Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-04T05:53:35.766Z Has data issue: false hasContentIssue false

24 - Chimpanzee self-medication: a historical perspective of the key findings

from Part V - Life history and health

Published online by Cambridge University Press:  05 September 2015

Michio Nakamura
Affiliation:
Kyoto University, Japan
Kazuhiko Hosaka
Affiliation:
Kamakura Women’s University, Japan
Noriko Itoh
Affiliation:
Kyoto University, Japan
Koichiro Zamma
Affiliation:
Great Ape Research Institute
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Mahale Chimpanzees
50 Years of Research
, pp. 340 - 353
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbiw, D. K. (1990). Useful Plants of Ghana. Kew, UK: Intermediate Technology Publications and Royal Botanic Gardens.CrossRefGoogle Scholar
Brack, M. (1987). Agents Transmissible from Simians to Man. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Constable, C. P. and Towers, G. H. N. (1989). The complex nature of the mechanism of toxicity and antibiotic dithiacylohexadiene polylines (thiarubrines) from the Asteraceae. Planta Medica, 55, 35–7.Google Scholar
Cousins, D. and Huffman, M. A. (2002). Medicinal properties in the diet of gorillas – An ethnopharmacological evaluation. African Studies Monographs, 23, 6589.Google Scholar
Engel, C. (2002). Wild Health. Boston: Houghton Mifflin.Google Scholar
Fruth, B., Ikombe, N. B., Matshimba, G. K., et al. (2014). New evidence for self-medication in bonobos: Maniophyton fulvum leaf- and stemstrip-swallowing from LuiKotale, Salonga National Park, DR Congo. American Journal of Primatology, 76, 146–58.CrossRefGoogle ScholarPubMed
Githen, T. S. (1949). Drug Plants of Africa. Pittsburg, PN: University of Pennsylvania Press.CrossRefGoogle Scholar
Goodall, J. (2013). Seeds of Hope: Wisdom and Wonder from the World of Plants. New York: Grand Central Publishing.Google Scholar
Howe, H. F. and Westley, L. C. (1988). Ecological Relationships of Plants and Animals. New York: Oxford University Press.Google Scholar
Huffman, M. A. (1993). [An investigation of the use of medicinal plants by wild chimpanzees. Current status and future prospects.] Primate Research, 9, 179–87. In Japanese with English summary.CrossRefGoogle Scholar
Huffman, M. A. (1994). The CHIMPP Group: A multi-disciplinary investigation into the use of medicinal plants by chimpanzees. Pan Africa News, 1(1), 35.CrossRefGoogle Scholar
Huffman, M. A. (1997). Current evidence for self-medication in primates: A multidisciplinary perspective. Yearbook of Physical Anthropology, 40, 171200.3.0.CO;2-7>CrossRefGoogle Scholar
Huffman, M. A. (2001). Self-medicative behavior in the African great apes: An evolutionary perspective into the origins of human traditional medicine. BioScience, 51, 651–61.CrossRefGoogle Scholar
Huffman, M. A. (2002). Animal origins of herbal medicine. In From the Sources of Knowledge to the Medicines of the Future, ed. Fleurentin, J., Pelt, J-M., and Mazars, G.. Paris: IRD Editions, pp. 3142.Google Scholar
Huffman, M. A. (2007). Primate self-medication. In Primates in Perspective, ed. Campbell, C., Fuentes, A., MacKinnon, K., Panger, M., and Bearder, S.. Oxford: University of Oxford Press, pp. 677–90.Google Scholar
Huffman, M. A. (2010). Self-medication: passive prevention and active treatment. In Encyclopedia of Animal Behavior, ed. Breed, M. D. and Moore, J.. Oxford: Academic Press, pp. 125–31.Google Scholar
Huffman, M. A. and Caton, J. M. (2001). Self-induced increase of gut motility and the control of parasitic infections in wild chimpanzees. International Journal of Primatology, 22, 329–46.CrossRefGoogle Scholar
Huffman, M. A and Hirata, S. (2004). An experimental study of leaf swallowing in captive chimpanzees: insights into the origin of a self-medicative behavior and the role of social learning. Primates, 45, 113–18.CrossRefGoogle ScholarPubMed
