bioRxiv preprint doi: https://doi.org/10.1101/281337; this version posted March 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Geml 1

1 Landscape-level DNA metabarcoding study in the Pannonian forests reveals differential effects of

- 2 slope aspect on taxonomic and functional groups of fungi
- 3
- 4 József Geml

5 Naturalis Biodiversity Center, Vondellaan 55, P.O. Box 9517, 2300 RA Leiden, The Netherlands

6 Faculty of Science, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

7 Phone: +31 71 75117265, Fax: + 31 71 5273522; E-mail: jozsef.geml@naturalis.nl

- 8
- 9

10 Abstract

11 In temperate regions, slope aspect is one of the most influential drivers of environmental conditions 12 at landscape level. The effect of aspect on vegetation has been well studied, but virtually nothing is 13 known about how fungal communities are shaped by aspect-driven environmental conditions. I carried out DNA metabarcoding of fungi from soil samples taken in a selected study area of 14 15 Pannonian forests to compare richness and community composition of taxonomic and functional groups of fungi between slopes of predominantly southerly vs. northerly aspect and to assess the 16 17 influence of selected environmental variables on fungal community composition. The deep sequence data presented here (i.e. 980 766 quality-filtered sequences) indicate that both niche (environmental 18 filtering) and neutral (stochastic) processes shape fungal community composition at landscape level. 19 Fungal community composition correlated strongly with aspect, with many fungi showing preference 20 21 for either south-facing or north-facing slopes. Several taxonomic and functional groups showed 22 significant differences in richness between north- and south-facing slopes and strong compositional 23 differences were observed in all functional groups. The effect of aspect on fungal communities likely 24 is mediated through contrasting mesoclimatic conditions, that in turn influence edaphic processes as 25 well as vegetation. Finally, the data presented here provide an unprecedented insight into the diversity and landscape-level community dynamics of fungi in the Pannonian forests. 26

27

28 Key words: beta diversity; fungal community ecology; ITS2 rDNA; topography

29

bioRxiv preprint doi: https://doi.org/10.1101/281337; this version posted March 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Geml 2

30 INTRODUCTION

31 In temperate regions, slope aspect is among the most influential factors that drive the 32 physical environment at the landscape level. The aspect effect is driven primarily by the variation in 33 the amount of solar radiation per surface area, which is a function of the angle of incidence of solar 34 radiation. As a result, slopes oriented toward the Equator receive higher intensity and greater 35 duration of solar radiation, which can be 50% higher on south-facing than on north-facing slopes in 36 the northern hemisphere (Geiger 1965; Rosenberg et al. 1983; Gilliam et al. 2014). These contrasting 37 energy inputs can profoundly alter mesoclimatic conditions, particularly air and upper soil 38 temperature, which, in turn, affect relative humidity, evapotranspiration, soil moisture and edaphic 39 processes (Fekedulegn et al. 2003). As a result, slopes with poleward (in this case, northerly) aspect 40 generally are cool and more humid, while slopes with southerly aspect tend to be markedly warmer 41 and drier, particularly in mid- and high latitudes (Holland & Steyn 1975; Méndez-Toribio et al. 2016). 42

43 Such aspect-related contrasts in the abiotic environment are intuitively expected to have 44 influence on the composition of biotic communities. Indeed, the effects of aspect on vegetation are 45 well known and clear compositional differences have been found between north- and south-facing slopes in various ecosystems, e.g., in temperate and Mediterranean forests (Whittaker 1956; 46 47 Sternberg & Shoshany 2001; Gilliam et al. 2014), temperate grasslands (Schmidt 2013), boreal 48 forests (Hollingsworth et al. 2006), and arctic tundra (Walker et al. 1994). On the other hand, 49 virtually nothing is known about the influence of aspect on richness and community composition of fungi at landscape level, except two recent studies focusing on arbuscular mycorrhizal fungal 50 51 richness in boreal forests and arid steppes in China (Chu et al. 2016; Liu et al. 2017). Therefore, how 52 slope aspect affects richness and community composition of various taxonomic and functional 53 groups of fungi remains unknown.

54 According to the macroecological study of Tedersoo et al. (2014), global-scale fungal 55 diversity and distribution patterns are primarily influenced by climatic factors, mainly mean annual 56 temperature and precipitation, followed by edaphic factors, particularly pH, and spatial patterns due 57 to dispersal limitation. On the other hand, the coupling between vegetation and soil fungal 58 community composition and richness appears to be much weaker, with the exception of 59 ectomycorrhizal (ECM) fungi (Tedersoo et al. 2014; Peay et al. 2016). Therefore, it is reasonable to 60 hypothesize that the above-mentioned aspect-driven environmental differences are expected to 61 influence the diversity and distribution of fungal communities at landscape level as well.

In this study, I tested the effects of aspect on the richness and composition of taxonomic and functional groups of fungi at a selected study site in the Pannonian forests, where regional climatic

64 conditions and geological parent material were uniform in order to minimize confounding factors. 65 The Pannonian biogeographical region represents unique ecosystems in Europe (Sundseth 2009). It 66 covers the inner parts of the Carpathian basin and is characterized by a great wealth of floristic and 67 faunistic elements from different parts of Eurasia. More specifically, in addition to the broadly 68 distributed Eurasian species, there are numerous sub-Mediterranean, continental, Pontic and 69 Balkanian species. The distinctiveness of the Pannonian biogeographic region comes from the 70 combination of these elements, as well as the occurrence of Pannonian endemics (Fekete et al. 2016). 71 The geologically diverse mountain range of the Északi-középhegység (North Hungarian Mountains) represents the northern part of the Pannonian biogeographic region. The region is characterized by 72 high habitat diversity, partly due to the complex geology which features a wide variety of calcareous, 73 74 volcanic and igneous rocks (Pelikán 2010), and partly due to the diverse topography that creates a 75 broad spectrum of mesoclimatic conditions. This diversity of habitats allows for the coexistence of 76 sub-Mediterranean, continental, Atlantic, and Carpathian floristic and faunistic elements often in 77 close proximity, depending on slope, aspect, elevation, and geological parent material (Suba 1983; 78 Vojtkó 2002; Vojtkó et al. 2010). With respect to macrofungi, there is a long history of sporocarp-79 based studies in various areas of the Északi-középhegység (Bohus & Babos 1960; Takács & Siller 80 1980; Rimóczi 1992, 1994; Tóth 1999; Siller et al. 2002; Albert & Dima 2005; Egri 2007; Pál-Fám et al. 2007; Rudolf et al. 2008; Siller 2010; Siller & Dima 2014). In addition, morphological and 81 82 molecular analyses of roots colonized by ECM genera Humaria, Gevea, Tomentella, and Tuber have 83 been carried out in a well-preserved montane beech forest reserve (Kovács & Jakucs 2006; Erős-84 Honti et al. 2008; Jakucs et al. 2015). However, the diversity and distribution of fungi, particularly 85 microscopic fungi, in various habitats types are still unexplored and I am not aware of any molecular 86 study assessing the local (alpha) diversity and/or community turnover (beta diversity) of fungal 87 communities in the Pannonian forests.

The objectives of this DNA metabarcoding study were 1) to provide the first insights into the kingdom-wide taxonomic and functional diversity of fungi in different Pannonian forest types on a landscape scale; 2) to compare richness and community composition of fungi among sampling sites among predominantly south- and north-facing slopes; and 3) to assess the influence of selected environmental variables on fungal community composition.

93

94 MATERIALS AND METHODS

95 Study area

Within the broader region of the Északi-középhegység characterized above, the focal area of
this study is located in the valley of the Tarna creek situated between the Mátra and the Bükk, the

98 two highest mountains in Hungary. The study area is characterized by rolling hills of low elevations 99 (200-500 m a.s.l.) that are mostly covered with managed secondary forests. The regional climate is 100 subcontinental, with warm summers (mean July temperature ca. 20°C), cold winters (mean January 101 temperature ca. -3°C), and mean annual temperature and precipitation of ca. 9.5°C and ca. 580 mm, 102 respectively (Tóth 1983; Horváth & Gaálová 2007).

103 Pannonian-Balkanic turkey oak-sessile oak forests (Ouercetum petraeae-cerris, Natura 2000 104 code 91M0) form the zonal vegetation type on gentle slopes and in placor settings in the study area 105 as well as in other colline (200-450 m a.s.l.) areas of the Északi-középhegység. They are dominated 106 by oaks, such as *Quercus dalechampii*, *Q. petraea*, and *Q. cerris*, and can attain 15-25 m canopy 107 height. Within the turkey oak-sessile oak zone, Pannonian thermophilous downy oak forests (Corno-108 Quercetum pubescentis, 91H0) generally develop on shallow and rocky soil on steep (> 20°), south-109 facing slopes. These xerothermic forests are also dominated by the same oak species as the zonal 110 forest type, but the canopy remains low or medium tall (8-10 m), with the characteristic appearance of *Q. pubescens*, particularly in the western half of Hungary, where this vegetation type is more 111 112 widespread. In the Északi-középhegység, thermophilous oak forests tend to occur in isolated patches 113 with particularly warm and dry mesoclimate (Vojtkó 2002; Borhidi 2003; Vojtkó et al. 2010; Bölöni 114 *et al.* 2011).

115 North-facing, gentle slopes are mostly covered by Pannonian sessile oak-hornbeam forests 116 (Carici pilosae-Carpinetum, 91G0), that are predominantly mesophilous, submontane (400-600 m 117 a.s.l.) forests, characteristic of cool, relatively humid habitats on deep soils, with a canopy height of 118 25-30 m. These mixed forests are dominated by Carpinus betulus and Quercus petraea, with Acer 119 campestre, A. platanoides, Cerasus avium, and Tilia cordata occurring sporadically. In the low-120 elevation landscape of the study area, extrazonal submontane beech forests (*Melittio-Fagetum*) occur 121 very sporadically and are restricted to steep, north-facing slopes with the coldest mesoclimatic 122 conditions. These are tall (25-35 m), mesic forests, where Fagus sylvatica generally is 123 monodominant. In zonal settings in the Északi-középhegység, beech forests (9130) are represented 124 by submontane beech forest (Melittio-Fagetum) between 400 and 750 m a.s.l. and montane beech 125 forest (Aconito-Fagetum) above 750 m a.s.l., the latter featuring many species with Carpathian 126 distributions (Borhidi 2003; Vojtkó et al. 2010; Bölöni et al. 2011).

127 The fourteen sampling sites were evenly distributed in two hills (Kis-várhegy and Nagy-128 várhegy) just south of the village of Sirok, Heves county, Hungary (Fig. 1, Table 1). The location 129 was chosen because it features, in an unusually small area (< 2 km²), the above-mentioned major 130 Pannonian forest types of northern Hungary, which are distributed according to aspect-based

131 differences in mesoclimatic conditions in a not spatially clustered manner. Furthermore, potentially 132 confounding factors that often limit the interpretation of ecological studies in natural habitats are 133 minimal: 1) the Kis-várhegy and Nagy-várhegy are uniformly composed of Jurassic calcareous 134 limestone (Pelikán 2010); 2) the regional climate is uniform throughout the small study area; 3) all 135 forest types are represented by old-growth (> 80y) secondary forests; 4) the elevation differences 136 among the sampling sites are minor (< 60 m) and are not related to aspect or to any other 137 environmental conditions; and 5) the spatial proximity and the continuous natural or semi-natural 138 landscape are expected to facilitate unrestricted dispersal of fungal propagules among the sites by 139 wind, water or by wildlife. Therefore, I hypothesized that any observed compositional differences 140 among the samples would be the result of niche-based and stochastic processes, with the former 141 primarily referring to environmental filtering according to differences in abiotic and biotic factors 142 driven by topography: predominantly northerly vs. southerly aspect and to a lesser extent by slope 143 angle.

