Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-13T20:43:41.965Z Has data issue: false hasContentIssue false

Two new species of Arthoniaceae from old-growth European forests, Arthonia thoriana and Inoderma sorediatum, and a new genus for Schismatomma niveum

Published online by Cambridge University Press:  19 March 2018

Damien ERTZ
Affiliation:
Research Department, Botanic Garden Meise, Nieuwelaan 38, B-1860 Meise, Belgium; also Fédération Wallonie-Bruxelles, Direction Générale de l’Enseignement non obligatoire et de laRecherche scientifique, Rue A. Lavallée 1, B-1080 Bruxelles, Belgium. Email: damien.ertz@jardinbotaniquemeise.be
Neil SANDERSON
Affiliation:
3 Green Close, Woodlands, Southampton, SO40 7HU, UK
Anna ŁUBEK
Affiliation:
Institute of Biology, Jan Kochanowski University in Kielce, Świętokrzyska 15A, PL-25-406 Kielce, Poland
Martin KUKWA
Affiliation:
Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland

Abstract

Two new species of Arthoniaceae are described from old-growth European forests: Arthonia thoriana from Horner Combe in Great Britain and Inoderma sorediatum from the Białowieża Forest in Poland. Phylogenetic analyses using mtSSU sequences were used to determine the generic affiliation of the two species. Arthonia thoriana is characterized by a non-lichenized white thallus, pallid brown, white pruinose ascomata of 0·12–0·30 mm diam., richly anastomosing paraphysoids and (1–2–)3-septate ascospores of 9–12×3·0–3·5 µm. Inoderma sorediatum differs from all other species of the genus by a sorediate thallus and the production of confluentic acid. It is the sister species to I. afromontanum in our phylogenetic analyses. The discovery of the new species supports the high value of these forests for biodiversity action plans. Phylogenetic analyses also place Schismatomma niveum in the Arthoniaceae and the new genus Snippocia is described to accommodate it. The genus Leprantha is resurrected for its type species (L. cinereopruinosa). A lectotype is designated for Arthonia pruinosella.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory (B. N. Petrov & F. Csaki, eds): 267281. Budapest: Akademiai Kiado.Google Scholar
Cannell, J. A. (2005) The Archaeology of Woodland Exploitation in the Greater Exmoor Area in the Historic Period. Oxford: Archaeopress.CrossRefGoogle Scholar
Cieśliński, S. & Tobolewski, Z. (1988) Lichens (Lichenes) of the Białowieża Forest and its western foreland. Phytocoenosis (N.S.). Supplementum Cartographiae Geobotanicae 1: 1216.Google Scholar
Clauzade, G. & Roux, C. (1985) Likenoj de Okcidenta Europo. Ilustrita Determinlibro. Bulletin de la Société Botanique du Centre-Ouest, Nouvelle Série, Numéro Special 7: 1893.Google Scholar
Clauzade, G., Diederich, P. & Roux, C. (1989) Nelikenigintaj fungoj likenlogaj. Ilustrita determinlibro. Bulletin de la Société Linnéenne de Provence, N.S. 1: 1142.Google Scholar
Coppins, B. J. & Aptroot, A. (2009) Arthonia . In The Lichens of Great Britain and Ireland (C.W. Smith, A. Aptroot, B. J. Coppins, A. Flechter, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 153171. London: British Lichen Society.Google Scholar
Coppins, B. J. & James, P. W. (1978) New or interesting British lichens II. Lichenologist 10: 179207.CrossRefGoogle Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.CrossRefGoogle ScholarPubMed
Diederich, P. (1991) Les forêts luxembourgeoises à longue continuité historique. Bulletin de la Société des Naturalistes Luxembourgeois 92: 3139.Google Scholar
Ertz, D. & Tehler, A. (2011) The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Diversity 49: 4771.CrossRefGoogle Scholar
Ertz, D., Tehler, A., Irestedt, M., Frisch, A., Thor, G. & van den Boom, P. (2015) A large-scale phylogenetic revision of Roccellaceae (Arthoniales) reveals eight new genera. Fungal Diversity 70: 3153.CrossRefGoogle Scholar
Faliński, J. B. & Mułenko, W. (eds) (1997) Cryptogamous plants in the forest communities of Białowieża National Park. Ecological atlas (Project CRYPTO 4). Phytocoenosis (N.S.), Supplementum Cartographiae Geobotanicae 7: 1512.Google Scholar
Fink, B. (1935) The Lichen Flora of the United States. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar
Frisch, A., Thor, G., Ertz, D. & Grube, M. (2014) The Arthonialean challenge: restructuring Arthoniaceae . Taxon 63: 727744.CrossRefGoogle Scholar
Frisch, A., Ohmura, Y., Ertz, D. & Thor, G. (2015) Inoderma and related genera in Arthoniaceae with elevated white pruinose pycnidia or sporodochia. Lichenologist 47: 233256.CrossRefGoogle Scholar
Frisch, A., Thor, G., Moon, K. H. & Ohmura, Y. (2017) Arthonia incarnata (Arthoniaceae), a rare and poorly known old-growth forest lichen new to Asia. Nordic Journal of Botany 35: 587594.CrossRefGoogle Scholar
