Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-20T23:15:17.231Z Has data issue: false hasContentIssue false

Chromosomal genome sequence assembly and mating-type (MAT) locus characterization of the leprose asexual lichenized fungus Lepraria neglecta (Nyl.) Erichsen

Published online by Cambridge University Press:  15 March 2023

Bubba Pfeffer
Affiliation:
Department of Biology, Eastern Washington University, Cheney, WA, USA
Chandler Lymbery
Affiliation:
Department of Biology, Eastern Washington University, Cheney, WA, USA
Brendan Booth
Affiliation:
Department of Biology, Eastern Washington University, Cheney, WA, USA
Jessica L. Allen*
Affiliation:
Department of Biology, Eastern Washington University, Cheney, WA, USA
*
Author for correspondence: Jessica L. Allen. E-mail: jallen73@ewu.edu

Abstract

Complete chromosomal-level assemblies of fungal genomes are rare. The intimate ecological symbioses and complex reproduction strategies utilized by fungi make highly contiguous, gapless genome assemblies particularly difficult. Here, we use long-read sequencing on the Oxford Nanopore Technology MinION platform to sequence and assemble the genome of Lepraria neglecta (Ascomycota, Lecanorales). In addition to eight contigs ascribable to chromosomes, six of which are assembled telomere-to-telomere, we discovered the presence of a complete MAT locus with two conserved MAT1-2 genes and a putative MAT1-1 pseudogene. The full genome assembly of a widespread, common species presents an opportunity for new insights into lichen reproduction while the presence of the mating-type locus in the genome of an asexual lichen raises fundamental questions about reproductive biology in fungi generally.

Type
Standard Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, JL, Jones, S and McMullin, TR (2021) Draft genome sequence of the lichenized fungus Bacidia gigantensis. American Society for Microbiology 10, 13.Google ScholarPubMed
Altman, PL and Dittmer, DS (eds) (1972) Biology Data Book. 2nd Edn. Bethesda, Maryland: Federation of American Societies for Experimental Biology.Google Scholar
Altschul, SF, Gish, W, Miller, W, Myers, EW and Lipman, DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Ament-Velásquez, SL, Tuovinen, V, Bergström, L, Spribille, T, Vanderpool, D, Nascimbene, J, Yamamoto, Y, Thor, G and Johannesson, H (2021) The plot thickens: haploid and triploid-like thalli, hybridization, and biased mating type rations in Letharia. Frontiers in Fungal Biology 15, 119.Google Scholar
Armaleo, D, Müller, O, Lutzoni, F, Andrésson, ÓS, Blanc, G, Bode, HB, Collart, FR, Dal Grande, F, Dietrich, F, Grigoriev, IV, et al. (2019) The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics 20, 605638.CrossRefGoogle ScholarPubMed
Aylward, J, Havnga, M, Dreyers, LL, Roets, F, Wingfield, BD and Wingfield, MJ (2020) Genomic characterizing of mating type loci and mating type distribution in two apparently asexual plantation tree pathogens. Plant Pathology 69, 2837.CrossRefGoogle Scholar
Bennett, RJ and Johnson, AD (2003) Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO Journal 22, 25052515.CrossRefGoogle ScholarPubMed
Bidard, FJ, Benkhali, A, Coppin, E, Imbeaud, S, Grognet, P, Delacroix, H and Debuchy, R (2011) Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS ONE 6, 115.CrossRefGoogle ScholarPubMed
Billiard, S, López-Villavicencio, M, Hood, ME and Girad, T (2012) Sex, outcrossing and mating types: unsolved questions in fungi and beyond. Journal of Evolutionary Biology 25, 10201038.CrossRefGoogle ScholarPubMed
Blin, K, Shaw, S, Kloosterman, AM, Charlop-Powers, Z, van Wezel, GP, Medema, MH and Weber, T (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Research 49, W29W35.CrossRefGoogle ScholarPubMed
