## 2015 RESEARCH REPORT

# SAGINAW VALLEY

# **RESEARCH & EXTENSION CENTER**



## MICHIGAN STATE UNIVERSITY

# AgBioRESEARCH

## TABLE OF CONTENTS

| Introduction and Weather Information for 20151                                                  |
|-------------------------------------------------------------------------------------------------|
| Sugarbeet research activities of USDA-ARS                                                       |
| Efficacy of application of foliar fungicides for control of Cercospora leaf spot in sugarbeet17 |
| Control of Rhizoctonia crown and root rot with fungicides in sugarbeet20                        |
| 2015 Dry Bean Yield Trials                                                                      |
| 2015 White Mold Fungicide Trial                                                                 |
| Evaluation of Yellow Bean Germplasm for Agronomic Performance and End Use Quality52             |
| Harvest aid effects on three classes of dry beans                                               |
| Harvest aid effects on common lambsquarters and dry bean desiccation                            |
| Effect of Stinger tank-mixtures on weed control and sugarbeet yield                             |
| Management of glyphosate (Group 9)-resistant Palmer amaranth in sugarbeet60                     |
| Comparison of chloroacetamide herbicides in sugarbeet                                           |
| MSU Wheat Breeding and Genetics 2015 Report                                                     |

**Disclaimer:** All research results in this report can only be regarded as preliminary in nature and any use of the data without the written permission of the author(s) is prohibited.

#### SAGINAW VALLEY RESEARCH AND EXTENSION CENTER REPORT

James D. Kelly, Coordinator Paul E. Horny, Farm Manager Dennis Fleischmann, Technician Holly Corder, Technician

### **INTRODUCTION**

The Michigan sugar beet grower cooperative, Michigan Sugar Company, and the Michigan dry bean growers and industry represented by the Michigan Bean Commission and Michigan Bean Shippers Association, donated the proceeds of the 120 acre Saginaw Valley Bean and Beet Research Farm, located in Saginaw County for 38 years, to Michigan State University in 2009. The Michigan State University Office of Land Management then purchased and operates a 320 acre farm near Richville Michigan in Denmark Township. The site is being established as an AgBioResearch research center. Natural gas has been hooked up and the Educational Center will be completed in 2016 which will complete the current infrastructure improvements. The site is located on the southeast corner of Reese and Krueger Roads, address of 3775 South Reese Road, Frankenmuth, Michigan 48734.

Field research was initiated in 2009 and the 2015 season was the seventh season of research at the site. This research report is primarily a compilation of research conducted at the site in 2015. Most of the work represents one year's results, and even though multi-season results are included, **this work should be considered as a progress report.** 

**Soil** – The soil type on the farm is classified as a Tappan-Londo loam, these are very similar soil types separated by subsoil drainage classifications, the Tappan not being as naturally well drained as the Londo. The site was soil tested in spring 2009 at 2.5 acre increments. The soil pH averages 7.9, soil test phosphorus averages 56 pounds P/acre, soil test Potassium averages 294 pounds K/acre.

**Weather** – The monthly rainfall for 2015 collected with the automated rain gauge is given in Table 1. The monthly totals are given at the bottom of the table. Rainfall was average to above average through the growing season. Planting in the spring was timely but dry bean planting was delayed due to rain. The rainfall total of 28.49" was average. Maximum and minimum daily temperatures along with growing degree days (base  $50^{\circ}$ F) are given in Table 2. The 2015 season was average with 2 days above 90 degrees and 22 days above 85 degrees. The growing degree days for 2015 was 2324 which was below the 5 year average but close to the long term average. The average yields for crops grown on the farm was: corn at 200 bushels/acre, soybeans at 60 bushels/acre, dry beans at 25 cwt/acre, and sugarbeets at 35 tons/acre.

## **GROWING DEGREE DAYS - SAGINAW VALLEY RESEARCH FARM**

|         |              |        | Base 50 (m  | nax + min / 2 | 2 - 50) |             |            | —            |
|---------|--------------|--------|-------------|---------------|---------|-------------|------------|--------------|
|         | <u>APRIL</u> | MAY    | <u>JUNE</u> | <u>JULY</u>   | AUG     | <u>SEPT</u> | <u>OCT</u> | <u>TOTAL</u> |
| 1979    | 47.50        | 228.50 | 458.50      | 577.50        | 479.00  | 330.00      | 116.00     | 2237.00      |
| 1980    | 34.00        | 281.50 | 369.00      | 617.50        | 606.00  | 317.50      | 33.50      | 2259.00      |
| 1981    | 55.50        | 187.00 | 491.00      | 579.50        | 312.00  | 265.00      | 13.50      | 1903.50      |
| 1982    | 54.50        | 428.50 | 365.50      | 626.00        | 476.00  | 298.00      | 156.00     | 2404.50      |
| 1983    | 16.00        | 118.50 | 491.00      | 716.00        | 645.00  | 369.50      | 97.00      | 2453.00      |
| 1984    | 67.50        | 164.50 | 506.00      | 558.50        | 627.00  | 282.00      | 114.50     | 2320.00      |
| 1985    | 183.50       | 306.00 | 388.00      | 603.50        | 523.00  | 394.50      | 100.00     | 2498.50      |
| 1986    | 124.50       | 310.00 | 435.00      | 664.00        | 459.50  | 370.00      | 96.50      | 2459.50      |
| 1987    | 84.00        | 336.50 | 566.50      | 725.50        | 537.50  | 334.00      | 19.50      | 2603.50      |
| 1988    | 35.50        | 290.50 | 544.50      | 739.50        | 667.50  | 283.00      | 48.00      | 2608.50      |
| 1989    | 21.50        | 202.00 | 456.50      | 648.00        | 535.00  | 315.00      | 167.00     | 2345.00      |
| 1990    | 165.50       | 146.00 | 493.50      | 587.50        | 553.50  | 332.50      | 100.50     | 2379.00      |
| 1991    | 144.00       | 423.50 | 541.00      | 641.00        | 567.50  | 289.50      | 114.00     | 2720.50      |
| 1992    | 56.00        | 241.50 | 367.00      | 446.50        | 403.50  | 257.50      | 41.50      | 1813.50      |
| 1993    | 23.50        | 208.00 | 430.00      | 642.00        | 613.50  | 184.50      | 25.00      | 2126.50      |
| 1994    | 95.50        | 227.50 | 526.50      | 613.50        | 501.50  | 380.00      | 115.00     | 2459.50      |
| 1995    | 3.00         | 221.00 | 536.00      | 698.50        | 745.00  | 225.00      | 125.50     | 2554.00      |
| 1996    | 41.00        | 157.00 | 486.00      | 572.00        | 611.00  | 357.50      | 91.50      | 2316.00      |
| 1997    | 27.00        | 48.00  | 534.00      | 596.50        | 443.00  | 299.50      | 134.50     | 2082.50      |
| 1998    | 46.00        | 267.00 | 505.50      | 623.50        | 648.00  | 456.00      | 114.00     | 2660.00      |
| 1999    | 49.50        | 299.00 | 578.50      | 684.50        | 500.00  | 339.00      | 67.50      | 2518.00      |
| 2000    | 17.00        | 284.00 | 474.50      | 509.50        | 544.50  | 289.00      | 157.00     | 2275.50      |
| 2001    | 78.00        | 289.50 | 504.00      | 649.50        | 654.00  | 282.00      | 114.00     | 2571.00      |
| 2002    | 123.00       | 141.50 | 535.00      | 710.00        | 575.00  | 443.00      | 99.00      | 2626.50      |
| 2003    | 66.50        | 147.50 | 410.00      | 606.00        | 608.00  | 312.50      | 82.00      | 2232.50      |
| 2004    | 89.00        | 240.50 | 429.50      | 561.00        | 450.50  | 421.50      | 69.00      | 2261.00      |
| 2005    | 58.00        | 145.00 | 623.00      | 647.50        | 611.50  | 429.00      | 130.00     | 2644.00      |
| 2006    | 79.00        | 283.50 | 470.50      | 661.00        | 555.50  | 260.00      | 38.50      | 2348.00      |
| 2007    | 53.50        | 277.00 | 534.00      | 564.00        | 594.00  | 393.00      | 231.00     | 2646.50      |
| 2008    | 110.00       | 116.50 | 512.00      | 620.00        | 532.50  | 343.00      | 56.50      | 2290.50      |
| *2009   | 50.50        | 190.00 | 432.00      | 458.50        | 517.50  | 345.00      | 27.00      | 2020.50      |
| 2010    | 89.00        | 368.50 | 528.50      | 729.00        | 697.50  | 311.50      | 95.00      | 2819.00      |
| 2011    | 38.00        | 273.00 | 515.00      | 758.50        | 576.50  | 308.50      | 122.50     | 2592.00      |
| 2012    | 28.00        | 341.00 | 555.50      | 756.00        | 552.00  | 295.00      | 109.50     | 2637.00      |
| 2013    | 45.50        | 347.50 | 483.50      | 617.00        | 516.00  | 288.00      | 131.50     | 2429.00      |
| 2014    | 45.50        | 271.50 | 536.00      | 488.00        | 525.00  | 285.00      | 74.00      | 2225.00      |
| 2015    | 18.00        | 306.00 | 444.50      | 577.00        | 546.50  | 342.00      | 90.50      | 2324.50      |
| AVERAGE | 63.88        | 246.34 | 488.03      | 623.61        | 554.34  | 325.07      | 95.07      | 2396.32      |

\* Station moved to from Saginaw, MI to Richville, MI

## MAXIMUM-MINIMUM AIR TEMPERATURES (F) SAGINAW VALLEY RESEARCH & EXTENSION CENTER - 2015

|     | JANU | ARY | FEBRI | JARY | MAR | СН  | APRIL | -   | MA  | Y   | JUN | E   |
|-----|------|-----|-------|------|-----|-----|-------|-----|-----|-----|-----|-----|
| DAY | MAX  | MIN | MAX   | MIN  | MAX | MIN | MAX   | MIN | MAX | MIN | MAX | MIN |
| 1   | 28   | 18  | 25    | 13   | 25  | 7   | 58    | 25  | 72  | 36  | 62  | 38  |
| 2   | 31   | 18  | 15    | 2    | 28  | 12  | 63    | 40  | 75  | 43  | 70  | 37  |
| 3   | 32   | 21  | 22    | 2    | 32  | 19  | 51    | 29  | 80  | 48  | 75  | 43  |
| 4   | 32   | 13  | 23    | -1   | 28  | 5   | 48    | 20  | 74  | 51  | 80  | 49  |
| 5   | 13   | 0   | 13    | -9   | 15  | -5  | 43    | 31  | 60  | 45  | 72  | 59  |
| 6   | 14   | 6   | 26    | 12   | 22  | -2  | 56    | 29  | 75  | 42  | 68  | 44  |
| 7   | 11   | 2   | 33    | 23   | 36  | 18  | 49    | 33  | 86  | 51  | 77  | 44  |
| 8   | 11   | 2   | 32    | 18   | 38  | 19  | 41    | 33  | 83  | 59  | 81  | 60  |
| 9   | 12   | 0   | 19    | 0    | 44  | 22  | 60    | 35  | 69  | 56  | 77  | 57  |
| 10  | 14   | 0   | 27    | -1   | 46  | 30  | 63    | 37  | 57  | 45  | 86  | 59  |
| 11  | 30   | 13  | 31    | 16   |     |     | 59    | 32  | 68  | 45  | 75  | 53  |
| 12  | 26   | 5   | 20    | -4   |     |     | 68    | 33  | 61  | 45  | 63  | 54  |
| 13  | 17   | -1  | 18    | -10  |     |     | 64    | 46  | 58  | 37  | 68  | 54  |
| 14  | 18   | -9  | 19    | -6   |     |     | 66    | 33  | 66  | 35  | 79  | 62  |
| 15  | 29   | 13  | 1     | -14  |     |     | 63    | 31  | 69  | 49  | 82  | 67  |
| 16  | 30   | 9   | 11    | -15  |     |     | 62    | 33  | 75  | 51  | 78  | 58  |
| 17  | 40   | 14  | 20    | 2    |     |     | 75    | 43  | 83  | 59  | 78  | 52  |
| 18  | 38   | 31  | 12    | -4   |     |     | 63    | 38  | 83  | 61  | 80  | 61  |
| 19  | 31   | 24  | 1     | -15  |     |     | 66    | 32  | 61  | 40  | 70  | 52  |
| 20  | 28   | 22  | 10    | -20  | 52  | 27  | 61    | 41  | 58  | 36  | 79  | 47  |
| 21  | 24   | 8   | 25    | 10   | 44  | 23  | 46    | 36  | 69  | 41  | 83  | 62  |
| 22  | 28   | 8   | 22    | -5   | 35  | 14  | 38    | 30  | 66  | 39  | 81  | 56  |
| 23  | 31   | 13  | 8     | -16  | 31  | 17  | 39    | 28  | 76  | 32  | 75  | 59  |
| 24  | 35   | 25  | 22    | 1    | 41  | 12  | 54    | 23  | 79  | 47  | 81  | 49  |
| 25  | 31   | 14  | 19    | -2   | 45  | 26  | 54    | 31  | 81  | 62  | 78  | 58  |
| 26  | 24   | 5   | 12    | -6   | 39  | 25  | 57    | 28  | 83  | 64  | 78  | 54  |
| 27  | 24   | 6   | 16    | -13  | 26  | 14  | 53    | 35  | 79  | 58  | 66  | 59  |
| 28  | 31   | 6   | 21    | 0    | 34  | 13  | 61    | 30  | 82  | 53  | 77  | 58  |
| 29  | 30   | 21  |       |      |     |     | 67    | 34  | 84  | 59  | 79  | 57  |
| 30  | 22   | 9   |       |      |     |     | 60    | 40  |     | 49  | 75  | 54  |
| 31  | 30   | 10  |       |      | 46  | 31  |       |     | 52  | 41  |     |     |

## MAXIMUM-MINIMUM AIR TEMPERATURES (F) SAGINAW VALLEY RESEARCH & EXTENSION CENTER - 2015 cont.

|     | JUL | Y   | AUGU | ST  | SEPTEN | <b>/</b> BER | осто | BER | NOVEN | IBER | DECEN | IBER |
|-----|-----|-----|------|-----|--------|--------------|------|-----|-------|------|-------|------|
| DAY | MAX | MIN | MAX  | MIN | MAX    | MIN          | MAX  | MIN | MAX   | MIN  | MAX   | MIN  |
| 1   | 66  | 56  | 81   | 55  | 85     | 38           | 59   | 38  | 59    | 40   | 45    | 32   |
| 2   | 73  | 50  | 86   | 57  | 86     | 40           | 59   | 40  | 71    | 37   | 41    | 27   |
| 3   | 75  | 43  | 78   | 60  | 79     | 44           | 50   | 44  | 74    | 45   | 41    | 29   |
| 4   | 81  | 50  | 77   | 54  | 77     | 44           | 55   | 44  | 74    | 45   | 47    | 34   |
| 5   | 83  | 57  | 75   | 54  | 81     | 52           | 63   | 52  | 72    | 54   | 43    | 27   |
| 6   | 85  | 55  | 76   | 53  | 86     | 51           | 63   | 51  | 66    | 45   | 44    | 25   |
| 7   | 75  | 56  | 78   | 51  | 86     | 44           | 68   | 44  | 50    | 32   | 38    | 27   |
| 8   |     |     | 75   | 62  | 84     | 36           | 68   | 36  | 50    | 27   | 42    | 30   |
| 9   | 76  | 55  | 83   | 60  | 73     | 41           | 63   | 41  | 56    | 28   | 48    | 31   |
| 10  | 81  | 55  | 74   | 63  | 74     | 34           | 63   | 34  | 49    | 31   | 56    | 31   |
| 11  | 83  | 56  | 79   | 60  | 63     | 48           | 75   | 48  | 58    | 32   | 48    | 33   |
| 12  | 83  | 64  | 76   | 55  | 62     | 55           | 71   | 55  | 52    | 43   | 47    | 30   |
| 13  | 79  | 60  | 82   | 58  | 65     | 47           | 61   | 47  | 44    | 33   | 60    | 43   |
| 14  | 76  | 62  | 86   | 62  | 75     | 42           | 56   | 42  | 47    | 32   | 60    | 45   |
| 15  | 71  | 50  | 86   | 59  | 83     | 42           | 65   | 42  | 62    | 38   | 46    | 36   |
| 16  | 78  | 45  | 86   | 65  | 82     | 35           | 49   | 35  | 66    | 37   | 47    | 35   |
| 17  | 85  | 62  | 86   | 68  | 81     | 55           | 47   | 28  | 61    | 40   | 43    | 30   |
| 18  | 86  | 64  | 84   | 65  | 81     | 61           | 49   | 27  | 61    | 56   | 32    | 22   |
| 19  | 85  | 63  | 84   | 70  | 70     | 49           | 68   | 30  | 59    | 37   | 29    | 20   |
| 20  | 85  | 59  | 72   | 59  | 69     | 43           | 67   | 54  | 43    | 30   | 44    | 19   |
| 21  | 79  | 58  | 75   | 54  | 73     | 44           | 67   | 53  | 34    | 26   | 46    | 38   |
| 22  | 78  | 56  | 80   | 56  | 76     | 45           | 64   | 40  | 27    | 9    | 46    | 35   |
| 23  | 84  | 50  | 79   | 54  | 79     | 46           | 55   | 30  | 31    | 21   | 59    | 34   |
| 24  | 87  | 55  | 70   | 52  | 77     | 49           | 68   | 49  | 39    | 26   | 58    | 37   |
| 25  | 86  | 63  | 63   | 52  | 79     | 52           | 59   | 36  | 52    | 28   | 45    | 26   |
| 26  | 88  | 61  | 65   | 55  | 75     | 52           | 57   | 31  | 57    | 45   | 38    | 24   |
| 27  | 90  | 57  | 67   | 52  | 77     | 55           | 57   | 37  | 58    | 31   | 37    | 28   |
| 28  | 92  | 62  | 73   | 48  | 78     | 60           | 60   | 46  | 34    | 22   | 32    | 23   |
| 29  | 89  | 62  | 69   | 59  | 69     | 53           | 51   | 37  | 37    | 18   | 38    | 31   |
| 30  | 83  | 61  | 79   | 61  | 62     | 40           | 51   | 37  | 42    | 21   | 33    | 30   |
| 31  | 84  | 61  | 78   | 58  |        |              | 49   | 39  |       |      | 30    | 28   |

