Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-07T19:21:49.839Z Has data issue: false hasContentIssue false

10 - Integrating Ecological Complexity into Our Understanding of Ant-Plant Mutualism: Ant-Acacia Interactions in African Savannas

from Part III - Ant-Plant Protection Systems under Variable Habitat Conditions

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 200 - 222
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P., and Bamford, M.. (2008). Past and present vegetation ecology of Laetoli, Tanzania. Journal of Human Evolution 54,7898.CrossRefGoogle ScholarPubMed
Archetti, M., Ubeda, F., Fudenberg, D., Green, J., Pierce, N. E., and Yu, D. W.. (2011). Let the right one in: a microeconomic approach to partner choice in mutualisms. American Naturalist 177,7585.Google Scholar
Archibald, S. (2016). Managing the human component of fire regimes: Lessons from Africa. Philosophical Transactions of The Royal Society B 371:20150346. http://dx.doi.org/10.1098/rstb.2015.0346Google Scholar
Archibald, S., Staver, A.C., and Levin, S.A.. (2012). Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the United States of America 109, 847852.Google Scholar
Arshad, M. A. (1981). Physical and chemical properties of termite mounds of two species of Macrotermes (Isoptera, Termitidae) and the surrounding soils of the semi-arid savanna of Kenya. Soil Science 132,161174.CrossRefGoogle Scholar
Baker, C. (2015). Complexity in Mutualisms: Indirect Interactions with Multiple Parties. Doctoral Dissertation, Harvard University, Cambridge, MA.Google Scholar
Belsky, A. J., Amundson, R. G., Duxbury, J. M., Riha, S. J., Ali, A. R., and Mwonga, S. M.. (1989). The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology 26,10051024.CrossRefGoogle Scholar
Brody, A. K., Palmer, T. M., Fox-Dobbs, K. and Doak, D. F.. (2010). Termites, vertebrate herbivores and the fruiting success of Acacia drepanolobium. Ecology 91,399407.Google Scholar
Chomicki, G., Ward, P. S., and Renner, S. S.. (2015). Macroevolutionary assembly of ant/plant symbioses. Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proceedings of the Royal Society B-Biological Sciences 282,20152200.CrossRefGoogle ScholarPubMed
Cochard, R., and Edwards, P. J.. (2011). Structure and biomass along an Acacia zanzibarica woodland-savanna gradient in a former ranching area in coastal Tanzania. Journal of Vegetation Science 22,475489.Google Scholar
Davidson, D. W., Longino, J. T., and Snelling, R. R.. (1988). Pruning of host plant neighbors by ants: An experimental approach. Ecology 69,801808.Google Scholar
Davidson, D. W., and McKey, D.. (1993). The evolutionary ecology of symbiotic ant – plant relationships. Journal of Hymenoptera Research 2,1383.Google Scholar
Dayton, P. K. (1972). Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. Pages 8196. In Proceedings of the Colloquium on Conservation Problems. Allen Press, Lawrence, Kansas.Google Scholar
Fiala, B., Maschwitz, U., Pong, T. Y., and Helbig, A. J.. (1989). Studies of a South East Asian ant-plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia 79,463470.Google Scholar
Ford, A. T., Goheen, J. R., Otieno, T. O., Arcese, P., Palmer, T. M., Woodroffe, R., Ward, D., and Pringle, R. M.. (2014). Large carnivores make savanna tree communities less thorny. Science 346,346349.CrossRefGoogle ScholarPubMed
Fox-Dobbs, K., Doak, D. F., Brody, A. K., and Palmer, T. M.. (2010). Termites create spatial structure and govern ecosystem function by affecting N-2 fixation in an East African savanna. Ecology 91,12961307.CrossRefGoogle Scholar
