Philippine Fungal Diversity: Benefits and Threats to Food Security

Bangko Sentral ng Pilipinas Professorial Lecture Christian Joseph R. Cumagun College of Agriculture, UPLB

FAO Biodiversity Challenge 2011

Johann Cumagun, age 7

Variation of agressiveness and cultural characters

Front cover of Vol 53 of Plant Pathology : Cumagun et al. (2004)

Newspaper headlines associated with 1993 Fusarium head blight epidemic

Will wheat head blight contribute to shortage of world food supply?

Fusarium graminearum infection

Objectives of my Talk

- 1. To demonstrate the potential biological control of plant diseases using fungi to address food security and environmental safety (Case Study 1)
- 2. To harness the diversity of fungi from the rainforests to generate useful products for agriculture and medicine (Case Study 2)
- 3. To tap the diversity of plant resistance genes to solve the alarming disease epidemics caused by fungi (Case Study 3)
- 4. To discuss the impact of some important *Fusarium* diseases and mycotoxins in the Philippines (Case Study 4)
- 5. To emphasize the need to secure microbial resources in the Philippines to decrease threats to food security

Estimating the no of fungal species

Hawksworth, H. L. 1991. The fungal dimension of biodiversity: magnitude, significance and conservation. Mycological Research 95: 641-655.

Hawksworth, H. L. 2001. The magnitude of fungal diversity: the 1.5 million species estimates revisited. Mycological Research 105: 1422-1432

8.74 million eukaryote species on earth

611,000 species of fungi (moulds, mushrooms) of which 43,271 have been described and catalogued

Camillo Mora. *How many species are there on earth and in the ocean?* PLOS Biology, 2011

5.1 M species of fungi

Meredith Blackwell. American Journal of Botany 98: 426-438 2011

Philippine Fungal Diversity

- Estimated at 3956 species and 818 genera (Tadiosa, 2012)
- 53 species under 22 genera of entomopathogenic fungi were reported on selected areas in the Philippines from 1998 to 2001 (Villacarlos and Meija, 2004)
- Fungi on bamboos (Cai et al, 2003; Hyde et al. (2002)

Table 1. BIOTECH commercialized products derived from Philippine fungi.

Product Name	Fungi	Uses
Brown Magic	Endomycorrhiza	Growth promoter of orchid seedlings and protects them from diseases
Bio Quick	Trichoderma sp.	Bio-organic fertilizer
Bio Green	Trichoderma sp.	Bio-organic fertilizer
Mycogroe	Ecto Mycorrhizal Fungi	Bio fertilizer
Mycovam	Vesicular Arbuscular Fungi	Soil-based biofertilizer for crops except crucifers and lowland rice
VAM Root Inoculant	Vesicular Arbuscular Fungi	Growth promoting subtances and disease control
Lipase	Rhizopus sp.	Hydrolyses coconut oil to produce high value β- monoglyceride
Pectinase	<i>Aspergillus</i> sp.	Juice and wine clarification oil extraction from freshly grated coconut and essential oil extraction
Microbial Rennet	Rhizopus chinensis	Milk coagulation for cheese production

Major repositories of fungal cultures and specimens in the Philippines

- 1. UPLB Mycological Herbarium
- 2. UPLB Microbial Culture Collection
- 3. Philippine National Herbarium Collection (PNHC)
- 4. Microbial Research and Service Laboratory (MRSL), University of the Philippines, Natural Sciences Research Institute (UPCC)
- 5. University of Santo Tomas Collection of Microbial Strains (USTCMS)

Table 3. Effect of *P. lilacinus* on *M. incognita* attacking tomato 37 days after inoculation

Treatments ¹	Root	Gall index	No. of	No. of	No. of egg	Percent
	weight	rating ²	galls ³	nematodes ³	masses ³	reduction
Uninoculated control	6.025b	1.0c	0	0	0	-
M. incognita alone	9.225a	5.0a	32.5a	245.0a	31.3a	-
M. incognita + P.	3.175bc	2.3b	23.5b	23.5b	19.0ab	89.89
lilacinus (1.584×10^5)						
spores/ml)						
M. incognita + P. lilacinus	5.725b	2.0b	6.3b	6.3b	4.5bc	97.31
$(7.92 \text{ x} 10^6 \text{ spores/ml})$						
M. incognita +P. lilacinus	4.725bc	2.0b	10.8b	10.8b	9.0bc	95.38
$(3.96 \text{ x } 10^8 \text{ spores /ml})$						
<i>M. incognita</i> + Nemacur	1.575c	1.0c	0	0	0	100.0