144

145 Sampling and molecular work

146 For this study, fourteen sites were chosen that represented forests of northerly and southerly 147 aspects on both the Kis- and Nagy-várhegy. At each site (ca. 10×25 m), 20 samples (5 cm³ each) of 148 top soil from underneath the litter layer were taken at each sampling site in such a way that samples 149 were at least 2 m from each other to minimize the probability of sampling the same genet repeatedly. 150 Soil samples collected at a given site were pooled, resulting in a composite soil sample for each site. 151 Ca. 20 g of each composite sample was kept frozen until DNA extraction, while the rest was used for 152 soil chemical analyses to measure pH (water-based), and total carbon (C) and nitrogen (N) contents 153 following Sparks et al. (1996).

154 Genomic DNA was extracted from 0.5 ml of soil from each composite sample using NucleoSpin[®] soil kit (Macherey-Nagel Gmbh & Co., Düren, Germany), according to manufacturer's 155 156 protocol. The ITS2 region (ca. 250 bp) of the nuclear ribosomal DNA repeat was PCR amplified 157 using primers fITS7 (Ihrmark et al., 2012) and ITS4 (White et al., 1990). The ITS4 primer was 158 labelled with sample-specific Multiplex Identification DNA-tags (MIDs). The amplicon library was sequenced at Naturalis Biodiversity Center (Naturalis) using an Ion 318TM Chip and an Ion Torrent 159 160 Personal Genome Machine (Life Technologies, Guilford, CT, U.S.A.). Detailed protocols of the 161 molecular work are described in Geml et al. (2014b).

162

163 Bioinformatic work

164 The initial clean-up of the raw data was carried out using Galaxy 165 (https://main.g2.bx.psu.edu/root), in which the sequences were sorted according to samples and 166 adapters (identification tags) were removed. The primers were removed and poor-quality ends were 167 trimmed off based on 0.02 error probability limit in Geneious Pro 8 (BioMatters, New Zealand). Subsequently, sequences were filtered using USEARCH v.8.0 (Edgar, 2010) based on the following 168 169 settings: all sequences were truncated to 200 bp and sequences with expected error > 1 were 170 discarded. For each sample, sequences were collapsed into unique sequence types, while preserving 171 their counts. The quality-filtered sequences from all samples were grouped into operational 172 taxonomic units (OTUs) at 97% sequence similarity and putative chimeric sequences were removed 173 using USEARCH. I assigned sequences to taxonomic groups based on pairwise similarity searches 174 against the curated UNITE+INSD fungal ITS sequence database (version released on October 10, 175 2017), containing identified fungal sequences with assignments to Species Hypothesis (SH) groups 176 delimited based on dynamic sequence similarity thresholds (Kõljalg et al. 2013). After excluding 177 OTUs with < 80% similarity or < 150 bp pairwise alignment length to a fungal sequence, 6216 178 fungal OTUs were retained, representing a total of 980 766 quality-filtered sequences, including 179 1930 global singletons. Global singletons are routinely excluded from metabarcoding studies, 180 because the vast majority of them represent erroneous sequences (Lindahl et al. 2013; Geml et al. 181 2016, 2017). However, this practice likely results in the exclusion of some real high-quality data on 182 locally rare species. Because, to my best knowledge, this is the first metabarcoding study in the 183 Pannonian forests, I intended to keep all high-quality data, including 343 singletons with > 98% 184 sequence similarity to a reference fungal SH, a conservative threshold for conspecificity in most 185 fungal groups (Kõljalg et al. 2013), and excluded the remaining 1587 singletons from further 186 analyses. DNA sequences have been deposited in NCBI (accession numbers provided upon 187 manuscript acceptance). 188 Only OTUs with > 90% similarity to a fungal SH with known ecological function were

189 assigned to one of the following functional groups: animal pathogens, ECM fungi, lichens, litter 190 decomposers, mycoparasites, plant pathogens, root-associated fungi (non-ECM orchid and ericoid 191 mycorrhizal fungi and root endophytes), saprotrophs (generalists), and wood decomposers. 192 Arbuscular mycorrhizal fungi were not included in the analyses, because only one representative 193 OTU was found in the quality-filtered dataset. The initial functional assignments were made by 194 FunGuild (Nguyen et al. 2015) and were manually checked afterwards. For genera that are known to 195 comprise species from multiple functional guilds (e.g., Amanita, Entoloma, Ramaria, and many SH 196 groups in the Sebacinales), I assigned ecological function for each OTU individually, based on 197 available ecological information for the matching SH in the UNITE database.

198

199 *Statistical analyses*

200 I normalized the OTU table for subsequent statistical analyses by rarefying the number of 201 high-quality fungal sequences to the smallest library size (36 946 reads). The resulting matrix 202 contained 4312 fungal OTUs. Linear regression analyses in R (R Development Core Team 2013) 203 were used to examine relationships between aspect and richness of taxonomic and functional groups 204 of fungi as well as between aspect and environmental variables, i.e. edaphic factors (pH, C, N, and 205 C/N) and the relative abundance values of the two dominant tree genera (Carpinus and Quercus) that 206 were distributed throughout the majority of sites. When aspect is treated as a continuous variable 207 from 0° to 360°, the two extreme values of this interval refer to the same aspect in the landscape 208 (north). Therefore, aspect was expressed as northerly aspect in degrees (south: 0°, north: 180°) 209 following Calef *et al.* (2005), which better reflects the well-known ecological differences between 210 north- and south-facing slopes.

211 I used the vegan R package (Oksanen et al. 2015) to run non-metric multidimensional scaling 212 (NMDS) on the Hellinger-transformed OTU table and a secondary matrix containing environmental 213 variables, which were standardized using the scale function in R. Ordinations were run separately for 214 functional groups as well as for all fungi with the following specifications: distance measure = Bray-215 Curtis, dimensions = 2, initial configurations = 100, model = global, maximum number of iterations 216 = 200, convergence ratio for stress = 0.9999999. I used the *envfit* R function to fit the above-217 mentioned environmental variables and richness of various taxonomic and functional groups onto the 218 NMDS ordinations and plotted isolines of northerly aspect on the NMDS ordinations using the 219 ordisurf function. In addition, I tested whether fungal communities were statistically different among 220 forest types using the multiresponse permutation procedure (MRPP) and determined any preferences 221 of individual OTUs for forest types and for north- or south-facing slopes using indicator species 222 analyses (Dufrêne & Legendre 1997) in PC-ORD v. 6.0 (McCune & Grace 2002).

A series of mantel tests were carried out in PC-ORD to reveal any spatial autocorrelation in environmental variables as well as fungal community composition among the sampling sites and to measure correlation between fungal community composition and environmental variables.

Furthermore, a series of partial mantel tests were applied to differentiate the effects of northerly

aspect, tree genera, and edaphic factors on fungal community structure. Finally, I estimated what

proportions of the total variation in fungal community composition were explained by topography,

tree genera, and edaphic factors using variation partitioning (Borcard et al. 1992; Legendre et al.

230 2005) with a series of redundancy analyses (RDAs) in Canoco 5 (Microcomputer Power, Ithaca, NY,

USA). The expectation in purely neutral (stochastically assembled) communities is no correlation

between the environmental distance and the community dissimilarity of two sites (Smith &

233 Lundholm 2010).

- 234
- 235 RESULTS

236 Correlation of elevation with fungal richness and environmental variables

- 237 In total, the quality-filtered and rarefied dataset contained 4312 fungal OTUs in the 14 soil samples taken from the representative types of Pannonian forests. Of these, 2196 OTUs had > 90% 238 239 similarity to a fungal SH with known ecological function were assigned to functional groups. 240 Richness values of most functional groups showed significant (p < 0.05) or marginally (p < 0.1) 241 significant correlation with northerly aspect. For example, I found positive correlation in rootassociated fungi ($r^2 = 0.231$; p = 0.047), mycoparasites ($r^2 = 0.148$; p = 0.096), and wood 242 decomposers ($r^2 = 0.204$; p = 0.059) with northerly aspect, while negative correlation was observed 243 in lichens ($r^2 = 0.154$; p = 0.091), plant pathogens ($r^2 = 0.231$; p = 0.047), and generalist saprotrophs 244 $(r^2 = 0.615; p < 0.001)$ (Fig. 2). Richness of several taxonomic groups also correlated with northerly 245 aspect with varying significance, positively in Agaricomycetes ($r^2 = 0.261$; p = 0.036), 246 Tremellomycetes ($r^2 = 0.211$; p = 0.056), Leotiomycetes ($r^2 = 0.166$; p = 0.083), and 247 Mortierellomycota and Mucoromycota that had formerly been classified to Zygomycota ($r^2 = 0.465$; 248 p = 0.004), and negatively in Dothideomycetes ($r^2 = 0.605$; p < 0.001), Eurotiomycetes ($r^2 = 0.523$; p249 = 0.002), and Sordariomycetes ($r^2 = 0.386$; p = 0.011) (Fig. 2). Among the measured edaphic factors, 250 only pH correlated significantly with northerly aspect, showing strong negative correlation ($r^2 =$ 251 0.516; p = 0.002). With respect to vegetation, the relative abundance of *Quercus* correlated 252 negatively ($r^2 = 0.837$; p < 0.001), while that of *Carpinus* correlated positively ($r^2 = 0.269$; p =253 254 0.033) with northerly aspect (Fig. 2).
- 255

256 *Comparing fungal community composition among the sampling sites*

257 All NMDS analyses resulted in 2-dimensional solutions with the following final stress values 258 for all fungi (0.0693), animal pathogens (0.1396), ECM fungi (0.1046), litter fungi (0.1575), 259 mycoparasites (0.0871), plant pathogens (0.0679), root-associated fungi (0.1342), saprotrophs 260 (0.0947), and wood decomposers (0.1471). In all cases, the NMDS ordinations revealed strong 261 structuring of fungal communities according to aspect. In addition, a weaker, but often clear 262 separation could be observed among the four forest types. Community composition of all fungi in the 263 sampling sites clearly structured according aspect which represented the first axis (r = 0.999) (Fig. 264 3). Soil pH (r = -0.993) correlated strongly with the first axis in that south-facing slopes had higher

265 pH than north-facing ones. With respect to trees, relative abundance of oaks (r = -0.977) correlated 266 negatively, while both hornbeam (r = 0.587) and beech (r = 0.311) correlated positively with 267 northerly aspect, although these latter two in a weaker manner. The second axis seemed to represent 268 the differences in C, N, and particularly in C/N ratio (r = 0.998) among the sites as well as the 269 varying dominance of hornbeam (r = -0.810) versus beech (r = 0.951) on the north-facing slopes. 270 Richness of only two functional groups showed significant correlation with the NMDS ordinations: 271 generalist saprotrophs correlating negatively with both the first (r = -0.835) and second axes (r = -272 0.551), while lichens predominantly correlated with the second axis (r = 0.934) and to a lesser extent 273 with the first axis (r = -0.356). As for taxonomic groups with significant results, richness values of 274 Dothideomycetes (r = -0.976), Eurotiomycetes (r = -0.848), and Sordariomycetes (r = -0.753) were 275 negatively, while that of Mortierellomycota and Mucoromycota (r = 0.921) was positively correlated 276 with northerly aspect (Fig. 3).