## MONTHLY PRECIPITATION, SAGINAW VALLEY RESEARCH FARM

|       |      |      | INLO |      |      |      |      |      |       |      |      |      |       |
|-------|------|------|------|------|------|------|------|------|-------|------|------|------|-------|
| ·     | JAN  | FEB  | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEP   | OCT  | NOV  | DEC  | TOTAL |
| 1983  | 0.89 | 0.90 | 3.29 | 4.55 | 6.15 | 3.55 | 1.91 | 2.50 | 5.11  | 2.95 | 3.06 | 2.00 | 36.86 |
| 1984  | 0.56 | 0.73 | 3.18 | 3.20 | 3.66 | 3.94 | 2.42 | 3.75 | 3.29  | 3.05 | 2.67 | 2.18 | 32.63 |
| 1985  | 1.85 | 2.12 | 4.08 | 3.96 | 2.30 | 1.87 | 2.38 | 7.02 | 4.38  | 3.08 | 4.66 | 1.05 | 38.75 |
| 1986  | 1.34 | 2.24 | 1.62 | 1.87 | 3.10 | 3.48 | 1.38 | 2.76 | 18.05 | 2.64 | 0.75 | 1.38 | 40.61 |
| 1987  | 1.11 | 0.82 | 1.03 | 2.03 | 0.67 | 4.11 | 1.35 | 3.92 | 5.03  | 1.88 | 2.13 | 2.63 | 26.71 |
| 1988  | 1.04 | 1.01 | 1.70 | 3.26 | 0.56 | 0.59 | 3.45 | 3.52 | 2.46  | 3.25 | 4.36 | 1.08 | 26.28 |
| 1989  | 1.09 | 0.34 | 1.40 | 2.05 | 5.03 | 6.25 | 1.06 | 2.92 | 4.43  | 1.72 | 3.24 | 0.48 | 30.01 |
| 1990  | 1.23 | 1.21 | 1.17 | 1.54 | 2.81 | 2.07 | 2.53 | 6.94 | 3.74  | 5.87 | 4.51 | 1.45 | 35.12 |
| 1991  | 0.85 | 0.60 | 3.68 | 6.61 | 3.71 | 2.66 | 4.53 | 2.61 | 1.50  | 3.52 | 2.04 | 1.24 | 31.58 |
| 1992  | 1.20 | 1.65 | 1.31 | 4.56 | 1.10 | 2.10 | 4.33 | 2.92 | 4.08  | 2.54 | 4.50 | 2.10 | 32.39 |
| 1993  | 2.72 | 0.47 | 0.87 | 4.08 | 2.76 | 3.03 | 2.46 | 4.62 | 4.00  | 3.70 | 1.99 | 0.53 | 31.23 |
| 1994  | 0.55 | 0.66 | 0.91 | 3.58 | 2.04 | 6.99 | 2.57 | 4.44 | 2.19  | 2.24 | 4.40 | 1.03 | 31.60 |
| 1995  | 1.67 | 0.35 | 1.38 | 2.72 | 1.44 | 1.96 | 1.29 | 5.00 | 1.33  | 2.39 | 4.05 | 0.79 | 24.37 |
| 1996  | 0.83 | 0.94 | 0.49 | 3.18 | 5.47 | 5.65 | 2.32 | 1.53 | 3.52  | 3.31 | 1.37 | 2.21 | 30.82 |
| 1997  | 1.51 | 4.25 | 1.32 | 1.38 | 3.00 | 0.69 | 2.44 | 3.61 | 3.46  | 1.31 | 1.03 | 0.36 | 24.36 |
| 1998  | 2.66 | 2.05 | 3.17 | 2.14 | 1.87 | 1.56 | 1.02 | 2.01 | 1.41  | 3.18 | 1.79 | 1.32 | 24.18 |
| 1999  | 2.75 | 0.41 | 0.62 | 5.01 | 2.33 | 3.07 | 5.02 | 3.01 | 2.52  | 1.12 | 1.04 | 1.90 | 28.80 |
| 2000  | 0.57 | 1.35 | 0.89 | 2.94 | 5.34 | 2.65 | 3.03 | 3.69 | 3.27  | 0.90 | 2.07 | 1.57 | 28.27 |
| 2001  | 0.33 | 3.16 | 0.11 | 2.38 | 4.42 | 2.45 | 0.53 | 3.52 | 4.34  | 4.90 | 1.76 | 1.61 | 29.51 |
| 2002  | 1.02 | 1.49 | 2.47 | 3.49 | 4.46 | 3.15 | 3.00 | 4.50 | 0.50  | 1.87 | 1.19 | 0.97 | 28.11 |
| 2003  | 0.27 | 0.21 | 1.66 | 0.36 | 4.19 | 2.04 | 2.49 | 1.33 | 1.99  | 1.09 | 5.35 | 1.20 | 22.18 |
| 2004  | 1.09 | 0.55 | 2.50 | 1.31 | 7.34 | 2.70 | 2.01 | 2.32 | 0.66  | 2.41 | 3.44 | 1.51 | 27.84 |
| 2005  | 2.90 | 0.71 | 0.62 | 1.32 | 1.74 | 4.97 | 3.20 | 0.72 | 0.72  | 1.30 | 3.83 | 1.49 | 23.52 |
| 2006  | 1.91 | 1.57 | 1.59 | 1.87 | 4.17 | 2.03 | 5.72 | 2.61 | 2.53  | 3.77 | 3.05 | 2.81 | 33.63 |
| 2007  | 1.11 | 0.35 | 1.27 | 3.02 | 220  | 1.06 | 2.59 | 4.80 | 2.64  | 2.86 | 0.89 | 1.93 | 22.52 |
| 2008  | 1.76 | 2.59 | 1.23 | 1.99 | 1.13 | 3.88 | 3.94 | 2.10 | 5.61  | 1.70 | 1.36 | 1.21 | 28.50 |
| *2009 | 0.01 | 2.12 | 1.84 | 4.69 | 1.23 | 4.81 | 2.73 | 3.48 | 0.82  | 3.61 | 0.47 | 1.88 | 27.69 |
| 2010  | 0.14 | 0.20 | 0.40 | 2.15 | 3.36 | 2.71 | 0.89 | 1.27 | 3.11  | 1.94 | 1.97 | 0.42 | 18.56 |
| 2011  | 0.48 | 0.24 | 1.82 | 4.96 | 3.86 | 1.51 | 1.34 | 2.98 | 2.28  | 2.85 | 2.74 | 1.42 | 26.48 |
| 2012  | 1.86 | 0.76 | 1.41 | 1.19 | 3.92 | 1.10 | 3.62 | 4.03 | 1.60  | 4.29 | 0.38 | 1.41 | 25.57 |
| 2013  | 2.77 | 0.84 | 0.36 | 7.38 | 3.43 | 1.73 | 2.03 | 1.85 | 0.58  | 3.26 | 2.34 | 0.74 | 27.31 |
| 2014  | 0.47 | 0.55 | 0.92 | 3.99 | 3.06 | 2.74 | 4.17 | 3.90 | 3.03  | 2.10 | 2.07 | 1.49 | 28.49 |
| 2015  | 0.59 | 0.08 | 0.56 | 1.97 | 2.86 | 2.68 | 2.20 | 3.94 | 2.62  | 1.96 | 1.26 | 2.04 | 22.76 |
| AVG.  | 1.21 | 1.12 | 1.50 | 2.87 | 2.93 | 2.74 | 2.41 | 3.10 | 3.07  | 2.56 | 2.38 | 1.33 | 27.21 |

\*Station moved from Saginaw, MI to Richville, MI

| Day:  | JAN  | FEB  | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEP  | OCT  | NOV  | DEC  |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1     |      |      |      |      |      |      | 0.04 | 0.04 |      |      |      | 0.02 |
| 2     |      |      |      | 0.03 |      |      |      | 1.45 |      |      |      |      |
| 3     | 0.36 |      |      |      |      |      |      | 0.01 | 0.96 | 0.03 |      |      |
| 4     | 0.15 |      | 0.06 |      | 0.09 |      |      |      |      | 0.17 |      |      |
| 5     |      |      |      | 0.19 | 0.01 |      |      |      |      |      |      |      |
| 6     |      |      |      |      |      |      |      |      |      | 0.01 | 0.19 |      |
| 7     |      | 0.03 |      | 0.01 |      |      | 0.40 |      | 0.02 |      |      | 0.01 |
| 8     |      |      |      | 0.69 | 0.1  | 0.88 |      | 0.03 | 0.61 | 0.21 |      |      |
| 9     |      | 0.05 |      | 0.49 | 0.05 | 0.02 |      |      | 0.05 | 0.01 |      |      |
| 10    |      |      |      | 0.09 | 0.12 |      |      | 0.47 |      |      | 0.11 |      |
| 11    |      |      |      |      | 0.28 |      |      |      |      |      |      |      |
| 12    |      |      |      |      |      | 0.73 |      |      | 0.09 |      | 0.18 |      |
| 13    |      |      |      | 0.04 |      |      | 0.02 | 0.03 |      |      | 0.01 | 0.18 |
| 14    |      |      |      |      |      | 0.5  | 0.30 | 0.70 |      |      |      | 0.11 |
| 15    |      |      |      |      | 0.16 | 0.32 |      | 0.01 |      |      |      | 0.01 |
| 16    |      |      |      |      |      | 0.02 |      |      |      |      |      | 0.02 |
| 17    |      |      |      |      |      |      | 0.36 |      |      |      |      | 0.01 |
| 18    |      |      |      |      |      |      | 0.01 |      | 0.34 |      | 0.01 |      |
| 19    | 0.01 |      |      | 0.17 |      |      |      | 0.30 | 0.55 |      |      |      |
| 20    |      |      |      | 0.25 |      |      |      | 0.13 |      |      |      |      |
| 21    |      |      |      |      |      |      |      |      |      | 0.04 |      | 0.39 |
| 22    | 0.05 |      |      |      |      | 0.19 |      |      |      |      |      | 0.06 |
| 23    |      |      |      |      |      |      |      | 0.52 |      |      |      | 0.12 |
| 24    |      |      |      |      |      |      |      |      |      | 0.49 | 0.11 |      |
| 25    |      |      |      |      | 0.09 |      |      |      |      |      |      |      |
| 26    |      |      | 0.24 |      | 0.21 |      | 0.01 |      |      |      | 0.21 | 0.24 |
| 27    |      |      |      | 0.01 |      | 0.02 | 0.01 |      |      |      | 0.43 | 0.09 |
| 28    |      |      |      |      |      |      |      |      |      | 0.58 |      |      |
| 29    | 0.02 |      |      |      | 0.58 |      |      | 0.25 |      | 0.07 |      | 0.77 |
| 30    |      |      |      |      | 1.03 |      | 1.05 |      |      |      | 0.01 | 0.01 |
| 31    |      |      | 0.26 |      | 0.14 |      |      |      |      | 0.35 |      |      |
| TOTAL | 0.59 | 0.08 | 0.56 | 1.97 | 2.86 | 2.68 | 2.20 | 3.94 | 2.62 | 1.96 | 1.26 | 2.04 |

## PRECIPITATION - SAGINAW VALLEY RESEARCH & EXTENSION CENTER- 2015

Rainfall is measured in inches

2015 YEAR END TOTAL: 22.76 INCHES

#### Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Research & Extension Center during 2015

Mitch McGrath, Linda Hanson, and Tom Goodwill USDA – Agricultural Research Service, East Lansing, MI

Evaluation and rating plots were planted at the Saginaw Valley Research & Extension Center (SVREC) in Frankenmuth, MI in 2015 that focused on Cercospora leaf spot (CLS) and Rhizoctonia crown and root rot (CRR) disease performance of a wide range of Beta vulgaris materials. CLS and CRR trials were conducted in conjunction with the Beet Sugar Development Foundation (BSDF) and CLS trials included USDA-ARS cooperator germplasm as well as germplasm screening for the National Plant Germplasm System. All trials were planted following normal fall and spring tillage operations with a USDA-ARS modified John Deere / Almaco research plot planter. The BSDF CLS nursery was planted on April 30, 2015, the BSDF CRR evaluation nursery was planted on May 1, 2015, and the other evaluation and breeding nurseries on May 6. A randomized complete-block design with one to five replications was used, depending on the specific test. All plots were 15 ft long, with 30 in between rows with the exception of the BSDF CLS nursery, which was planted on 20 in rows. Most entries were commercial or near-commercial varieties, and weeds were controlled with glyphosate at the recommended rates. For non-commercial entries, weeds were controlled with three applications of mixtures of phenmedipham, desmedipham, triflusulfuron methyl, and clopyralid and one application of S-metolachlor. Hand weeding was done as needed to control larger weeds. The BSDF trails were thinned by hand with the generous help of Michigan Sugar Cooperative. Bolting beets were removed throughout the season. In the CLS nurseries, Quadris 2.08SC (azoxystrobin) was applied at 0.0091 kg/100 m row in a 14 cm band in-furrow at planting to control Rhizoctonia damping-off.

The BSDF cooperative CRR Eastern Evaluation Nursery, a recent addition to the SVREC whose activities are complemented by the Western Nursery at Kimberly, Idaho, had entries from four companies, with a total of 249 entries plus two control varieties evaluated. This nursery was 1-row with 5 replications conducted in a double-blind fashion. In addition, susceptible or moderately resistant varieties were planted to collect sacrificial samples through the season and assess root rot development. The nursery was inoculated on June 24 with a dry ground barley inoculum of *Rhizoctonia solani*, anastomosis group 2-2 (highly virulent isolate) at 0.96 g per foot of row using a Gandy applicator to apply inoculum directly to the rows. The nursery was sprayed with water following inoculum application to ensure sufficient moisture for infection. Roots were dug August 17, 18, and 19 (three weeks earlier than 2014) with a modified single row harvester. Each root was rated for disease severity using a 0-7 scale where 0=no visible lesions and 7=root completely rotted. A weighted disease index was calculated for each replicate. Variety disease index means for the entire nursery ranged from 3.8 to 6.0 (mean = 5.4), with the percent of roots classified as "harvestable" (less than 25% of the root rotted) ranging from 0% to 43% for the different varieties.

The official BSDF cooperative CLS evaluation nursery had entries from three companies, with a total of 222 entries evaluated. This nursery was 2-row, 4 replications conducted in a double-blind fashion. The nursery was inoculated on July 2 with a liquid spore suspension (approximately  $1 \times 10^3$  spores/ml) of *Cercospora beticola*. Inoculum was produced from a mixture of leaves collected from the 2014 inoculated leaf spot nursery at SVREC. Visual evaluations of the plot were conducted with a disease index (DI) on a scale from 0-10 where

0=no symptoms, 1=a few scattered spots, 2=spots coalescing or in large numbers on lower leaves only, 3= some dieback on lower leaves, but leaves not entirely dead, 4-8 are increasing amounts of dead and diseased tissue, 9= mostly dead with few remaining living leaves with large dead patches, and 10=all leaves dead. Disease severity peaked by early September, after which regrowth started to outpace new disease development. Variety means for the commercial nursery were 1.2 on Aug 8 (range = 1 to 2), Aug 13 mean = 2.7 (range = 1 to 4), Aug 20 mean = 4.1 (range 1 to 7), Aug 27 mean = 4.9 (range = 2 to 7), and Sept 3 mean = 5.7 (range = 3 to 8).

In addition to commercial entries, 224 USDA-ARS breeding lines and checks from three USDA cooperators (Fargo, ND, Ft. Collins, CO, East Lansing, MI) were evaluated on three dates; Aug 13, Aug 27, and Sept 9. Fargo entry ratings (24 entries) ranged from 3 to 8 (mean 6.1, standard deviation 1.2) on the last rating. Kimberly entries (14 entries) mean rating was 5.0 (standard deviation 1.2, ranging from 3 to 8) on the same date. Fort Collins' (57 entries) ratings ranged from 3 to 8, with a mean of 5.3 (std, dev. 1.2). East Lansing (94 entries) scores ranged from 3 to 7, with a mean of 4.7 (std. dev. 0.8).

For all CLS nurseries, High Definition videos of disease development were taken throughout the season, roughly twice per week depending on weather. Software was developed to test whether the image analyses would be useful, with promising results. One problem encountered was a reliable method to register test plots with captured images and this problem was partially solved using RTK-GPS data captured along with video, however mapping varieties to GPS coordinates (without geo-referencing) still proves to be problematic. A visiting scientist has begun to solve this issue, and further develop the CLS rating model.

A rapid photosynthesis status method to characterize disease progression was evaluated by Ms. Ashley Wieczorek (MSU Master's student). Initial results were obtained using a recently developed, open-source, inexpensive, hand-held, rapid measurement photosynthesis device; the Photosynq (photosynq.org). This device is roughly the size of a desktop stapler, is entirely self-contained, communicates data to an Android device via Bluetooth, and uploaded to a server for storage and analyses. Measurements of Photosystem I activity are accomplished using absorption spectroscopy and Photosystem II activity via chlorophyll fluorescence, both accomplished using LED's of appropriate wavelengths. The status of photosynthetic efficiency can be calculated from the raw data, including the strength of the proton motive force, and by extension, ATP production (the energy currency of the cell, and directly involved in sucrose production) (Baker et al. 2007). The instrument itself is in a Beta testing stage for assessment of the device's utility in breeding programs. Briefly, a leaf is gently grasped with the open end of the device and a measurement is obtained within 15 seconds. In preliminary trials, the Photosynq device was used to examine entries in two BSDF sponsored disease nurseries, the East Lansing Rhizoctonia crown and root rot and Cercospora leaf spot nurseries.

In the Rhizoctonia nursery, the resistant and susceptible checks were measured before inoculation and at three weeks after inoculation. Results suggest the measure 'ECSt' can discriminate between these two entries prior to foliar symptoms being visible. Here, ECSt refers to Electro-Chromic Shift, which relates to charge separation across the thylakoid membranes, the generator of ATP through the proton pump ATP-synthase. At this point, we have not adequately assimilated the theoretical background sufficiently to say whether such a change in post-inoculated resistant- and susceptible varieties is expected, however, it is quite intriguing that a difference was detected.

The Cercospora leaf spot nursery was examined with the Photosynq device, as well. In this case, entries in the USDA section of the nursery containing entries from USDA-ARS Fargo, ND (Larry Campbell) were chosen because of an expected wide range of Cercospora reaction, and also because the number of entries plus checks was manageable for a small experiment. This test is replicated four times as single row plots. Here, the measure 'Phi1' appeared to yield a statistically significant difference between resistant and susceptible checks when measured four weeks post-inoculation but prior to onset of visible symptoms. Phi1 measures activity of Photosystem 1, which provides reducing power, particularly NADP, to chloroplast metabolism and transfers electrons to various biochemical reactions. Thus, susceptible plants at this stage of infection seem to be affected in their Photosystem 1 capacity.

Alternaria leaf spot has been reported with more frequency in the region in the last five years. To improve our understanding of *Alternaria* affecting beet in the region, observations were made of natural infection in the 2015 nursery. Germplasm was identified that showed evidence of variable tolerance levels. This will be used in future screening to examine the potential for identifying and breeding for host resistance. In addition, samples were taken from infected beets and pure cultures obtained by single spore transfer. Isolates are being identified to species and most are the *Alternaria alternate* species complex. Isolates also were tested for sensitivity to fungicides commonly used for leaf spot management in the region. Resistance to benzimdazole and strobilurin fungicides and tolerance to organo-tins was common in the isolates from the Michigan growing region.

"Thirty Plant Introductions (PIs) from the USDA-ARS National Plant Germplasm System (NPGS) Beta Collection [includes garden beet, sugarbeet, leaf beet, fodder beet (Beta vulgaris L.), and wild beet (Beta spp.)] along with seven entries resulting from crossing of previous years PIs (2008-2013) selected from Cercospora leaf spot tests (Hanson, et al. PDMR 3:V017, 6:FC037, 7:FC067. 8:FC170) with East Lansing germplasm and USDA-ARS release SR102 (PI 675153) were evaluated for resistance to Cercospora beticola in an artificially produced epiphytotic environment (based generally on Ruppel, E.G. and J.O. Gaskill. 1971. J. Am. Soc. Sugar Beet Technol. 16:384). Previous year's PIs were selected for their general levels of agronomic performance (e.g. emergence, stand persistence, and seed production) to augment genetic diversity in the cultivated germplasm pool and not specifically for Cercospora leaf spot performance. A randomized complete-block design, with three replications was used to evaluate germplasm at the Michigan State University Saginaw Valley Research and Extension Center (SVREC) near Frankenmuth, MI. The field had been planted in wheat with clover underseeded in 2014. Internal controls included a susceptible check, 12N0050 (kindly provided by L. Campbell), and a resistant check, EL50/2 (PI 664912). Single-row plots 4.5 m long, with 51 cm between rows were planted on 30 Apr. The nursery was spray-inoculated on 2 Jul with a liquid spore suspension (approximately 1 x  $10^3$  spores/ml as determined with a hemacytometer) of C. beticola. Inoculum was produced from a mixture of leaves collected from the 2014 inoculated leaf spot nursery at SVREC and naturally infected beets grown at SVREC and on the Michigan State University campus farms in East Lansing, MI. Visual evaluations of the plot with a disease index (DI) on a scale from 0-10 where 0=no symptoms, 1=a few scattered spots, 2=spots coalescing or in large numbers on lower leaves only, 3= some dieback on lower leaves, but leaves not entirely dead, 4-8 are increasing amounts of dead and diseased tissue, 9= mostly dead with few remaining living leaves with large dead patches, and 10=all leaves dead. Evaluations were made on 13, 20, and 27 Aug, and 3 and 9 Sep, with the peak of the epidemic occurring around 9 Sep. An evaluation was attempted subsequently, but several PIs were losing leaves

following production of seed stalks and others were showing new leaf growth following defoliation from Cercospora leaf spot, so these ratings were not used. Weeds were controlled by a preplant application of ethofumesate 7 May, three times with mixtures of phenmedipham, desmedipham, triflusulfuron methyl, and clopyralid (23 May and 11, and 24 Jun) and once with S-metolachlor (17 Jun). Hand weeding was done as needed to control larger weeds. The beet crop was thinned by hand with the generous help of Michigan Sugar Cooperative. Bolting beets were removed throughout the season.