Frederickson, M. E. (2009). Conflict over reproduction in an ant-plant symbiosis: why Allomerus octoarticulatus ants sterilize Cordia nodosa trees. American Naturalist 173,675681.Google Scholar
Frederickson, M. E., Ravenscraft, A., Miller, G. A., Hernandez, L. M. A., Booth, G., and Pierce, N. E.. (2012). The direct and ecological costs of an ant-plant symbiosis. American Naturalist 179,768778.Google Scholar
Goheen, J. R., and Palmer, T. M.. (2010). Defensive plant-ants stabilize megaherbivore-driven landscape change in an African savanna. Current Biology 20,17681772.CrossRefGoogle Scholar
Heil, M. (2013. Let the best one stay: screening of ant defenders by Acacia host plants functions independently of partner choice or host sanctions. Journal of Ecology 101,684688.CrossRefGoogle Scholar
Heil, M., and McKey, D.. (2003). Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology Evolution and Systematics 34,425453.Google Scholar
Hocking, B. (1970). Insect associations with the swollen thorn acacias. Transactions of the Royal Entomological Society of London 122,211255.CrossRefGoogle Scholar
Holdo, R. M., Sinclair, A. R. E., Dobson, A. P., Metzger, K. L., Bolker, B. M., Ritchie, M. E., and Holt, R. D.. (2009). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. Plos Biology 7, e1000210.CrossRefGoogle ScholarPubMed
Huntzinger, M., Karban, R., Young, T. P., and Palmer, T. M.. (2004). Relaxation of induced indirect defenses of acacias following exclusion of mammalian herbivores. Ecology 85,609614.Google Scholar
Huxley, C. R. (1978). The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytologist 80,231268.Google Scholar
Janzen, D. H. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution 20,249275.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1969). Allelopathy by myrmecophytes: the ant Azteca as an allelopathic agent of Cecropia. Ecology 50,147153.Google Scholar
Madden, D., and Young, T. P.. (1992). Symbiotic ants as an alternative defense against giraffe herbivory in spinescent Acacia drepanolobium. Oecologia 91,235238.Google Scholar
Martins, D. J. (2010). Not all ants are equal: obligate acacia ants provide different levels of protection against mega-herbivores. African Journal of Ecology 48,11151122.Google Scholar
Martins, D. J. (2013). Effect of parasitoids, seed-predators and ant-mutualists on fruiting success and germination of Acacia drepanolobium in Kenya. African Journal of Ecology 51,562570.CrossRefGoogle Scholar
Midgley, J. J., Sawe, T., Abanyam, P., Hintsa, K., and Gacheru, P.. (2016). Spinescent East African savannah acacias also have thick bark, suggesting they evolved under both an intense fire and herbivory regime. African Journal of Ecology 54,118120.Google Scholar
Morawetz, W., henzl, M., and Wallnöfer, B.. (1992). Tree killing by herbicide producing ants for the establishment of pure Tococa occidentalis populations in the Peruvian Amazon. Biodiversity and Conservation 1,1933.Google Scholar
Ness, J. H. (2006). A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113,506514.Google Scholar
Okello, B. D., O’Connor, T. G., and Young, T. P.. (2001). Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. Forest Ecology and Management 142,143153.CrossRefGoogle Scholar
Okello, B. D., and Young, T. P.. (2000). Effects of fire, bruchid beetles and soil type on the germination and seedling establishment of Acacia drepanolobium. African Journal of Range and Forage Science 17,4561.Google Scholar
Okello, B. D., Young, T. P., Riginos, C., Kelly, D., and O’Connor, T. G.. (2008). Short-term survival and long-term mortality of Acacia drepanolobium after a controlled burn. African Journal of Ecology 46,395401.CrossRefGoogle Scholar