Roots of tomato inoculated with *M.* incognita and *P. lilacinus*

Legend: T0-uninoculated control; T1- *M. incognita* alone; T2 -*M. incognita* + *P. lilacinus* (1.584x105 spores/ml);T3- *M. incognita* + *P. lilacinus*(7.92 x106 spores/ml); T4- *M. incognita* +*P. lilacinus* (3.96 x 108 spores /ml.) T5- *M. incognita* + Nemacur

Source: Oclarit & Cumagun, 2009

👩 Microsoft PowerPoi... 0

S 🗁 🖀 🐺 🖳 📰 🔛 🔛 🕷 🔺 🗡 🖌 🌾 🕯 🧉		
Peatures Available: 23		Ø Entities Remaining: 13
Colour of the conidiophores Hyaline Vipigmented Conidiogenous cells Conidiogenous cells Conidiogenous cells Control and darkened scars Annellate Denticulate Thickened and refractive scars Conidiogenous cell fertility Polyblastic Monoblastic	E	Cercospora amorphophalli Cercospora apii Cercospora armoraciae Cercospora averrhoae Cercospora bakeri Cercospora barringtoniae Cercospora brassicicola Cercospora coffeicola Cercospora duddiae Cercospora longipes Cercospora sorghii Cercospora taccae
Colour of the conidia Hyaline Features Chosen: 2	-	Reptities Discarded: 57
-Texture of the conidiophore -Verrucose -Colour of the conidiophores - Pigmented - Colour of the conidia - V Hyaline - V Hyaline - Trees		Asperisporium caricae Cercosporella dioscoreophylii Corynespora cassiicola Denticularia mangiferae Distocercospora pachyderma Passalora koepkei Passalora lactucae Passalora lactucae Passalora janseana Passalora manihotis Passalora occidentalis Passalora occidentalis Passalora helicteris Passalora henningsii

Colour of the conidia/Hyaline

🔷 LucidPlayer - C:\te... 🔤 Document1 - Micro...

Edenia gomezpompae causing leaf spots in Cassia alata

Phylogeny and taxonomy of obscure genera of microfungi P.W. Crous, U. Braun, M.J. Wingfield, A.R. Wood, H.D. Shin, B.A. Summerell, A.C. Alfenas, C.J.R. Cumagun, J.Z. Groenewald Persoonia 22, 2009: 139 - 161

THE PHILIPPINES: A BIODIVERSITY HOTSPOT

In light of deforestation, the beneficial microbes are being destroyed and perhaps lost forever.

Identification of molecular markers for promising biocontrol agents rDNA-ITS1 analysis of selected isolates (University of Copenhagen, Denmark)

Cumagun et al. 2000 J. of Phytopathology

TWO FUNGAL DISEASES COULD WIPE-OUT BANANA INDUSTRY IN 5 YEARS!

Photo courtesy of Sunstar and APS

Fusariun oxysporum f. sp. *cubense* causing Panama wilt *Mycosphaerella* spp. causing Sigatoka disease of banana

AERIAL SPRAYING: BAN OR NOT TO BAN?

Photo courtesy of, Romeo Gacad

AN ENDOPHYTE FUNGUS : A PROPOSED SOLUTION IN PARTNERSHIP WITH A WORLD-RENOWNED MICROBIOGIST

Muscodor albus

BENEFITS DERIVED FROM MUSCODOR TECHNOLOGY

Pestalotiopsis from Makiling Rainforests

Adiova et al., 2015, unpublished results

BIOVISION The World Life Sciences Forum

"for their discoveries concerning the activation of innate immunity"

Biovision LifeScience Forum, Lyon, France 2013

Genetic structure of populations of *Magnaporthe oryzae* in the Philippines

Lopez, A., **H. Adreit, J. Milazzo** C. Cumagun and D.Tharreau

LA RECHERCHE AGRONOMIQUE POUR LE DÉVELOPPEMENT Losses due to rice blast if saved can feed an additional 60 M people yearly!

24 isolates tested against 16 varieties each with major R gene

Table 4. Pathogenicity testing of *M. oryzae* isolates against differential rice varieties with their corresponding R genes.