The moderate night temperatures in the summer of 2015, combined with high humidity and rainfall, contributed to a moderate leaf spot epiphytotic. Supplemental moisture was applied using an overhead irrigation system 3, 6 and 10 Jul. The BeetCast leafspot advisory in the Frankenmuth area from 1 May to 20 Sep accumulated 224 daily severity values. Disease severity peaked by early Sep, after which regrowth started to outpace new disease development, so that disease ratings for several accessions remained constant or decreased after that rating, thus ratings were not given after this date (Table 1). At the 9 Sep 15 rating, means of the resistant and susceptible internal controls for the entire nursery (including two additional experiments) were 3.2 and 7.0, respectively, across the nursery. At the peak of the epiphytotic in 2014 (3 Sep), these means were 2.4 and 5.8 for resistant and susceptible checks, respectively. Means of contributor lines in the entire nursery (including three additional tests) in 2015 ranged from 2.7 to 7.0. An analysis of variance (PROC GLM - SAS) on the disease indices (visual evaluation scores) determined that there were significant differences among entries (p < 0.05) on all dates of evaluation. All accessions were significantly different from the resistant control at the final four rating dates, but three accessions, PIs 506218, 515965, and 518167, as well as the East Lansing breeding materials EL- A027162 and EL-A029709 were not significantly different from the resistant control at the first rating date. At the final rating date, near the peak of the epiphytototic, eleven accessions (in order from lowest to highest disease severity rating: PI 518167, PI 538250, PI506238, PI 518314, NSL 176410, NSL183446, PI296541, NSL28041, NSL183461, PI357367, and PI505828) and the East Lansing breeding lines were significantly different from the susceptible control. Only two accessions (NSL34020 and PI518314) required removal of seed stalks from at least one replicate during the season while five of the crosses from previous years PIs required such removal (735, 779, 780, 791, and 795). These data, and more information on the accessions evaluated, are available through the USDA-ARS GRIN database at http://www.ars-grin.gov/npgs." (The preceding was extracted from a submission to Plant Disease Management Reports (www.plantmanagementnetwork.org/pub/trial/pdmr/)).

We extend our gratitude to Paul Horny and Dennis Fleischmann for their essential help with nursery and farm operations, to Michigan Sugar for help with thinning and agronomic evaluations, and to MSU undergrad Nick Boerman for his help throughout the field season. Thanks to Ashley Wieczorek and the other members of the USDA-ARS East Lansing sugar beet program are also extended. We welcome Holly Corder as a facilitator in conducting the BSDF disease nurseries in the future.

|              |                    | Identificat  | ion                 |                  | Average | disease index <sup>z</sup> |       |       |
|--------------|--------------------|--------------|---------------------|------------------|---------|----------------------------|-------|-------|
| Entry        | Donor's ID         | subsp.       | Origin              | 13 Aug           | 20 Aug  | 27 Aug                     | 3 Sep | 9 Sep |
| NSL28041     | B236               | vulgaris     | United States       | 2.7              | 3.0     | 3.7                        | 4.7   | 5.7   |
| NSL28073     | A 0034             | 0            | United States       |                  | 4.0     | 5.0                        | 6.0   | 6.7   |
| NSL34020     | A 1491             | 0            | United States       |                  | 5.6     | 6.3                        | 7.3   | 7.3   |
| NSL86577     | 72/2-4-2-0         | vulgaris     | United States       | 3.0              | 4.3     | 5.0                        | 6.0   | 6.7   |
| NSL141986    | CS 42              | vulgaris     | United States       | 3.3              | 4.3     | 5.3                        | 6.3   | 7.0   |
| NSL142025    | R&G Pioneer        |              | United States       |                  | 4.7     | 6.3                        | 7.0   | 7.0   |
| NSL176410    | Yugo 5             |              | Former Serbia&Mont  |                  | 4.0     | 4.3                        | 5.0   | 4.7   |
| NSL183376    | 342                |              | United States       |                  | 4.3     | 5.3                        | 6.0   | 7.0   |
| NSL183409    | 1332               | vulgaris     | United States       | 2.7              | 4.0     | 5.0                        | 6.0   | 7.0   |
| NSL183444    | 4326               | vulgaris     | United States       | 2.7              | 430     | 4.7                        | 5.7   | 6.3   |
| NSL183446    | 5090               |              | United States       |                  | 3.3     | 4.0                        | 5.0   | 5.3   |
| NSL183461    | 7411               |              | United States       |                  | 3.7     | 4.3                        | 5.0   | 6.0   |
| PI 169024    | Kirmizi            | vulgaris     | Turkey              | 3.0              | 5.0     | 6.7                        | 7.0   | 7.3   |
| PI 296541    | Tetra-Tri-         | 0            | Poland              |                  | 3.7     | 4.0                        | 4.3   | 5.7   |
|              | Polanowice         | 0            |                     |                  |         |                            |       |       |
| PI 357367    | Sveklo             | vulgaris     | Macedonia           | 3.0              | 4.0     | 4.3                        | 5.0   | 6.0   |
| PI 372276    | 300/71             | vulgaris     | Poland              | 2.7              | 43      | 5.0                        | 6.0   | 6.7   |
| PI 372278    | Mono-IHAR          | 0            | Poland              |                  | 3.7     | 4.3                        | 5.3   | 6.3   |
| PI 381644    | Ramonskij 23       | vulgaris     | Former Soviet Union | 2.7              | 4.0     | 5.0                        | 6.0   | 7.0   |
| PI 470091    | IDBBNR 5522        |              | United Kingdom      |                  | 4.3     | 5.3                        | 67    | 7.0   |
| PI 505826    | Belocerkovskij     |              | Former Soviet Union |                  | 4.0     | 5.0                        | 6.0   | 7.0   |
|              | Poligibrid 34      | 0            |                     |                  |         |                            |       |       |
| PI 505828    | Ganusovskij        | vulgaris     | Former Soviet Union | 2.3              | 3.7     | 4.3                        | 5.7   | 6.0   |
|              | Poligibrid 8       | 0            |                     |                  |         |                            |       |       |
| PI 506238    | FC707(4x)          | vulgaris     | United States       | 1.7              | 3.0     | 3.0                        | 4.0   | 4.7   |
| PI 507848    | IDBBNR 5565        | vulgaris     | Hungary             | 3.0              | 4.3     | 6.0                        | 7.3   | 7.3   |
| PI 515964    | C790               | vulgaris     | United States       | 2.7              | 4.0     | 5.0                        | 6.0   | 6.7   |
| PI 515965    | C796               | vulgaris     | United States       | 1.7              | 3.0     | 4.0                        | 5.0   | 6.3   |
| PI 518167    | Ch-11              | vulgaris     | China               | 1.7              | 2.7     | 3.3                        | 4.0   | 4.3   |
| PI 518170    | Ch-9b              | vulgaris     | China               | 2.7              | 3.7     | 4.0                        | 5.3   | 6.3   |
| PI 518314    | IDBBNR 5808        | maritima     | United Kingdom      | 2.7              | 3.7     | 3.7                        | 4.0   | 4.7   |
| PI 538250    | C28                | vulgaris     | United States       | 2.3              | .7      | 3.7                        | 4.0   | 4.3   |
| PI 558506    | FC604              |              | United States       |                  | nd      | nd                         | nd    | nd    |
| 33           | EL-A1402160        | vulgaris     | 2013 PI selections  | 2.0              | 3.3     | 3.7                        | 4.0   | 5.0   |
| 35           | EL-A12-00029       |              | 2011 PI selections  | 2.3              | 3.7     | 4.0                        | 4.3   | 4.7   |
| 79           | EL-A13-02337       |              | 2012 PI selections  | 2.0 <sup>w</sup> | 3.5     | 4.0                        | 4.0   | 4.0   |
| 780          | EL-A13-02263       |              | PI504285 selections | 2.7              | 3.7     | 4.0                        | 4.7   | 5.7   |
| '91          | EL-A027160         |              | 2008 PI selections  | 2.3              | 3.0     | 4.0                        | 4.7   | 5.0   |
| '95          | EL-A027162         |              | 2008 PI selections  | 1.7              | 3.0     | 3.3                        | 4.0   | 4.3   |
| 317          | EL-A12-00022       |              | 2011 red selections | 2.0              | 4.0     | 4.0                        | 4.0   | 4.0   |
| SR102        | PI 675154          | vulgaris     | EL-A029709          | 1.7              | 3.0     | 3.0                        | 4.0   | 4.0   |
| auf Smot S-  | acontible Charley  | (12NI0050)   | TIC A               | 2.2              | 12      | 57                         | 67    | 7.0   |
|              |                    |              | USA                 |                  | 4.3     | 5.7                        | 6.7   | 7.0   |
| Lear Spot Re | sistant Check * (E | ,            | USA                 |                  | 1.3     | 2.0                        | 2.0   | 3.0   |
|              |                    | $LSD_{0.02}$ | 5                   | 0.78             | 0.80    | 0.73                       | 0.67  | 0.89  |

Table 1: Plant Introduction (PI) Cercospora Leaf Spot nursery results and materials derived from previous nurseries crossed with traditional East Lansing germplasm.

Trial Mean..

nd - ratings were not made because of insufficient leaf tissue to rate

<sup>z</sup> Disease Index is based on a scale where 0=healthy to 10=all leaves dead (see text). Each number is an average of three plots except as noted below.

<sup>y</sup> The Leafspot Susceptible Check, 12N0050, is kindly provided by Larry Campbell, USDA-ARS.

<sup>z</sup> The Leafspot Resistant Check is EL50/2 (PI 664912).

"Numbers based on average from two plots as either insufficient plants emerged or insufficient leaf tissue remained of one of the replicates after seed stalks were removed to rate

#### Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Research & Extension Center during 2015

Mitch McGrath, Linda Hanson, and Tom Goodwill USDA – Agricultural Research Service, East Lansing, MI

Evaluation and rating plots were planted at the Saginaw Valley Research & Extension Center (SVREC) in Frankenmuth, MI in 2015 that focused on Cercospora leaf spot (CLS) and Rhizoctonia crown and root rot (CRR) disease performance of a wide range of Beta vulgaris materials. CLS and CRR trials were conducted in conjunction with the Beet Sugar Development Foundation (BSDF) and CLS trials included USDA-ARS cooperator germplasm as well as germplasm screening for the National Plant Germplasm System. All trials were planted following normal fall and spring tillage operations with a USDA-ARS modified John Deere / Almaco research plot planter. The BSDF CLS nursery was planted on April 30, 2015, the BSDF CRR evaluation nursery was planted on May 1, 2015, and the other evaluation and breeding nurseries on May 6. A randomized complete-block design with one to five replications was used, depending on the specific test. All plots were 15 ft long, with 30 in between rows with the exception of the BSDF CLS nursery, which was planted on 20 in rows. Most entries were commercial or near-commercial varieties, and weeds were controlled with glyphosate at the recommended rates. For non-commercial entries, weeds were controlled with three applications of mixtures of phenmedipham, desmedipham, triflusulfuron methyl, and clopyralid and one application of S-metolachlor. Hand weeding was done as needed to control larger weeds. The BSDF trails were thinned by hand with the generous help of Michigan Sugar Cooperative. Bolting beets were removed throughout the season. In the CLS nurseries, Quadris 2.08SC (azoxystrobin) was applied at 0.0091 kg/100 m row in a 14 cm band in-furrow at planting to control Rhizoctonia damping-off.

The BSDF cooperative CRR Eastern Evaluation Nursery, a recent addition to the SVREC whose activities are complemented by the Western Nursery at Kimberly, Idaho, had entries from four companies, with a total of 249 entries plus two control varieties evaluated. This nursery was 1-row with 5 replications conducted in a double-blind fashion. In addition, susceptible or moderately resistant varieties were planted to collect sacrificial samples through the season and assess root rot development. The nursery was inoculated on June 24 with a dry ground barley inoculum of *Rhizoctonia solani*, anastomosis group 2-2 (highly virulent isolate) at 0.96 g per foot of row using a Gandy applicator to apply inoculum directly to the rows. The nursery was sprayed with water following inoculum application to ensure sufficient moisture for infection. Roots were dug August 17, 18, and 19 (three weeks earlier than 2014) with a modified single row harvester. Each root was rated for disease severity using a 0-7 scale where 0=no visible lesions and 7=root completely rotted. A weighted disease index was calculated for each replicate. Variety disease index means for the entire nursery ranged from 3.8 to 6.0 (mean = 5.4), with the percent of roots classified as "harvestable" (less than 25% of the root rotted) ranging from 0% to 43% for the different varieties.

The official BSDF cooperative CLS evaluation nursery had entries from three companies, with a total of 222 entries evaluated. This nursery was 2-row, 4 replications conducted in a double-blind fashion. The nursery was inoculated on July 2 with a liquid spore suspension (approximately 1 x  $10^3$  spores/ml) of *Cercospora beticola*. Inoculum was produced from a mixture of leaves collected from the 2014 inoculated leaf spot nursery at SVREC. Visual evaluations of the plot were conducted with a disease index (DI) on a scale from 0-10 where

0=no symptoms, 1=a few scattered spots, 2=spots coalescing or in large numbers on lower leaves only, 3= some dieback on lower leaves, but leaves not entirely dead, 4-8 are increasing amounts of dead and diseased tissue, 9= mostly dead with few remaining living leaves with large dead patches, and 10=all leaves dead. Disease severity peaked by early September, after which regrowth started to outpace new disease development. Variety means for the commercial nursery were 1.2 on Aug 8 (range = 1 to 2), Aug 13 mean = 2.7 (range = 1 to 4), Aug 20 mean = 4.1 (range 1 to 7), Aug 27 mean = 4.9 (range = 2 to 7), and Sept 3 mean = 5.7 (range = 3 to 8).

In addition to commercial entries, 224 USDA-ARS breeding lines and checks from three USDA cooperators (Fargo, ND, Ft. Collins, CO, East Lansing, MI) were evaluated on three dates; Aug 13, Aug 27, and Sept 9. Fargo entry ratings (24 entries) ranged from 3 to 8 (mean 6.1, standard deviation 1.2) on the last rating. Kimberly entries (14 entries) mean rating was 5.0 (standard deviation 1.2, ranging from 3 to 8) on the same date. Fort Collins' (57 entries) ratings ranged from 3 to 8, with a mean of 5.3 (std, dev. 1.2). East Lansing (94 entries) scores ranged from 3 to 7, with a mean of 4.7 (std. dev. 0.8).

For all CLS nurseries, High Definition videos of disease development were taken throughout the season, roughly twice per week depending on weather. Software was developed to test whether the image analyses would be useful, with promising results. One problem encountered was a reliable method to register test plots with captured images and this problem was partially solved using RTK-GPS data captured along with video, however mapping varieties to GPS coordinates (without geo-referencing) still proves to be problematic. A visiting scientist has begun to solve this issue, and further develop the CLS rating model.

A rapid photosynthesis status method to characterize disease progression was evaluated by Ms. Ashley Wieczorek (MSU Master's student). Initial results were obtained using a recently developed, open-source, inexpensive, hand-held, rapid measurement photosynthesis device; the Photosynq (photosynq.org). This device is roughly the size of a desktop stapler, is entirely self-contained, communicates data to an Android device via Bluetooth, and uploaded to a server for storage and analyses. Measurements of Photosystem I activity are accomplished using absorption spectroscopy and Photosystem II activity via chlorophyll fluorescence, both accomplished using LED's of appropriate wavelengths. The status of photosynthetic efficiency can be calculated from the raw data, including the strength of the proton motive force, and by extension, ATP production (the energy currency of the cell, and directly involved in sucrose production) (Baker et al. 2007). The instrument itself is in a Beta testing stage for assessment of the device's utility in breeding programs. Briefly, a leaf is gently grasped with the open end of the device and a measurement is obtained within 15 seconds. In preliminary trials, the Photosynq device was used to examine entries in two BSDF sponsored disease nurseries, the East Lansing Rhizoctonia crown and root rot and Cercospora leaf spot nurseries.

In the Rhizoctonia nursery, the resistant and susceptible checks were measured before inoculation and at three weeks after inoculation. Results suggest the measure 'ECSt' can discriminate between these two entries prior to foliar symptoms being visible. Here, ECSt refers to Electro-Chromic Shift, which relates to charge separation across the thylakoid membranes, the generator of ATP through the proton pump ATP-synthase. At this point, we have not adequately assimilated the theoretical background sufficiently to say whether such a change in post-inoculated resistant- and susceptible varieties is expected, however, it is quite intriguing that a difference was detected.

The Cercospora leaf spot nursery was examined with the Photosynq device, as well. In this case, entries in the USDA section of the nursery containing entries from USDA-ARS Fargo, ND (Larry Campbell) were chosen because of an expected wide range of Cercospora reaction, and also because the number of entries plus checks was manageable for a small experiment. This test is replicated four times as single row plots. Here, the measure 'Phi1' appeared to yield a statistically significant difference between resistant and susceptible checks when measured four weeks post-inoculation but prior to onset of visible symptoms. Phi1 measures activity of Photosystem 1, which provides reducing power, particularly NADP, to chloroplast metabolism and transfers electrons to various biochemical reactions. Thus, susceptible plants at this stage of infection seem to be affected in their Photosystem 1 capacity.

Alternaria leaf spot has been reported with more frequency in the region in the last five years. To improve our understanding of *Alternaria* affecting beet in the region, observations were made of natural infection in the 2015 nursery. Germplasm was identified that showed evidence of variable tolerance levels. This will be used in future screening to examine the potential for identifying and breeding for host resistance. In addition, samples were taken from infected beets and pure cultures obtained by single spore transfer. Isolates are being identified to species and most are the *Alternaria alternate* species complex. Isolates also were tested for sensitivity to fungicides commonly used for leaf spot management in the region. Resistance to benzimdazole and strobilurin fungicides and tolerance to organo-tins was common in the isolates from the Michigan growing region.

"Thirty Plant Introductions (PIs) from the USDA-ARS National Plant Germplasm System (NPGS) Beta Collection [includes garden beet, sugarbeet, leaf beet, fodder beet (Beta vulgaris L.), and wild beet (Beta spp.)] along with seven entries resulting from crossing of previous years PIs (2008-2013) selected from Cercospora leaf spot tests (Hanson, et al. PDMR 3:V017, 6:FC037, 7:FC067. 8:FC170) with East Lansing germplasm and USDA-ARS release SR102 (PI 675153) were evaluated for resistance to Cercospora beticola in an artificially produced epiphytotic environment (based generally on Ruppel, E.G. and J.O. Gaskill. 1971. J. Am. Soc. Sugar Beet Technol. 16:384). Previous year's PIs were selected for their general levels of agronomic performance (e.g. emergence, stand persistence, and seed production) to augment genetic diversity in the cultivated germplasm pool and not specifically for Cercospora leaf spot performance. A randomized complete-block design, with three replications was used to evaluate germplasm at the Michigan State University Saginaw Valley Research and Extension Center (SVREC) near Frankenmuth, MI. The field had been planted in wheat with clover underseeded in 2014. Internal controls included a susceptible check, 12N0050 (kindly provided by L. Campbell), and a resistant check, EL50/2 (PI 664912). Single-row plots 4.5 m long, with 51 cm between rows were planted on 30 Apr. The nursery was spray-inoculated on 2 Jul with a liquid spore suspension (approximately 1 x  $10^3$  spores/ml as determined with a hemacytometer) of C. beticola. Inoculum was produced from a mixture of leaves collected from the 2014 inoculated leaf spot nursery at SVREC and naturally infected beets grown at SVREC and on the Michigan State University campus farms in East Lansing, MI. Visual evaluations of the plot with a disease index (DI) on a scale from 0-10 where 0=no symptoms, 1=a few scattered spots, 2=spots coalescing or in large numbers on lower leaves only, 3= some dieback on lower leaves, but leaves not entirely dead, 4-8 are increasing amounts of dead and diseased tissue, 9= mostly dead with few remaining living leaves with large dead patches, and 10=all leaves dead. Evaluations were made on 13, 20, and 27 Aug, and 3 and 9 Sep, with the peak of the epidemic occurring around 9 Sep. An evaluation was attempted subsequently, but several PIs were losing leaves

following production of seed stalks and others were showing new leaf growth following defoliation from Cercospora leaf spot, so these ratings were not used. Weeds were controlled by a preplant application of ethofumesate 7 May, three times with mixtures of phenmedipham, desmedipham, triflusulfuron methyl, and clopyralid (23 May and 11, and 24 Jun) and once with S-metolachlor (17 Jun). Hand weeding was done as needed to control larger weeds. The beet crop was thinned by hand with the generous help of Michigan Sugar Cooperative. Bolting beets were removed throughout the season.