277 NMDS plots of the datasets corresponding to the functional groups of fungi showed similar 278 correlations with aspect, forest types, and edaphic variables as detailed above. The NMDS 279 ordinations of four largest functional groups in terms of OTU richness, i.e. ECM fungi, plant 280 pathogens, generalist saprotrophs, and wood decomposers, are shown in Fig. 4, while those of the 281 three less species-rich functional groups, i.e. animal pathogens, litter decomposers, mycoparasites, 282 and root-associated fungi are shown in Fig. S1. Richness values of taxonomic families (or genera, 283 when a family was represented by a single genus) of ECM fungi that correlated with northerly aspect 284 were as follows: only ascomycete genera, i.e. *Elaphomyces*, *Helvella*, and *Tuber* showed negative 285 correlations with northerly aspect, while only basidiomycetes, i.e. Amanita, Atheliaceae, Cortinarius, 286 *Inocybe*, *Laccaria*, Russulaceae, and *Sebacina* correlated positively with northerly aspect. In 287 addition, Cenococcum, Clavulina, and Thelephoraceae showed positive correlation with axis 2. 288 Vectors representing the richness of taxonomic groups of plant pathogens seemed to be relatively 289 evenly distributed in the ordination plot. Of these, Bionectriaceae and Mycosphaerellaceae showed 290 preference for hornbeam forests, while Leptodontitidum, Taphrinaceae, and Venturiaceae seemed to 291 favor beech forests, both on north-facing slopes. Conversely, richness in Coniochaetaceae, 292 Didymellaceae, Massarinaceae, Phaeosphaeriaceae, Pyrenochaeta, and Spizellomycetaceae 293 correlated strongly with southerly aspect. With regard to generalist saprotrophs, the majority of taxa 294 showed clear preference for south-facing slopes, such as Acremonium, Aspergillaceae, 295 Chaetomiaceae, Didymosphaeriaceae, Gomphaceae, Helotiaceae, Lasiosphaeriaceae, Microascaceae, 296 Onygenaceae, Sporormiaceae, Stachyobotryaceae, Tetracladium, Trichocomaceae, 297 Tricholomataceae, Trichomeriaceae, and Trichosporonaceae, while Mortierellaceae, Tremellaceae, 298 Umbellopsidaceae, and to some extent Cunninghamellaceae tended to have higher richness in sites of

299 northerly aspect. In wood decomposers, Corticiaceae, Hyaloscyphaceae, Lophiostomataceae, and

- 300 *Pluteus* correlated negatively, while Chaetosphaeriaceae, Crepidotaceae, Helotiaceae, *Trechispora*,
- 301 and Xylariaceae correlated positively with northerly aspect. MRPP confirmed the importance of
- aspect in shaping fungal community composition (effect size A = 0.084, probability p < 0.001).
- There were 137 and 174 significant (p < 0.05) indicator fungal OTUs characteristic of north- and
- 304 south-facing slopes, of which, 46 and 69 were assigned to functional groups, respectively (Table 2).
- 305

306 Assessing the effects of environmental factors on fungal community composition

307 Mantel tests showed that neither spatial proximity nor slope had any significant correlation 308 with fungal community composition or with aspect, relative abundance of tree genera, and edaphic 309 factors. On the other hand, aspect was strongly correlated with the relative abundance of tree genera 310 (r = 0.526; p < 0.001) and weakly with edaphic factors (r = 0.151; p = 0.046), while there was 311 moderate correlation between tree genera and edaphic factors (r = 0.266; p < 0.035) (Table 3). 312 Fungal community composition was strongly correlated with aspect (r = 0.743, p < 0.001), relative 313 abundance of tree genera (r = 0.558, p < 0.001), and edaphic factors (r = 0.535, p < 0.001). 314 Nonetheless, partial mantel tests indicated that aspect in itself had a strongly significant effect on 315 community structure (r = 0.637, p < 0.001) when tree genera was accounted for (control matrix), 316 while the effect of tree genera was substantially weaker, though still significant (r = 0.295, p =317 0.018) when aspect was controlled. Conversely, the correlations of aspect (r = 0.793, p < 0.001) and edaphic factors (r = 0.639, p < 0.001) with fungal community composition were both strong when 318 319 edaphic factors or aspect were controlled for, respectively (Table 3).

320 Variation partitioning analyses indicated that the tested environmental variables explained 321 24.3% of the total variation observed. Topography (aspect and slope) explained 15.1% of the 322 variation, but only 0.8% after accounting for the relative abundance of dominant tree genera and 323 edaphic factors. Tree genera accounted for 14.7% of the variation and 3.1% when the effect of other 324 variables was removed. Measured soil variables explained 17.9% of the variation, of which 5.9% was attributed to their 'pure' effect. The shared variation explained by topography and tree genera 325 326 and by topography and edaphic factors was 2.5% and 2.9%, respectively, while the shared effects of 327 all three groups of variables accounted for 8.9% of the total variation (Fig. S2).

328

329 4. DISCUSSION

330 Drivers of landscape-level compositional patterns of fungal communities

The deep sequence data presented here clearly show that fungal community composition at the selected Pannonian forest sites is strongly structured according to slope aspect. Although some

fungal species occurred in all samples, the majority of fungal OTUs preferred either south- or northfacing slopes, as suggested by the observed community turnover as well as the numerous indicator species. Similarly, even though total fungal richness was not statistically different between northand south-facing slopes, many functional and taxonomic groups of fungi were more diverse on slopes of northerly or southerly aspect.

338 Naturally, the effect of slope aspect on fungal community composition and richness is 339 mediated through abiotic and biotic factors that are driven either directly or indirectly by the 340 differences in net solar radiation received in north- and south-facing slopes. For example, aspect 341 strongly influences local air and surface temperature, soil moisture, relative humidity, and soil 342 chemical processes (Gilliam et al. 2014). Consequently, the habitats found on north- and south-343 facing slopes have distinct meso- and microclimatic as well as edaphic conditions. These differences 344 are particularly marked regarding available moisture, soil organic matter, and pH, as had been 345 observed in the study region previously (Dobos 2010), which, in turn, influence the composition of 346 biotic communities and their interactions. Although the relative abundance of the two dominant tree 347 genera (*Carpinus* and *Quercus*) was strongly influenced by aspect, they occurred in most of the sites. 348 Therefore, and because the vast majority of plant-associated fungi are not strictly specific to a tree 349 genus or family, I argue that to a great extent the observed fungal community patterns are caused by 350 a complex array of aspect-driven environmental variables and not by the type of vegetation alone.

351 The availability of soil moisture is one of the most important environmental conditions that 352 determines richness as well as community composition in fungi (Crowther et al. 2014; Tedersoo et 353 al. 2014). Because at landscape scale, as in the study area, annual precipitation is considered uniform 354 across the sampling sites due to their close proximity, topography likely is the most important factor 355 that influences moisture availability through contrasting levels of evapotranspiration between north-356 and south-facing slopes, as has been observed in several biomes (Fekedulegn et al. 2003; Méndez-357 Toribio *et al.* 2016). Drought-tolerant fungi are generally regarded as generalists, instead of dry 358 specialists, with respect to their ability to grow along a broad moisture gradient (Lennon et al. 2012), 359 while drought-intolerant fungi are considered specialists to a narrow range of mesic conditions, 360 where they likely have competitive advantage over the generalists (Crowther *et al.* 2014). The 361 resulting competitive dynamics may force drought-tolerant fungi to the more xeric south-facing 362 slopes, while fungi with a stronger competitive ability under mesic conditions are expected to 363 dominate the mesophilous forests on the north-facing slopes in the study area.

Soil pH is also known to play an important role in shaping fungal communities (Porter *et al.*1987; Coughlan *et al.* 2000; Lauber *et al.* 2008; Rousk *et al.* 2010; Geml *et al.* 2014a; Tedersoo *et al.*2014; Glassman *et al.* 2017) and is often influenced by slope aspect (Gilliam *et al.* 2014; Chu *et al.*

2016). Because many fungal species have a relatively wide pH optimum (e.g. Wheeler et al. 1991; 367 368 Nevarez et al. 2009), it is likely that the observed correlation of pH with community composition is 369 mainly indirect, e.g., via altering nutrient availability and competitive interactions between soil fungi 370 and bacteria (Rousk et al. 2008), and other soil biota. In the study sites, there was a strong negative 371 correlation of soil pH with northerly aspect and the interaction of topography (mainly aspect) and 372 edaphic factors (primarily pH) provided a large fraction of the explained variation in fungal 373 community composition. Therefore, it is difficult to disentangle the 'pure' effect of pH from that of 374 aspect. Nevertheless, for some fungal groups that are known to be influenced by soil pH, the data 375 presented here are in agreement with previous results. For example, root endophytic fungi had been 376 shown to prefer low soil pH (Postma et al. 2006) and the strong preference of non-ECM root-377 associated fungi for the northerly sites with lower pH in this study confirms the above trend. 378 Similarly, ECM fungi are generally considered acidophilus (Read 1991), and there was weak, 379 although non-significant, positive correlation between ECM fungal richness and northerly aspect (i.e. 380 sites with lower pH). The only other edaphic factors with strong correlation with fungal community 381 structure was C/N ratio, which was not related to aspect. Instead, changes in C/N ratio appeared to be 382 related to different forest types on the north-facing slopes, i.e. oak-hornbeam and submontane beech 383 forests. Because C/N is considered a direct measure of resource quality (Nielsen et al. 2010), it is 384 possible that the higher C/N values in the beech forests are driven by differences in litter quality 385 between beech and hornbeam and oak. Measurements from more beech and oak-hornbeam stands are 386 needed to test this htpothesis.

387

388 The contrasting effects of aspect on functional groups of fungi

389 The data clearly show a strong emerging pattern driven by slope aspect in all fungal groups. 390 Several functional groups showed strong differences in richness between north- and south-facing 391 slopes. Mycoparasites, non-ECM root-associated fungi, and wood decomposers had higher richness 392 in the sites with predominantly northerly aspect. The cooler microclimate in particular may be more 393 advantageous for root-associated fungi, because this group has been shown to be more diverse at 394 higher elevations in altitudinal gradient studies (Geml et al. 2014b). On the other hand, although 395 richness of wood decay fungi and mycoparasites have been shown to decline with decreasing 396 temperature in elevation gradients (Geml et al. 2014b), considering the given moisture limitation in 397 this study area, their higher richness in north-facing slopes may be more strongly driven by the 398 greater availability of moisture. Lichens, plant pathogens and generalist saprotrophs were clearly 399 more species rich in the south-facing slopes. With regard to lichens, this may be a consequence of 400 the more open canopy of the thermophilous oak forests that allow more light to penetrate and

401 apparently fosters the growth of the generally shade-intolerant and drought-tolerant lichens. On the 402 other hand, plant pathogens and generalist saprotrophs may benefit more from the higher 403 temperatures characteristic of the south-facing slopes, as richness values of these groups generally 404 correlate positively with temperature in altitudinal as well as in global studies (Geml et al. 2014b, 405 Tedersoo et al. 2014). Also, many generalist saprotrophs (e.g., in Eurotiomycetes) are known for 406 their drought-tolerance and, based on the above-mentioned theory on competitive dynamics, they 407 may be outcompeted in the mesic sites by mesophilic specialists, resulting in their higher diversity in 408 the warmer and drier south-facing slopes.