Böhm, J, Hoff, B, O'Gorman, CM, Wolfers, S, Klix, V, Binger, D, Zadra, I, Kürnsteiner, H, Pöggeler, S, Dyer, PS, et al. (2013) Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proceedings of the National Academy of Sciences of the United States of America 110, 14761481.CrossRefGoogle ScholarPubMed
Brodo, IM, Sharnoff, SD and Sharnoff, S (2001) Lichens of North America. Newhaven & London: Yale University Press.Google Scholar
Chung, D, Kwon, YM and Yang, Y (2021) Telomere-to-telomere genome assembly of asparaginase-producing Trichoderma simmonsii. BMC Genomics 22, 118.CrossRefGoogle ScholarPubMed
Clamp, M, Cuff, J, Searle, SM and Barton, GJ (2004) The Jalview Java alignment editor. Bioinformatics 20, 426427.CrossRefGoogle ScholarPubMed
Crestana, GS, Taniguti, LM, dos Santos, CP, Benevenuto, J, Ceresini, PC, Carvalho, G, Kitajima, JP and Monerito-Vitorello, CB (2021) Complete chromosome-scale genome sequence resource for Sprisorium panici-leucophaei, the causal agent of sourgrass smut disease. Molecular Plant-Microbe Interaction 34, 448452.CrossRefGoogle ScholarPubMed
Culberson, CF and Kristinsson, H (1970) A standardized method for the identification of lichen products. Journal of Chromatography 46, 8593.CrossRefGoogle Scholar
D'hondt, L, Höfte, M, Van Bockstaele, E and Leus, L (2011) Applications of flow cytometry in plant pathology for genome size determination, detection and physiological status. Molecular Plant Pathology 12, 815828.CrossRefGoogle ScholarPubMed
D'Souza, CA, Kronstad, JW, Taylor, G, Warren, R, Yuen, M, Hu, G, Jung, WH, Sham, A, Kidd, SE, Tangen, K, et al. (2011) Genome variation in Cryptococcus gatti, an emerging plant pathogen of immunocompetent hosts. mBio 2, e00342–10.Google Scholar
Edgar, RC (2021) MUSCLE v5 enables improved estimates of phylogenetic tree confidence by ensemble bootstrapping. bioRxiv. doi: https://doi.org/10.1101/2021.06.20.449169CrossRefGoogle Scholar
Gan, P, Hiroyama, R, Tsushima, A, Masuda, S, Shibata, A, Ueno, A, Kumakura, N, Narusaka, M, Hoat, TX, Narusaka, Y, et al. (2021) Telomeres and a repeat-rich chromosome encode effector gene clusters in plant pathogenic Colletotrichum fungi. Environmental Microbiology 23, 115.CrossRefGoogle Scholar
Glass, NL and Smith, ML (1994) Structure and function of a mating-type gene from the homothallic species Neurospora africana. Molecular and General Genetics 244, 401409.CrossRefGoogle ScholarPubMed
Goodwin, SB, Ben M'Barek, S, Dhillon, B, Wittenberg, AH, Crane, CF, Hane, JK, Foster, AJ, Van der Lee, TA, Grimwood, J, Aerts, A, et al. (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genetics 7, e1002070.CrossRefGoogle ScholarPubMed
Gräser, Y, Kuijpers, AF, Presber, W and Hoog, GD (1999) Molecular taxonomy of Trichophyton mentagrophytes and T. tonsurans. Medical Mycology 37, 315–30.CrossRefGoogle ScholarPubMed
Grube, M, Berg, G, Andréson, OS, Vilhelmsson, O, Dyer, PS and Miao, VPW (2013) Lichen genomics: prospects and progress. In Martin, F (ed.), The Ecological Genomics of Fungi. New York: John Wiley & Sons Ltd, pp. 191212.CrossRefGoogle Scholar
Harris, RS, Cechova, M and Makova, KD (2019) Noise-canceling repeat finder: uncovering tandem repeats in error-prone long-read sequencing data. Bioinformatics 35, 48094811.CrossRefGoogle Scholar
Honegger, R, Zippler, U, Gassner, H and Scherrer, S (2004) Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycological Research 108, 480488.CrossRefGoogle ScholarPubMed
Honnay, O and Bossuyt, B (2005) Prolonged clonal growth: escape route or route to extinction? Oikos 108, 427432.CrossRefGoogle Scholar
Janbon, G, Ormerod, KL, Paulet, D, Byrnes EJ, III, Yadav, V, Chatterjee, G, Mullapudi, N, Honh, CC, Billmyre, RB, Brunel, F, et al. (2014) Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLOS Genetics 10, e1004261.CrossRefGoogle ScholarPubMed
Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A and Jermiin, LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587589.CrossRefGoogle ScholarPubMed
Keepers, KG, Pogoda, CS, White, KH, Stewart CR, Anderson, Hoffman, JR, Ruiz, AM, McCain, CM, Lendemer, JC, Kane, NC and Tripp, EA (2019) Whole genome shotgun sequencing detects greater lichen fungal diversity than amplicon-based methods in environmental samples. Frontiers in Ecology and Evolution 7, 114.CrossRefGoogle Scholar
Kendrick, B (2017) The Fifth Kingdom. 4th Edn. Ontario: Hackett Publishing.Google Scholar
King, R, Urban, M, Hammond-Kosack, M, Hassani-Pak, K and Hammond-Kosack, K (2015) The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics 16, 544.CrossRefGoogle ScholarPubMed
King, R, Brown, NA, Urban, M and Hammond-Kosack, K (2018) Inter-genome comparison of the Quorn fungus Fusarium venenatum and the closely related plant infecting pathogen Fusarium graminearum. BMC Genomics 19, 269.CrossRefGoogle ScholarPubMed
Kolmogorov, M, Yuan, J, Lin, Y and Pevzner, PA (2019) Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology 37, 540546.CrossRefGoogle ScholarPubMed
Kooij, PW and Pellicer, J (2020) Genome size versus genome assemblies: are the genomes truly expanded in polyploid fungal symbionts? Genome Biology and Evolution 12, 23842390.CrossRefGoogle ScholarPubMed
Kramer, GJ and Nodwell, JR (2017) Chromosome level assembly and secondary metabolite potential of the parasitic fungus Cordyceps militaris. BMC Genomics 18, 110.CrossRefGoogle ScholarPubMed
Li, H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 30943100.CrossRefGoogle ScholarPubMed
Lendemer, JC (2013) A monograph of the crustose members of the genus Lepraria Ach. s. str. (Stereocaulaceae, lichenized Ascomycetes) in North America north of Mexico. Opuscula Philolichenum 12, 27141.Google Scholar
Lendemer, JC and Hodkinson, BP (2013) A radical shift in the taxonomy of Lepraria s.l.: molecular and morphological studies shed new light on the evolution of asexuality and lichen growth form diversification. Mycologia 105, 9941018.CrossRefGoogle ScholarPubMed
Machida, M, Asai, K, Sano, M, Tanaka, T, Kumagai, T, Terai, G, Kusumoto, K, Arima, T, Akita, O, Kashiwagi, K, et al. (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438, 11571161.CrossRefGoogle ScholarPubMed
Manni, M, Berkeley, MR, Seppey, M, Simão, FA and Zdobnov, FM (2021) BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38, 46474654.CrossRefGoogle ScholarPubMed
McKenzie, SK, Walston, RF and Allen, JL (2020) Complete, high-quality genomes from long-read metagenomic sequencing of two wolf lichen thalli reveals enigmatic genome architecture. Genomics 112, 31503156.CrossRefGoogle ScholarPubMed
Meiser, A, Otte, J, Schmitt, I and Dal, Grande F (2017) Sequencing genomes from mixed DNA samples – evaluating the metagenome skimming approach in lichenized fungi. Scientific Reports 7, 14881.CrossRefGoogle ScholarPubMed
Mikheenko, A, Prjibelski, A, Saveliev, V, Antipov, D and Gurevich, A (2018) Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142i150.CrossRefGoogle ScholarPubMed
Muggia, L, Kopun, T and Grube, M (2017) Effects of growth media on the diversity of culturable fungi from lichens. Molecules 22, 824.CrossRefGoogle ScholarPubMed
Nguyen, LT, Schmidt, HA, von Haeseler, A and Minh, BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32, 268274.CrossRefGoogle ScholarPubMed
Olarte, RA, Menke, J, Zhang, Y, Sullivan, S, Slot, JC, Huang, Y, Badalamenti, JP, Quandt, AC, Spatafora, JW and Bushley, KE (2019) Chromosome rearrangements shape the diversification of secondary metabolism in the cyclosporin producing fungus Tolypocladium inflatum. BMC Genomics 20, 123.CrossRefGoogle ScholarPubMed