The moderate night temperatures in the summer of 2015, combined with high humidity and rainfall, contributed to a moderate leaf spot epiphytotic. Supplemental moisture was applied using an overhead irrigation system 3, 6 and 10 Jul. The BeetCast leafspot advisory in the Frankenmuth area from 1 May to 20 Sep accumulated 224 daily severity values. Disease severity peaked by early Sep, after which regrowth started to outpace new disease development, so that disease ratings for several accessions remained constant or decreased after that rating, thus ratings were not given after this date (Table 1). At the 9 Sep 15 rating, means of the resistant and susceptible internal controls for the entire nursery (including two additional experiments) were 3.2 and 7.0, respectively, across the nursery. At the peak of the epiphytotic in 2014 (3 Sep), these means were 2.4 and 5.8 for resistant and susceptible checks, respectively. Means of contributor lines in the entire nursery (including three additional tests) in 2015 ranged from 2.7 to 7.0. An analysis of variance (PROC GLM - SAS) on the disease indices (visual evaluation scores) determined that there were significant differences among entries (p < 0.05) on all dates of evaluation. All accessions were significantly different from the resistant control at the final four rating dates, but three accessions, PIs 506218, 515965, and 518167, as well as the East Lansing breeding materials EL- A027162 and EL-A029709 were not significantly different from the resistant control at the first rating date. At the final rating date, near the peak of the epiphytototic, eleven accessions (in order from lowest to highest disease severity rating: PI 518167, PI 538250, PI506238, PI 518314, NSL 176410, NSL183446, PI296541, NSL28041, NSL183461, PI357367, and PI505828) and the East Lansing breeding lines were significantly different from the susceptible control. Only two accessions (NSL34020 and PI518314) required removal of seed stalks from at least one replicate during the season while five of the crosses from previous years PIs required such removal (735, 779, 780, 791, and 795). These data, and more information on the accessions evaluated, are available through the USDA-ARS GRIN database at http://www.ars-grin.gov/npgs." (The preceding was extracted from a submission to Plant Disease Management Reports (www.plantmanagementnetwork.org/pub/trial/pdmr/)).

We extend our gratitude to Paul Horny and Dennis Fleischmann for their essential help with nursery and farm operations, to Michigan Sugar for help with thinning and agronomic evaluations, and to MSU undergrad Nick Boerman for his help throughout the field season. Thanks to Ashley Wieczorek and the other members of the USDA-ARS East Lansing sugar beet program are also extended. We welcome Holly Corder as a facilitator in conducting the BSDF disease nurseries in the future.

|              |                    | Identificat  | ion                 |                  | Average | disease index <sup>z</sup> |       |       |
|--------------|--------------------|--------------|---------------------|------------------|---------|----------------------------|-------|-------|
| Entry        | Donor's ID         | subsp.       | Origin              | 13 Aug           | 20 Aug  | 27 Aug                     | 3 Sep | 9 Sep |
| NSL28041     | B236               | vulgaris     | United States       | 2.7              | 3.0     | 3.7                        | 4.7   | 5.7   |
| NSL28073     | A 0034             | 0            | United States       |                  | 4.0     | 5.0                        | 6.0   | 6.7   |
| NSL34020     | A 1491             | 0            | United States       |                  | 5.6     | 6.3                        | 7.3   | 7.3   |
| NSL86577     | 72/2-4-2-0         | vulgaris     | United States       | 3.0              | 4.3     | 5.0                        | 6.0   | 6.7   |
| NSL141986    | CS 42              | vulgaris     | United States       | 3.3              | 4.3     | 5.3                        | 6.3   | 7.0   |
| NSL142025    | R&G Pioneer        |              | United States       |                  | 4.7     | 6.3                        | 7.0   | 7.0   |
| NSL176410    | Yugo 5             |              | Former Serbia&Mont  |                  | 4.0     | 4.3                        | 5.0   | 4.7   |
| NSL183376    | 342                |              | United States       |                  | 4.3     | 5.3                        | 6.0   | 7.0   |
| NSL183409    | 1332               | vulgaris     | United States       | 2.7              | 4.0     | 5.0                        | 6.0   | 7.0   |
| NSL183444    | 4326               | vulgaris     | United States       | 2.7              | 430     | 4.7                        | 5.7   | 6.3   |
| NSL183446    | 5090               |              | United States       |                  | 3.3     | 4.0                        | 5.0   | 5.3   |
| NSL183461    | 7411               |              | United States       |                  | 3.7     | 4.3                        | 5.0   | 6.0   |
| PI 169024    | Kirmizi            | vulgaris     | Turkey              | 3.0              | 5.0     | 6.7                        | 7.0   | 7.3   |
| PI 296541    | Tetra-Tri-         | 0            | Poland              |                  | 3.7     | 4.0                        | 4.3   | 5.7   |
|              | Polanowice         | 0            |                     |                  |         |                            |       |       |
| PI 357367    | Sveklo             | vulgaris     | Macedonia           | 3.0              | 4.0     | 4.3                        | 5.0   | 6.0   |
| PI 372276    | 300/71             | vulgaris     | Poland              | 2.7              | 43      | 5.0                        | 6.0   | 6.7   |
| PI 372278    | Mono-IHAR          | 0            | Poland              |                  | 3.7     | 4.3                        | 5.3   | 6.3   |
| PI 381644    | Ramonskij 23       | vulgaris     | Former Soviet Union | 2.7              | 4.0     | 5.0                        | 6.0   | 7.0   |
| PI 470091    | IDBBNR 5522        |              | United Kingdom      |                  | 4.3     | 5.3                        | 67    | 7.0   |
| PI 505826    | Belocerkovskij     |              | Former Soviet Union |                  | 4.0     | 5.0                        | 6.0   | 7.0   |
|              | Poligibrid 34      | 0            |                     |                  |         |                            |       |       |
| PI 505828    | Ganusovskij        | vulgaris     | Former Soviet Union | 2.3              | 3.7     | 4.3                        | 5.7   | 6.0   |
|              | Poligibrid 8       | 0            |                     |                  |         |                            |       |       |
| PI 506238    | FC707(4x)          | vulgaris     | United States       | 1.7              | 3.0     | 3.0                        | 4.0   | 4.7   |
| PI 507848    | IDBBNR 5565        | vulgaris     | Hungary             | 3.0              | 4.3     | 6.0                        | 7.3   | 7.3   |
| PI 515964    | C790               | vulgaris     | United States       | 2.7              | 4.0     | 5.0                        | 6.0   | 6.7   |
| PI 515965    | C796               | vulgaris     | United States       | 1.7              | 3.0     | 4.0                        | 5.0   | 6.3   |
| PI 518167    | Ch-11              | vulgaris     | China               | 1.7              | 2.7     | 3.3                        | 4.0   | 4.3   |
| PI 518170    | Ch-9b              | vulgaris     | China               | 2.7              | 3.7     | 4.0                        | 5.3   | 6.3   |
| PI 518314    | IDBBNR 5808        | maritima     | United Kingdom      | 2.7              | 3.7     | 3.7                        | 4.0   | 4.7   |
| PI 538250    | C28                | vulgaris     | United States       | 2.3              | .7      | 3.7                        | 4.0   | 4.3   |
| PI 558506    | FC604              |              | United States       |                  | nd      | nd                         | nd    | nd    |
| 33           | EL-A1402160        | vulgaris     | 2013 PI selections  | 2.0              | 3.3     | 3.7                        | 4.0   | 5.0   |
| 35           | EL-A12-00029       |              | 2011 PI selections  | 2.3              | 3.7     | 4.0                        | 4.3   | 4.7   |
| 79           | EL-A13-02337       |              | 2012 PI selections  | 2.0 <sup>w</sup> | 3.5     | 4.0                        | 4.0   | 4.0   |
| 780          | EL-A13-02263       |              | PI504285 selections | 2.7              | 3.7     | 4.0                        | 4.7   | 5.7   |
| '91          | EL-A027160         |              | 2008 PI selections  | 2.3              | 3.0     | 4.0                        | 4.7   | 5.0   |
| '95          | EL-A027162         |              | 2008 PI selections  | 1.7              | 3.0     | 3.3                        | 4.0   | 4.3   |
| 317          | EL-A12-00022       |              | 2011 red selections | 2.0              | 4.0     | 4.0                        | 4.0   | 4.0   |
| SR102        | PI 675154          | vulgaris     | EL-A029709          | 1.7              | 3.0     | 3.0                        | 4.0   | 4.0   |
| auf Smot S-  | acontible Charley  | (12NI0050)   | TIC A               | 2.2              | 12      | 57                         | 67    | 7.0   |
|              |                    |              | USA                 |                  | 4.3     | 5.7                        | 6.7   | 7.0   |
| Lear Spot Re | sistant Check * (E | ,            | USA                 |                  | 1.3     | 2.0                        | 2.0   | 3.0   |
|              |                    | $LSD_{0.02}$ | 5                   | 0.78             | 0.80    | 0.73                       | 0.67  | 0.89  |

Table 1: Plant Introduction (PI) Cercospora Leaf Spot nursery results and materials derived from previous nurseries crossed with traditional East Lansing germplasm.

Trial Mean..

nd - ratings were not made because of insufficient leaf tissue to rate

<sup>z</sup> Disease Index is based on a scale where 0=healthy to 10=all leaves dead (see text). Each number is an average of three plots except as noted below.

<sup>y</sup> The Leafspot Susceptible Check, 12N0050, is kindly provided by Larry Campbell, USDA-ARS.

<sup>z</sup> The Leafspot Resistant Check is EL50/2 (PI 664912).

"Numbers based on average from two plots as either insufficient plants emerged or insufficient leaf tissue remained of one of the replicates after seed stalks were removed to rate

#### Efficacy of application of foliar fungicides for control of Cercospora leaf spot in sugar beet, 2015.

N. Rosenzweig, W. W. Kirk, R. L Schafer. Department of Plant, Soil and Microbial Science Michigan State University, East Lansing, MI 48824

Sugar beet cv. ACH RR-824 was PAT-treated and planted at the Michigan State University Bean and Beet Farm, Richville, MI on 25 May. Seed was planted at 1" depth into four-row by 25-ft plots (ca. 4.375 in. between plants to give a target population of 275 plants/100ft. row) with 30" between rows replicated four times in a randomized complete block design. Fertilizer was drilled into plots immediately before planting, formulated according to results of soil tests (125 lb 46-0-0). No additional nitrogen was applied to the growing crop. Plots were inoculated by spraying a conidial suspension of C. beticola collected from infected sugarbeet foliar residue from the previous season on 16 Jun across all plots. Fungicides were applied starting after the 35 or 45 Beetcast disease severity values were recorded in the area on 8 and 15 Jul, respectively (Ontario Weather Network, Ridgetown, ON, Canada), applications were initiated on 8 Jul and three to five applications were made as specified in the table below. Fungicides were applied with a hand-held R&D spray boom delivering 25 gal (80 p.s.i.) and using three XR11003VS nozzles per row. Induce 480XL 0.25 % v/v was applied where indicated as "Induce" on the results table unless a different rate was indicated. Weeds were controlled by cultivation and with Roundup Original Max 2.0 pt applied at GS2-4 and GS 6-8. Insects were controlled as necessary. Foliar leaf spot severity (%) was measured on 24 Aug and 5 Sep using a 0 - 10 scale; 0 = 0%; 1 = 1 - 5, 0.1%; 2 =6 -12, 0.35%; 3= 13 - 25, 0.75%; 4= 26 - 50, 1.5%; 5= 51 - 75, 2.5%; spots/leaf or severity %; respectively; 6=3% (proven economic damage); 7=6%; 8=12%; 9=25%; and 10>50% severity. Beetroots were machine-harvested on 10 Oct and individual treatments were weighed. Sugar content was measured at the Michigan Sugar Company analytical service laboratory. Meteorological variables were measured with a Campbell weather station located at the farm, latitude 43.3995 and longitude -83.6980 deg. Average daily air temperature (°F) was 45.4, 60.3, 64.2, 69.6, 68.0, and 64.8 (Apr, May, Jun, Jul, Aug, and Sep, respectively) and the number of days with maximum temperature  $>90^{\circ}F$  over the same period was 0 for each month except Jul with 2 days. Average daily relative humidity (%) over the same period was 63.7, 63.2, 67.9, 66.8, 72.8 and 70.9. Precipitation over the same period was 1.97, 2.86, 2.68, 2.2, 3.94, and 6.56". There were 226 Beetcast DSV values accumulated in the Saginaw area from 1 May to 30 Sep at Richville, MI.

Weather conditions during the growing season at Richville, MI were conducive for the development of Cercospora leaf spot (CLS) for most of the season and of note was the lack of hot and humid conditions during Jul with only two days with temperatures >90°F F. CLS severity (%) reached 4.0, 21.3 and 42.5% in the not-treated control by 5, 11, 18 and 28 Aug, respectively (not all data not shown in table). All treatments had significantly less CLS severity (%) than the nottreated control (42.5%) by 10 Sep. Treatments with CLS RAUDPC values less than 17.3 were significantly different to the not-treated control (36.8) by 28 Aug. CLS reached a mean Bayer index of 5.3, 7.5, 9.3 and 10.0 in the not-treated control during the same period. Treatments with CLS Bayer indices less than 7.5 had significantly less Cercospora leaf spot than the not-treated control (10.0) by 28 Aug. All treatments had significantly greater yield per acre than the untreated control (13.6 t) and the range in yield (treated plots) was from 19.6 to 26.9 t/A. Treatments with sugar content (%) greater than 14.3% had significantly greater sugar content than the not-treated control (13.6%) and the range in sugar content (treated plots) was from 14.6 to 15.9%. Treatments with recoverable white sucrose per ton (RWST lb) greater than 204 lb had significantly greater RWST than the not-treated control (192 lb) and the range in RWST (treated plots) was from 204 to 229 lb. No treatments had significantly greater recoverable white sucrose per acre (RWSA) than the untreated control (3362 lb) and the range in RWSA (treated plots) was from 4160 to 5649 lb. No phytotoxicity was noted in any plots.

|                                                                                                                                                    |                             | (         | Cercospo | ora leaf s                      | pot  |                                  |      |        |      |               |          |     |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|----------|---------------------------------|------|----------------------------------|------|--------|------|---------------|----------|-----|-------------------------------|
| Treatment and rate                                                                                                                                 | Seve<br>(%<br>10 S<br>13 DA | 5)<br>Sep | (0-1     | DPC <sup>b</sup><br>100)<br>Sep | 0-10 | yer<br>scale <sup>c</sup><br>Sep | Yie  | ld (t) |      | gar<br>nt (%) | RW<br>(l |     | RW<br>SA <sup>e</sup><br>(lb) |
| Inoculated Check                                                                                                                                   | 68.5                        | а         | 36.8     | a                               | 10.0 | a                                | 13.5 | f      | 13.6 | e             | 192      | g   | 3362                          |
| Eminent 125SL 1SL 13 fl oz (ABCD)<br>Eminent 125SL 1SL 13 fl oz +                                                                                  | 3.8                         | d-g       | 1.0      | cde                             | 5.3  | e-h                              | 20.1 | e      | 15.2 | abc           | 218      | a-e | 4641                          |
| Badge 2.27SC 16 fl oz +<br>Kinetic 90SL 8 fl oz (ABCD)<br>Eminent 125SL 1SL 13 fl oz +                                                             | 5.8                         | def       | 1.8      | cde                             | 5.8  | d-g                              | 22.2 | a-e    | 14.3 | de            | 204      | fg  | 4777                          |
| Badge 2.27SC 32 fl oz +<br>Kinetic 90SL 8 fl oz (ABCD)<br>Eminent 125SL 1SL 13 fl oz +                                                             | 2.2                         | d-g       | 0.7      | cde                             | 3.8  | f-i                              | 26.9 | a      | 15.5 | ab            | 222      | abc | 4409                          |
| Badge 2.27SC 48 fl oz +<br>Kinetic 90SL 8 fl oz (ABCD)<br>Eminent 125SL 1SL 13 fl oz +                                                             | 3.5                         | d-g       | 2.1      | cde                             | 4.8  | e-i                              | 22.5 | a-e    | 15.3 | abc           | 219      | a-e | 4769                          |
| Topsin 70W 70WG 0.5 lb +<br>Kinetic 90SL 8 fl oz (ABCD)<br>Eminent 125SL 1SL 13 fl oz +                                                            | 3.9                         | d-g       | 1.3      | cde                             | 5.0  | e-h                              | 22.2 | a-e    | 15.5 | abc           | 221      | a-e | 4749                          |
| Topsin 70W 70WG 1 lb +<br>Kinetic 90SL 8 fl oz (ABCD)<br>Minerva Duo 1SC 16 fl oz +                                                                | 5.8                         | def       | 2.4      | cd                              | 5.8  | d-g                              | 21.8 | a-e    | 15.0 | bcd           | 214      | b-f | 5182                          |
| Kinetic 90SL 8 fl oz (ABCD)<br>Manzate 4F 4FL 3.2 pt (AC);<br>Eminent VP 1ME 13 fl oz +                                                            | 1.1                         | g         | 0.6      | de                              | 2.3  | i                                | 20.9 | cde    | 15.6 | ab            | 223      | abc | 4709                          |
| Badge 2.27SC 48 fl oz (B);<br>Inspire XT 4.16SL 7 fl oz +<br>Manzate 4F 4FL 3.2 pt (D);<br>Super Tin 4L 4FL 8 fl oz +<br>Badge 2.27SC 48 fl oz (E) |                             |           |          |                                 |      |                                  |      |        |      |               |          |     |                               |
| Kinetic 90SL 8 fl oz (ABCDE)<br>Manzate 4F 4FL 3.2 pt (AC);<br>Eminent VP 1ME 13 fl oz +<br>Topsin 70W 70WG 1 lb (B);                              | 19.8                        | с         | 12.8     | b                               | 8.0  | a-d                              | 20.1 | e      | 15.2 | abc           | 217      | a-e | 5649                          |
| Inspire XT 4.16SL 7 fl oz +<br>Manzate 4F 4FL 3.2 pt (D);<br>Super Tin 4L 4FL 8 fl oz +<br>Badge 2.27SC 48 fl oz (E)                               |                             |           |          |                                 |      |                                  |      |        |      |               |          |     |                               |
| Kinetic 90SL 8 fl oz (ABCDE)<br>Enable 2F 10 fl oz +                                                                                               | 35.6                        | b         | 17.3     | ab                              | 8.8  | ab                               | 22.3 | a-e    | 14.9 | bcd           | 213      | c-f | 4368                          |
| Dithane F-45 37F 3.2 pt +<br>Kinetic 90SL 8 fl oz (ABCD)<br>Enable 2F 10 fl oz (AC);                                                               | 1.8                         | efg       | 0.5      | e                               | 3.0  | hi                               | 22.7 | a-e    | 15.4 | abc           | 220      | a-e | 4352                          |
| Priaxor 4.17SC 8 fl oz (B);<br>Super Tin 4L 4FL 8 fl oz (D)<br>Enable 2F 10 fl oz (AC);                                                            | 26.7                        | bc        | 11.4     | b                               | 8.5  | abc                              | 21.1 | cde    | 14.6 | cd            | 208      | ef  | 4140                          |
| Super Tin 4L 4FL 8 fl oz (B);<br>Cuprofix Ultra Disperss 40DF 3 lb (D)<br>Minerva 1SC 13 fl oz (A);                                                | 24.8                        | bc        | 13.9     | b                               | 8.5  | abc                              | 24.2 | a-e    | 15.4 | abc           | 220      | a-e | 5478                          |
| Super Tin 4L 4FL 8 fl oz +<br>Koverall 75WG 1.5 lb (B);<br>Headline 2.09SC 9 fl oz (C)<br>Minerva Duo 1SC 16 fl oz (A);                            | 4.7                         | d-g       | 1.4      | cde                             | 5.5  | d-h                              | 19.6 | e      | 15.4 | abc           | 220      | a-e | 4938                          |
| Super Tin 4L 4FL 8 fl oz +<br>Koverall 75WG 1.5 lb (B);<br>Headline 2.09SC 9 fl oz (C)<br>Proline 480SC 5.7 fl oz (A);                             | 3.7                         | d-g       | 1.2      | cde                             | 4.3  | e-i                              | 22.7 | a-e    | 15.2 | a-d           | 217      | a-f | 5641                          |
| Super Tin 4L 4FL 8 fl oz +<br>Koverall 75WG 1.5 lb (B);<br>Headline 2.09SC 9 fl oz (C)                                                             | 7.3                         | d         | 2.8      | с                               | 6.5  | b-e                              | 23.9 | a-e    | 15.4 | abc           | 220      | a-e | 5010                          |
| SA-004309 SC 21 fl oz (A);<br>Super Tin 4L 4FL 8 fl oz +                                                                                           |                             |           |          |                                 |      |                                  |      |        |      |               |          |     |                               |
| Koverall 75WG 1.5 lb (B);<br>Headline 2.09SC 9 fl oz (C)<br>SA-004310 SC 32 fl oz (A);                                                             | 5.8                         | def       | 2.4      | cd                              | 5.8  | d-g                              | 25.8 | abc    | 14.9 | bcd           | 212      | c-f | 4656                          |
| Super Tin 4L 4FL 8 fl oz +                                                                                                                         | 6.8                         | de        | 2.4      | cd                              | 6.0  | c-f                              | 20.4 | de     | 15.6 | ab            | 229      | а   | 4668                          |