409 Even in functional groups with no significant differences in richness, I observed strong 410 compositional differences between slopes of northerly and southerly aspects. For example, in ECM 411 fungi, ascomycete and basidiomycete genera were clearly more diverse in the south- and north-412 facing slopes, respectively. This is in agreement with other studies showing that ECM communities 413 often are dominated by ascomycetes in arid and semiarid environments, while basidiomycetes tend to 414 dominate more moist habitats (Cavender-Bares et al. 2009; Gehring et al. 2014). This may be linked 415 to their foraging and fruiting strategies and the related differences in C requirement from the host 416 trees. For example, trees in more xeric conditions are expected to preferentially associate with ECM 417 fungi that have contact and short-distance, as opposed to medium- and long-distance, extrametrical 418 mycelial exploration types and smaller fruiting bodies that are less costly in terms of C requirement.

419

420 *The unexplained component of community turnover*

421 An ever-present feature of fungal community studies is the large amount of unexplained 422 variation in richness and community composition even at small spatial scales (Peay et al. 2016). In 423 this study, the most significant compositional differences were observed between slopes of northerly 424 and southerly aspects, but there was also substantial variation among sites within sites on the same 425 slope. The environmental variables measured in this study explained about one quarter of the 426 variation in fungal community composition in all sites, which confirms the above-mentioned 427 substantial unexplained component of community assembly. Because many OTUs were rare, i.e. 428 found only in one or two sites, most such differences may be due to random processes in community 429 assembly as well as due to random sampling, as truly exhaustive soil sampling is practically 430 impossible to achieve in the field. The former is partly explained by the priority effect, i.e. within a 431 given species pool of a particular habitat, stochastic dispersal determines the order in which newly 432 available resources are colonized by different species, which, in turn, drives to a large extent the 433 composition of the community (Peay et al. 2016). In addition, other factors not examined here, such 434 as density-dependent processes (e.g., intra- and interspecific competitions and pathogen-host

435 interactions) as well potentially important environmental variables not yet measured, may also 436 contribute to the observed beta diversity. For example, I did not measure soil and air temperature, 437 relative humidity, and soil moisture at the sites, partly because it is already well-known that these 438 factors correlate strongly with aspect on mesoclimate scale, as mentioned above, and partly because 439 obtaining a realistic characterization of these variables would have required measurements taken 440 throughout the growing season at the sampling sites, which was beyond the scope and logistic 441 possibilities of this case study. However, by including site-specific microclimate data as well as a 442 more extensive list of edaphic variables, future studies may obtain more insights into the variation of 443 environmental factors at small spatial scales as well as their influence on fungal community 444 composition and turnover.

445

446 Contribution to the knowledge on Pannonian forest fungi

This study shows a remarkably high fungal diversity in a small area ($< 2 \text{ km}^2$) of secondary 447 forests in the eastern edge of the Mátra mountains. After the stringent quality filtering steps, the non-448 449 rarefied and rarefied datasets contained 4695 and 4312 fungal OTUs, respectively. Based on the 450 rarefied data, well over 1000 OTUs occurred in any given sample (Fig. 2), each representing an area 451 of ca. 250 m². In total, I detected representatives of 707 fungal genera, of which 467 belonged to 452 Ascomycota, 225 to Basidiomycota, 6 to Chytridiomycota, and 7 represented early-diverging 453 lineages formerly classified in Zygomycota. Nonetheless, the true generic diversity likely is even 454 higher, because the vast majority of fungi in the sampled sites, as well as globally, are microfungi 455 and many of them could only be assigned to families, orders or classes due to the lack of sufficiently 456 identified reference data. Consequently, these represent species with unknown identity, several of 457 which may still be undescribed. With respect to the identified microfungi, the results presented here 458 may be the first data on their diversity and possible habitat preference in the Pannonian 459 biogeographic region, serving as potential reference data for future studies as well. By providing the 460 full list of taxa corresponding to the 2542 unique SHs that matched the OTUs in these samples with 461 high (> 95%) sequence similarity (Table S1), I intend to facilitate other mycological and fungal 462 ecological studies in the region.

I was able to assign a relatively high proportion (51%) of fungal OTUs to functional groups, particularly in taxa with macroscopic fruiting bodies for which extensive reference data are available from Europe, e.g., agarics, boletes, coral fungi, polypores, and several true and false truffles. For example, the number of unique matching SHs in some of the most diverse basidiomycete genera were 69 in *Inocybe*, 48 in *Russula*, 18 in *Lepiota*, while somewhat surprisingly *Cortinarius* and *Lactarius* were only represented by 23 and 13 unique SHs, respectively. On the other hand, the data

469 also showed a high diversity ECM basidiomycetes with inconspicuous fruiting bodies, such Sebacina 470 (66 SHs) and Tomentella (83 SHs) that are notoriously underrepresented in sporocarp surveys 471 (Gardes & Bruns 1996; Kõljalg et al. 2000; Geml et al. 2012). Furthermore, I detected numerous 472 hypogeous ECM fungi, such as *Elaphomyces muricatus* and *E. papillatus*, *Genea verrucosa*, 473 Hydnotrya sp., Hymenogaster australis, H. griseus, Hysterangium stoloniferum, Gautieria 474 graveolens, Melanogaster ambiguus, M. broomeanus, and M. variegatus, Wakefieldia macrospora, 475 as well as several species of the charismatic *Tuber* genus (e.g., *T. aestivum*, *T. borchii*, *T. brumale*, *T.* 476 maculatum, T. puberulum, T. rapaeodorum, T. rufum and possibly T. fulgens). Most of these are 477 known to occur in Hungary, except for *Gautieria graveolens*, as this genus is only represented by an 478 unidentified species in the list of hypogeous fungi for the Carpathian-Pannonian region compiled by 479 Bratek et al. (2013). Representatives of these hypogeous fungi were found in all forest types, 480 indicating that they probably are relatively common in Pannonian forests. 481 In addition, I want to emphasize the suitability of DNA metabarcoding to complement 482 sporocarp-based assessments for biological monitoring and conservation of fungi. Specifically, 483 studies such as this can provide valuable knowledge not only on the total diversity of fungi at any 484 given site, but also on the distribution and habitat preferences of numerous species, including rare 485 and/or protected species. For example, I found at least one of the thirty-five species of fungi 486 protected by law in Hungary (Siller et al. 2005, 2006): Strobilomyces strobilaceus, which was 487 detected on north-facing slopes of both the Kis- and Nagy-Várhegy, which confirms the habitat 488 preference of this species for mesophilic beech and oak-hornbeam forests in Hungary (Siller et al. 489 2005). Furthermore, even though the retained global singletons that were > 98% similar to a 490 reference fungal SH had only minor contribution to richness values and had practically no influence

491 on the community structure patterns, 238 were identified to a genus or species. Of these, the

492 following taxa were only represented by singletons in the dataset: *Aleurodiscus aurantiacus*,

493 Annulohypoxylon multiforme, Aspergillus cibarius, Baeospora myosura, Barbatosphaeria dryina,

494 Bullera alba, Calonectria quinqueseptata, Caloplaca obscurella, Chaetosphaeria decastyla,

495 *Chroogomphus mediterraneus, Clavariadelphus sp., Coprinopsis picacea, Coprinus comatus,*

496 Cortinarius casimiri, Cortinarius cotoneus, Cortinarius infractus, Cortinarius pardinus, Crepidotus

497 mollis, Cryptodiscus pallidus, Cylindrocladiella elegans, Dactylellina ellipsospora, Darksidea

498 epsilon, Durella connivens, Elaphomyces papillatus, Elmerina caryae, Exidia truncata, Filobasidium

499 magnum, Geastrum fornicatum, Geopora sp., Gloeocystidiellum kenyense, Gromoniopsis idaeicola,

500 Haptocillium campanulatum, Hyalorbilia erythrostigma, Hypogymnia physodes, Jattaea tumidula,

501 Kretzschmaria deusta, Lactarius necator, Leiosepium tulasneanum, Leptosphaeria rubefaciens,

502 Leptospora rubella, Leucoagaricus barssii, Lophiotrema eburnoides, Melanelixia subaurifera,

503 Melanospora damnosa, Microstroma phylloplanum, Mycena renati, Mycosphaerella ulmi,

- 504 Neocatelunostroma abietis, Neocladophialophora quercina, Ossicaulis lignatilis, Otidea onotica,
- 505 Paxillus obscurisporus, Peltaster fruticola, Peniophorella praetermissa, Pestalotiposis chinensis,
- 506 Phlebia tremellosa, Pholiotina teneroides, Phyllozyma linderae, Pilidium concavum, Pleurophoma
- 507 ossicola, Pluteus velutinus, Psilocybe inquilina, Resupinatus applicatus, Ramphoria pyriformis,
- 508 Rhytisma acerinum, Russula albonigra, Russula inamoena, Russula sororia, Sarcosphaera
- 509 coronaria, Scheffersomyces stipitis, Sistotrema brinkmannii, Slopeiomyces cylindrosporus,
- 510 Sphaerollopsis macroconidialis, Steccherinum ochraceum, Stylonectria norvegica, Thielavia
- 511 subthermophila, Tomentella badia, Trechispora laevis, Tremella yokohamensis, Tricholoma batschi,
- 512 Urocystis agropyri, Ustilago nunavutica, Valsivia insitiva, Vanrija humicola, Verrucaria dolosa,
- 513 Xenasmatella borealis, Xylodon rimossimus, Xylomelasma sp., Zalerion arboricola, and Zasmidium
- 514 *dalbergiae*. Most of the macrofungi among these, such as *Baeospora myosura*, *Coprinopsis picacea*,
- 515 Coprinus comatus, Cortinarius infractus, Crepidotus mollis, Geastrum fornicatum, Mycena renati,
- 516 Russula albonigra, Russula heterophylla, Russula sororia, and Tricholoma batschi, have been found
- 517 in sporocarp surveys in the Északi-középhegység (Bohus & Babos 1960; Tóth 1999; Siller et al.
- 518 2002; Egri 2007; Rudolf *et al.* 2008; Siller & Dima 2014). With respect to the rest, more sampling is
 519 needed to confirm their presence in the region.
- 520 Finally, soil communities are extremely diverse and there is increasing evidence pointing to 521 soil biodiversity as having key roles in determining the structure and ecological responses of 522 terrestrial ecosystems (Bardgett & van der Putten 2014). Soil fungi in particular are known to drive 523 plant diversity and productivity and are crucial for ecosystem functioning and resilience towards 524 disturbance (van der Heijden et al. 2008). Because most fungi have high habitat specificity and tend 525 to respond quickly to changes in environmental conditions (Nielsen et al. 2010; Geml et al. 2015, 526 2016; Morgado et al. 2015, 2016; Mundra et al. 2016; Semenova et al. 2015, 2016), fungi have a 527 promising potential as indicators of habitat quality in biological monitoring programs. More 528 specifically, assessments of richness and community composition of fungal communities in a variety 529 of habitats can inform decision-makers with respect to land use strategies that foster the sustainable 530 preservation of diverse and resilient ecosystems with a wide range of ecosystem functions.
- 531

532 *Conclusions*

A prominent finding of this study is that fungal diversity and community structure are strongly influenced by slope aspect, despite the short distance separating north- and south-facing slopes. Even though this finding may appear trivial due to the well-known effects of aspect on vegetation, fungal communities are surprisingly little studied in this regard and the data presented

537 here offer unprecedented insights into the landscape-level distribution of various taxonomic and 538 functional groups with respect to topography. Furthermore, while aspect-driven differences in 539 vegetation tend to be related to relative importance as opposed the presence/absence of plant species 540 on slopes with different aspect (Gilliam et al. 2014), many fungal species were detected exclusively 541 on either north- or south-facing slopes. This reflects the often-observed high habitat specificity 542 exhibited by many fungi, which offers possibilities for biological monitoring and habitat 543 characterization and I strongly advocate for incorporating fungi in biodiversity assessments and 544 conservation efforts.