	RICE VARIETIES (R gene/s)															
ISOLATE	Azucena (Pi24)	CO39 (PiCO39)	C101Lac (PiCO39, Pi1, Pi33)	Fukunishiki (Piz, Pish)	C101A51 (PiCO39, Pi2)	Tsuyuake (Pikm)	C101TTP (PiCO39, Pita)	Fujisaka 5 (Pii, Piks)	C104Lac (PiCO39, Pil)	75-1-127 (Pi9)	C104PKT (PiCO39, Pi3)	Toride 1 (Pizt)	IR1529 (Pi33)	Bala (Pi33)	IR64 (Pi33)	Maratelli
PH0200	HR	HR	HR	HR	HR	HR	HR	HR	HR	HR	HR	HR	HR	HR	HS	HR
PH0201	HR	HS	HR	HR	HR	HR.	HS	HR	HR	HR.	HR.	HS	HR	HS	HR	HS
PH0210	HS	HS	HR	HR	HR	HR.	HS	HR	HR	s	HR	s	s	HR	HR	HR
PH0211	?	HR.	HR	HR	HR	s	HR	HS	HR	HR	HR.	HR	HR	HR	HR	HS
PH0213	HS	HS	HR	HR	HR	HR.	HS	HS	HR	HR.	HS	?	HR	HR	HR	HS
PH0241	HR	HS	HR	HR	s	HR.	HS	HR	HR	HR.	HR	HS	HR	HR	HR	HS
PH0242	HR	HS	HR	HR	s	HR.	HS	HR	HR	HR	HR	s	HR	HR	HR	HS
PH0248	HR	HS	HR	HR	s	HR.	HS	HR	HR	HR.	HR.	HS	HR	HR	HR	HS
PH0278	HS	HS	HR	HR	HR	HR.	S	HS	HR	HR.	HS	HR	HR	HR	HR	HS
PH0281	HR	HS	HR	S	HR	HR.	S	HS	HR	HR.	HS	HR	HR	HR	HR	HS
PH0304	HR	HS	HR	HR	HR	HR	S	HS	HR	HR	HS	HR	HR	HR	HR	HS
PH0318	HR	HS	HR	HR	S	HR.	HS	HR	HR	HR	HR	HS	HR	HR	HR	HS
PH0324	HR	HS	HR	HR	S	HR.	HS	HR	HR	HR.	HR.	HS	HR	HR	HR	HS
PH0326	HR	HS	HR	HR	s	HR.	HS	HR	HR	HR	HR	HS	HR	HR	HR	HS
PH0328	?	HS	HR	HR	HR	HR.	HS	HS	HR	HR.	HS	HS	HR	HR	HR	HS
PH0329	S	HS	HR	HR	S	HR.	HS	HS	HR	HR	HS	HS	HR	HS	HR	HS
PH0349	HR	HS	HR	HR	S	HR.	HS	HR	HR	HR.	HR.	HS	HR	HR	HR	HS
PH0351	S	HS	HR	HR	HR	HR.	HS	HR	HR	HR	HR.	HS	HR	HS	HR	HS
PH0358	HR	HS	HR	HR	HR	HR.	HS	HR	HR	HR	HR	HS	HR	HR	HR	HS
PH0361	HR	HS	HR	HR	HR	HR.	HS	HR	HR	HR	HR	S	HR	HR	HR	HS
PH0383	HR	HS	HR	HR	S	HR.	HS	HR	HR	HR.	HR.	HS	HR	HR	HR	HS
PH0384	HR	HS	HR	HR	S	HR.	HS	HR	HR	HR	HR	HS	HR	HR	HR	HS
PH0427	HR	HS	HR	S	HR	HR.	HS	HS	HR	HR.	HS	HS	HR	HR	HR	HS
PH0432	HR	HS	HR	HR	?	HR	HS	HS	HR	HR	HS	HS	HR	HR	HR	HS

Genomics and Control of Rice Blast Disease

53 isolates tested for ACE1 genotype

= 7 (avirulent)

= 2 (undetermined)

= 34 (virulent)

= 10 (virulent)

Triticum isolates

which first appeared in 1980's and caused an outbreak of wheat blast in Brazil

Highly fertile with any other pathotypes of *M. oryzae*Their host – wheat – is easy to handle in the laboratory.

Identification of a hidden resistance gene in tetraploid wheat using laboratory strains of *Pyricularia oryzae* produced by backcrossing

Christian Joseph R. Cumagun, Vu Lan Anh, Trinh Thi Phuong Vy, Yoshihiro Inoue, Hokuto Asano, Gang-Su Hyon, Izumi Chuma, and Yukio Tosa

Chromosome 7B

Torada et al. (2006)

Linkage map around RmgTd(t) constructed using F_3 lines derived from Tat4 x Tat14

Cumagun et al, 2014

Genetic structure of populations of *Rhizoctonia solani* AG-1 IA from rice in China, Japan and the Philippines

C.J.R. Cumagun, P. Ceresini, R. Oliva, M. Zala and B.A. McDonald

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" INTERNATIONAL RICE RESEARCH INSTITUTE

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Regression between genetic and geographical distance among pairs of 18 rice-infecting populations of *Rhizoctonia solani* AG-1 IA from China, Japan and the Philippines.