|                                                            |                              |           | Cercospo | ra leaf sj                      | pot  |                                  |      |        |      |                 |           |     |                               |
|------------------------------------------------------------|------------------------------|-----------|----------|---------------------------------|------|----------------------------------|------|--------|------|-----------------|-----------|-----|-------------------------------|
| Treatment and rate                                         | Seve<br>(%<br>10 \$<br>13 D/ | 6)<br>Sep | (0-1     | DPC <sup>b</sup><br>100)<br>Sep | 0-10 | yer<br>scale <sup>c</sup><br>Sep | Yie  | ld (t) |      | igar<br>ent (%) | RW<br>(ll |     | RW<br>SA <sup>e</sup><br>(lb) |
| Koverall 75WG 1.5 lb (B);                                  |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Headline 2.09SC 9 fl oz (C)                                |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| SA-004303 SC 32 fl oz (A);<br>Super Tin 4L 4FL 8 fl oz +   |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Koverall 75WG 1.5 lb (B);                                  |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Headline 2.09SC 9 fl oz (C)                                | 2.7                          | d-g       | 0.7      | de                              | 4.5  | e-i                              | 25.4 | a-d    | 14.9 | bcd             | 209       | def | 5064                          |
| SA-004309 SC 21 fl oz (A);                                 | 2.7                          | 4 5       | 0.7      | ue                              | 1.0  | 01                               | 20.1 | u u    | 11.7 | ocu             | 207       | uer | 5001                          |
| Super Tin 4L 4FL 8 fl oz +                                 |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Koverall 75WG 1.5 lb (B);                                  |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Super Tin 4L 4FL 8 fl oz (C)                               | 2.7                          | d-g       | 1.1      | cde                             | 4.5  | e-i                              | 25.9 | abc    | 15.9 | а               | 227       | ab  | 4649                          |
| Minerva Duo 1SC 16 fl oz (A);                              |                              | 0         |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Super Tin 4L 4FL 8 fl oz +                                 |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Topsin 4.5FL 7.6 fl oz (B);                                |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Headline 2.09SC 9 fl oz (C)                                | 3                            | d-g       | 0.8      | cde                             | 4.8  | e-i                              | 21.4 | b-e    | 15.6 | ab              | 223       | abc | 4623                          |
| Inspire XT 4.16SL 7 fl oz (A);                             |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Super Tin 4L 4FL 8 fl oz +                                 |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Koverall 75WG 1.5 lb (B);                                  | 2.0                          | 1         | 1.0      | 1                               | 5.2  |                                  | 22.7 |        | 15.0 | 1 1             | 214       | 1.0 | 1700                          |
| Headline 2.09SC 9 fl oz (C)                                | 3.8                          | d-g       | 1.0      | cde                             | 5.3  | e-h                              | 23.7 | a-e    | 15.0 | bcd             | 214       | b-f | 4709                          |
| Super Tin 4L 4FL 8 fl oz +<br>Mongoto May 4FL 1 6 gt (AC): |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| ManzateMax 4FL 1.6 qt (AC);<br>Inspire XT 4.16SL 7 fl oz + |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| ManzateMax 4FL 1.6 qt (B);                                 |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Cuprofix Ultra Disperss 40DF 3 lb +                        |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| ManzateMax 4FL 1.6 qt (D)                                  | 1.4                          | fg        | 0.4      | e                               | 3.0  | hi                               | 21.6 | b-e    | 15.6 | ab              | 222       | a-d | 5015                          |
| Super Tin 4L 4FL 8 fl oz +                                 |                              | -0        |          | -                               |      |                                  |      |        |      |                 |           |     |                               |
| ManzateMax 4FL 1.6 gt (AC);                                |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Proline 480SC 5.7 fl oz +                                  |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| ManzateMax 4FL 1.6 qt (B);                                 |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Cuprofix Ultra Disperss 40DF 3 lb +                        |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| ManzateMax 4FL 1.6 qt (D)                                  | 4.3                          | d-g       | 1.8      | cde                             | 4.3  | e-i                              | 26.4 | ab     | 15.4 | abc             | 216       | a-f | 4980                          |
| Super Tin 4L 4FL 8 fl oz +                                 |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| ManzateMax 4FL 1.6 qt (AC);                                |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Eminent VP 1ME 13 fl oz +                                  |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| ManzateMax 4FL 1.6 qt (B);                                 |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     |                               |
| Cuprofix Ultra Disperss 40DF 3 lb +                        | 0.1                          | 1         | 0.0      | 1                               | 2.2  | 1.                               | 24.6 |        | 140  |                 | 010       | c   | 5 4 1 1                       |
| ManzateMax 4FL 1.6 qt (D)                                  | 2.1                          | d-g       | 0.8      | cde                             | 3.3  | ghi                              | 24.6 | a-e    | 14.9 | bcd             | 212       | c-f | 5411                          |
| <i>p</i> -value if NSD                                     |                              |           |          |                                 |      |                                  |      |        |      |                 |           |     | 0.35                          |

<sup>a</sup> DAFA= Days after final fungicide application

<sup>b</sup> RAUDPC = The relative area under the percentage Cercospora leaf spot disease progress curve calculated for each treatment from the date of the first evaluation to 10 Sep, a period of 27 days (Max = 100)

<sup>c</sup> Foliar leaf spot severity; 0 - 10 scale; 0= 0%; 1 = 1 - 5, 0.1%; 2 = 6 - 12, 0.35%; 3 = 13 - 25, 0.75%; 4 = 26 - 50,

1.5%; 5 = 51 - 75, 2.5%; spots/leaf or severity %; respectively; 6 = 3% (proven economic damage); 7 = 6%; 8 = 10%

12%; 9 = 25%; and  $10 \ge 50\%$  severity

<sup>d</sup> RWST= Recoverable White Sucrose per Ton

<sup>e</sup> RWSA = Recoverable White Sucrose per Acre (Ton\* Recoverable White Sucrose per Ton of sugarbeet)

<sup>e</sup> Means followed by same letter are not significantly different at p = 0.05 (Fishers LSD)

<sup>f</sup> Application dates: A = 8 Jul; B = 15 Jul; C = 29 Jul; D = 5 Aug; E = 19 Aug<sup>+</sup> F = 28

#### Control of Rhizoctonia crown and root rot with fungicides in sugarbeet, 2015.

N. Rosenzweig, W. W. Kirk and R. L. Schafer; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824

Sugar beet cv. ACH RR-824 was PAT-treated and planted at the Michigan State University Bean and Beet Farm, Richville, MI on 17 Apr. Seed was planted at 1" depth into four-row by 50-ft plots (ca. 4.375 in. between plants to give a target population of 275 plants/100ft. row) with 30" between rows replicated four times in a randomized complete block design. Fertilizer was drilled into plots immediately before planting, formulated according to results of soil tests (125 lb 46-0-0/A). No additional nitrogen was applied. All fungicides were applied with a hand held R&D spray boom delivering 10 gal/A (50 p.s.i.) and using one XR8003 nozzle per row in a 6" band at planting (A) or at GS 4-6 (B). Applications were made at planting (A); and banded applications on 7 Jun at GS 4-6 (B), respectively. Cercospora leaf spot was controlled with an application of Eminent 125SL (13 fl oz) + Koverall 75DF (1.5 lb) on 8 Jul and Inspire 2.08EC (7 fl oz) + Kocide 3000 46.1WG (2 lb) on 29 Jul and Super Tin 4L (8 fl oz) + ManzateMax 4FL (1.6 qt) on 19 Aug. Weeds were controlled by cultivation and with Roundup Original Max 2.0 pt/A applied at GS2-4 and GS 6-8. Insects were controlled as necessary. Plant stand was rated 18, 24 and 40 days after planting (DAP) and relative rate of emergence was calculated as the Relative Area Under the Emergence Progress Curve [RAUEPC from 0 – 40 DAP, maximum value = 100]. Plots were inoculated on 17 May [30 days after planting (DAP)] by spreading R. solani Anastemoses Group 2.2 (IIIB) infested millet across all plants in each plot. Incidence of infected plants was evaluated on 40 and 168 DAP. Samples of 50 beets per plot were harvested 168 DAP (10 ft from start of each plot from two center rows) and assessed for crown and root rot (R. solani) incidence (%) and severity. Severity of crown and root rot was measured as an index calculated by counting the number of roots (n = 20) falling in class 0 = 0%; 1 = 1 - 5%; 2 = 6 - 10%; 3 = 11 - 15%; 4 =15 - 25%; 5 = 25 - 50%; 6 = 50 - 100% surface area of root affected by lesions; and 7 = dead and/orextensively decayed root. The number in each class is multiplied by the class number and summed. The sum is multiplied by a constant to express as a percentage. Increasing index values indicated the degree of severity. The number of beets falling into classes 0 - 3 was summed and a percentage calculated as marketable beets. The trial was not harvested for yield assessment due to the high incidence and severity of crown and root rot. Meteorological variables were measured with a Campbell weather station located at the farm, latitude 43.3995 and longitude -83.6980 deg. Average daily air temperature (°F) was 45.4, 60.3, 64.2, 69.6, 68.0, and 64.8 (Apr, May, Jun, Jul, Aug, and Sep, respectively) and the number of days with maximum temperature  $>90^{\circ}$ F over the same period was 0 for each month except Jul with 2 days. Average daily relative humidity (%) over the same period was 63.7, 63.2, 67.9, 66.8, 72.8 and 70.9. Precipitation over the same period was 1.97, 2.86, 2.68, 2.2, 3.94, and 6.56".

Soil temperature and moisture conditions enhanced development of crown and root rot throughout the season although severe symptoms did not appear until Aug. No treatments had significantly greater plant stand in comparison to the non-inoculated not-treated check (84.5%). Treatments with final plant stand less than 73.8% had significantly lower plant stand in comparison the non-inoculated not-treated check. Treatments with final plant stand greater than 73.8% had significantly higher plant stand in comparison the inoculated not-treated check (64.0%). No treatments were significantly different from either check in terms of RAUEPC. The evaluations of crown and root 40 and 168 DAP indicated that treatments with less than 3.6% and 6.5% incidence, respectively of dead or dying plants were significantly different from the inoculated not-treated check (8.2 and 16.3%, respectively). All treatments had a significantly lower severity index of crown and root rot on the beetroots in comparison to the inoculated not-treated check (80.3). Treatments with severity index

values of crown and root rot on the beetroots that ranged from 31.4 to 47.3 were not significantly different from the non-inoculated not-treated check (32.7) indicating a high level background crown and root in the trial site. Treatments with greater than 73.4% marketable beets were significantly different from inoculated not-treated check (39.9%). Treatments with greater than 94.9% marketable beets were not significantly different from the non-inoculated not-treated check (100%). However, the percentage of marketable beets was high in comparison to previous years trials in terms of marketable beetroots perhaps due to the onset of Rhizoctonia root rot during the latter part of the season. The range in 2014 was from 35 to 59% marketable and the non-inoculated not-treated check inoculated not-treated check had 55 and 48% marketable beets, respectively. In 2015, the range was from 73.4 to 100 % across treatments. No phytotoxicity was observed from any treatments.

|                                                                                                                                                  |      |                        |                                   |     | (               |      | nd root   | rot         |     |                |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------|-----------------------------------|-----|-----------------|------|-----------|-------------|-----|----------------|------|
| Treatment and rate/1000 ft. row $(A_{i})$ = at planting                                                                                          |      | stand <sup>b</sup>     | DAUEDOd                           |     |                 |      | lence     | Seve        | •   |                | . 11 |
| $(A^a)$ = at planting<br>(B)= at GS4-6                                                                                                           |      | DAP <sup>c</sup><br>%) | RAUEPC <sup>d</sup><br>0 – 40 DAP |     | lence<br>AP (%) |      | DAP<br>%) | 168 I<br>(% |     | Marke<br>beets |      |
| Non-inoculated Check                                                                                                                             | 84.5 | a <sup>g</sup>         | 68.6                              | 0.9 | j               | 1.5  | gh        | 32.7        | fg  | 100            | a    |
| Inoculated Check                                                                                                                                 | 64.0 | efg                    | 63.1                              | 8.2 | a               | 16.3 | a         | 80.3        | а   | 39.9           | h    |
| Quadris 2.08SC 0.6 fl oz (A)                                                                                                                     | 75.2 | a-d                    | 58.0                              | 1.8 | f-i             | 2.7  | e-h       | 49.5        | bcd | 84.7           | c-g  |
| Quadris 2.08SC 0.6 fl oz (B)                                                                                                                     | 75.0 | a-d                    | 65.1                              | 2.0 | d-h             | 3.4  | c-g       | 33.7        | efg | 86.4           | c-g  |
| Headline 2.09SC 0.517 fl oz (A)<br>Xanthion IF Comp A<br>Integral 3.66SC 0.069 fl oz +<br>Xanthion IF Comp A                                     | 67.1 | c-g                    | 56.3                              | 1.1 | ij              | 1.4  | h         | 34.6        | d-g | 95.6           | a-c  |
| Headline 3.66SC 0.517 fl oz (A)<br>Xanthion IF Comp A<br>Integral 3.66SC 0.069 fl oz +<br>Xanthion IF Comp A<br>Headline 3.66SC 0.517 fl oz (A); | 71.9 | b-e                    | 62.4                              | 1.6 | g-j             | 2.6  | fgh       | 37.1        | c-g | 94.9           | b-e  |
| Priaxor 4.17SC 0.385 fl oz (B)                                                                                                                   | 68.4 | b-f                    | 62.9                              | 1.7 | g-j             | 3.9  | b-f       | 31.4        | g   | 100            | а    |
| Priaxor 4.17SC 0.385 fl oz (B)                                                                                                                   | 75.9 | a-d                    | 64.1                              | 2.0 | e-h             | 4.3  | b-f       | 32.7        | fg  | 96.3           | ab   |
| Moncut 70 DF 70DF 0.92 oz (A)                                                                                                                    | 75.0 | a-d                    | 60.9                              | 1.6 | hij             | 3.9  | b-f       | 39.4        | c-g | 83.2           | d-g  |
| Moncut 70 DF 70DF 1.84 oz (A)                                                                                                                    | 78.7 | ab                     | 61.0                              | 1.9 | f-i             | 4.3  | b-f       | 42.5        | b-g | 90.9           | b-i  |
| Moncut 70 DF 70DF 0.92 oz (A)                                                                                                                    | 67.0 | c-g                    | 61.2                              | 2.4 | c-h             | 5.1  | b-e       | 34.9        | d-g | 94.9           | b-o  |
| Moncut 70 DF 70DF 0.92 oz (B)                                                                                                                    | 73.8 | a-e                    | 65.1                              | 1.6 | g-j             | 5.1  | b-e       | 43.2        | b-g | 87.4           | c-   |
| Moncut 70 DF 70DF 0.92 oz (B)                                                                                                                    | 77.6 | abc                    | 65.1                              | 2.6 | b-g             | 5.0  | b-f       | 32.1        | fg  | 90.3           | b-   |
| Moncut 70 DF 70DF 1.84 oz (B)                                                                                                                    | 69.7 | b-e                    | 64.5                              | 2.9 | b-e             | 5.3  | bcd       | 36.8        | c-g | 98.1           | ab   |
| Vertisan 1.67EC 1.38 fl oz (A)                                                                                                                   | 72.2 | b-e                    | 59.2                              | 3.1 | bcd             | 4.9  | b-f       | 48.9        | b-e | 80.6           | fg   |
| Quadris 2.08SC 0.4 fl oz (A)                                                                                                                     | 71.9 | b-e                    | 53.6                              | 3.2 | bc              | 6.5  | b         | 35.2        | d-g | 90.6           | b-i  |
| Quadris 2.08SC 0.4 fl oz (B)<br>Serenade Soil 1.34F 1.84 fl oz (A);                                                                              | 69.0 | b-f                    | 62.1                              | 3.5 | b               | 4.9  | b-f       | 51.7        | bc  | 86.8           | c-ş  |
| Proline 480SC 0.33 fl oz (B)<br>Serenade Soil 1.34F 3.67 fl oz (A);                                                                              | 69.4 | b-f                    | 55.9                              | 3.6 | b               | 5.9  | bc        | 42.9        | b-g | 85.8           | c-;  |
| Proline 480SC 0.33 fl oz (B)<br>Proline 480SC 0.33 fl oz (A);                                                                                    | 66.1 | d-g                    | 55.1                              | 3.2 | bc              | 3.2  | d-h       | 56.5        | b   | 73.4           | g    |
| Quadris 2.08SC 0.6 fl oz (B)                                                                                                                     | 59.5 | fg                     | 51.5                              | 2.8 | b-f             | 3.4  | c-g       | 47.3        | b-f | 81.7           | ef   |
| Aproach 2.08SC 0.6 fl oz (A)                                                                                                                     | 57.7 | g                      | 52.2                              | 2.4 | c-h             | 4.7  | b-f       | 49.8        | bcd | 86.8           | c-   |
| Aproach 2.08SC 0.8 fl oz (A)                                                                                                                     | 70.2 | b-e                    | 63.6                              | 2.5 | b-h             | 3.1  | d-h       | 47.3        | b-f | 85.7           | c-   |
| Aproach 2.08SC 0.6 fl oz (B)                                                                                                                     | 70.0 | b-e                    | 65.5                              | 2.0 | d-h             | 3.4  | c-g       | 52.1        | bc  | 82.5           | d-   |
| <i>p</i> -value if NSD                                                                                                                           |      |                        | 0.613                             |     |                 |      |           |             |     |                |      |

Table 1. Efficacy of fungicides against Rhizoctonia crown and root rot.