Park, S-Y, Choi, J, Kim, JA, Jeong, M-H, Kim, S, Lee, Y-H and Hur, J-S (2013 a) Draft genome sequence of Cladonia macilenta KoLRI003786, a lichen-forming fungus producing biruloquinone. Genome Announcements 1, e00695–13.Google ScholarPubMed
Park, S-Y, Choi, J, Kim, JA, Yu, N-H, Kim, S, Kondratyuk, SY, Lee, Y-H and Hur, J-S (2013 b) Draft genome sequence of lichen-forming fungus Caloplaca flavorubescens strain KoLRI002931. Genome Announcements 1, e00678–13.Google ScholarPubMed
Park, S-Y, Choi, J, Lee, G-W, Kim, JA, Oh, S-O, Jeong, M-H, Yu, N-H, Kim, S, Lee, Y-H and Hur, J-S (2014 a) Draft genome sequence of lichen-forming fungus Cladonia metacorallifera strain KoLRI002260. Genome Announcements 2, e01065–13.CrossRefGoogle ScholarPubMed
Park, S-Y, Choi, J, Lee, G-W, Jeong, M-H, Kim, JA, Oh, S-O, Lee, Y-H and Hur, J-S (2014 b) Draft genome sequence of Umbilicaria muehlenbergii KoLRILF000956, a lichen-forming fungus amenable to genetic manipulation. Genome Announcements 2, e00357–14.CrossRefGoogle ScholarPubMed
Patwardhan, PG and Badhe, PD (1978) Development of ascocarp and cytology of ascus in Dermatocarpon moulinsii (Mont.). Indian Journal of Botany 1, 117126.Google Scholar
Persinoti, GF, Martinez, DA, Li, W, Dögen, A, Billmyre, RB, Averette, A, Goldberg, JM, Shea, T, Young, S, Zeng, Q, et al. (2018) Whole-genome analysis illustrates global clonal population structure of the ubiquitous dermatophyte pathogen Trichophyton rubrum. Genetics 208, 16571669.CrossRefGoogle ScholarPubMed
Pizarro, D, Dal Grande, F, Leavitt, SD, Dyer, PS, Schmitt, I, Crespo, A, Lumbsch, HT and Divakar, PK (2019) Whole-genome sequence data uncover widespread heterothallism in the largest group of lichen-forming fungi. Genome Biology and Evolution 11, 721730.CrossRefGoogle ScholarPubMed
Pöggeler, S, Nowrousian, M, Ringelberg, C, Loros, JJ, Dunlap, JC and Kück, U (2006) Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Molecular Genetics and Genomics 275, 492503.CrossRefGoogle Scholar
Poma, A, Pacioni, G, Ranalli, R and Miranda, M (1998) Ploidy and chromosomal number in Tuber aestivum. FEMS Microbiology Letters 167, 101105.CrossRefGoogle Scholar
Rautiainen, M and Marschall, T (2020) GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biology 21, 253.CrossRefGoogle ScholarPubMed
Rossen, JM and Westergaard, M (1966) Studies on the mechanism of crossing over. II. Meiosis and the time of meiotic chromosome replication in the ascomycete Neottiella rutilans (Fr.) Dennis. Comptes-Rendus des Travaux du Laboratoire Carlsberg 35, 233260.Google ScholarPubMed
Scherrer, S, Zippler, U and Honegger, R (2005) Characterisation of mating-type locus in the genus Xanthoria (lichen-forming ascomycetes, Lecanoromycetes) Fungal Genetics and Biology 42, 976988.CrossRefGoogle ScholarPubMed
Severin, FF and Hyman, AA (2002) Pheromone induces programmed cell death in Saccharomyces cerevisiae. Current Biology 12, R233R235.CrossRefGoogle Scholar
Singh, G, Dal Grande, F, Cornejo, C, Schmitt, I and Scheidegger, C (2012) Genetic basis of self-incompatibility in the lichen-forming fungus Lobaria pulmonaria and skewed frequency distribution of mating-type idiomorphs: implications for conservation. PLoS ONE 7, 19.CrossRefGoogle ScholarPubMed
Smith, SE and Read, DJ (2008) Mycorrhizal Symbiosis. 3rd Edn. Cambridge, Massachusetts: Academic Press.Google Scholar
Specht, T, Dahlmann, TA, Zadra, I, Kürnsteiner, H and Kück, U (2014) Complete sequencing and chromosome-scale genome assembly of the industrial progenitor strain P2niaD18 from the penicillin producer Penicillium chrysogenum. Genome Announcements 2, e00577–14.CrossRefGoogle ScholarPubMed
Stajich, JE, Berbee, ML, Blackwell, M, Hibbett, DS, James, TY, Spatafora, JW and Taylor, JW (2009) The Fungi. Current Biology 19, R840R845.CrossRefGoogle ScholarPubMed
