Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-01T15:56:06.373Z Has data issue: false hasContentIssue false

New species in Bryoria (Parmeliaceae, Lecanoromycetes) from north-west North America

Published online by Cambridge University Press:  27 September 2016

Leena MYLLYS*
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland
Saara VELMALA
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland
Raquel PINO-BODAS
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland
Trevor GOWARD
Affiliation:
UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; mailing address: Enlichened Consulting Ltd., 5369 Clearwater Valley Road, Upper Clearwater, BC V0E 1N1, Canada

Abstract

Two new species of Bryoria are described based on morphology, chemistry and molecular phylogeny (ITS and Mcm7). Both species belong in section Bryoria, which was resolved as a polyphyletic group in the ITS+Mcm7 phylogeny. Bryoria alaskana belongs to a clade restricted to South-East Asia and north-west North America, and is so far known from south-east Alaska and the Sino-Himalayan Mountains. This highly variable species is most reliably recognized by its pendent, esorediate thallus, its production of fumarprotocetraric acid, and the combination of isotomic branching, abundant, whitish, predominantly fusiform pseudocyphellae, and sparse, short perpendicular side branches. Black emorient patches are lacking. Bryoria irwinii is endemic to north-west North America and is closely related to B. araucana from South America, B. poeltii from South-East Asia, as well as B. nadvornikiana and B. trichodes, both widely distributed in the Northern Hemisphere. It is a subpendent, esorediate species recognized by its predominantly anisotomic branching, olivaceous hue, black emorient patches, conspicuous pale brownish, fusiform pseudocyphellae, and numerous perpendicular, more or less basally constricted, side branches.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alors, D., Lumbsch, H. T., Divakar, P. K., Leavitt, S. D. & Crespo, A. (2016) An integrative approach for understanding diversity in the Punctelia ruderata species complex (Parmeliaceae, Ascomycota). PLoS ONE 11: e0146537.Google Scholar
Awasthi, G. & Awasthi, D. D. (1985) Lichen genera Alectoria, Bryoria and Sulcaria from India and Nepal. Candollea 40: 305320.Google Scholar
Boluda, C. G., Divakar, P. K., Hawksworth, D. L., Villagra, J. & Rico, V. J. (2015) Molecular studies reveal a new species of Bryoria in Chile. Lichenologist 47: 387394.Google Scholar
Brodo, I. M. & Hawksworth, D. L. (1977) Alectoria and allied genera in North America. Opera Botanica 42: 1164.Google Scholar
Divakar, P. K., Figueras, G., Hladun, N. L. & Crespo, A. (2010) Molecular phylogenetic studies reveal an undescribed species within the North American concept of Melanelixia glabra (Parmeliaceae). Fungal Diversity 42: 4755.Google Scholar
Divakar, P. K., Kauff, F., Crespo, A., Leavitt, S. D. & Lumbsch, H. T. (2013) Understanding phenotypical character evolution in parmelioid lichenized fungi (Parmeliaceae, Ascomycota). PLoS ONE 8: e83115.Google Scholar
Divakar, P. K., Crespo, A., Wedin, M., Leavitt, S., Hawksworth, D., Myllys, L., McCune, B., Randlane, T., Bjerke, J. W., Ohmura, Y. et al. (2015) Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. New Phytologist 208: 12171226.CrossRefGoogle Scholar
Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 17921797.Google Scholar
Ferencova, Z., Cubas, P., Divakar, P. K., Molina, M. C. & Crespo, A. (2014) Notoparmelia, a new genus of Parmeliaceae (Ascomycota) based on overlooked reproductive anatomical features, phylogeny and distribution pattern. Lichenologist 46: 5167.Google Scholar
Goloboff, P. A., Farris, J. S. & Nixon, K. C. (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774786.Google Scholar
Kauff, F. & Lutzoni, F. (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138156.Google Scholar