545

546 ACKNOWLEDGEMENTS

547 I am grateful to Péter Molnár for his assistance during the fieldwork, to Marcel Eurlings 548 (Naturalis) for carrying out the Ion Torrent sequencing, to Luis Morgado (University of Oslo and 549 Naturalis) for sharing the R script for the NMDS analysis, to Eszter Draskovits and Nikolett Tarjányi 550 (Institute for Soil Sciences and Agricultural Chemistry, Hungarian Academy of Sciences, Budapest) 551 for their assistance in obtaining the soil chemical data, to József Sulyok and András Schmotzer 552 (Bükk National Park) for sending maps and aerial photographs of the sampling region, and to Attila 553 Baranyi for preparing the map for Fig. 1. I also thank Jeremy Miller (Naturalis) for his constructive 554 comments on the manuscript. The molecular work and the soil chemical analyses were supported by 555 the Naturalis Research Initiative fund provided to József Geml.

556

557 REFERENCES

Albert L, Dima B. 2005 Ritka nagygombafajok (Basidiomycetes) előfordulása Magyarországon I. *Mikológiai Közlemények Clusiana* 44: 3–22.

560

Bardgett RC, van der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. *Nature* 515: 505–511.

563

Bohus G, Babos M. 1960. Notes on the occurrence in Hungary of *Russula* species, with regard to
their range in Europe. *Annales Hitorico-Naturales Musei Nationalis Hungarici* 52: 123–146.

566

Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological
variation. *Ecology* 73: 1045–1055.

569

570 Borhidi A. 2003. Magyarország növénytársulásai. Akadémiai Kiadó, Budapest.

571	
572	Bölöni J, Botta-Dukát Z, Illyés E, Molnár Zs. 2011. Hungarian landscape types: classification of
573	landscapes based on the relative cover of (semi-)natural habitats. Applied Vegetation Science 14:
574	537–546.
575	
576	Bratek Z, Merényi Zs, Varga T. 2013. Changes of hypogeous funga in the Carpathian-Pannonian
577	region in the past centuries. Acta Mycologica 48: 33–39.
578	
579	Calef MP, McGuire D, Epstein H, Rupp ST, Shugart HH. 2005. Analysis of vegetation distribution
580	in Interior Alaska and sensitivity to climate change using a logistic regression approach. Journal of
581	<i>Biogeography</i> 32: 863–878.
582	
583	Cavender-Bares J, Izzo A, Robinson R, Lovelock CE. 2009. Changes in ectomycorrhizal community
584	structure on two containerized oak hosts across an experimental hydrologic gradient. Mycorrhiza 19:
585	133–142.
586	
587	Chu H, Xiang X, Yang J, Adams JM, Zhang K, Li Y, Shi Y. 2016. Effects of slope aspects on soil
588	bacterial and arbuscular fungal communities in a boreal forest in China. Pedosphere 26: 226–234.
589	
590	Coughlan AP, Dalpé Y, Lapoint L, Piché Y. 2000. Soil pH-induced changes in root colonization,
591	diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining
592	maple forests. Canadian Journal of Forest Research 30: 1543-1554.
593	
594	Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. 2014. Untangling the
595	fungal niche: a trait-based approach. Frontiers in Microbiology doi:10.3389/fmicb.2014.00579
596	
597	Dobos E. 2010. A Mátravidék talajai. In: Baráz Cs. (Ed.) A Mátrai Tájvédelmi Körzet – Heves és
598	Nógrád határán. Bükki Nemzeti Park Igazgatóság, pp. 141–147.
599	
600	Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible
601	assymetrical approach. Ecological Monographs 67: 345-366.
602	
603	Edgar, R.C. 2010 Search and clustering orders of magnitude faster than BLAST. <i>Bioinformatics</i> 26:
604	2460-2461

Geml	19

605	
606	Egri K. 2007. Újabb adatok a Zempléni-hegység és a Bodrogköz veszélyeztetett nagygombáiról.
607	Mikológiai Közlemények Clusiana 46: 149–164.
608	
609	Erős-Honti Zs, Kovács GM, Szedlay Gy, Jakucs E. 2008. Morphological and molecular
610	characterization of Humaria and Genea ectomycorrhizae from Hungarian deciduous forests.
611	<i>Mycorrhiza</i> 18: 133–143.
612	
613	Fekedulegn D, Hicks RR, Colbert JJ. 2003. Influence of topographic aspect, precipitation and
614	drought on radial growth of four major tree species in an Appalachian watershed. Forest Ecology
615	and Management 177: 409–425.
616	
617	Fekete G. Király G, Molnár Z. 2016. Delineation of the Pannonian vegetation region. Community
618	<i>Ecology</i> 17: 114–124.
619	
620	Gardes M, Bruns T. 1996. Community structure of ectomycorrhizal fungi in a Pinus muricata forest:
621	above- and below-ground views. Canadian Journal of Botany 74: 1572–1583.
622	
623	Gehring CA, Mueller RC, Haskins KE, Rubow TK, Whitham TG. 2014. Convergence in
624	mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to
625	herbivory: consequences for fungi and host plants. Frontiers in Microbiology
626	doi:10.3389/fmicb.2014.00306
627	
628	Geiger R. 1965. The climate near the ground. Harvard University Press, Cambridge, MA.
629	
630	Geml J, Gravendeel B, Neilen M, Lammers Y, Raes N, Semenova TA, Noordeloos ME. 2014a.
631	DNA metabarcoding reveals high fungal diversity and pH-correlated habitat partitioning in protected
632	coastal Salix repens communities in the Netherlands. PLOS ONE 9(6): e99852.
633	
634	Geml J, Morgado LN, Semenova-Nelsen TA, Schilthuizen M. 2017. Changes in richness and
635	community composition of ectomycorrhizal fungi among altitudinal vegetation types on Mount
636	Kinabalu in Borneo. New Phytologist 215: 454–468.
637	

638	Geml J, Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E. 2015. Long-term warming
639	alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS
640	Microbiology Ecology doi: 10.1093/femsec/fiv095
641	
642	Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG Wicaksono CY, Nouhra ER.
643	2014b. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong
644	community turnover among forest types along an altitudinal gradient. <i>Molecular Ecology</i> 23: 2452–
645	2472
646	
647	Geml J, Semenova TA, Morgado LN, Welker JM. 2016. Changes in composition and abundance of
648	functional groups of arctic fungi in response to long-term summer warming. Biology Letters
649	12:20160503
650	
651	Geml J, Timling I, Robinson CH, Lennon N, Nusbaum HC, Brochmann C, Brochmann C,
652	Noordeloos ME, Taylor DL. 2012. An arctic community of symbiotic fungi assembled by long-
653	distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on
654	soil and sporocarp DNA. Journal of Biogeography 39: 74-88.
655	
656	Gilliam FS, Hédl R, Chudomelová M, McCulley RL. 2014. Variation in vegetation and microbial
657	linkages with slope aspect in a montane temperate hardwood forest. <i>Ecosphere</i> 5: 1–17.
658	
659	Glassman SI, Wang IJ, Bruns TD. 2017. Environmental filtering by pH and soil nutrients drives
660	community assembly in fungi at fine spatial scales. <i>Molecular Ecology</i> 26: 6960–6973.
661	
662	Holland PG, Steyn DG. 1975. Vegetational responses to latitudinal variations in slope angle and
663	aspect. Journal of Biogeography 2: 179–183.
664	
665	Hollingsworth TN, Walker MD, Chapin III FS, Parsons AL. 2006. Scale-dependent environmental
666	controls over species composition in Alaskan black spruce communities. Canadian Journal of Forest
667	<i>Research</i> 36: 1781–1796.
668	
669	Horváth G, Gaálová K. 2007. Éghajlati viszonyok. In: Kiss G, Baráz Cs, Gaálová K, Judik B. (Eds.)
670	A Karancs-Medves és Cseres-hegység Tájvédelmi Körzet – Nógrád és Gömör határán. Bükki
671	Nemzeti Park Igazgatóság, pp. 91–92.

bioRxiv preprint doi: https://doi.org/10.1101/281337; this version posted March 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

672	
673	
674	Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenk J, Strid Y, Stenlid J,
675	Brandstörm-Durling M, Clemmensen KE, et al. 2012. New primers to amplify the fungal ITS2
676	region evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology
677	<i>Ecology</i> 82 : 666–677.
678	
679	Jakucs E, Erős-Honti Zs, Seress D, Kovács GM 2015. Enhancing our understanding of anatomical
680	diversity in <i>Tomentella</i> ectomycorrhizas characterization of six new morphotypes. <i>Mycorrhiza</i> 25:
681	419–429.
682	
683	Kovács GM, Jakucs E. 2006. Morphological and molecular comparison of white truffle
684	ectomycorrhizae. Mycorrhiza 16: 567–574.
685	
686	Kõljalg U, Dahlberg A, Taylor AFS, Larsson E, Hallenberg N, Stenlid J, Larsson KH, Fransson PM,
687	Kårén O, Johnsson L. 2000. Diversity and abundance of resupinate thelephoroid fungi as
688	ectomcorrhizal symbionts in Swedish boreal forests. Molecular Ecology 9: 1985–1996.
689	
690	Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD,
691	Bengtsson-Palme J, Callaghan TM, et al. 2013. Towards a unified paradigm for sequence-based
692	identification of Fungi. Molecular Ecology 22: 5271–5277.
693	
694	Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the
695	structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry
696	40: 2407–2415.
697	
698	Legendre P, Borcard D, Peres-Neto PR. 2005 Analyzing beta diversity: partitioning the spatial
699	variation of community composition data. Ecological Monographs 75: 435-450.
700	
701	Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR. 2012. Mapping the niche space of soil
702	microorganisms using taxonomy and traits. <i>Ecology</i> 93: 1867–1879.
703	

704	Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller, Kõljalg U, Pennanen T,
705	Rosendahl S, Stenlid J et al. 2013. Fungal community analysis by high-throughput sequencing of
706	amplified markers – a user's guide. New Phytologist 199: 288–299.
707	
708	Liu M, Zheng R, Bai S, Bai Y, Wang J. 2017. Slope aspect influences arbuscular mycorrhizal fungus
709	communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China.
710	<i>Mycorrhiza</i> 27: 189–200.
711	
712	McCune B, Grace JB. 2002. Analysis of ecological communities. Gleneden Beach, OR, USA: MjM
713	Software.
714	
715	Méndez-Toribio M, Meave JA, Zemeño-Hernández I, Ibarra-Manríquez G. 2016. Effects of slope
716	aspect and topographic position on environmental variables, disturbance regime and tree community
717	attributes in a seasonal tropical dry forest. Journal of Vegetation Science 27: 1094–1103.
718	
719	Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J. 2015. Summer temperature
720	increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry
721	tundra in Arctic Alaska. Global Change Biology 21: 959–972.
722	
723	Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J. 2016. Long-term increase
724	in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities. Global
725	<i>Change Biology</i> 22 : 3080–3096
726	
727	Mundra S, Halvorsen R, Kauserud H, Bahram M, Tederoo L, Elberling B, Cooper EJ, Eidesen PB.
728	2016. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally
729	increased snow depth in the High Arctic. Microbiology Open 5: 856–869.
730	
731	Nevarez L, Vasseur V, Le Madec L, Le Bras MA, Coroller L, Leguérinel I, Barbier G. 2009.
732	Physiological traits of <i>Penicillium glabrum</i> strain LCP 08.5568, a filamentous fungus isolated from
733	bottled aromatised mineral water. International Journal of Food Microbiology 130: 166–171.
734	
735	Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2015.
736	FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild.
737	<i>Fungal Ecology</i> 20: 241–248.