<sup>a</sup>Application dates; A = 17 Apr; B = 7 Jun.

<sup>b</sup> Plant stand expressed as a percentage of the target population of 275 plants/100ft. row from a sample of 2 x 50 ft rows per plot.

<sup>c</sup> DAP = days after planting on 17 Apr.

<sup>d</sup> Relative area under the emergence progress curve from planting to 40 days after planting.

<sup>e</sup> Severity of crown and root rot was measured as an index calculated as described in the text.

<sup>f</sup> The number of beets falling into classes 0-3 was summed and a percentage calculated as marketable beets.

<sup>g</sup> Means followed by same letter are not significantly different at p = 0.05 (Fishers LSD).

#### **2015 DRY BEAN YIELD TRIALS**

#### J.D. Kelly and E.M. Wright

Plant, Soil and Microbial Sciences

The dry bean breeding program initiated its seventh season on the new 320 acre Saginaw Valley Research & Extension Center (SVREC) research farm near Frankenmuth in 2015. A total of 1723 yield trial plots (12 tests) were harvested in 2015 and 1655 single plant selections were made in the early generation nurseries. Yield trials at the Saginaw Valley Research Extension Center (SVREC) near Richville included 42-entry standard navy test; 30-entry standard black test; 56-entry prelim navy tests; 72-entry prelim black test; 42-entry standard GN and pinto test; 20-entry standard red/pink test; 48-entry prelim red test; 24-entry drought trial and 48-entry Co-op and regional test that includes pinto, GN, red and pinks. At the Montcalm Research Farm (MRF) near Entrican yield trials included 56-entry kidney and bush cranberry test; 64-entry white mold test; and 9 entry BNF test. All trials were direct harvested except for kidney and cranberry beans at Montcalm. Temperatures were moderate for the 2015 season and only exceeded 90F for a few days in July. Overall rainfall for the 3-summer months at SVREC was equivalent to the 30-year average of 8.5". A moderate dry period occurred from June 16-July 13 with only 0.7" of rainfall which reduced the overall plant size and resulted in lower overall yields. A high incidence of common bacterial blight resulted in the nurseries and allowed for selection of resistant lines in a range of seed types.

Rainfall patterns at MRF were more extreme with a total rainfall of over 5" within two days of planting. This resulted in major flooding in some areas, soil crusting and compaction in other areas which resulted in low germination. In addition soil temperatures remained low in this critical period and a high incidence of root rot diseases occurred which also reduced germination and stands. The Andean kidney and cranberry beans were the most affected by the stresses whereas the Mesoamerican small and medium seeded black, navy, pinto, GN, and red beans managed to tolerate the conditions and had near normal stands. Overall vigor of the kidney and cranberry beans was poor resulting in small plants that had low overall yields. The unfavorable conditions allowed for the selection of early generation lines with improved tolerance to root rot and with resistance to common bacterial blight in the kidney bean nurseries. White mold plots at MRF had supplemental irrigation to encourage disease development. However, disease incidence in the National Sclerotinia Initiative nursery was very low in the susceptible checks despite the overall lower temperatures and excess irrigation. The major disease problem at Montcalm was the presence of severe root rots mainly Fusarium that was accentuated by the cooler soil conditions early in the season. The unfavorable condition allowed for the selection of lines with increased tolerance to root rot and with resistance to common bacterial blight in the kidney bean nurseries.

The data for all tests are included in an attached section. Procedures and details on nursery establishment and harvest methods are outlined on the first page. Since the data collected on each test are basically the same, a brief discussion of each variable measured is presented below for clarification purposes.

- 1. Yield is clean seed weight reported in hundredweight per acre (cwt/acre) standardized to 18% moisture content. Dry beans are commercially marketed in units of 100 pounds (cwt).
- 2. Seed weight is a measure of seed size, determined by weighing in grams a pre-counted sample of 100 seeds, known as the 100-seed weight. To convert to seeds per 100g (10,000/100 seed wt); for example 100-seed weight of 50 converts to 200 seeds per 100 g (used in marketing).
- 3. Days to flower are the number of days from planting to when 50% of plants in a plot have one or more open flowers.
- 4. Days to maturity are the actual number of days from planting until date when all the plants in a plot have reached harvest maturity.
- 5. Lodging is scored from 1 to 5 where 1 is erect while 5 is prostrate or 100% lodged.
- 6. Height is determined at physiological maturity, from soil surface to the top of plant canopy, and is recorded in centimeters (cm).
- 7. Desirability score is a visual score given the plot at maturity that takes into consideration such plant traits as; moderate height, lodging resistance, good pod load, favorable pod to ground distance, uniformity of maturity, and absence of disease, if present in the nursery. The higher the score (from 1 to 7) the more desirable the variety, hence DS serves as a subjective selection index.

At the bottom of each table, the mean or average of all entries in a test is given to facilitate comparisons between varieties. In order to better interpret data, certain statistical factors are used. The LSD value refers to the Least Significant Difference between entries in a test. The LSD value is the minimum difference by which two entries must differ before they can be considered significantly different. Two entries differing in yield by 1 cwt/acre cannot be considered as performing significantly different if the LSD value is greater than 1 cwt/ acre. Such a statement is actually a statement of "probable" difference. We could be wrong once in 20 times (p=0.05) on the average, depending on the level of probability. The other statistic, Coefficient of Variation (CV), indicates how good the test was in terms of controlling error variance due to soil or other differences within a location. Since it is impossible to control all variability, a CV value of 10% or less implies excellent error control and is reflected in lower LSD values. Under the pedigree column, all released or named varieties are **bolded** and always preceded by a comma (,); when preceded by a slash (/), the variety was used only as a parent to produce that particular breeding line.

## Expt. 5101: Standard Navy Bean Yield Trial

This 42-entry trial included standard commercial navy bean varieties, and advanced lines from the MSU breeding program, which carry the N-prefix. Yields ranged from 14.6 to 28.7 cwt/acre with a mean of 21.3 cwt/acre. Variability in this trial was high (CV=14.9%) and the LSD needed for significance was 3.7 cwt/acre. Many entries failed to effectively partition and dry down properly and several exhibited severe leaf retention at maturity. Seven MSU lines significantly out-yielded the test mean and included two top yielding lines from 2012 and 2013 trials, as well as several promising lines from 2014 prelim navy trial. The newly released variety Alpena performed well, slightly out yielding Merlin and was the top yielding commercial variety. Mist was the highest yielding Canadian variety tested at 21.3 cwt/acre. Mist outyielded Lighthouse, and performed significantly better than T9905 and Fathom. Medalist was the lowest yielding variety as a result of severe leaf retention and failure to dry down. Canning tests will be conducted on all new MSU breeding lines before being considered for release.

## Expt. 5102: Standard Black Bean Yield Trial

This 30-entry trial included the standard commercial black bean varieties and advanced breeding lines. Yields ranged from 18.3 to 31.3 cwt/acre with a test mean of 23.8 cwt/acre. Variability was moderate in this test, (CV=12.6%) and the LSD was 3.5 cwt/acre. Five entries significantly outyielded the test mean including top three that were crosses with stress tolerant lines from outside the MSU program. The other two top were B14302 and B14303 lines that showed excellent yield potential in 2014 prelim trial. All top five lines also showed excellent levels of resistance to CBB. Zenith was the top commercial variety at 23.3 cwt/acre and significantly outyielded Zorro. NDSU line NDF09304 ranked just below Zenith, followed by Eclipse, and then Shania. T-39 was the lowest performing variety in the trial. Four entries showed complete resistance to CBB and were among the highest yielding lines despite severe disease pressure. Canning tests will be conducted on breeding lines to ensure only those with canning quality similar to Zenith are advanced.

## Expt. 5103: Preliminary Navy Bean Yield Trial

This 56-entry trial included new navy bean lines and check varieties. Yields ranged from 13.8 to 31.1 cwt/acre with a mean of 21.9 cwt/acre. Variability was moderate in this 3-rep test (CV=12.3%) and the LSD was 3.7 cwt/acre. Ten lines significantly outyielded the test mean including several with improved levels of CBB resistance. Alpena yielded above the mean at 23.5 cwt/acre. New germplasm release from Puerto Rico PR0806-80A yielded 22 cwt/acre, while PR0806-81A was lower yielding (17.2cwt). Merlin (17.3 cwt) and Medalist (16.5 cwt) were among the lowest yielding entries due to poor dry down as in test 5101. Future advances of many of the new breeding lines will largely depend on disease reactions and canning quality of the entries.

## Expt. 5104: Preliminary Black Bean Yield Trial

This 72-entry trial included new black bean lines and check varieties. Yields ranged from 16.4 to 36.6 cwt/acre with a mean of 30.3 cwt/acre. Test 5104 was the top yielding test in 2015 and was overall higher yielding than the standard test 5102, suggesting the yield potential of new black bean lines. Variability was well controlled in this 3-rep test (CV=9.2%) and the LSD was 3.8 cwt/acre.

Eight lines significantly outyielded the test mean. Zenith (31.1cwt) significantly outyielded Zorro (25.4cwt) as in test 5102. Many of the lines in this trial carry anthracnose resistance in addition to improved levels of CBB resistance but future advances of any new breeding lines will largely depend on confirmation of disease reactions and canning quality of the entries.

## Expt. 5105: Standard Great Northern and Pinto Bean Yield Trial

This 42-entry trial included MSU great northern and otebo breeding lines (G-prefix) as well as pinto lines (P-prefix) and standard commercial check varieties. The test ranged in yield from 10.2 to 24.7 cwt/acre with a mean yield of 18.5 cwt/acre. Variability was high (CV= 13.5%) resulting in a LSD value of 2.9 cwt/acre needed for significance. Eight entries significantly outperformed the test mean and included Eldorado and Lapaz pinto and the new Samurai otebo varieties. Samurai nearly matched the productivity of Eldorado, which represents a great improvement from previous bush type otebo varieties. Three great northern breeding lines, pinto PT11-13 that performed well in 2014 MRPN nursery, and P14815 that exhibits excellent dry down and agronomic characteristics completed this top yielding group. Powderhorn and Matterhorn GN varieties. Likewise, SF103-8 slow darkening pinto failed to mature properly and was the lowest yielding entry, contrasting to its performance in 2014. The other slow darkening pinto in the test 23ST-27 also yielded below the test mean. In statewide testing at four locations, Samurai yielded 27.4 cwt compared to 21.5 cwt for the Fuji variety. Samurai is an upright type suitable for direct harvest and is comparable in yield to current upright black and navy bean varieties.

## Expt. 5106: Standard Small Red and Pink Bean Yield Trial

This 20-entry trial included small red and pink breeding lines from MSU (R-small red; S-pink prefix), in addition to standard commercial check varieties. The test ranged in yield from 19.7 to 32.4 cwt/acre with a mean yield of 25.1 cwt/acre. Variability was low (CV=9.4%) resulting in a LSD value of 2.8 cwt/acre for significance. Three small red varieties including Viper and Ruby and R13752 breeding line outperformed the test mean. Seed size of Viper (30g) and Ruby (34g) is significantly smaller than that of Merlot (40g). Merlot red and Rosetta pink performed above the trial mean, while Desert Song and Gypsy Rose ranked below the mean yield. R12844 which has performed well in previous years was equivalent to Merlot. Sibling family members R12843-45 showed improved levels of CBB resistance compared to commercial varieties. Likewise family S14706-08 showed similar CBB resistance in the pink seed class. Progress in small red breeding program has been limited by a lack of useful variability and inability to combine performance with upright architecture and suitable canning quality in new lines. All lines will be evaluated for canning quality and BCMV reaction prior to advancing to 2016 trials.

## Expt. 5107: Preliminary Small Red and Pink Bean Yield Trial

This 48-entry trial included new small red (R-prefix) and pink bean (S-prefix) lines from MSU as well as new breeding lines from USDA-Washington (SR and PK codes) along with check varieties. Yields ranged from 18.6 to 36.9 cwt/acre with a mean of 25.8 cwt/acre. Variability was well controlled in this 3-rep test (CV=9.7%) and the LSD was 3.4 cwt/acre. Nine lines significantly out-yielded the test mean. Several top lines from test 5106 were in this group including Viper, Ruby,

R12844, and R12845. Viper was the top yielder (36.9 cwt) with the smallest seed size and longer maturity (102d). WA breeding line PK12-3 was the only pink in this group and was equivalent to Ruby. The remaining top lines were selections made from R12844-45. R13752 performed well at 28.4 cwt/acre but was not significantly better than the trial mean. Merlot and Rosetta yielded similarly to test 5106. Some new R15 lines showed similar levels of CBB resistance to R12843-45 family although disease pressure was generally lower in this trial as in test 5106. Future advances of many of the new breeding lines will largely depend on disease reactions and canning quality of the entries.

## Expt. 5108: Combined Midwest Regional Performance Nursery (MRPN) & Cooperative Dry Bean Nursery (CDBN) Yield Trial

The MRPN is conducted annually in cooperation with North Dakota (ND-prefix), Nebraska (NEprefix) and Colorado (CO-prefix) in order to test new pinto and great northern lines from all four programs and assess their potential in the different regions. The CDBN is a national trial and includes all classes but only medium-sized entries were included in this trial. The 48-entry trial ranged in yield from 7.8 to 32.8 cwt/acre with a mean of 22.6 cwt/acre. Variability was moderate (CV=12.7%) resulting in a LSD value (3.9 cwt/acre) for significance. As a result eleven lines were significantly higher in yield than the test mean including MSU varieties Eldorado and Desert Song. In the top group were pinto lines from MSU, USDA-WA, Colorado, and Idaho Seed Bean. Performance of slow darkening pintos SF103-8 and 23ST-27 from NDSU was similar to test 5105. New slow darkening pintos from CSU (COSD-prefix) were included in this test and ranged in yield from 24.9-18.6 cwt/acre with many of them exhibiting poor dry down similar to SF103-8. At this point none of the new slow darkening pintos appear to match the traditional lines in yield potential. Samurai fell below the average in this trial. This cooperative trial continues to be valuable as it allows an evaluation of potential new lines prior to release in other states. Canning quality will also be evaluated for all entries in this trial.

## Expt. 5209: Standard Andean Bean Yield Trial

This 56-entry trial was conducted on the Montcalm Research Farm (MRF) to compare the performance of standard and new light red kidney (LRK), dark red kidney (DRK), white kidney (WK), cranberry, and yellow bean varieties from MSU and CDBN under supplemental irrigation (4x total 2.4"). A prominent feature of this trial was prevalence of severe Fusarium root rot induced by 5" rain prior to seedling emergence. Stand counts were taken and rated on 1-5 scale, 1 under 10%, 3 equivalent to 50% and 5 above 90%. Although new efforts to control variability due to deer feeding at this site were effective, yields varied widely from 8.7 to 30.0 cwt/acre with a mean of 17.6 cwt/acre due largely to the incidence of soil borne diseases. Variability was extremely high (CV=24.3%) resulting in a LSD value of 5.0 cwt/acre needed for significance. Fourteen breeding lines significantly out-yielded the test mean, including nine commercial varieties across DRK, LRK, WK, and cranberry seed types. The remaining lines in this group were the yellow bean lines MSU Y11405 and OSU DBY-28-1 and new DRK series K15302-304. These results were encouraging in that the test allowed for selection of root rot tolerant varieties and lines across market classes that will be useful for improving root rot resistance of future Andean breeding lines. Several new varieties were tested including NDSU Rosie (LRK) that showed excellent root rot resistance, Talon (DRK), and private varieties Chaparral (DRK) and Big Red (LRK). Fusarium root rot was

determined to be the major disease problem in these soils and its presence allows for continued selection for resistance in large seeded kidney bean lines. Since canning quality is vital in kidney beans, only those DRK lines equivalent in canning quality to Red Hawk, LRK lines equal or better than CELRK and WK lines equivalent to Beluga will be advanced in 2016.

## Expt. 5210: National White Mold Yield Trial

This 64-entry trial was conducted at Montcalm to evaluate a range of diverse dry bean varieties and breeding lines for reaction to white mold under natural field conditions. Genotypes included commercial navy and black bean cultivars, elite MSU lines, and new sources of white mold resistance entered as part of the National Sclerotinia Initiative (NSI) Nursery. Lines in the National trial were developed at MSU, USDA-WA, and Guelph. Entries were planted in two row plots with two rows of susceptible spreader variety Matterhorn between plots and were direct harvested. Supplemental overhead irrigation was applied 9 times for a total of 5.85" to maintain adequate levels of moisture for favorable disease development at the critical flowering period. Natural white mold infection occurred, but disease severity was generally low in 2015 across the entire trial despite generally favorable weather conditions in terms of rainfall and moderate temperatures. The same stressful conditions following planting resulted in overall poor early growth and a smaller plant canopy at flowering. White mold was rated on a per plot basis on a scale of 1 to 9 based on disease incidence and severity where 9 had 90+% incidence and high severity index. White mold ranged from 11.1 to 37% with a mean value of 17.3% in 2015. The test ranged in yield from 8.6 to 34.7 cwt/acre with a mean yield of 22.9 cwt/acre. Variability was high (CV=14.7%), thus a high LSD value (4.6 cwt/acre) was needed for significance. As a result 14 lines significantly out-yielded the test mean and included the Eldorado, Zenith, Ruby, and Viper varieties along with black, navy, great northern, and small red lines. Also among those entries exceeding the test mean were Samurai and Lighthouse. Bunsi (resistant) and Beryl (susceptible) checks were among the lowest yielding entries and had similarly low disease scores due to the low disease pressure. G122 (resistant check) was the lowest yielding entry similar to previous years. Yields of pink and some small red lines were also reduced due to poor stand (1-5) but overall this trial had better tolerance to the Fusarium root rot that severely damaged stands in the Andean seed types (test 5209) at Montcalm in 2015. This trial will continue to be part of the breeding effort to improve tolerance to white mold in 2016.

## Expt. 5111: National Dry Bean Drought Nursery

This 24-entry trial was conducted at the SVREC to evaluate a series of breeding lines identified through shuttle breeding as possessing improved levels of drought stress. The trial was replicated by colleagues at various locations across the US. Yields ranged from 13.6 to 30.8 cwt/acre with a mean of 21.8 cwt/acre. Variability was moderate (CV=12.6%) and the LSD needed for significance was 3.8 cwt/acre. Six lines significantly out-yielded the test mean, including varieties Zenith, and Stampede. Zorro, Powderhorn, and Matterhorn were also above test mean, with Merlot and Marquis among the lower yielding entries. Since rainfall patterns were adequate in 2015, these results were similar to those observed in the near ideal growing conditions of 2014.