Huffman, M. A. and MacIntosh, A. J. J. (2012). Plant food diet of the Arashiyama-Kyoto Japanese macaques and its potential medicinal value. In The Monkeys of Stormy Mountain: 60 Years of Primatological Research on the Japanese Macaques of Arashiyama, ed. Leca, J-B, Huffman, M. A., and Vasey, P. L.. Cambridge: Cambridge University Press, pp. 356431.CrossRefGoogle Scholar
Huffman, M. A. and Seifu, M. (1989). Observations on the illness and consumption of a possibly medicinal plant Vernonia amygdalina (Del.), by a wild chimpanzee in the Mahale Mountains National Park, Tanzania. Primates, 30, 5163.CrossRefGoogle Scholar
Huffman, M. A. and Wrangham, R. W. (1994). The diversity of medicinal plant use by chimpanzees in the wild. In Chimpanzee Cultures, ed. Wrangham, R. W., McGrew, W. C., deWaal, F. B. and Heltne, P. G.. Cambridge MA: Harvard University Press, pp. 129–48.Google Scholar
Huffman, M. A., Nishida, T., and Uehara, S. (1990). Intestinal parasites and medicinal plant use in wild chimpanzees: possible behavioral adaptation for the control of parasites. Mahale Mountains Chimpanzees Research Project. Ecological Report, 72.Google Scholar
Huffman, M. A., Gotoh, S., Izutsu, D., Koshimizu, K., and Kalunde, M. S. (1993). Further observations on the use of Vernonia amygdalina by a wild chimpanzee, its possible effect on parasite load, and its phytochemistry. African Study Monographs, 14, 227–40.Google Scholar
Huffman, M. A., Koshimizu, K., and Ohigashi, H. (1996a). Ethnobotany and zoopharmacognosy of Vernonia amygdalina, a medicinal plant used by humans and chimpanzees. In Compositae: Biology & Utilization Vol. 2, ed. Caligari, P. D. S. and Hind, D. J. N.. Kew: The Royal Botanical Gardens, pp. 351–60.Google Scholar
Huffman, M. A., Page, J. E., Sukhdeo, M. V. K., et al. (1996b). Leaf-swallowing by chimpanzees, a behavioral adaptation for the control of strongyle nematode infections. International Journal of Primatology, 72, 475503.CrossRefGoogle Scholar
Huffman, M. A., Gotoh, S., Turner, L. A., Hamai, M., and Yoshida, K. (1997). Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates, 38, 111–25.CrossRefGoogle Scholar
Huffman, M. A., Pebsworth, P., Bakuneeta, C., Gotoh, S., and Bardi, M. (2009). Macro-habitat comparison of host–parasite ecology in two populations of chimpanzees in the Budongo Forest, Uganda and the Mahale Mountains, Tanzania. In Primate Parasite Ecology: The Dynamics of Host-parasite Relationships, ed. Huffman, M. A. and Chapman, C.. Cambridge: Cambridge University Press, pp. 311–30.Google Scholar
Huffman, M. A., Spiezio, C., Sgaravatti, A., and Leca, J-B. (2010). Option biased learning involved in the acquisition and transmission of leaf swallowing behavior in chimpanzees (Pan troglodytes)? Animal Cognition, 13, 871–80.CrossRefGoogle Scholar
Izevbigie, E. B. (2005). Phytochemotherapy for cancer. US Patent application 756241. January 13, 2004Google Scholar
Janzen, D. H. (1978). Complications in interpreting the chemical defenses of trees against tropical arboreal plant-eating vertebrates. In The Ecology of Arboreal Folivores, ed. Montgomery, G. G.. Washington DC: Smithsonian Institute Press, pp. 7384.Google Scholar
Jisaka, M., Kawanaka, M., Sugiyama, H., et al. (1992a). Antischistosomal activities of sesquiterpene lactones and steroid glucosides from V. amygdalina, possibly used by wild chimpanzees against parasite-related disease. Bioscience, Biotechnology and Biochemistry, 56, 845–6.CrossRefGoogle Scholar
Jisaka, M., Ohigashi, H., Takagaki, T., et al. (1992b). Bitter steroid glucosides, Vernoniosides A1, A2 and A3 and related B1 from a possible medicinal plant Vernonia amygdalina, used by wild chimpanzees. Tetrahedron, 48, 625–32.CrossRefGoogle Scholar