Palmer, T. M. (2001). Competition and Coexistence in a Guild of African Acacia-Ants. PhD dissertation. University of California Davis, Davis, CA.Google Scholar
Palmer, T. M. (2003). Spatial habitat heterogeneity influences competition and coexistence in an African acacia ant guild. Ecology 84,28432855.Google Scholar
Palmer, T. M. (2004). Wars of attrition: colony size determines competitive outcomes in a guild of African acacia-ants. Animal Behaviour 68,9931004.Google Scholar
Palmer, T. M., and Brody, A. K.. (2007). Mutualism as reciprocal exploitation: ant guards defend foliar but not reproductive structures of an African ant-plant. Ecology 88,30043011.Google Scholar
Palmer, T. M., and Brody, A. K.. (2013). Enough is enough: the effects of symbiotic ant abundance on herbivory, growth and reproduction in an African acacia. Ecology 94,683691.Google Scholar
Palmer, T. M., Doak, D. F., Stanton, M. L., Bronstein, J. L., Kiers, E. T., Young, T. P., Goheen, J. R., and Pringle, R. M.. (2010). Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proceedings of the National Academy of Sciences of the United States of America 107,1723417239.Google Scholar
Palmer, T. M., Pringle, E. G., Stier, A. C., and Holt, R. D.. (2015). Mutualism in a community context. Pages 159180. In Bronstein, J. L., editor. Mutualism. Oxford University Press, Oxford.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P., Goheen, J. R., Pringle, R. M., and Karban, R.. (2008a). Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African Savanna. Science 319,192195.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P., Goheen, J. R., Pringle, R. M., and Karban, R.. (2008b). Putting ant-Acacia mutualisms to the fire – response. Science 319,17601761.Google Scholar
Palmer, T. M., Young, T. P., and Stanton, M. L.. (2002). Burning bridges: Priority effects and the persistence of a competitively subordinate acacia-ant in Laikipia, Kenya. Oecologia 133,372379.Google Scholar
Palmer, T. M., Young, T. P., Stanton, M. L., and Wenk, E.. (2000). Short-term dynamics of an acacia ant community in Laikipia, Kenya. Oecologia 123,425435.Google Scholar
Pringle, E. G., Akcay, E., Raab, T. K., Dirzo, R., and Gordon, D. M.. (2013). Water stress strengthens mutualism among ants, trees, and scale insects. Plos Biology 11, e1001705.Google Scholar
Pringle, E. G., Dirzo, R., and Gordon, D. M.. (2011). Indirect benefits of symbiotic coccoids for an ant-defended myrmecophytic tree. Ecology 92,3746.Google Scholar
Pringle, R. M., Doak, D. F., Brody, A. K., Jocque, R., and Palmer, T. M.. (2010). Spatial pattern enhances ecosystem functioning in an African savanna. Plos Biology 8, e1000377.Google Scholar
Pringle, R. M., and Fox-Dobbs, K.. (2008). Coupling of canopy and understory food webs by ground-dwelling predators. Ecology Letters 11,13281337.Google Scholar
Pringle, R. M., Prior, K. M., Palmer, T. M., Young, T. P., and Goheen, J. R.. (2016). Large herbivores promote habitat specialization and beta diversity of African savanna trees. Ecology 97,2640–2657.CrossRefGoogle Scholar
Riginos, C. (2015). Climate and the landscape of fear in an African savanna. Journal of Animal Ecology 84,124133.Google Scholar
Riginos, C., Grace, J. B., Augustine, D. J., and Young, T. P.. (2009). Local versus landscape-scale effects of savanna trees on grasses. Journal of Ecology 97,13371345.Google Scholar
Riginos, C., Karande, M. A., Rubenstein, D. I., and Palmer, T. M.. (2015). Disruption of a protective ant-plant mutualism by an invasive ant increases elephant damage to savanna trees. Ecology 96,654661.Google Scholar
Rudolph, K. P., and McEntee, J. P.. (2016). Spoils of war and peace: enemy adoption and queen-right colony fusion follow costly intraspecific conflict in acacia ants. Behavioral Ecology 27,793802.Google Scholar