Cumagun et al, unpublished results

Given	Number of genotypes with membership in their given population or in one of the others	Tota
population		num

Number of Admixed admixed proportion genotypes

-	China					Japan	Philippines			
	Northern	Southern	Central	Eastern	Western					
China										
Northern	23.7	0.0	2.2	0.1	0.0	0.9	0	27	3.3	0.12
Southern	1.0	34.3	0.7	2.4	0.3	1.6	0.7	41	6.7	0.16
Central	2.2	4.1	6.6	1.5	0.8	0.8	0.2	16	9.5	0.59
Eastern	0.7	1.9	6.1	23.7	1.1	0.5	0.1	34	10.3	0.30
Western	0.8	0.1	2.0	0.6	11.2	2.2	0.1	17	5.8	0.34
Japan	1.1	0.8	15.5	0.5	0.4	115.5	0.1	134	18.5	0.14
Philippines	0.1	0.2	0.0	0.1	0.2	0.2	61.2	62	0.9	0.01
							Total	331	54,9	0,17

Cumagun et al, unpublished results

ber of

genotypes

Fumonisin production of *F. verticillioides* and *F. fujikuroi* isolates in the Philippines

Source	Host	No of isolates	Mean fumonisin production (µg/g)				
			FB1	FB2	FB3		
Isabela	maize	20	146.75	45.54	9.70		
Laguna	maize	16	30.05	10.22	2.12		
N. Ecija	rice	7	31.47	5.36	0.52		

Cumagun et al., 2009

Table 2. Collection sites, morphological identification and aflatoxin production byAsperigillus isolates on CAM and HPLC analysisYli Matilla, 2015, unpublished results

Isolate code	lateCollection siteMorphologAFsHPLC analysis of aflatoxins from Tleicalproduction							ES broth
		identificati on	on CAM	G1 ng ml -1 media	B1 ng ml -1 media	G2 ng ml-1 media	B2 ng ml -1 medi a	Total AFs ng ml -1 media
8P	Soil sample from a field of coconut in Situbo, Tampilisan, Mindanao	A. parasiticus	+++	2198.5	1235.6	41.5	30.4	3506
9P	Soil sample from a field of coconut in Situbo, Tampilisan, Mindanao	A. parasiticus	+++	1526.6	825.2	26.9	23	2401.7
10P	Soil sample from a field of coconut in Situbo, Tampilisan, Mindanao	A. parasiticus	+++	12950.3	5001.3	224.6	146.7	18322.9
18P	Soil sample from a field of maize in New Barili, Tampilisan, Mindanao	A. flavus	+	4	3.6	ND	ND	7.6
32P	Soil sample from a field of maize in Garimbara, Visayas	A. flavus	+	0.42	1.6	ND	ND	2.02
33P	Soil sample from a field of maize in Garimbara, Visayas	A. flavus	+	0.6	1.6	ND	ND	2.2
34P	Soil sample from a field of maize in Garimbara,	A. flavus	+	0.3	1.2	ND	ND	1.5

Race 4 in Luzon?

-

Bicel Cagayan Valley CALABARZON Central Luzen Cordillera Ilecos Metro Manila MIMARO

164 isolates were collected from 26 areas covering 12 provinces in 5 regions of Luzon, Philippines

Aguilar (2014). unpublished results

Aguilar (2014). unpublished results

Dendrogram generated from UPGMA cluster analysis using laccard Similarity Coefficient based on three primer combination

of South-The map Central Mindanao study as area showing the distribution of Foc isolates identified as VCG 01213/16 (Foc TR4), genotype 8 and 9 and 2 unknown VCGs.

Solpot, unpublished results

THE POWER OF THE MEDIA IN BRINGING SCIENCE TO THE PUBLIC

Radio

Training the next generation of scientists

Conclusions and Future Outlook

- Promoting biodiversity enhances biocontrol research in agriculture. Biodiversity of plant pathogens not only of beneficial fungi should be conserved.
- Rainforests are rich sources of beneficial microbes. Save them before the microbes that are associated with them become extinct.
- Identification of both resistance genes in the host and avirulence genes in the pathogen are important in order for resistance to be effective. Monitoring gene flow of plant pathogens is essential for effective plant disease management.
- The need to focus on *Fusarium* and mycotoxin research in the Philippines.
- The need to train the next generation of mycologists and plant pathologists to sustain food security in the Philippines.

Thank you for your attention