 \mathrm{n}=28$

B15

Koelreuteria bipinnata $2 \mathrm{n}=32$五 \qquad
d

			Bletilla striata 'Dujiangyan' $2 n=34$ C4
	Bletilla striata 'Neijiang ${ }^{`}$ $2 \mathrm{n}=34$	Bletilla striata 'Baoshan' $2 n=34$ C7	
	Podocarpus macrophyllus $2 \mathrm{n}=36$	Idesia polycarpa $2 \mathrm{n}=38$ C15	Ilex chinensis $2 \mathrm{n}=40$ C16

Cercis
chinensis

Piptanthus nepalensis

Robinia pseudoacacia

Robinia pseudoacacia
f. decaisneana

Robinia pseudoacacia
'Idaho'

Styphnolobium $\square 8$

Amorpha
$\nabla-00<0<0$ fruticosa
japonicum
9

Polygonatum

Croton
tiglium

Chimonanthus campanulatus

Cryptomeria
japonica

Quercus
semecarpifolia

Ligustrum $\quad 2 \quad 8 \quad 22$
lucidum

Triadica
sebifera

Zanthoxylum
nitidum
$\square=$

Zanthoxylum bungeanum
'Hanyuanhuajiao' 1

$\pm \boxtimes 0^{13}$

26	29	38
쪼**	* M **	

'Hanyuanhuajiao' 2

$=-4$
표 $\begin{gathered}55 \\ -\infty\end{gathered}$
≥-2
56
$\geq \mathbb{Z}^{6}$
63
65
D6

Zanthoxylum bungeanum

Zanthoxylum bungeanum
'Hanyuanhuajiao' 3

- 140^{41}
- ${ }^{42}$

1
44
อค
51
あ
2
54

Zanthoxylum bungeanum
'Hanyuanhuajiao' 4

$2 \square$

Zanthoxylum armatum 'Hongyatengjiao' 1

-

Zanthoxylum armatum
'Tengjiao'

Zanthoxylum armatum 'Hongyatengjiao' 2

D14

Zanthoxylum armatum
'Jiuyeqing'
44
\because
44
\#
45
: ․
.
$\because \stackrel{47}{\because} \quad \because \quad 48$

Zanthoxylum armatum 'Putaoqingjiao'

Table 1 Details of all 64 plants used in this work

Family	No.	Species	Collection Location
Rutaceae	1	Zanthoxylum nitidum (Roxb.) DC.	Hanyuan, Sichuan
	2	Zanthoxylum bungeanum Maxim. 'Hanyuanhuajiao' 1	Hanyuan, Sichuan
	3	Zanthoxylum bungeanum Maxim. 'Hanyuanhuajiao' 2	Hanyuan, Sichuan
	4	Zanthoxylum bungeanum Maxim. 'Hanyuanhuajiao' 3	Hanyuan, Sichuan
	5	Zanthoxylum bungeanum Maxim. 'Hanyuanhuajiao' 4	Hanyuan, Sichuan
	6	Zanthoxylum armatum DC. 'Hongyatengjiao' 1	Hongya, Sichuan
	7	Zanthoxylum armatum DC. 'Hongyatengjiao' 2	Hongya, Sichuan
	8	Zanthoxylum armatum DC. 'Jiuyeqing'	Jiangjin, Chongqing
	9	Zanthoxylum armatum DC. 'Putaoqingjiao'	Hanyuan, Sichuan
	10	Zanthoxylum armatum DC. 'Tengjiao'	Hanyuan, Sichuan
Orchidaceae	11	Bletilla striata (Thunb. ex Murray) Rchb. f. 'Dujiangyan'	Dujiangyan, Sichuan
	12	Bletilla striata (Thunb. ex Murray) Rchb. f. 'Neijiang'	Neijiang, Sichuan
	13	Bletilla striata (Thunb. ex Murray) Rchb. f. 'Wenchuan'	Wenchuan, Sichuan
	14	Bletilla striata (Thunb. ex Murray) Rchb. f. 'Baoshan'	Baoshan, Yunnan
	15	Bletilla striata (Thunb. ex Murray) Rchb. f. 'Honghe'	Honghe, Yunnan
	16	Bletilla striata (Thunb. ex Murray) Rchb. f. 'Nanan'	Nanan, Chongqing
	17	Bletilla ochracea Schltr. 'Dujiangyan'	Dujiangyan, Sichuan
	18	Bletilla ochracea Schltr. 'Zigong'	Zigong, Sichuan
	19	Bletilla formosana (Hayata) Schltr. 'Leshan'	Leshan, Sichuan
Fabaceae	20	Cercis chinensis Bunge	Wenjiang, Sichuan
	21	Piptanthus nepalensis (Hook.) D. Don	Qingbaijiang, Sichuan
	22	Robinia pseudoacacia L.	Wenjiang, Sichuan
	23	Robinia pseudoacacia f. decaisneana (Carr.) Voss	Suqian, Jiangsu
	24	Robinia pseudoacacia 'Idaho'	Suqian, Jiangsu
	25	Styphnolobium japonicum (L.) Schott	Suqian, Jiangsu
	26	Amorpha fruticosa L.	Suqian, Jiangsu
	27	Erythrina crista-galli L.	Wenjiang, Sichuan
Elaeagnaceae	28	Hippophae rhamnoides L. 'Shenqiuhong'	Huai' an, Hebei
	29	Hippophae rhamnoides L. 'Wucifeng'	Huai' an, Hebei
	30	wild Hippophae rhamnoides subsp. sinensis Rousi	Huai' an, Hebei
	31	cultural Hippophae rhamnoides subsp. sinensis Rousi	Tieling, Liaoning
	32	Hippophae rhamnoides L. 'Zhuangyuanhuang'	Wenchuan, Sichuan
	33	Elaeagnus lanceolate Warb. apud Diels	Wenchuan, Sichuan
Taxaceae	34	Taxus cuspidata Siebold \& Zucc.	Suqian, Jiangsu
	35	Taxus \times media Rehder	Ya' an, Sichuan
	36	Taxus wallichiana var. mairei (Lemee \& H. Léveillé) L. K. Fu \& N. Li	Ya' an, Sichuan
	37	Taxus wallichiana Zucc.	Xichuang, Sichuan
	38	Taxus yunnanensis W.C. Cheng \& L.K. Fu	Ya' an, Sichuan
Juglandaceae	39	Juglans regia L. 'Chuanzao1'	Qingbaijiang, Sichuan
	40	Juglans sigillata Dode 'Maerkang'	Maerkang, Sichuan
	41	Juglans sigillata Dode 'Muzhilinhe'	Gulin, Sichuan