## Early Generation Breeding Material grown in Michigan in 2015

## F3 through F5 lines

Navy and Black - 89 lines Pinto - 297 lines GN - 578 lines Pinks and Reds – 210 lines Kidneys (DR, LR, White) - 155 lines Yellow - 16 lines

## F2 populations

Navy and Black -115 populations Pinto - 65 populations GN - 49 populations Pinks and Reds - 41 populations Kidneys (DR, LR, White) – 119 populations Yellow – 13 populations

**F1 populations:** 541 different crosses among ten contrasting seed types.

#### 2015 DRY BEAN YIELD TRIALS

| EXPERIMENT     | TITLE                      | PLANTING DATE | LOCAT            | ION E       | NTRIES | DE           | SIGN    | REPS | HARVEST METHOD   |
|----------------|----------------------------|---------------|------------------|-------------|--------|--------------|---------|------|------------------|
|                | NAVY BEAN YIELD TRIAL      | 06/04/15      | SVR&EC           | FRANKENMUTH | 10     | REC.         | LATTICE | 4    | DIRECT HARVESTED |
|                | BLACK BEAN YIELD TRIAL     | 06/04/15      | SVR&EC<br>SVR&EC | FRANKENMUTH |        | REC.<br>REC. | LATTICE | 4    | DIRECT HARVESTED |
|                | RY NAVY BEAN YIELD TRIAL   | 06/04/15      | SVR&EC           | FRANKENMUTH | 56     | REC.         | LATTICE | 3    | DIRECT HARVESTED |
| 5104 PRELIMINA | RY BLACK BEAN YIELD TRIAL  | 06/04/15      | SVR&EC           | FRANKENMUTH | 72     | REC.         | LATTICE | 3    | DIRECT HARVESTED |
| 5105 STANDARD  | GN & PINTO YIELD TRIAL     | 06/04/15      | SVR&EC           | FRANKENMUTH | 42     | REC.         | LATTICE | 4    | DIRECT HARVESTED |
| 5106 STANDARD  | PINK & SMALL RED YIELD TR  | IAL06/04/15   | SVR&EC           | FRANKENMUTH | 20     | REC.         | LATTICE | 4    | DIRECT HARVESTED |
| 5107 PRELIMINA | RY PINK&SMALL RED YLD TRI. | AL 06/05/15   | SVR&EC           | FRANKENMUTH | 48     | ALPHA        | LATTICE | 3    | DIRECT HARVESTED |
| 5108 MIDWEST & | CO-OP. REGIONAL TRIAL      | 06/05/15      | SVR&EC           | FRANKENMUTH | 48     | ALPHA        | LATTICE | 3    | DIRECT HARVESTED |
| 5209 STANDARD  | ANDEAN YIELD TRIAL         | 06/10/15      | ENTRICAN         | MONTCALM    | 56     | REC.         | LATTICE | 4    | ROD PULLED       |
| 5210 NATIONAL  | WHITE MOLD YIELD TRIAL     | 06/10/15      | ENTRICAN         | MONTCALM    | 64     | SQ.          | LATTICE | 3    | DIRECT HARVESTED |
| 5111 NATIONAL  | DRY BEAN DROUGHT TRIAL     | 06/05/15      | SVR&EC           | FRANKENMUTH | 24     | ALPHA        | LATTICE | 3    | DIRECT HARVESTED |
| 5212 BNF ANDEA | N YIELD TRIAL              | 06/10/15      | ENTRICAN         | MONTCALM    | 9      | RCBD         |         | 3    | HAND PULLED      |

SVR&EC: SAGINAW VALLEY RESEARCH & EXTENSION CENTER

- PROCEDURE: PLANTED IN 4 ROW PLOTS, 20 FEET LONG, 20 INCH ROW WIDTH, 4 SEEDS/FOOT, 15 FOOT SECTION OF CENTER 2 ROWS WAS HARVESTED AT MATURITY.
- FRANKENMUTH:FERTILIZER BROADCAST: 400 POUNDS OF 15-5-13 + S, ZN, MN, CU PRIOR TO PLANTING. HERBICIDES APPLIED: 1.0 PT DUAL + 1.5 QT. EPTAM APPLIED PPI. 4 OZ. RAPTOR/1 PT REFLEX/1 PT BASAGRAN ON 7/10/15.
- ENTRICAN: FERTILIZER BROADCAST: 200 POUNDS OF 19-10-19 PRIOR TO PLANTING. 50 POUNDS 46-0-0 SIDE DRESSED ON JULY 6. HERBICIDES APPLIED: 2 PT. SONALAN/1.25 QT EPTAM/2PT. DUAL PPI. 4 OZ. RAPTOR/1 PT REFLEX/1 PT BASAGRAN ON 7/06/15. PESTICIDES APPLIED: 9 OZ. ASANA ON JULY 6. IRRIGATION APPLIED: 5.85 INCHES ON WHITE MOLD TRIALS - 9 APPLICATIONS; 2.4 INCHES ON STANDARD YIELD TRIALS - 4 APPLICATIONS

| EXPERIMENT 5101 STANDARD NAVY YIELD TRIAL PLANTED: 6/4/1 |                           |       |           |         |         |          |         |        | 6/4/15 |       |
|----------------------------------------------------------|---------------------------|-------|-----------|---------|---------|----------|---------|--------|--------|-------|
| NAME                                                     | PEDIGREE                  | ENTRY | YIELD CWT |         | DAYS TO | DAYS TO  | LODGING | HEIGHT | DES.   | CBB   |
|                                                          |                           |       | /ACRE     | WT. (g) | FLOWER  | MATURITY | (1-5)   | (cm)   | SCORE  | (1-5) |
| N14229                                                   | N11275/N11256             | 29    | 28.7      | 17.2    | 46.0    | 96       | 1.0     | 50.0   | 5.3    | 1.8   |
| N14218                                                   | N11256/N11298             | 23    | 27.5      | 18.4    | 46.0    | 98       | 1.0     | 50.5   | 5.3    | 2.0   |
| N13142                                                   | N08007/N09046             | 6     | 26.1      | 18.3    | 46.0    | 96       | 1.0     | 49.8   | 4.0    | 1.8   |
| N14243                                                   | N11284/N11277             | 31    | 26.1      | 17.3    | 46.0    | 93       | 1.0     | 48.5   | 4.3    | 2.8   |
| N14230                                                   | N11275/N11256             | 20    | 25.7      | 17.4    | 46.0    | 95       | 1.3     | 49.8   | 5.0    | 1.5   |
| N12457                                                   | B09174/N09056             | 8     | 25.5      | 18.7    | 45.0    | 94       | 1.0     | 48.0   | 3.8    | 2.0   |
| N14201                                                   | N11249/N11256             | 32    | 25.1      | 18.2    | 46.0    | 97       | 1.0     | 52.0   | 5.5    | 1.3   |
| N11283                                                   | MEDALIST/N08003, ALPENA   | 9     | 24.7      | 19.1    | 45.0    | 98       | 1.3     | 50.5   | 4.3    | 2.5   |
| l11264                                                   | COOP 03019, <b>MERLIN</b> | 13    | 24.3      | 19.1    | 45.0    | 99       | 1.8     | 50.0   | 3.3    | 4.0   |
| N12447                                                   | B09174/N09056             | 4     | 24.3      | 19.8    | 46.0    | 98       | 1.3     | 49.5   | 4.0    | 1.8   |
| N13131                                                   | N09175/N08007             | 1     | 23.6      | 19.2    | 45.0    | 94       | 1.0     | 48.3   | 4.3    | 2.3   |
| N14247                                                   | B11343/B11271             | 16    | 23.2      | 17.6    | 46.0    | 94       | 1.0     | 49.3   | 4.3    | 1.8   |
| N13120                                                   | N08003/N05324             | 3     | 23.2      | 20.4    | 45.0    | 94       | 1.0     | 49.0   | 5.0    | 2.0   |
| N14210                                                   | N11256/N11262             | 37    | 23.1      | 21.3    | 46.0    | 94       | 1.0     | 48.0   | 3.8    | 3.8   |
| N14215                                                   | N11256/N11292             | 22    | 23.0      | 16.3    | 45.0    | 96       | 1.0     | 47.8   | 3.5    | 2.8   |
| N14225                                                   | N11257/N11280             | 40    | 23.0      | 20.1    | 45.0    | 93       | 1.0     | 48.3   | 3.8    | 3.8   |
| N12454                                                   | B09174/N09056             | 7     | 22.9      | 19.2    | 45.0    | 95       | 1.0     | 48.8   | 3.3    | 2.5   |
| I15627                                                   | ISB2884-4                 | 18    | 22.7      | 24.1    | 44.0    | 98       | 1.0     | 49.0   | 3.0    | 3.8   |
| N14216                                                   | N11256/N11292             | 33    | 21.9      | 17.4    | 45.0    | 95       | 1.0     | 48.5   | 4.0    | 2.5   |
| N14206                                                   | N11256/N11258             | 30    | 21.7      | 18.7    | 45.0    | 98       | 1.0     | 48.3   | 3.5    | 2.3   |
| 115621                                                   | MIST                      | 11    | 21.7      | 21.1    | 45.0    | 110      | 1.5     | 49.5   | 3.0    | 1.3   |
| N14238                                                   | Alpena/N11249             | 26    | 21.6      | 18.4    | 45.0    | 93       | 1.0     | 48.3   | 3.5    | 3.5   |
| N14205                                                   | N11256/N11258             | 34    | 21.4      | 19.4    | 45.0    | 96       | 1.0     | 48.0   | 3.5    | 3.3   |
| N14240                                                   | Alpena/N11264             | 27    | 21.3      | 19.3    | 46.0    | 93       | 1.0     | 47.3   | 3.5    | 3.3   |
| N14202                                                   | N11249/N11256             | 24    | 21.3      | 21.1    | 45.0    | 98       | 1.0     | 51.3   | 3.5    | 3.0   |
| N14208                                                   | N11256/N11262             | 28    | 21.1      | 20.0    | 45.0    | 93       | 1.0     | 47.0   | 3.8    | 2.8   |
| N13139                                                   | N05324/MEDALIST           | 5     | 20.9      | 18.6    | 46.0    | 96       | 1.5     | 49.0   | 3.3    | 3.5   |
| N14223                                                   | N11257/N11256             | 25    | 20.5      | 17.9    | 45.0    | 100      | 1.3     | 53.0   | 4.5    | 2.3   |
| N13135                                                   | N10102/N09046             | 17    | 20.0      | 19.0    | 45.0    | 94       | 1.0     | 48.0   | 3.8    | 3.8   |
| N11264                                                   | N08003/MEDALIST           | 2     | 19.4      | 19.7    | 45.0    | 95       | 1.3     | 47.3   | 3.3    | 3.5   |

| EXPERIMENT 5101 STANDARD NAVY YIELD TRIAL PLANTED: 6/4/15 |                            |       |           |          |         |          |         |        |       |       |  |
|-----------------------------------------------------------|----------------------------|-------|-----------|----------|---------|----------|---------|--------|-------|-------|--|
| NAME                                                      | PEDIGREE                   | ENTRY | YIELD CWT | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT | DES.  | CBB   |  |
|                                                           |                            |       | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)   | SCORE | (1-5) |  |
| N14221                                                    | N11257/N11249              | 35    | 19.0      | 20.8     | 46.0    | 105      | 1.0     | 50.0   | 3.3   | 2.8   |  |
| I15628                                                    | LIGHTHOUSE                 | 12    | 18.8      | 21.2     | 45.0    | 109      | 1.5     | 50.0   | 3.0   | 1.0   |  |
| N14231                                                    | N11275/N11264              | 21    | 18.2      | 20.7     | 45.0    | 94       | 1.3     | 48.8   | 3.3   | 4.0   |  |
| N14224                                                    | N11257/N11280              | 36    | 17.7      | 19.0     | 45.0    | 95       | 1.0     | 48.5   | 3.3   | 4.8   |  |
| 108902                                                    | HYLAND T9905               | 10    | 16.8      | 21.7     | 45.0    | 110      | 1.8     | 50.8   | 3.0   | 3.3   |  |
| I15614                                                    | IG-10M                     | 41    | 16.6      | 22.2     | 39.0    | 92       | 1.0     | 46.3   | 3.0   | 4.0   |  |
| l14502                                                    | FATHOM                     | 38    | 16.2      | 21.2     | 39.0    | 108      | 2.0     | 50.3   | 3.0   | 2.3   |  |
| N14219                                                    | N11257/N11249              | 39    | 16.0      | 18.2     | 46.0    | 95       | 1.0     | 48.3   | 3.3   | 3.5   |  |
| N13140                                                    | N05324/MEDALIST            | 14    | 15.7      | 18.4     | 46.0    | 98       | 1.3     | 48.5   | 3.0   | 4.3   |  |
| I15625                                                    | ND070612                   | 42    | 15.0      | 20.1     | 45.0    | 105      | 2.0     | 51.3   | 3.0   | 3.3   |  |
| 108958                                                    | Mayflower/Avanti, MEDALIST | 15    | 14.6      | 22.4     | 46.0    | 106      | 2.0     | 51.8   | 3.0   | 3.0   |  |
| 115629                                                    | ISB96-3156                 | 19    | 14.6      | 22.2     | 38.0    | 91       | 1.0     | 43.8   | 3.0   | 4.0   |  |
| MEAN (42)                                                 |                            |       | 21.3      | 19.5     | 44.6    | 97.3     | 1.2     | 49.0   | 3.7   | 2.8   |  |
| LSD (.05)                                                 |                            |       | 3.7       | 1.0      | 0.6     | 2.7      | 0.3     | 1.5    | 0.8   | 0.8   |  |
| CV (%)                                                    |                            |       | 14.9      | 4.5      | 0.9     | 2.3      | 22.9    | 2.5    | 17.4  | 25.6  |  |

| EXPERIME  | NT 5102 STANDARD BLAC        | K YIELD | TRIAL     |          |         |          | PLANTED: 6/4/15 |        |       |       |  |  |  |
|-----------|------------------------------|---------|-----------|----------|---------|----------|-----------------|--------|-------|-------|--|--|--|
| NAME      | PEDIGREE                     | ENTRY   | YIELD CWT | 100 SEED | DAYS TO | DAYS TO  | LODGING         | HEIGHT | DES.  | CBB   |  |  |  |
|           |                              |         | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)           | (cm)   | SCORE | (1-5) |  |  |  |
| B13220    | B09175/TARS-MST1             | 9       | 31.3      | 19.8     | 44.0    | 94       | 1.0             | 49.0   | 4.8   | 1.0   |  |  |  |
| B13204    | B09174/VCW54-1               | 8       | 30.1      | 24.7     | 45.0    | 96       | 1.0             | 49.3   | 5.3   | 1.5   |  |  |  |
| B13225    | PR0443-151/B09175            | 6       | 29.9      | 22.3     | 45.0    | 98       | 1.0             | 49.3   | 4.8   | 2.3   |  |  |  |
| B14303    | B09197/B11334                | 22      | 29.7      | 18.9     | 45.0    | 96       | 1.0             | 51.0   | 5.8   | 1.0   |  |  |  |
| B14302    | B09197/B11334                | 20      | 28.2      | 18.2     | 45.0    | 97       | 1.0             | 51.3   | 5.8   | 1.0   |  |  |  |
| B13218    | B09175/I09215                | 2       | 27.2      | 25.5     | 45.0    | 97       | 1.0             | 49.3   | 5.0   | 1.8   |  |  |  |
| B13223    | PR0443-151/B09175            | 5       | 27.0      | 22.6     | 45.0    | 97       | 1.3             | 47.8   | 3.8   | 3.0   |  |  |  |
| B11363    | B04644/B07554                | 4       | 26.6      | 21.5     | 45.0    | 95       | 1.0             | 47.8   | 4.3   | 3.8   |  |  |  |
| B14309    | B11338/B10222                | 26      | 26.4      | 18.2     | 45.0    | 96       | 1.3             | 49.3   | 3.5   | 1.8   |  |  |  |
| B12720    | B09175/Eclipse               | 1       | 26.1      | 23.1     | 45.0    | 94       | 1.0             | 47.3   | 4.5   | 3.5   |  |  |  |
| B14307    | B11271/B11343                | 23      | 25.4      | 23.5     | 46.0    | 98       | 1.5             | 54.8   | 4.3   | 3.0   |  |  |  |
| B14311    | B11338/B10241                | 19      | 24.2      | 18.7     | 45.0    | 96       | 1.0             | 48.3   | 5.0   | 1.0   |  |  |  |
| 314308    | B11301/B10222                | 25      | 23.4      | 19.5     | 45.0    | 96       | 1.0             | 49.5   | 4.3   | 2.8   |  |  |  |
| 310244    | B04644/ZORRO, ZENITH         | 18      | 23.3      | 22.4     | 44.0    | 96       | 1.0             | 50.5   | 4.8   | 4.3   |  |  |  |
| 13419     | NDF09304                     | 29      | 22.7      | 16.4     | 45.0    | 94       | 1.0             | 48.5   | 3.8   | 4.3   |  |  |  |
| 311311    | B04587//ZORRO/DPC-1          | 13      | 22.6      | 19.5     | 46.0    | 96       | 1.3             | 47.5   | 4.0   | 2.3   |  |  |  |
| B11555    | I82054/B07554                | 21      | 22.5      | 23.3     | 45.0    | 100      | 1.5             | 49.5   | 3.5   | 3.0   |  |  |  |
| B14313    | B11343/B09196                | 27      | 22.3      | 16.9     | 45.0    | 93       | 1.0             | 45.5   | 3.8   | 4.5   |  |  |  |
| 03390     | ND9902621-2, <b>ECLIPSE</b>  | 12      | 22.1      | 19.6     | 45.0    | 95       | 1.0             | 48.0   | 4.3   | 3.8   |  |  |  |
| B12724    | B09184/B09135                | 3       | 22.0      | 21.2     | 45.0    | 101      | 1.0             | 49.3   | 3.5   | 1.8   |  |  |  |
| 312711    | B07554//Jaguar/B07554        | 16      | 21.8      | 20.3     | 45.0    | 94       | 1.0             | 47.0   | 4.0   | 5.0   |  |  |  |
| 07116     | T-39/Midnight, SHANIA        | 10      | 21.3      | 20.0     | 46.0    | 102      | 1.5             | 51.0   | 3.5   | 3.3   |  |  |  |
| B14312    | B11343/B09196                | 28      | 21.0      | 15.4     | 45.0    | 93       | 1.0             | 45.0   | 3.5   | 4.0   |  |  |  |
| 311364    | B04644/B07554                | 15      | 20.9      | 20.7     | 45.0    | 93       | 1.0             | 46.5   | 3.3   | 5.0   |  |  |  |
| 314310    | B11338/B10241                | 24      | 20.4      | 17.9     | 45.0    | 95       | 1.0             | 45.5   | 4.0   | 1.8   |  |  |  |
| B11312    | B04587//B05070/B05044        | 17      | 20.0      | 18.8     | 45.0    | 97       | 1.0             | 48.3   | 3.3   | 3.8   |  |  |  |
| 312712    | B07554//Jaguar/B07554        | 11      | 19.2      | 21.1     | 45.0    | 93       | 1.0             | 45.0   | 3.0   | 4.8   |  |  |  |
| 312715    | Zorro/N09056                 | 7       | 19.2      | 19.4     | 45.0    | 94       | 1.0             | 45.3   | 3.0   | 3.3   |  |  |  |
| B04554    | B00103*/X00822, <b>ZORRO</b> | 14      | 18.4      | 19.4     | 45.0    | 97       | 1.0             | 50.3   | 4.3   | 4.3   |  |  |  |
| 81066     | SEL-BTS, <b>T-39</b>         | 30      | 18.3      | 19.6     | 46.0    | 97       | 2.0             | 48.3   | 2.3   | 4.8   |  |  |  |
| MEAN (30) |                              |         | 23.8      | 20.3     | 44.9    | 95.8     | 1.1             | 48.5   | 4.1   | 3.0   |  |  |  |
| _SD (.05) |                              |         | 3.5       | 1.1      | 0.7     | 1.7      | 0.3             | 1.5    | 0.6   | 0.7   |  |  |  |
| CV (%) ´  |                              |         | 12.6      | 4.5      | 0.9     | 1.5      | 22.0            | 2.7    | 13.4  | 18.8  |  |  |  |