Leavitt, S. D., Johnson, L. & St. Clair, L. L. (2011) Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. American Journal of Botany 98: 175188.Google Scholar
Leavitt, S. D., Esslinger, T. L., Divakar, P. K. & Lumbsch, H. T. (2012) Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evolutionary Biology 12: 176.Google Scholar
Leavitt, S. D., Divakar, P. K., Ohmura, Y., Wang, L. S., Esslinger, T. L. & Lumbsch, H. T. (2015) Who’s getting around? Assessing species diversity and phylogeography in the widely distributed lichen-forming fungal genus Montanelia (Parmeliaceae, Ascomycota). Molecular Phylogenetics and Evolution 90: 8596.Google Scholar
Maddison, D. R. & Maddison, W. P. (2005) MacClade 4: Analysis of Phylogeny and Character Evolution. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Mark, K., Saag, L., Leavitt, S. D., Will-Wolf, S., Nelsen, M. P., Tõrra, T., Saag, A., Randlane, T. & Lumbsch, H. T. (2016) Evaluation of traditionally circumscribed species in the lichen-forming genus Usnea, section Usnea (Parmeliaceae, Ascomycota) using a six-locus dataset. Organisms Diversity and Evolution doi:10.1007/s13127-016-0273-7.Google Scholar
Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C. et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132168.Google Scholar
Molina, M. C., Del-Prado, R., Divakar, P. K., Sánchez-Mata, D. & Crespo, A. (2011) Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organisms Diversity and Evolution 11: 331342.CrossRefGoogle Scholar
Myllys, L., Velmala, S., Holien, H., Halonen, P., Wang, L. S. & Goward, T. (2011) Phylogeny of the genus Bryoria . Lichenologist 45: 617638.Google Scholar
Myllys, L., Velmala, S., Lindgren, H., Glavich, D., Carlberg, T., Wang, L. S. & Goward, T. (2014) Taxonomic delimitation of the genera Bryoria and Sulcaria, with a new combination Sulcaria spiralifera introduced. Lichenologist 46: 737752.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Schmitt, I., Crespo, A., Divakar, P. K., Fankhauser, J. D., Herman-Sackett, E., Kalb, K., Nelsen, M. P., Nelson, N. A., Rivas-Plata, E., Shimp, A. D. et al. (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23: 3540.Google Scholar
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.Google Scholar
Thell, A., Crespo, A., Divakar, P. K., Kärnefelt, I., Leavitt, S. D., Lumbsch, H. T. & Seaward, M. R. D. (2012) A review of the lichen family Parmeliaceae – history, phylogeny and current taxonomy. Nordic Journal of Botany 30: 641664.Google Scholar
Truong, C., Divakar, P. K., Yahr, R., Crespo, A. & Clerc, P. (2013) Testing the use of ITS rDNA and protein-coding genes in the generic and species delimitation of the lichen genus Usnea (Parmeliaceae, Ascomycota). Molecular Phylogenetics and Evolution 68: 357372.Google Scholar
Velmala, S., Myllys, L., Halonen, P., Goward, T. & Ahti, T. (2009) Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific. Lichenologist 41: 231242.Google Scholar
Velmala, S., Myllys, L., Goward, T., Holien, H. & Halonen, P. (2014) Taxonomy of Bryoria section Implexae (Parmeliaceae, Lecanorales) in North America and Europe, based on chemical, morphological and molecular data. Annales Botanici Fennici 51: 345371.Google Scholar
Wang, L. S. & Harada, H. (2001) Taxonomic study of Bryoria asiatica-group (lichenized Ascomycota, Parmeliaceae) in Yunnan, Southern China. Natural History Research 6: 4352.Google Scholar
Wang, L. S., Harada, H., Narui, T. & Culberson, C. F. (2003) Bryoria hengduanensis (lichenized Ascomycota, Parmeliaceae), a new species from Southern China. Acta Phytotaxononomica et Geobotanica 54: 99104.Google Scholar
Wang, L. S., Harada, H., Koh, Y. J. & Hur, J.-S. (2006) Taxonomic study of Bryoria (lichenized Ascomycota, Parmeliaceae) from the Sino-Himalaya (2). Bryoria fastigiata sp. nov. Journal of the Hattori Botanical Laboratory 100: 865869.Google Scholar