	42	Juglans regia L. 'Yanyuanzao'	Yanyuan, Sichuan
Oleaceae	43	Fraxinus pennsy/vanica Marsh.	Wenjiang, Sichuan
	44	Syringa oblata Lindl.	Wenjiang, Sichuan
	45	Ligustrum \times vicaryi Rehder	Wenjiang, Sichuan
	46	Ligustrum /ucidum Ait.	Wenjiang, Sichuan
Asparagaceae	47	Polygonatum cyrtonema Hua	Wenchuan, Sichuan
	48	Polygonatum sibiricum Delar. ex Redoute	Dujiangyan, Sichuan
Berberidaceae	49	Berberis diaphana Maxim.	Wenchuan, Sichuan
	50	Berberis soulieana Schneid.	Wenchuan, Sichuan
Lauraceae	51	Litsea baviensis Lec.	Jinniu, Sichuan
	52	Litsea elongate (Wall. ex Nees) Benth. et Hook. f.	Jinniu, Sichuan
Malvaceae	53	Firmiana simplex (L.) W. Wight	Wenjiang, Sichuan
	54	Hibiscus mutabilis L.	Jinniu, Sichuan
Euphorbiaceae	55	Croton tiglium L.	Ya' an, Sichuan
	56	Triadica sebifera (Linnaeus) Small	Jiangyou, Sichuan
Cupressaceae	57	Cryptomeria japonica (L.f.) D. Don	Wenjiang, Sichuan
Aquifoliaceae	58	Ilex chinensis Sims	Dujiangyan, Sichuan
Calycanthaceae	59	Chimonanthus campanulatus R.H. Chang \& C.S. Ding	Jinniu, Sichuan
Fagaceae	60	Quercus semecarpifolia Smith	Wenchuan, Sichuan
Poaceae	61	Triticum aestivum L .	Wenjiang, Sichuan
Podocarpaceae	62	Podocarpus macrophyllus (Thunb.) Sweet	Wenjiang, Sichuan
Salicaceae	63	Idesia polycarpa Maxim.	Wenjiang, Sichuan
Sapindaceae	64	Koelreuteria bipinnata Franch.	Wenjiang, Sichuan

Table 2 Chromosome number and length of the 64 plants used in this work.