Talhinhas, P, Tavares, D, Ramos, AP, Goncalves, S and Loureiro, J (2017) Validation of standards suitable for genome size estimation of fungi. Journal of Microbiological Methods 142, 7678.CrossRefGoogle ScholarPubMed
Tedersoo, L, Sánchez-Ramírez, S, Kõljalg, U, Bahram, M, Döring, M, Schigel, D, May, T, Ryberg, M and Abarenkov, K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity 90, 135159.CrossRefGoogle Scholar
Tedersoo, L, Albertsent, M, Anslan, S and Callahan, B (2021) Perspectives and benefits of high-throughput long-read sequencing in microbial ecology. Applied Environmental Microbiology 87, e00626–21.CrossRefGoogle ScholarPubMed
Thomson, GJ, Hernon, C, Austriaco, N, Shapiro, RS, Belenky, B and Bennett, RJ (2019) Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO Journal 38, e101597.CrossRefGoogle ScholarPubMed
Thorvaldsdóttir, H, Robinson, JT and Mesirov, JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics 14, 178192.CrossRefGoogle ScholarPubMed
Thüs, H, Muggia, L, Pérez-Ortega, S, Favero-Longo, SE, Joneson, S, O'Brien, H, Nelsen, MP, Duque-Thüs, R, Grube, M, Friedl, T, et al. (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology 46, 399415.CrossRefGoogle Scholar
Tillich, M, Lehwark, P, Pellizzer, T, Ulbricht-Jones, ES, Fischer, A, Bock, R and Greiner, S (2017) GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45, W6W11.CrossRefGoogle ScholarPubMed
Tischler, G (1922) Allgemeine Pflanzenkaryologie, Vol. 2. Berlin: Gebrüder Bontraeger.Google Scholar
Tripp, EA (2016) Is asexual reproduction an evolutionary dead end in lichens? Lichenologist 48, 559580.CrossRefGoogle Scholar
Tsui, CKM, Diguistini, S, Wang, Y, Feau, N, Dhillon, B, Bohlmann, J and Hamelin, RC (2013) Unequal recombination and evolution of the mating-type (MAT) loci in the pathogenic fungus Grosmannia clavigera and relatives. G3 3, 465480.CrossRefGoogle ScholarPubMed
Tzovaras, G, Segers, FH, Bicker, A, Dal Grande, F, Otte, J, Anvar, SY, Hankeln, T, Schmitt, I and Ebersberger, I (2020) What is in Umbilicaria pustulata? A metagenomic approach to reconstruct the holo-genome of a lichen. Genome Biology and Evolution 12, 309324.CrossRefGoogle Scholar
Vitale, S, Pietro, AD and Turrà, D (2019) Autocrine pheromone signaling regulates community behavior in the fungal pathogen Fusarium oxysporum. Nature Microbiology 4, 14431449.CrossRefGoogle ScholarPubMed
Wang, B, Liang, X, Gleason, ML, Hsiang, T, Zhang, R and Sun, G (2020) A chromosome-scale assembly of the smallest Dothideomycete genome reveals a unique genome compaction mechanism in filamentous fungi. BMC Genomics 21, 113.Google ScholarPubMed
Wang, Q, Wang, S, Xiong, CL, James, TY and Zhang, XG (2016) Mating-type genes of the anamorphic fungus Ulocladium botrytis affect both asexual sporulation and sexual reproduction. Scientific Reports 7, 112.Google Scholar
Wang, Y, Yuan, X, Chen, L, Wang, X and Li, C (2018) Draft genome sequence of the lichen-forming Ramalina intermedia strain YAF0013. Genome Announcements 6, e00478–18.CrossRefGoogle ScholarPubMed
Wilson, AM, Gondlonton, T, van der Nest, MA, Wilken, PM, Wingfield, MJ and Wingfield, BD (2015 a) Unisexual reproduction in Huntiella moniliformis. Fungal Genetics and Biology 80, 19.CrossRefGoogle ScholarPubMed
Wilson, AM, Wilken, PM, van der Nest, MA, Steenkamp, ET, Wingfield, MJ and Wingfield, BD (2015 b) Homothallism: an umbrella term for describing diverse sexual behaviours. IMA Fungus 6, 207214.CrossRefGoogle ScholarPubMed
Wilson, AM, Gabriel, R, Singer, SW, Schuerg, T, Wilken, PM, van der Nest, MA, Wingfield, MJ and Wingfield, BD (2021) Doing it alone: unisexual reproduction in filamentous ascomycete fungi. Fungal Biology Reviews 35, 113.CrossRefGoogle Scholar