Jisaka, M., Ohigashi, H., Takegawa, K., Huffman, M. A., and Koshimizu, K. (1993a). Antitumoral and antimicrobial activities of bitter sesquiterpene lactones of Vernonia amygdalina, a possible medicinal plant used by wild chimpanzee. Bioscience, Biotechnology and Biochemistry, 57, 833–4.CrossRefGoogle Scholar
Jisaka, M., Ohigashi, H., Takegawa, K., et al. (1993b). Steroid glucosides from Vernonia amygdalina, a possible chimpanzee medicinal plant. Phytochemistry, 34, 409–13.CrossRefGoogle Scholar
Johns, T. (1990). With Bitter Herbs They Shall Eat It. Tucson, AZ: The University of Arizona Press.Google Scholar
Kawabata, M. and Nishida, T. (1991). A preliminary note on the intestinal parasites of wild chimpanzees of the Mahale Mountains, Tanzania. Primates, 32, 275–8.CrossRefGoogle Scholar
Kokwaro, J. (1976). Medicinal Plants of East Africa. Nairobi: East African Literature Bureau.Google Scholar
Koshimizu, K., Ohigashi, H., Huffman, M. A., Nishida, T., and Takasaki, H. (1993). Physiological activities and the active constituents of potentially medicinal plants used by wild chimpanzees of the Mahale Mountains, Tanzania. International Journal of Primatology, 14(2), 345–56.CrossRefGoogle Scholar
Krief, S., Hladik, C. M., and Haxaire, C. (2005). Ethnomedicinal and bioactive properties of plants ingested by wild chimpanzees in Uganda. Journal of Ethnopharmacology, 101, 115.CrossRefGoogle ScholarPubMed
Krief, S., Huffman, M. A., Sevenet, T., et al. (2006). Bioactive properties of plant species ingested by chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda. American Journal of Primatology, 68, 5171.CrossRefGoogle ScholarPubMed
Kupchan, S. M., Hemingway, R. J., Karim, A., and Werner, D. (1969). Tumor Inhibitors XLVII. Vernodalin and vernomygdin, two new cytotoxic sesquiterpene lactones from Vernonia amygdalina Del. Journal of Organic Chemistry, 34, 3908–11.CrossRefGoogle ScholarPubMed
Looi, C. C., Arya, A., Chea, F. K., et al. (2013). Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS ONE, 8, e56643.CrossRefGoogle ScholarPubMed
MacIntosh, A. J. J. and Huffman, M. A. (2010). Towards understanding the role of diet in host-parasite interactions: the case for Japanese macaques. In The Japanese Macaques, ed. Nakagawa, N., Nakamichi, M., and Sugiura, H.. Tokyo: Springer, pp. 323–44.Google ScholarPubMed
Masi, S., Gustafsson, E., Saint Jalme, M., et al. (2012). Unusual feeding behavior in wild great apes, a window to understand origins of self-medication in humans: Role of sociality and physiology on learning process. Physiology & Behavior, 105, 337–49.CrossRefGoogle ScholarPubMed
McLennan, M. R. and Huffman, M. A. (2012). High frequency of leaf swallowing and its relationship to parasite expulsion in “village” chimpanzees at Bulindi, Uganda. American Journal of Primatology, 74, 642–50.CrossRefGoogle ScholarPubMed
Messer, E. J. and Wrangham, R. W. (1996). In vitro testing of the biological activity of Rubia cordifolia leaves on primate Strongyloides species. Primates, 37, 105–8.Google Scholar
Neuwinger, H. D. (1996). African Ethnobotany: Chemistry, Pharmacology, Toxicology. London: Chapman & Hill.Google Scholar
Newton, P. N. and Nishida, T. (1990). Possible buccal administration of herbal drugs by wild chimpanzees, Pan troglodytes. Animal Behaviour, 39, 798801.CrossRefGoogle Scholar
Nishida, T. (2012). Chimpanzees of the Lakeshore: Natural History and Culture at Mahale. Cambridge: Cambridge University Press.Google Scholar
Ohigashi, H. (1995). Plants used medicinally by primates in the wild and their physiologically active constituents. Report to the Ministry of Science, Education and Culture for 1994 Grant-in-Aid for Scientific Research (No. 06303012).Google Scholar