Accession	Species	Chromosome Number	Chromosome Length	Karyotype Asymmetry
A1	Cercis chinensis	$2 \mathrm{n}=14$	1.58-2.21 $\mu \mathrm{m}$	1.40
A2	Piptanthus nepalensis	$2 \mathrm{n}=18$	1.65-3.02 $\mu \mathrm{m}$	1.83
A3	Robinia pseudoacacia	$2 \mathrm{n}=22$	1.37-1.68 $\mu \mathrm{m}$	1.23
A4	Robinia pseudoacacia f. decaisneana	$2 \mathrm{n}=22$	0.77-1.40 $\mu \mathrm{m}$	1.82
A5	Robinia pseudoacacia 'Idaho'	$2 \mathrm{n}=22$	1.09-1.47 $\mu \mathrm{m}$	0.74
A6	Styphnolobium japonicum	$2 \mathrm{n}=28$	0.98-3.19 $\mu \mathrm{m}$	3.26
A7	Amorpha fruticosa	$2 \mathrm{n}=40$	1.44-2.18 $\mu \mathrm{m}$	1.51
A8	Erythrina crista-galli	$2 \mathrm{n}=42$	1.37-3.32 $\mu \mathrm{m}$	2.42
A9	Polygonatum cyrtonema	$2 \mathrm{n}=18$	1.54-4.49 $\mu \mathrm{m}$	2.92
A10*	Polygonatum sibiricum	$2 \mathrm{n}=18$	1.47-6.77 $\mu \mathrm{m}$	4.61
A11	Croton tiglium	$2 \mathrm{n}=20$	1.65-3.61 $\mu \mathrm{m}$	2.19
A12	Chimonanthus campanulatus	$2 \mathrm{n}=22$	1.33-1.93 $\mu \mathrm{m}$	1.45
A13	Cryptomeria japonica	$2 \mathrm{n}=22$	3.09-6.14 $\mu \mathrm{m}$	1.99
A14	Quercus semecarpifolia	$2 \mathrm{n}=24$	1.47-3.10 $\mu \mathrm{m}$	3.11
A15	Litsea baviensis	$2 \mathrm{n}=24$	1.86-4.04 $\mu \mathrm{m}$	2.17
A16	Litsea elongate	$2 \mathrm{n}=24$	1.58-4.21 $\mu \mathrm{m}$	2.66
B1	Taxus yunnanensis	$2 \mathrm{n}=24$	2.46-6.28 $\mu \mathrm{m}$	2.55
B2	Taxus \times media	$2 \mathrm{n}=24$	2.39-6.88 $\mu \mathrm{m}$	2.88
B3	Taxus cuspidata	$2 \mathrm{n}=24$	$2.60-6.32 \mu \mathrm{~m}$	2.43
B4	Taxus wallichiana	$2 \mathrm{n}=24$	2.42-6.42 $\mu \mathrm{m}$	2.65
B5	Taxus wallichiana var. mairei	$2 \mathrm{n}=24$	2.81-6.67 $\mu \mathrm{m}$	2.37
B6	Hippophae rhamnoides 'Wucifeng'	$2 \mathrm{n}=24$	1.40-2.60 $\mu \mathrm{m}$	1.86
B7	Hippophae rhamnoides 'Shenqiuhong'	$2 \mathrm{n}=24$	1.26-2.46 $\mu \mathrm{m}$	1.95
B8	Hippophae rhamnoides 'Zhuangyuanhuang'	$2 \mathrm{n}=24$	1.44-2.81 $\mu \mathrm{m}$	1.95
B9	cultural Hippophae rhamnoides subsp. sinensis	$2 \mathrm{n}=24$	1.30-2.18 $\mu \mathrm{m}$	1.68
B10	wild Hippophae rhamnoides subsp. sinensis	$2 \mathrm{n}=24$	1.05-2.32 $\mu \mathrm{m}$	2.21
B11	Elaeagnus lanceolate	$2 \mathrm{n}=28$	1.02-3.68 $\mu \mathrm{m}$	3.61
B12	Berberis diaphana	$2 \mathrm{n}=28$	1.54-2.84 $\mu \mathrm{m}$	1.84
B13	Berberis soulieana	$2 \mathrm{n}=28$	2.18-3.51 $\mu \mathrm{m}$	1.61
B14	Koelreuteria bipinnata	$2 \mathrm{n}=32$	0.77-1.82 $\mu \mathrm{m}$	2.36
B15	Juglans regia 'Chuanzao1'	$2 \mathrm{n}=34$	$0.70-1.65 \mu \mathrm{~m}$	2.36
B16	Juglans sigillata 'Maerkang'	$2 \mathrm{n}=34$	$0.63-1.61 \mu \mathrm{~m}$	2.56
C1	Juglans sigillata 'Muzhilinhe'	$2 \mathrm{n}=34$	0.95-2.28 $\mu \mathrm{m}$	2.40
C2	Juglans regia 'Yanyuanzao'	$2 \mathrm{n}=34$	0.91-2.19 $\mu \mathrm{m}$	2.41
C3	Bletilla formosana 'Leshan'	$2 \mathrm{n}=34$	0.98-3.68 $\mu \mathrm{m}$	3.76
C4	Bletilla striata f. 'Dujiangyan'	$2 \mathrm{n}=34$	0.88-3.96 $\mu \mathrm{m}$	4.50
C5	Bletilla striata f. 'Wenchuan'	$2 \mathrm{n}=34$	1.33-4.74 $\mu \mathrm{m}$	3.56
C6	Bletilla striata f. 'Neijiang'	$2 \mathrm{n}=34$	1.40-3.16 $\mu \mathrm{m}$	2.26
C7	Bletilla striata f. 'Baoshan'	$2 \mathrm{n}=34$	1.26-3.61 $\mu \mathrm{m}$	2.87
C8	Bletilla striata f. 'Nanan'	$2 \mathrm{n}=34$	1.12-3.86 $\mu \mathrm{m}$	3.45