738	
739	Nielsen UN, Osler GHR, Campbell CD, Burslem DFRP, van der Wal R. 2010. The influence of
740	vegetation type, soil properties and precipitation on the composition of soil mite and microbial
741	communities at the landscape scale. Journal of Biogeography 37: 1317–1328.
742	
743	Oksanen J, Blanchet FGK, Roeland Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P,
744	Stevens MHH, Wagner H. 2012. Vegan: Community Ecology Package. Version 2.0-5. http://cran.r-
745	project.org. http://vegan.rforge.r-project.org/.
746	
747	Pál-Fám F, Siller I, Fodor L. 2007. Mycological monitoring in the Hungarian Biodiversity
748	Monitoring System. Acta Mycologica 42: 35–58.
749	
750	Peay KG, Kennedy PG, Talbot JM. 2016. Dimensions of biodiversity in the Earth mycobiome.
751	Nature Reviews Microbiology 14: 434–447.
752	
753	Pelikán P. 2010. A Mátra és közvetlen környezetének földtana. In: Baráz Cs. (Ed.) A Mátrai
754	Tájvédelmi Körzet – Heves és Nógrád határán. Bükki Nemzeti Park Igazgatóság, pp. 17–26.
755	
756	Porter WM, Robson AD, Abbott LK. 1987. Field survey of the distribution of Vesicular-arbuscular
757	mycorrhizal fungi in relation to soil pH. <i>Journal of Applied Ecology</i> 24: 659–662.
758	
759	Postma JWM, Olsson PA, Falkengren-Grerup U. 2006. Root colonization by arbuscular mycorrhizal,
760	fine endophytic and dark septate fungi across a pH gradient in acid beech forests. <i>Soil Biology and</i>
761	<i>Biochemistry</i> 39: 400–408.
762	
763	R Development Core Team, 2015. R: a Language and Environment for Statistical Computing. R
764	Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org
765	Read DI 1001 Macambines in accountance Franciscution 47, 276, 201
700	Read DJ: 1991. Mycormizas in ecosystems. <i>Experientia</i> 47: 376–391.
101	Diméozi I 1002 A Tornovälgyi ordők negygombój Eska Ustarios Naturalis Mussi Maturai 17.
760	KIIIOUZI I. 1772. A Tainavoigyi eluok nagygoinuai. <i>Folia Historico Naturalis Musel Matraensis</i> 17:
709 770	151–150.
//0	

bioRxiv preprint doi: https://doi.org/10.1101/281337; this version posted March 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

771	Rimóczi I. 1994. Nagygombáink cönológiai és ökológiai jellemzése. Mikológiai Közlemények
772	<i>Clusiana</i> 33: 3–180.
773	
774	Rosenberg NJ, Blad SB, Verma SB. 1983. Microclimate: the biological environment. Wiley, New
775	York.
776	
777	Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 2010.
778	Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4:
779	1340–1351.
780	
781	Rudolf K, Pál-Fám F, Morschhauser T. 2008. A Cserehát nagygombái. Mikológiai Közlemények
782	<i>Clusiana</i> 47: 45–74.
783	
784	Semenova TA, Morgado LN, Welker JM, Walker MD, Smets E, Geml J. 2015. Long-term
785	experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic
786	tundra. <i>Molecular Ecology</i> 24: 424-437.
787	
788	Semenova TA, Morgado LN, Welker JM, Walker MD, Smets E, Geml J. 2016. Compositional and
789	functional shifts in arctic fungal communities in response to experimentally increased snow depth.
790	Soil Biology and Biochemistry 100: 201–209.
791	
792	Siller I. 2010. A gombák világa. In: Baráz Cs. (Ed.) A Mátrai Tájvédelmi Körzet – Heves és Nógrád
793	határán. Bükki Nemzeti Park Igazgatóság, pp. 175–180.
794	
795	Siller I, Dima B. 2014. Adatok a Heves-Borsodi-dombság és az Upponyi-hegység nagygombáihoz.
796	In: Diczházi I., Schmotzer A. (Eds.) Apoka – A Heves-Borsodi-dombság és az Upponyi-hegység
797	élővilága. Bükki Nemzeti Park Igazgatóság, pp. 35–54.
798	
799	Siller I, Dima B, Albert L, Vasas G, Fodor L, Pál-Fám F, Bratek Z, Zagyva I. 2006. Védett
800	nagygombafajok Magyarországon. Mikológiai Közlemények Clusiana 45: 3–158.
801	
802	Siller I, Turcsányi G, Maglóczky Zs, Czájlik P. 2002. Lignicolous macrofungi of the Kékes North
803	forest reserve in the Mátra Mountains, Hungary. Acta Microbiologica et Immunologica Hungarica
804	49: 193–205.

805	
806	Siller I, Vasas G, Pál-Fám F, Bratek Z, Zagyva I, Fodor L. 2002. Hungarian distribution of the
807	legally protected macrofungi species. Studia Botanica Hungarica 36: 131-163.
808	
809	Smith TW, Lundholm JT. 2010. Variation partitioning as a tool to distinguish niche and neutral
810	processes. <i>Ecography</i> 33: 648–655.
811	
812	Sparks DL, Page AL, Helmke PA, Loeppert RH. 1996. Methods of Soil Analysis Part 3 - Chemical
813	Methods. Soil Society of America Book Series, American Society of Agronomy, Inc, Madison,
814	Wisconsin.
815	
816	Sternberg M, Shoshany M. 2001. Influence of slope aspect on Mediterranean woody formations:
817	comparison of a semiarid and an arid site in Isreal. <i>Ecological Research</i> 16: 335–345.
818	
819	Suba J. 1983. A Bükk növényei. In: Sándor A. (ed.) Bükki Nemzeti Park – Kilátás kövekről.
820	Mezőgazdasági Kiadó, pp. 189–235.
821	
822	Sundseth K. 2009. Natura 2000 in the Pannonian region. European Commission, Environment
823	Directorate General, Brussels.
824	(http://ec.europa.eu/environment/nature/info/pubs/docs/biogeos/pannonian.pdf)
825	
826	Takács B, Siller I. 1980. A Bükk hegységi Ősbükkös gombái. Mikológiai Közlemények, Clusiana 3:
827	121–132.
828	
829	Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijensundera R, Ruiz LV, Vasco-Palacios
830	AM, Thu QP, Suija A, et al. 2014. Global diversity and geography of soil fungi. Science 346:
831	1256688
832	
833	Tóth B. 1999. Adatok a Gyepes-völgy (Heves-Borsodi dombág) nagygombáiról. Kitaibelia 4: 261-
834	270.
835	
836	Tóth G. 1983. A bükki karszt vízrendszere. In: Sándor A. (ed.) Bükki Nemzeti Park – Kilátás
837	kövekről. Mezőgazdasági Kiadó, pp. 107–134.
838	

839	van der Heijden MGA, Bardgett RD, van straalen NM. 2008. The unseen majority: soil microbes as
840	drivers of plant diversity and productivity in terrestrial ecosystems. <i>Ecology Letters</i> 11 :296–310.
841	
842	Vojtkó A. 2002. A hegység növénytakarója. In: Baráz Cs. (Ed.) A Bükki Nemzeti Park – Hegyek,
843	erdők, emberek. Bükki Nemzeti Park Igazgatóság, pp. 237–261.
844	
845	Vojtkó A, Sramkó G, Magos G, Harmos K. 2010. Növényvilág. In: Baráz Cs. (Ed.) A Mátrai
846	Tájvédelmi Körzet – Heves és Nógrád határán. Bükki Nemzeti Park Igazgatóság, pp. 149–174.
847	
848	Walker MD, Walker DA, Auerbach NA. 1994. Plant communities of a tussock tundra landscape in
849	the Brooks Range Foothills, Alaska. Journal of Vegetation Science 5: 843-866.
850	
851	Wheeler KA, Hurdman BF, Pitt JI. 1991. Influence of pH on the growth of some toxigenic species of
852	Aspergillus, Penicillium and Fusarium. International Journal of Food Microbiology, 12: 141–150.
853	
854	White TM, Bruns, T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal
855	RNA for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds.) PCR protocols: a
856	guide to methods and applications. Academic Press, San Diego, CA, pp. 315-321.
857	
858	Whittaker RH. 1956. Vegetation of the Great Smoky Mountains. <i>Ecological Monographs</i> 26: 1–80.
859	
860	
861	

bioRxiv preprint doi: https://doi.org/10.1101/281337; this version posted March 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

862

Fig. 1. A map of the sampling localities, with the location of the region of study in Hungary (inset).

Full names, vegetation types, topographic variables, and geographic coordinates corresponding to the sampling localities are listed in Table 1.

Functional groups

Taxonomic groups

866

867

Fig. 2. Correlations between northerly aspect and operational taxonomic unit (OTU) richness of functional and taxonomic groups as well as environmental variables explored using linear regression. Significant (p < 0.05) and marginally significant (p < 0.1) correlations are marked by ** and *, respectively.

872

Fig. 3. Non-metric multidimensional scaling (NMDS) ordination plots of the fungal communities in
the sampled forest types based on Hellinger-transformed data, with northerly aspect displayed as
isolines. Labels, localities and descriptions of the sampling sites are given in Table 1. Vectors of
environmental variables and richness of functional and taxonomic groups of fungi correlated with
ordination axes are displayed in three identical ordination plots. Abbreviations for functional guilds:
AP = animal pathogen, ECM = ectomycorrhizal fungus, MP = mycoparasite, PPATH = plant
pathogen, ROOT = root-associated (non-ECM) fungus, SAP = generalist saprotroph, WOOD = wood

decomposer.

882

883 Fig. 4. Non-metric multidimensional scaling (NMDS) ordination plots of the four more diverse 884 functional groups of fungi in the sampled forest types based on Hellinger-transformed data, with 885 northerly aspect displayed as isolines. Vectors of environmental variables and OTU richness of fungal families correlated with ordination axes are displayed. Where a certain family was represented 886 887 by only one genus, the genus name is shown.