Giavarini, V. & Coppins, B. J. (2009) Chaenothecopsis Vain. In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 303307. London: British Lichen Society.Google Scholar
Grube, M. (1998) Classification and phylogeny in the Arthoniales . Bryologist 101: 377391.CrossRefGoogle Scholar
Grube, M. (2001) Coniarthonia, a new genus of arthonioid lichens. Lichenologist 33: 491502.CrossRefGoogle Scholar
Grube, M. (2007) Arthonia . In Lichen Flora of the Greater Sonoran Desert Region, Vol. 3 (T. H. Nash III, C. Gries & F. Bungartz, eds): 3961. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754755.CrossRefGoogle Scholar
James, P. W. (1971) New or interesting British lichens: 1. Lichenologist 5: 114148.CrossRefGoogle Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 30593066.CrossRefGoogle ScholarPubMed
Lawrey, J. D. & Diederich, P. (2017) Lichenicolous fungi – worldwide checklist, including isolated cultures and sequences available. URL: http://www.lichenicolous.net [12/07/2017].Google Scholar
Lücking, R., Hodkinson, B. P. & Leavitt, S. D. (2017) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. Bryologist 119: 361416.CrossRefGoogle Scholar
Maddison, W. P. & Maddison, D. R. (2015) Mesquite: a modular system for evolutionary analysis. Version 3.04. Available from: http://mesquiteproject.org.Google Scholar
Marmor, L., Tõrra, T., Saag, L. & Randlane, T. (2011) Effects of forest continuity and tree age on epiphytic lichen biota in coniferous forests in Estonia. Ecological Indicators 11: 12701276.CrossRefGoogle Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8.CrossRefGoogle Scholar
Motiejūnaitė, J., Czyżewska, K. & Cieśliński, S. (2004) Lichens – indicators of old-growth forests in biocentres of Lithuania and north-east Poland. Botanica Lithuanica 10: 5974.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Poelt, J. (1969) Bestimmungsschlüssel Europäischer Flechten. Lehre: Verlag von J. Cramer.Google Scholar
Rambaut, A. (2012) FigTree v1.4.2 Available from: http://tree.bio.ed.ac.uk/software/figtree/ Google Scholar
Rambaut, A. & Drummond, A. J. (2007) Tracer v1.6. Available from: http://beast.bio.ed.ac.uk/ Google Scholar
Redinger, K. (1938) Arthoniaceae, Graphidaceae . In Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Band 9, 2 Abt., Part 1 (G. L. Rabenhorst, ed.): 181404. Leipzig: Borntraeger.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.CrossRefGoogle ScholarPubMed
Rose, F. (1976) Lichenological indicators of age and environmental continuity in woodlands. In Lichenology: Progress and Problems (D. H. Brown, D. L. Hawksworth & R. H. Bailey, eds): 279307. London: Academic Press.Google Scholar
Sanderson, N. A. (2017) Horner Wood NNR Lichen Survey, Part 2, Eastern Combes, Somerset, 2016. A report by the Botanical Survey & Assessment to the National Trust.Google Scholar
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.CrossRefGoogle ScholarPubMed
Sundin, R. (1999) Phylogenetic and Taxonomic Studies Within Arthonia Ach. (Ascomycetes, Arthoniales ) . Stockholm: Botaniska Institutionen, Stockholms Universitet.Google Scholar
Sundin, R. & Tehler, A. (1998) Phylogenetic studies of the genus Arthonia . Lichenologist 30: 381413.CrossRefGoogle Scholar
Sundin, R., Thor, G. & Frisch, A. (2012) A literature review of Arthonia s. lat. Bibliotheca Lichenologica 108: 257290.Google Scholar
Tehler, A. (1990) A new approach to the phylogeny of Euascomycetes with a cladistic outline of Arthoniales focusing on Roccellaceae . Canadian Journal of Botany 68: 24582492.CrossRefGoogle Scholar
Van den Broeck, D. & Ertz, D. (2016) Cryptophaea, a new genus of byssoid Arthoniaceae (lichenized Ascomycota) and its phylogenetic position. Phytotaxa 261: 168176.CrossRefGoogle Scholar
Wirth, V., Hauck, M. & Schultz, M. (2013) Die Flechten Deutschlands. 2 Band. Stuttgart: Eugen Ulmer KG.Google Scholar
Wolseley, P. A. & Hawksworth, D. L. (2009) Schismatomma . In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Flechter, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 834837. London: British Lichen Society.Google Scholar
Wolseley, P. A. & O’Dare, A. M. (1989) Exmoor Woodland Lichens Survey 1987–1988. Somerset Trust for Nature Conservation.Google Scholar
Wolseley, P. A. & O’Dare, A. M. (1990) The use of epiphytic lichens as environmental indicators in Exmoor woodlands. Ecology in Somerset 1990: 322.Google Scholar
Wolseley, P., Sanderson, N., Thüs, H., Carpenter, D. & Eggleton, P. (2017) [2016] Patterns and drivers of lichen species composition in a NW-European lowland deciduous woodland complex. Biodiversity and Conservation 26: 401419.CrossRefGoogle Scholar
Zahlbruckner, A. (1922) [1924] Catalogus Lichenum Universalis, Vol. 2 (1). Leipzig: Gebrüder Bornträger.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.CrossRefGoogle Scholar