C9	Bletilla striata f. 'Honghe'		$2 \mathrm{n}=34$	1.23-4.04 $\mu \mathrm{m}$	3.28
C10	Bletilla ochracea 'Zigong'		$2 \mathrm{n}=34$	1.12-2.63 $\mu \mathrm{m}$	2.35
C11	Bletilla ochracea 'Dujiangyan'		$2 \mathrm{n}=34$	1.19-3.02 $\mu \mathrm{m}$	2.63
C12	Firmiana simplex		$2 \mathrm{n}=36$	0.98-2.21 $\mu \mathrm{m}$	2.26
C13	Hibiscus mutabilis		$2 \mathrm{n}=90$	1.09-2.98 $\mu \mathrm{m}$	2.73
C14	Podocarpus macrophyllus		$2 \mathrm{n}=36$	1.93-5.26 $\mu \mathrm{m}$	2.73
C15	Idesia polycarpa		$2 \mathrm{n}=38$	0.77-2.46 $\mu \mathrm{m}$	3.19
C16*	Ilex chinensis		$2 \mathrm{n}=40$	0.63-1.58 $\mu \mathrm{m}$	2.51
D1	Triticum aestivum		$2 \mathrm{n}=42$	3.85-6.88 $\mu \mathrm{m}$	1.79
D2	Fraxinus pennsy/vanica		$2 \mathrm{n}=46$	0.88-1.96 $\mu \mathrm{m}$	2.23
D3	Syringa oblata		$2 \mathrm{n}=46$	0.98-1.93 $\mu \mathrm{m}$	1.97
D4	Ligustrum \times vicaryi		$2 \mathrm{n}=46$	0.95-2.14 $\mu \mathrm{m}$	2.25
D5	Ligustrum lucidum		$2 \mathrm{n}=46$	0.70-2.11 $\mu \mathrm{m}$	3.01
D6*	Triadica sebifera		$2 \mathrm{n}=88$	0.60-1.23 $\mu \mathrm{m}$	2.05
D7	Zanthoxylum nitidum		$2 \mathrm{n}=66$	1.40-2.56 $\mu \mathrm{m}$	1.83
D8	Zanthoxylum bungeanum	1	$2 \mathrm{n}=76$	0.84-1.72 $\mu \mathrm{m}$	2.05
D9	Zanthoxylum bungeanum	2	$2 \mathrm{n}=134$	0.88-1.82 $\mu \mathrm{m}$	2.07
D10	Zanthoxylum bungeanum	3	$2 \mathrm{n}=136$	0.91-2.14 $\mu \mathrm{m}$	2.35
D11	Zanthoxylum bungeanum 'Hanyuanhuajiao'	4	$2 \mathrm{n}=160$	0.74-1.68 $\mu \mathrm{m}$	2.27
D12	Zanthoxylum armatum 'Hongyatengjiao' 1		$2 \mathrm{n}=96$	0.70-1.47 $\mu \mathrm{m}$	3.01
D13	Zanthoxylum armatum 'Tengjiao'		$2 \mathrm{n}=100$	0.88-2.00 $\mu \mathrm{m}$	2.27
D14	Zanthoxylum armatum 'Hongyatengjiao' 2		$2 \mathrm{n}=102$	0.95-2.04 $\mu \mathrm{m}$	2.14
D15	Zanthoxylum armatum 'Jiuyeqing'		$2 \mathrm{n}=104$	0.88-2.00 $\mu \mathrm{m}$	2.27
D16	Zanthoxylum armatum 'Putaoqingjiao'		$2 \mathrm{n}=132$	0.74-1.79 $\mu \mathrm{m}$	2.42

Note: asterisk (*) in Table 2 indicates chromosome number of three species are first reported