Table 1. Sampling sites included in this study with code, locality, forest type, dominant tree species, slope aspect, northerly aspect expressed in
degrees (south=0, north=180), slope angle, and geographic coordinates. Abbreviations for tree genera are: *C.: Carpinus* (Betulaceae), *F.: Fagus*(Fagaceae), and *Q.: Quercus* (Fagaceae). Locations are displayed in a map in Figure 1.

891

Site code	Locality	Forest type	Dominant tree species	Aspect	Northerly aspect	Slope angle	Latitude	Longitude
KV1	Kis-várhegy	Quercetum petraeae-cerris	Q. dalechampii, Q. petraea, Q. cerris	SW	13	22.85	47.918885	20.187345
KV2	Kis-várhegy	Corno-Quercetum pubescentis	Q. dalechampii, Q. petraea, Q. cerris	S	5	5.71	47.918840	20.188193
KV3	Kis-várhegy	Corno-Quercetum pubescentis	Q. dalechampii, Q. petraea, Q. cerris	S	2	29.71	47.919033	20.190292
KV4	Kis-várhegy	Corno-Quercetum pubescentis	Q. dalechampii, Q. petraea, Q. cerris	S	10	24	47.918927	20.192524
KV5	Kis-várhegy	Carici pilosae-Carpinetum	C. betulus, Q. petraea	Ν	175	19.43	47.921958	20.193339
KV6	Kis-várhegy	Carici pilosae-Carpinetum	C. betulus, Q. petraea	Ν	170	22.86	47.921977	20.192281
KV7	Kis-várhegy	Carici pilosae-Carpinetum	C. betulus, Q. petraea	Ν	165	25.14	47.921792	20.191034
NV1	Nagy-várhegy	Carici pilosae-Carpinetum	C. betulus, Q. petraea	WNW	115	17.14	47.912658	20.181935
NV2	Nagy-várhegy	Carici pilosae-Carpinetum	C. betulus, Q. petraea	NW	145	33.14	47.916270	20.184321
NV3	Nagy-várhegy	Melittio-Fagetum	F. sylvatica	Ν	178	37.71	47.917315	20.186580
NV4	Nagy-várhegy	Melittio-Fagetum	F. sylvatica	Ν	179	38.85	47.917191	20.188443
NV5	Nagy-várhegy	Quercetum petraeae-cerris	Q. dalechampii, Q. petraea, Q. cerris	WNW	115	22.85	47.913477	20.183917
NV6	Nagy-várhegy	Corno-Quercetum pubescentis	Q. dalechampii, Q. petraea, Q. cerris	SW	15	24.28	47.906740	20.180339
NV7	Nagy-várhegy	Quercetum petraeae-cerris	Q. dalechampii, Q. petraea, Q. cerris	SW	18	8	47.906650	20.181740

Table 2. Fungal OTUs considered as significant indicators of northerly (N) or southerly (S) slope aspects with corresponding *p*-values, assigned
functional guild, matching Species Hypothesis, ITS2 rDNA sequence similarity (%) and taxonomic classification of the most similar matching
sequence in the UNITE+INSD dynamic Species Hypotheses database (version released on October 10, 2017). Only indicators with a known
function are shown, displayed in the order of aspect, functional guild, and decreasing significance of indicator value. Abbreviations for
functional guilds: AP = animal pathogen, ECM = ectomycorrhizal fungus, MP = mycoparasite, PPATH = plant pathogen, ROOT = rootassociated (non-ECM) fungus, SAP = generalist saprotroph, WOOD = wood decomposer.

OTU	Aspect	р	Function	Species Hypothesis	%	Matching taxon	Phylum	Class	
OTU_2513	S	0.0116	AP	SH007609.07FU	95.5	Arthroderma insingulare	Ascomycota	Eurotiomycetes	
OTU_892	S	0.0186	AP	SH012485.07FU	99.4	Beauveria sp.	Ascomycota	Sordariomycetes	
OTU_4940	S	0.0192	AP	SH193551.07FU	95.6	Metacordyceps chlamydosporia	Ascomycota	Sordariomycetes	
OTU_423	S	0.0262	AP	SH196109.07FU	97.5	Simplicillium minatense	Ascomycota	Sordariomycetes	
OTU_1990	S	0.0488	AP	SH214395.07FU	100	Metarhizium flavoviride	Ascomycota	Sordariomycetes	
OTU_178	S	0.0036	ECM	SH182661.07FU	98.8	Melanogaster ambiguus	Basidiomycota	Agaricomycetes	
OTU_462	S	0.0036	ECM	SH182459.07FU	99.4	Scleroderma areolatum	Basidiomycota	Agaricomycetes	
OTU_3	S	0.0046	ECM	SH220826.07FU	100	Russula insignis	Basidiomycota	Agaricomycetes	
OTU_674	S	0.0068	ECM	SH629220.07FU	95.5	Helvella sp.	Ascomycota	Pezizomycetes	
OTU_20	S	0.0144	ECM	SH214605.07FU	96.9	Sebacina incrustans	Basidiomycota	Agaricomycetes	
OTU_722	S	0.02	ECM	SH497502.07FU	98.2	Helvella latispora	Ascomycota	Pezizomycetes	
OTU_219	S	0.0208	ECM	SH222268.07FU	99.4	Membranomyces spurius	Basidiomycota	Agaricomycetes	
OTU_138	S	0.0208	ECM	SH006539.07FU	100	Helvella sp.	Ascomycota	Pezizomycetes	
OTU_112	S	0.0414	ECM	SH190455.07FU	98.3	Astraeus telleriae	Basidiomycota	Agaricomycetes	
OTU_2018	S	0.0228	MP	SH495246.07FU	92.5	Cosmospora sp.	Ascomycota	Sordariomycetes	
OTU_501	S	0.0012	PPATH	SH443332.07FU	96.3	Fusarium concentricum	Ascomycota	Sordariomycetes	
OTU_541	S	0.0032	PPATH	SH198276.07FU	99.4	Nectriaceae sp.	Ascomycota	Sordariomycetes	
OTU_435	S	0.0056	PPATH	SH175284.07FU	99.4	Myrothecium sp.	Ascomycota	Sordariomycetes	
OTU_434	S	0.0062	PPATH	SH217882.07FU	99.4	Pyrenochaeta sp.	Ascomycota	Dothideomycetes	
OTU_279	S	0.0068	PPATH	SH202579.07FU	96.9	Pyrenochaeta sp.	Ascomycota	Dothideomycetes	
OTU_1610	S	0.0096	PPATH	SH177600.07FU	100	Microbotryum anomalum	Basidiomycota	Microbotryomycetes	

OTU_1629	S	0.0108	PPATH	SH213880.07FU	99.4	Gibberella tricincta	Ascomycota	Sordariomycetes
OTU_4998	S	0.0112	PPATH	SH345969.07FU	97.5	Stagonosporopsis dorenboschii	Ascomycota	Dothideomycetes
OTU_1425	S	0.0154	PPATH	SH196352.07FU	100	Spizellomyces pseudodichotomus	Chytridiomycota	Spizellomycetes
OTU_2945	S	0.0192	PPATH	SH175285.07FU	95.7	Myrothecium inundatum	Ascomycota	Sordariomycetes
OTU_5594	S	0.0194	PPATH	SH191389.07FU	97.5	Coniochaeta ligniaria	Ascomycota	Sordariomycetes
OTU_525	S	0.0224	PPATH	SH174362.07FU	100	Lectera longa	Ascomycota	Sordariomycetes
OTU_2810	S	0.0246	PPATH	SH180770.07FU	100	Helminthosporium solani	Ascomycota	Dothideomycetes
OTU_1113	S	0.0032	ROOT	SH020834.07FU	96.3	Phialocephala compacta	Ascomycota	Leotiomycetes
OTU_1268	S	0.0238	ROOT	SH204998.07FU	94.3	Acephala sp.	Ascomycota	Leotiomycetes
OTU_890	S	0.0246	ROOT	SH008258.07FU	96.6	Cadophora sp.	Ascomycota	Leotiomycetes
OTU_748	S	0.0276	ROOT	SH216991.07FU	95.7	Oidiodendron pilicola	Ascomycota	Leotiomycetes
OTU_185	S	0.0012	SAP	SH180481.07FU	98.8	Knufia tsunedae	Ascomycota	Eurotiomycetes
OTU_1707	S	0.0012	SAP	SH176700.07FU	100	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_935	S	0.0012	SAP	SH180772.07FU	98.1	Corynespora sp.	Ascomycota	Dothideomycetes
OTU_3865	S	0.003	SAP	SH629325.07FU	94.9	Chaetomium homopilatum	Ascomycota	Sordariomycetes
OTU_368	S	0.003	SAP	SH216342.07FU	98.1	Kavinia alboviridis	Basidiomycota	Agaricomycetes
OTU_350	S	0.0068	SAP	SH213544.07FU	98.8	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_5475	S	0.0076	SAP	SH527119.07FU	98.1	Cladophialophora sp.	Ascomycota	Eurotiomycetes
OTU_367	S	0.0114	SAP	SH217071.07FU	100	Podospora sp.	Ascomycota	Sordariomycetes
OTU_388	S	0.0118	SAP	SH008915.07FU	98.2	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_1557	S	0.013	SAP	SH184177.07FU	98.3	Preussia persica	Ascomycota	Dothideomycetes
OTU_1071	S	0.015	SAP	SH640120.07FU	91.3	Durella macrospora	Ascomycota	Leotiomycetes
OTU_682	S	0.0154	SAP	SH021128.07FU	99.4	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_479	S	0.0188	SAP	SH205999.07FU	100	Acrostalagmus luteoalbus	Ascomycota	Sordariomycetes
OTU_5347	S	0.0192	SAP	SH527119.07FU	95.7	Cladophialophora sp.	Ascomycota	Eurotiomycetes
OTU_3468	S	0.0196	SAP	SH014661.07FU	96.9	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_96	S	0.0206	SAP	SH204873.07FU	99.4	Chaetomium nigricolor	Ascomycota	Sordariomycetes
OTU_1105	S	0.0208	SAP	SH019302.07FU	95	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_409	S	0.0216	SAP	SH201192.07FU	100	Schizothecium carpinicola	Ascomycota	Sordariomycetes
OTU_2009	S	0.022	SAP	SH003731.07FU	98.8	Articulospora sp.	Ascomycota	Leotiomycetes
OTU_3406	S	0.022	SAP	SH026623.07FU	100	Trichoderma delicatulum	Ascomycota	Sordariomycetes
OTU_1576	S	0.0224	SAP	SH007110.07FU	100	Hypocreales sp.	Ascomycota	Sordariomycetes