Ohigashi, H., Jisaka, M., Takagaki, T., et al. (1991). Bitter principle and a related steroid glucoside from Vernonia amygdalina, a possible medicinal plant for wild chimpanzees. Agricultural and Biological Chemistry, 55, 1201–3.Google Scholar
Ohigashi, H., Huffman, M. A., Izutsu, D., et al. (1994). Toward the chemical ecology of medicinal plant-use in chimpanzees: the case of Vernonia amygdalina Del., a plant used by wild chimpanzees possibly for parasite-related diseases. Journal of Chemical Ecology, 20, 541–53.CrossRefGoogle Scholar
Page, J. E., Balza, F. F., Nishida, T., and Towers, G. H. N. (1992). Biologically active diterpenes from Aspilia mossambicensis, a chimpanzee medicinal plant. Phytochemistry, 31, 3437–9.CrossRefGoogle ScholarPubMed
Page, J. E., Huffman, M. A., Smith, V., and Towers, G. H. N. (1997). Chemical basis for medicinal consumption of Aspilia leaves by chimpanzees: a re-analysis. Journal of Chemical Ecology, 23, 2211–25.CrossRefGoogle Scholar
Pebsworth, P., Krief, S., and Huffman, M. A. (2006). The role of diet in self-medication among chimpanzees in the Sonso and Kanyawara communities, Uganda. In Primates of Western Uganda, ed. Newton-Fisher, N. E., Notman, H., Reynolds, V., and Paterson, J. D.. New York: Springer, pp. 105–33.Google Scholar
Rodriguez, E. and Wrangham, R. W. (1993). Zoopharmacognosy: the use of medicinal plants by animals. In Recent Advances in Phytochemistry: Vol. 27. Phytochemical Potential of Tropic Plants. ed. Downum, K. R., Romeo, J. T., and Stafford, H.. New York: Plenum Press, pp. 89105.CrossRefGoogle Scholar
Rodriguez, E., Aregullin, M., Nishida, T., et al. (1985). Thiarubrine A, a bioactive constituent of Aspilia (Asteraceae) consumed by wild chimpanzees. Experientia, 41, 419–20.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1998). The Trouble with Testosterone: And Other Essays on The Biology of the Human Predicament. New York: Simon & Schuster.Google Scholar
Su, H., Su, Y., and Huffman, M. A. (2013). Leaf-swallowing and parasite infection in the Chinese lesser civet (Viverricula indica) in northern Taiwan. Zoological Studies, 52, 22.CrossRefGoogle Scholar
Suárez-Rodríguez, M., López-Rull, I., and Macías Garcia, C. (2013). Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe? Biology Letters, 9, 20120931.CrossRefGoogle ScholarPubMed
Takasaki, H. and Hunt, K. (1987). Further medicinal plant consumption in wild chimpanzees? African Studies Monographs, 8, 125–8.Google Scholar
Toubiana, R. and Gaudemer, A. (1967). Structure du vernolide, nouvel ester sesquiterpique isole de Vernonia colorata. Tetrahedron Letters, 14, 1333–6. In French.Google Scholar
Towers, G. H. N., Abramowski, Z., Finlayson, A. J., and Zucconi, A. (1985). Antibiotic properties of thiarubrine-A, a naturally occurring dithiacyclohedadiene polyine. Planta Medica, 3, 225–9.Google Scholar
Villalba, J. J. and Landau, S. Y. (2012). Host behavior, environment and the ability to self-medicate. Small Ruminant Research, 103, 50–9.CrossRefGoogle Scholar
Watt, J. M. and Breyer-Brandwinjk, M. G. (1962). The Medicinal and Poisonous Plants of Southern and East Africa. Edinburgh: E. and S. Livingstone.Google Scholar
Wink, M., Hofer, A., Bilfinger, M., et al. (1993). Geese and dietary allelochemicals: food palatability and geophagy. Chemoecology, 4, 93107.CrossRefGoogle Scholar
Wrangham, R. W. (1975). The Behavioural Ecology of Chimpanzees in Gombe National Park, Tanzania. Ph.D. thesis. Cambridge: University of Cambridge.Google Scholar
Wrangham, R. W. (1995). Relationship of chimpanzee leaf-swallowing to a tapeworm infection. American Journal of Primatology, 37, 297303.CrossRefGoogle ScholarPubMed
Wrangham, R. W. and Nishida, T. (1983). Aspilia spp. leaves: a puzzle in the feeding behavior of wild chimpanzees. Primates, 24, 276–82.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×