Ruiz-Guajardo, J. C., Grossenbacher, D., Grosberg, R. K., Palmer, T. M., and Stanton, M. L.. (2017). Impacts of worker density in colony-level aggression, expansion, and survival of the acacia-ant Crematogaster mimosae. Ecological Monographs 87: 246259.Google Scholar
Sagers, C. L., Ginger, S. M., and Evans, R. D.. (2000). Carbon and nitrogen isotopes trace nutrient exchange in an ant-plant mutualism. Oecologia 123,582586.Google Scholar
Sensenig, R. L., Kimuyu, D. K., Ruiz-Guajardo, J. C., Riginos, C., and Young, T. P.. (2017). Fire disturbance disrupts an acacia ant-plant mutualism in favor of a subordinate ant species. Ecology 98, 14551464.Google Scholar
Stanton, M. L. (2003). Interacting guilds: moving beyond the pairwise perspective on mutualisms. American Naturalist 162,S10S23.Google Scholar
Stanton, M. L., and Palmer, T. M.. (2011). The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree. Ecology 92,10731082.CrossRefGoogle ScholarPubMed
Stanton, M. L., Palmer, T. M., and Young, T. P.. (2002). Competition-colonization trade-offs in a guild of African acacia-ants. Ecological Monographs 72,347363.Google Scholar
Stanton, M. L., Palmer, T. M., and Young, T. P.. (2005). Ecological barriers to early colony establishment in three coexisting acacia-ant species in Kenya. Insectes Sociaux 52,393401.Google Scholar
Stanton, M. L., Palmer, T. M., Young, T. P., Evans, A., and Turner, M. L.. (1999). Sterilization and canopy modification of a swollen thorn acacia tree by a plant-ant. Nature 401,578581.CrossRefGoogle Scholar
Stapley, L. (1998). The interaction of thorns and symbiotic ants as an effective defence mechanism of swollen-thorn acacias. Oecologia 115,401405.Google Scholar
Styrsky, J. D., and Eubanks, M. D.. (2007). Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B-Biological Sciences 274,151164.Google Scholar
Tarnita, C. E., Palmer, T. M., and Pringle, R. M.. (2014). Colonisation and competition dynamics can explain incomplete sterilisation parasitism in ant-plant symbioses. Ecology Letters 17,12901298.Google Scholar
Visiticao, J. M. (2011). Multi-Species Interactions in African Ant-Acacias. PhD Dissertation, Harvard University, Cambridge, MA.Google Scholar
Vollrath, F., and Douglas-Hamilton, I.. (2002). African bees to control African elephants. Naturwissenschaften 89,508511.Google Scholar
Willmer, P. G., Nuttman, C. V., Raine, N. E., Stone, G. N., Pattrick, J. G., Henson, K., Stillman, P., McIlroy, L., Potts, S. G., and Knudsen, J. T.. (2009). Floral volatiles controlling ant behaviour. Functional Ecology 23,888900.Google Scholar
Willmer, P. G., and Stone, G. N.. (1997). How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388,165167.Google Scholar
Wood, W. F., and Chong, B.. (1975). Alarm pheremones of the east African acacia symbionts: Crematogaster mimosae and C. negriceps. Journal of the Georgia Entomological Society 10,332334.Google Scholar
Young, T. P., Okello, B. D., Kinyua, D., and Palmer, T. M.. (1998). KLEE: a long-term multi-species herbivore exclusion experiment in Laikipia, Kenya. African Journal of Range Forage Science 14,94102.CrossRefGoogle Scholar
Young, T. P., Stubblefield, C. H., and Isbell, L. A.. (1997). Ants on swollen-thorn acacias: species coexistence in a simple system. Oecologia 109,98107.Google Scholar
Yu, D. W., Wilson, H. B., Frederickson, M. E., Palomino, W., De la Colina, R., Edwards, D. P., and Balareso, A. A.. (2004). Experimental demonstration of species coexistence enabled by dispersal limitation. Journal of Animal Ecology 73,11021114.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×