OTU_3912	S	0.0228	SAP	SH194607.07FU	97.2	Penicillium christenseniae	Ascomycota	Eurotiomycetes
OTU_1178	S	0.0228	SAP	SH183440.07FU	99.4	Plectania melastoma	Ascomycota	Pezizomycetes
OTU_1694	S	0.023	SAP	SH128133.07FU	95.7	Microcera larvarum	Ascomycota	Sordariomycetes
OTU_1502	S	0.0246	SAP	SH207979.07FU	96.4	Acremonium persicinum	Ascomycota	Sordariomycetes
OTU_1025	S	0.0332	SAP	SH197542.07FU	92.5	Didymosphaeria sp.	Ascomycota	Dothideomycetes
OTU_1444	S	0.0342	SAP	SH204465.07FU	94.4	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_680	S	0.0344	SAP	SH175276.07FU	95.2	Stachybotryaceae sp.	Ascomycota	Sordariomycetes
OTU_878	S	0.035	SAP	SH029684.07FU	90.4	Arachnomyces gracilis	Ascomycota	Eurotiomycetes
OTU_1550	S	0.0366	SAP	SH030697.07FU	94.4	Myrmecridium phragmitis	Ascomycota	Sordariomycetes
OTU_425	S	0.0404	SAP	SH213541.07FU	97.2	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_165	S	0.0428	SAP	SH014661.07FU	98.8	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_1223	S	0.0442	SAP	SH194321.07FU	99.4	Dictyochaeta simplex	Ascomycota	Sordariomycetes
OTU_1337	S	0.0478	SAP	SH184969.07FU	90.1	Hypocreales sp.	Ascomycota	Sordariomycetes
OTU_1810	S	0.0012	WOOD	SH492473.07FU	96.3	Monodictys capensis	Ascomycota	Dothideomycetes
OTU_1642	S	0.0178	WOOD	SH216764.07FU	100	Lophiostoma cynaroidis	Ascomycota	Dothideomycetes
OTU_1194	S	0.039	WOOD	SH216909.07FU	95.7	Arachnopeziza aurata	Ascomycota	Leotiomycetes
OTU_108	Ν	0.0012	AP	SH184964.07FU	99.4	Tolypocladium cylindrosporum	Ascomycota	Sordariomycetes
OTU_895	Ν	0.0118	AP	SH192574.07FU	100	Pochonia bulbillosa	Ascomycota	Sordariomycetes
OTU_344	Ν	0.0034	ECM	SH642176.07FU	94.6	Laccaria sp.	Basidiomycota	Agaricomycetes
OTU_6	Ν	0.0052	ECM	SH214650.07FU	98.2	Sebacina sp.	Basidiomycota	Agaricomycetes
OTU_57	Ν	0.0056	ECM	SH186707.07FU	100	Russula cyanoxantha	Basidiomycota	Agaricomycetes
OTU_37	Ν	0.0056	ECM	SH204757.07FU	97.5	Tarzetta sp.	Ascomycota	Pezizomycetes
OTU_1741	Ν	0.0076	ECM	SH016378.07FU	100	Piloderma sp.	Basidiomycota	Agaricomycetes
OTU_60	Ν	0.0154	ECM	SH214626.07FU	99.4	Sebacina sp.	Basidiomycota	Agaricomycetes
OTU_67	Ν	0.0202	ECM	SH210482.07FU	95.4	Paxillus cuprinus	Basidiomycota	Agaricomycetes
OTU_182	Ν	0.0212	ECM	SH195878.07FU	100	Inocybe maculata	Basidiomycota	Agaricomycetes
OTU_450	Ν	0.0228	ECM	SH188589.07FU	100	Cortinarius decipiens	Basidiomycota	Agaricomycetes
OTU_15	Ν	0.0242	ECM	SH214721.07FU	96.8	Sebacina sp.	Basidiomycota	Agaricomycetes
OTU_312	Ν	0.0398	ECM	SH220557.07FU	99.4	Russula chloroides	Basidiomycota	Agaricomycetes
OTU_111	Ν	0.041	ECM	SH185240.07FU	100	Tomentella sp.	Basidiomycota	Agaricomycetes
OTU_2977	Ν	0.021	MP	SH190871.07FU	96.6	Trichoderma harzianum	Ascomycota	Sordariomycetes
OTU_1367	Ν	0.0212	MP	SH211287.07FU	98.8	Cephalothecaceae sp.	Ascomycota	Sordariomycetes

OTU_570	Ν	0.0368	MP	SH628832.07FU	100	Tremella sp.	Basidiomycota	Tremellomycetes
OTU_731	Ν	0.0404	MP	SH195954.07FU	100	Hypomyces perniciosus Ascomycota		Sordariomycetes
OTU_43	Ν	0.0032	PPATH	SH211202.07FU	100	Bionectriaceae sp.	Ascomycota	Sordariomycetes
OTU_841	Ν	0.0052	PPATH	SH211202.07FU	96.3	96.3 Bionectriaceae sp. Ascomycota		Sordariomycetes
OTU_699	Ν	0.0056	PPATH	SH218629.07FU	98.8	Chalara sp.	Ascomycota	Leotiomycetes
OTU_1254	Ν	0.0142	PPATH	SH194809.07FU	100	Gnomonia virginianae	Ascomycota	Sordariomycetes
OTU_1572	Ν	0.016	PPATH	SH213283.07FU	96.9	Cladosporium sp.	Ascomycota	Dothideomycetes
OTU_3715	Ν	0.018	PPATH	SH217194.07FU	98.3	Nectriaceae sp.	Ascomycota	Sordariomycetes
OTU_2484	Ν	0.0214	PPATH	SH187445.07FU	100	Erysiphe arcuata	Ascomycota	Leotiomycetes
OTU_2587	Ν	0.0242	PPATH	SH211202.07FU	90.9	Bionectriaceae sp.	Ascomycota	Sordariomycetes
OTU_340	Ν	0.0262	PPATH	SH209885.07FU	94.4	Nectriaceae sp.	Ascomycota	Sordariomycetes
OTU_870	Ν	0.0354	PPATH	SH116565.07FU	97.8	Passalora californica	Ascomycota	Dothideomycetes
OTU_5159	Ν	0.0382	PPATH	SH202969.07FU	96.9	Nectria ramulariae	Ascomycota	Sordariomycetes
OTU_387	Ν	0.0056	ROOT	SH207784.07FU	99.4	Meliniomyces sp.	Ascomycota	Leotiomycetes
OTU_5186	Ν	0.0056	ROOT	SH216990.07FU	93.8	Oidiodendron chlamydosporicum	Ascomycota	Leotiomycetes
OTU_1785	Ν	0.0096	ROOT	SH217001.07FU	98.2	Oidiodendron sp.	Ascomycota	Leotiomycetes
OTU_937	Ν	0.0134	ROOT	SH217004.07FU	99.4	Oidiodendron echinulatum	Ascomycota	Leotiomycetes
OTU_970	Ν	0.0336	ROOT	SH181589.07FU	93.8	Chloridium sp.	Ascomycota	Sordariomycetes
OTU_489	Ν	0.0104	SAP	SH193250.07FU	98.2	Cladophialophora sp.	Ascomycota	Eurotiomycetes
OTU_1409	Ν	0.0118	SAP	SH013614.07FU	100	Wardomyces humicola	Ascomycota	Sordariomycetes
OTU_780	Ν	0.0128	SAP	SH180117.07FU	99.4	Mortierella sp.	Mortierellomycota	Mortierellomycetes
OTU_1191	Ν	0.0146	SAP	SH019878.07FU	90.1	<i>Curreya</i> sp.	Ascomycota	Dothideomycetes
OTU_2865	Ν	0.0192	SAP	SH199695.07FU	99.4	Absidia cylindrospora	Mucoromycota	Mucoromycetes
OTU_1876	Ν	0.0236	SAP	SH213264.07FU	97.5	Cladophialophora chaetospira	Ascomycota	Eurotiomycetes
OTU_332	Ν	0.024	SAP	SH196089.07FU	100	Umbelopsis dimorpha	Mucoromycota	Umbelopsidomycetes
OTU_655	Ν	0.0242	SAP	SH200349.07FU	90.8	Malbranchea dendritica	Ascomycota	Eurotiomycetes
OTU_1528	Ν	0.036	SAP	SH028610.07FU	98.8	Leuconeurospora sp.	Ascomycota	Leotiomycetes
OTU_471	Ν	0.048	SAP	SH216098.07FU	99.4	Umbelopsis changbaiensis	Mucoromycota	Umbelopsidomycetes
OTU_859	Ν	0.0042	WOOD	SH205445.07FU	100	Nectriopsis rexiana	Ascomycota	Sordariomycetes
OTU_1116	Ν	0.0052	WOOD	SH198389.07FU	97	Hymenoscyphus fructigenus	Ascomycota	Leotiomycetes

903 Table 3. Correlation of environmental and spatial variables with each other and with fungal community composition of the sampling sites.

904 Correlations among standardized environmental variables and with Hellinger-transformed fungal community matrix were tested individually

905 using Mantel tests showing correlation coefficients (r) and significance values (p). Non-significant results (n.s.) are not shown. In addition, to

906 disentangle the 'pure' effects of environmental variables on fungal community composition, partial Mantel tests were used in all combinations of

907 tested and controlled environmental variables.

908

	Correction among environmental variables aspect slope tree genera edaphic factors							
aspect	-							
slope	n.s.	-						
tree genera	r=0.5256; p<0.0001	n.s.	-					
edaphic factors	r=0.1508; p=0.0461	n.s.	<i>r</i> =0.2661; <i>p</i> =0.0354	-				
spatial	n.s.	n.s.	n.s.	n.s.				

Correlation	with	fungal	community	composition

Tested variables	Mantel test		Control variables fo			
		aspect	slope	tree genera	edaphic factors	spatial
aspect	r=0.7429; p<0.0001	-	r=0.7395; p<0.0001	r=0.6368; p<0.0001	r=0.7928; p<0.0001	r=0.7449; p<0.0001
slope	n.s.	n.s.	-	n.s.	n.s.	n.s.
tree genera	r=0.5584; p <0.0001	r=0.2949; p=0.0178	r=0.5486; p=0.0002	-	r=0.5108; p=0.0002	r=0.5579; p=0.0001
edaphic factors	r=0.5347; p<0.0001	r=0.6388; p<0.0001	<i>r</i> =0.5247; <i>p</i> =0.0002	r=0.4828; p=0.0006	-	r=0.5397; p<0.0001
spatial	n.s.	n.s.	n.s.	n.s.	n.s.	-

909

910 Supporting Information:

Fig. S1. Non-metric multidimensional scaling (NMDS) ordination plots of animal pathogenic, litter
decomposer, mycoparasitic, and root-associated fungi in the sampled forest types based on
Hellinger-transformed data. Vectors of environmental variables and OTU richness of fungal families
correlated with ordination axes are displayed. Where a certain family was represented by only one
genus, the genus name is shown.

918

911 912 bioRxiv preprint doi: https://doi.org/10.1101/281337; this version posted March 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Geml 38

919 920

921 Fig. S2. The contribution of environmental variables to explaining the variation in fungal community

922 composition among the sampling sites as estimated by variation partitioning analyses. Tested

923 environmental variables included topography (aspect, slope), relative abundance of tree genera

924 (*Carpinus, Fagus, Quercus*), and edaphic factors (soil pH, C, N, and C/N)

- 925
- 926

- Table S1. The full list of taxa corresponding to the 2542 unique SHs that matched the OTUs in the
- collected samples with high (> 95%) sequence similarity, with % ITS2 rDNA sequence similarity to
- 929 the most similar OTU, Species Hypothesis code, and taxonomic classification. Taxa are ordered
- 930 according to phylum, class, order, family, genus, and the identified taxon name (provided upon
- 931 manuscript acceptance).