| EXPERIME | NT 5103 PRELIMINARY NAVY YI | ELD TRIA | L         |                 |         |          |         | PLANTED | 6/4/15 |       |
|----------|-----------------------------|----------|-----------|-----------------|---------|----------|---------|---------|--------|-------|
| NAME     | PEDIGREE                    | ENTRY    | YIELD CW1 | <b>100 SEED</b> | DAYS TO | DAYS TO  | LODGING | HEIGHT  | DES.   | CBB   |
|          |                             |          | /ACRE     | WT. (g)         | FLOWER  | MATURITY | (1-5)   | (cm)    | SCORE  | (1-5) |
| N15331   | N12438/N12468               | 31       | 31.1      | 19.6            | 45.0    | 96       | 1.0     | 49.0    | 4.3    | 2.3   |
| N15343   | N11227/X12519               | 43       | 29.8      | 19.7            | 45.0    | 96       | 1.0     | 49.3    | 4.7    | 2.3   |
| N15318   | N11277/N09034               | 18       | 29.1      | 20.0            | 45.0    | 96       | 2.0     | 50.7    | 5.0    | 3.0   |
| N15341   | N12468/N12466               | 41       | 28.4      | 17.6            | 45.0    | 94       | 1.0     | 50.0    | 5.7    | 2.0   |
| N15345   | N11258/X12508               | 45       | 28.3      | 21.7            | 45.0    | 99       | 1.0     | 52.7    | 4.7    | 3.0   |
| N15334   | N12442/N11277               | 34       | 27.8      | 24.8            | 45.0    | 102      | 1.0     | 54.7    | 4.0    | 2.3   |
| N15330   | N12438/N11258               | 30       | 27.2      | 20.3            | 45.0    | 100      | 1.3     | 49.0    | 3.3    | 4.0   |
| N15335   | N12453/N11277               | 35       | 26.4      | 17.1            | 45.0    | 93       | 1.0     | 46.3    | 4.7    | 2.0   |
| N15339   | N12468/N11292               | 39       | 26.3      | 17.4            | 45.0    | 97       | 1.0     | 47.0    | 4.0    | 1.3   |
| N15321   | N11277/N11258               | 21       | 25.8      | 18.6            | 45.0    | 93       | 1.0     | 48.3    | 4.0    | 4.0   |
| N15306   | N11230/N11298               | 6        | 25.2      | 19.9            | 46.0    | 98       | 1.0     | 48.3    | 3.7    | 3.3   |
| N15338   | N12466/N11258               | 38       | 25.1      | 16.1            | 45.0    | 93       | 1.3     | 50.0    | 4.3    | 3.7   |
| N15301   | N09034/N11292               | 1        | 24.5      | 16.7            | 45.0    | 92       | 1.0     | 47.7    | 4.0    | 4.3   |
| N15329   | N12438/N11258               | 29       | 24.5      | 19.9            | 45.0    | 98       | 2.0     | 51.0    | 3.3    | 3.0   |
| N15346   | X12501/X12518               | 46       | 24.3      | 18.1            | 45.0    | 93       | 1.0     | 47.0    | 4.0    | 3.7   |
| N15336   | N12466/N11238               | 36       | 24.2      | 17.0            | 45.0    | 94       | 1.0     | 50.0    | 5.3    | 3.3   |
| N15344   | N11227/X11537               | 44       | 24.1      | 19.3            | 45.0    | 93       | 1.3     | 47.0    | 3.3    | 3.0   |
| N15313   | N11258/N11277               | 13       | 23.7      | 16.4            | 45.0    | 93       | 1.0     | 50.0    | 5.3    | 3.7   |
| N15319   | N11277/N09034               | 19       | 23.7      | 19.9            | 46.0    | 98       | 1.3     | 50.0    | 4.3    | 1.0   |
| N11283   | MEDALIST/N08003, ALPENA     | 54       | 23.5      | 19.2            | 45.0    | 96       | 1.3     | 50.3    | 4.7    | 2.7   |
| N15323   | N12405/N12468               | 23       | 23.4      | 18.0            | 44.0    | 94       | 1.0     | 48.0    | 4.7    | 2.7   |
| N15332   | N12438/N12468               | 32       | 23.3      | 20.8            | 45.0    | 101      | 1.0     | 49.0    | 3.3    | 3.7   |
| N15326   | N12405/N12468               | 26       | 23.1      | 16.7            | 45.0    | 94       | 1.0     | 45.7    | 4.3    | 1.0   |
| N15307   | N11238/N11258               | 7        | 23.0      | 15.4            | 45.0    | 97       | 1.0     | 51.0    | 4.7    | 1.7   |
| N15322   | N12405/N11238               | 22       | 22.9      | 19.0            | 45.0    | 94       | 1.0     | 46.0    | 4.0    | 3.7   |
| N15337   | N12466/N11258               | 37       | 22.3      | 17.3            | 46.0    | 94       | 1.0     | 47.7    | 4.3    | 3.3   |
| 115616   | PR0806-80A                  | 55       | 22.0      | 21.2            | 45.0    | 99       | 1.0     | 49.7    | 4.0    | 2.7   |
| N15320   | N11277/N11258               | 20       | 21.6      | 18.3            | 45.0    | 93       | 1.0     | 48.3    | 4.0    | 3.3   |
| N15328   | N12405/N12468               | 28       | 21.6      | 19.3            | 45.0    | 96       | 1.0     | 49.3    | 5.0    | 3.7   |
| N15340   | N12468/N11298               | 40       | 21.6      | 22.7            | 46.0    | 99       | 1.0     | 50.7    | 4.7    | 1.7   |

| EXPERIMEN | IT 5103 PRELIMINARY NAVY YI | ELD TRIA | L         |          |         |          |         | PLANTED | 6/4/15 |       |
|-----------|-----------------------------|----------|-----------|----------|---------|----------|---------|---------|--------|-------|
| NAME      | PEDIGREE                    | ENTRY    | YIELD CW1 | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT  | DES.   | CBB   |
|           |                             |          | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)    | SCORE  | (1-5) |
| N15342    | X12507/X12519               | 42       | 21.5      | 19.8     | 46.0    | 96       | 1.0     | 49.7    | 3.0    | 4.3   |
| N15309    | N11258/N11277               | 9        | 21.2      | 17.4     | 45.0    | 94       | 1.0     | 47.0    | 4.3    | 3.3   |
| N15314    | N11258/N12405               | 14       | 21.1      | 20.0     | 45.0    | 93       | 1.0     | 46.3    | 4.3    | 3.3   |
| N15315    | N11258/N12405               | 15       | 20.8      | 17.9     | 45.0    | 93       | 1.0     | 44.0    | 3.7    | 4.3   |
| N15303    | N11230/N11277               | 3        | 20.5      | 15.8     | 45.0    | 94       | 1.0     | 46.3    | 3.3    | 4.0   |
| N15324    | N12405/N12468               | 24       | 20.3      | 16.9     | 45.0    | 93       | 1.0     | 44.0    | 3.0    | 4.7   |
| N15308    | N11258/N11238               | 8        | 20.2      | 17.1     | 45.0    | 99       | 1.0     | 50.0    | 3.0    | 3.3   |
| N15312    | N11258/N11277               | 12       | 20.0      | 16.3     | 45.0    | 93       | 1.0     | 46.3    | 3.7    | 3.7   |
| N15302    | N11230/N11277               | 2        | 19.4      | 17.7     | 45.0    | 99       | 1.0     | 52.7    | 4.7    | 2.3   |
| N15333    | N12442/N11277               | 33       | 18.9      | 22.5     | 46.0    | 97       | 1.3     | 51.3    | 4.7    | 2.3   |
| N15305    | N11230/N11298               | 5        | 18.8      | 19.6     | 45.0    | 98       | 1.0     | 48.0    | 3.3    | 4.0   |
| N15310    | N11258/N11277               | 10       | 18.7      | 17.7     | 45.0    | 94       | 1.0     | 50.0    | 4.0    | 3.7   |
| N15347    | Alpena*/B09197              | 47       | 18.5      | 21.3     | 45.0    | 101      | 1.0     | 49.0    | 3.0    | 3.3   |
| N15316    | N11258/N12405               | 16       | 18.2      | 21.2     | 45.0    | 93       | 1.0     | 45.3    | 4.0    | 3.7   |
| N15304    | N11230/N11298               | 4        | 18.0      | 18.6     | 45.0    | 97       | 1.0     | 47.7    | 3.3    | 3.7   |
| N15327    | N12405/N12468               | 27       | 17.7      | 19.9     | 45.0    | 94       | 1.0     | 46.3    | 4.0    | 4.0   |
| N15350    | Alpena*/B09197              | 50       | 17.5      | 19.1     | 45.0    | 93       | 1.0     | 47.3    | 3.0    | 4.7   |
| l11264    | COOP 03019, <b>MERLIN</b>   | 53       | 17.3      | 20.4     | 45.0    | 99       | 1.0     | 48.3    | 3.0    | 4.7   |
| N15351    | Alpena*/B09197              | 51       | 17.2      | 17.3     | 45.0    | 93       | 1.0     | 46.3    | 3.0    | 4.7   |
| 115617    | PR0806-81A                  | 56       | 17.2      | 21.2     | 45.0    | 95       | 1.7     | 48.0    | 3.0    | 4.7   |
| N15348    | Alpena*/B09197              | 48       | 17.1      | 18.7     | 45.0    | 100      | 1.3     | 49.0    | 3.3    | 3.0   |
| N15325    | N12405/N12468               | 25       | 17.0      | 18.6     | 45.0    | 93       | 1.0     | 45.7    | 4.0    | 4.3   |
| 108958    | Mayflower/Avanti, MEDALIST  | 52       | 16.5      | 19.7     | 45.0    | 102      | 1.3     | 50.0    | 3.0    | 3.7   |
| N15311    | N11258/N11277               | 11       | 14.7      | 16.8     | 44.0    | 98       | 1.0     | 49.3    | 4.3    | 3.0   |
| N15317    | N11258/N12405               | 17       | 14.6      | 19.0     | 44.0    | 93       | 1.0     | 45.7    | 4.0    | 5.0   |
| N15349    | Alpena*/B09197              | 49       | 13.8      | 19.4     | 45.0    | 99       | 1.0     | 48.3    | 3.0    | 3.7   |
| MEAN (56) |                             |          | 21.9      | 18.9     | 44.9    | 95.8     | 1.1     | 48.5    | 4.0    | 3.3   |
| LSD (.05) |                             |          | 3.7       | 1.2      | 0.9     | 2.8      | 0.3     | 2.4     | 1.0    | 1.0   |
| CV (%)    |                             |          | 12.3      | 4.5      | 1.2     | 2.1      | 20.7    | 3.7     | 18.3   | 21.9  |

| EXPERIME | ENT 5104 PRELIMINARY BLACK  | YIELD TR | IAL       |          |         |          |         | PLANTED | : 6/4/15 |       |
|----------|-----------------------------|----------|-----------|----------|---------|----------|---------|---------|----------|-------|
| NAME     | PEDIGREE                    | ENTRY    | YIELD CW1 | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT  | DES.     | CBB   |
|          |                             |          | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)    | SCORE    | (1-5) |
| B15428   | Zenith/B12721               | 28       | 36.6      | 26.7     | 44.0    | 95       | 1.0     | 50.0    | 5.3      | 2.0   |
| B15408   | B09175/B10215               | 8        | 36.1      | 23.8     | 46.0    | 96       | 1.0     | 48.0    | 5.0      | 2.3   |
| B15442   | B11363/B09175               | 42       | 36.1      | 26.7     | 45.0    | 98       | 1.0     | 48.3    | 4.3      | 2.7   |
| B15418   | B10208/B09175               | 18       | 35.8      | 26.1     | 45.0    | 96       | 1.0     | 49.7    | 4.3      | 1.7   |
| B15407   | B09175/B10215               | 7        | 34.5      | 24.4     | 45.0    | 97       | 1.3     | 48.7    | 4.0      | 2.7   |
| B15441   | B11343/B10213               | 41       | 34.4      | 22.8     | 45.0    | 93       | 1.0     | 45.3    | 4.7      | 3.0   |
| B15416   | B10208/B09175               | 16       | 34.1      | 28.5     | 45.0    | 97       | 1.3     | 48.0    | 4.0      | 2.3   |
| B15451   | B11371/B11363               | 51       | 34.1      | 22.8     | 46.0    | 97       | 1.0     | 50.3    | 5.0      | 2.0   |
| B15430   | Zenith/B12721               | 30       | 33.9      | 26.4     | 44.0    | 93       | 1.0     | 49.0    | 5.7      | 1.7   |
| B15449   | B11371/B09175               | 49       | 33.9      | 22.8     | 45.0    | 94       | 1.0     | 46.3    | 4.3      | 1.7   |
| B15452   | B11371/B11363               | 52       | 33.8      | 22.0     | 46.0    | 98       | 1.3     | 50.7    | 4.7      | 2.0   |
| B15406   | B09175/B10215               | 6        | 33.8      | 24.4     | 45.0    | 95       | 1.0     | 47.3    | 4.7      | 2.7   |
| B15433   | Zenith/B12721               | 33       | 33.7      | 26.2     | 45.0    | 96       | 1.0     | 50.0    | 4.0      | 2.0   |
| B15453   | B11371/B11363               | 53       | 33.5      | 23.4     | 46.0    | 95       | 1.0     | 49.0    | 5.0      | 2.0   |
| B15425   | Zenith/B10215               | 25       | 33.5      | 24.0     | 46.0    | 96       | 1.3     | 47.3    | 4.0      | 2.3   |
| B15431   | Zenith/B12721               | 31       | 33.5      | 26.0     | 44.0    | 93       | 1.0     | 47.3    | 4.7      | 2.7   |
| B15412   | B09175/B11363               | 12       | 33.3      | 22.0     | 45.0    | 93       | 1.0     | 46.3    | 5.0      | 3.7   |
| B15434   | Zenith/B12721               | 34       | 33.2      | 24.3     | 45.0    | 95       | 1.0     | 48.3    | 5.0      | 2.3   |
| B15435   | Zenith/B12721               | 35       | 33.1      | 24.8     | 45.0    | 94       | 1.0     | 46.0    | 4.7      | 2.3   |
| B15414   | B09175/B11611               | 14       | 33.1      | 27.8     | 45.0    | 95       | 1.0     | 48.0    | 4.0      | 2.7   |
| B15421   | B10208/B11611               | 21       | 32.8      | 23.8     | 45.0    | 95       | 1.0     | 46.7    | 4.7      | 2.0   |
| B15410   | B09175/B11343               | 10       | 32.8      | 22.5     | 46.0    | 95       | 1.0     | 47.3    | 4.0      | 3.0   |
| B15427   | Zenith/B11343               | 27       | 32.8      | 26.1     | 45.0    | 93       | 1.0     | 47.0    | 4.7      | 3.3   |
| B15438   | B11334/Zenith               | 38       | 32.7      | 22.7     | 46.0    | 94       | 1.0     | 48.3    | 4.7      | 3.0   |
| B15417   | B10208/B09175               | 17       | 32.6      | 22.6     | 45.0    | 95       | 1.0     | 47.3    | 4.0      | 2.0   |
| B15415   | B09175/B11611               | 15       | 32.5      | 26.0     | 45.0    | 95       | 1.0     | 46.3    | 3.7      | 3.0   |
| B15432   | Zenith/B12721               | 32       | 32.2      | 26.6     | 45.0    | 94       | 1.0     | 48.3    | 5.3      | 3.0   |
| B15439   | B11334/Zenith               | 39       | 32.1      | 22.3     | 46.0    | 94       | 1.0     | 47.0    | 4.3      | 2.7   |
| B15464   | B12709/B12721               | 64       | 31.9      | 26.7     | 46.0    | 96       | 1.0     | 48.7    | 5.3      | 2.0   |
| B15454   | B11561/B11343               | 54       | 31.8      | 23.7     | 45.0    | 94       | 1.0     | 47.3    | 3.7      | 3.0   |
| B15419   | B10208/B09175               | 19       | 31.8      | 25.2     | 45.0    | 100      | 1.0     | 49.7    | 4.0      | 1.3   |
| B15443   | B11363/B09175               | 43       | 31.7      | 26.5     | 45.0    | 95       | 1.0     | 46.0    | 4.3      | 2.7   |
| B15404   | B09175/Zorro                | 4        | 31.2      | 23.4     | 45.0    | 94       | 1.0     | 45.0    | 4.7      | 3.0   |
| B10244   | B04644/ZORRO, <b>ZENITH</b> | 72       | 31.1      | 24.3     | 45.0    | 96       | 1.0     | 48.0    | 4.3      | 3.0   |
| B15469   | Zenith/X11530               | 69       | 30.8      | 21.9     | 46.0    | 96       | 1.0     | 48.3    | 3.7      | 2.7   |
| B15465   | B12709/B12721               | 65       | 30.8      | 24.9     | 45.0    | 95       | 1.0     | 46.0    | 4.3      | 3.0   |
| B15447   | B11363/Zenith               | 47       | 30.7      | 23.3     | 45.0    | 93       | 1.3     | 45.3    | 4.3      | 3.7   |
| B15411   | B09175/B11363               | 11       | 30.5      | 21.9     | 45.0    | 94       | 1.0     | 45.3    | 4.7      | 2.3   |
| B15426   | Zenith/B11343               | 26       | 30.5      | 22.1     | 45.0    | 97       | 1.0     | 49.7    | 4.3      | 2.3   |
| B15470   | Alpena*/B09197              | 70       | 30.5      | 23.7     | 45.0    | 93       | 1.0     | 45.7    | 3.7      | 4.0   |

| EXPERIME  | NT 5104 PRELIMINARY BLACK    | YIELD TR | AL       |          |         |          |         | PLANTED | 6/4/15 |       |
|-----------|------------------------------|----------|----------|----------|---------|----------|---------|---------|--------|-------|
| NAME      | PEDIGREE                     | ENTRY    | YIELD CW | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT  | DES.   | CBB   |
|           |                              |          | /ACRE    | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)    | SCORE  | (1-5) |
| B15409    | B09175/B11343                | 9        | 30.3     | 20.4     | 46.0    | 94       | 1.0     | 47.3    | 4.3    | 3.7   |
| B15457    | B11594/Zenith                | 57       | 30.3     | 23.9     | 46.0    | 95       | 1.0     | 46.7    | 4.0    | 3.0   |
| B15429    | Zenith/B12721                | 29       | 30.2     | 25.4     | 46.0    | 94       | 1.0     | 46.7    | 4.7    | 2.3   |
| B15420    | B10208/B11611                | 20       | 30.0     | 23.7     | 44.0    | 98       | 1.0     | 49.0    | 4.0    | 1.3   |
| B15402    | Zorro/B11343                 | 2        | 29.7     | 22.6     | 46.0    | 94       | 1.0     | 46.7    | 4.0    | 3.0   |
| B15422    | B10208/B12721                | 22       | 29.7     | 24.2     | 44.0    | 95       | 1.0     | 47.0    | 5.0    | 1.0   |
| B15448    | B11363/B11345                | 48       | 29.5     | 23.6     | 46.0    | 94       | 1.0     | 48.0    | 4.0    | 3.0   |
| B15413    | B09175/B11363                | 13       | 28.9     | 22.2     | 45.0    | 93       | 1.0     | 46.3    | 4.7    | 2.7   |
| B15444    | B11363/B09197                | 44       | 28.8     | 21.3     | 45.0    | 94       | 1.0     | 47.0    | 4.7    | 2.3   |
| B15403    | Zorro/B11343                 | 3        | 28.7     | 21.8     | 45.0    | 96       | 1.0     | 47.3    | 4.7    | 2.7   |
| B15405    | B09175/B10215                | 5        | 28.6     | 22.6     | 45.0    | 94       | 1.0     | 45.7    | 4.0    | 3.0   |
| B15450    | B11371/Zenith                | 50       | 28.6     | 21.0     | 46.0    | 94       | 1.0     | 48.7    | 4.3    | 3.7   |
| B15466    | B12709/B12721                | 66       | 28.4     | 26.9     | 45.0    | 94       | 1.0     | 46.0    | 4.3    | 3.7   |
| B15463    | B12707/B11311                | 63       | 28.2     | 20.5     | 46.0    | 98       | 1.3     | 49.7    | 4.3    | 1.3   |
| B15440    | B11343/B10213                | 40       | 28.1     | 21.4     | 45.0    | 93       | 1.0     | 44.0    | 4.3    | 3.3   |
| B15458    | B11594/B11343                | 58       | 28.0     | 22.8     | 45.0    | 98       | 1.3     | 48.7    | 4.0    | 3.0   |
| B15446    | B11363/Zenith                | 46       | 27.8     | 23.8     | 45.0    | 96       | 1.0     | 47.7    | 3.7    | 2.7   |
| B15436    | B11312/Zenith                | 36       | 27.5     | 23.2     | 45.0    | 95       | 1.0     | 47.3    | 4.7    | 3.3   |
| B15445    | B11363/Zenith                | 45       | 27.4     | 23.7     | 45.0    | 95       | 1.0     | 47.0    | 4.0    | 3.3   |
| B15462    | B12707/B11311                | 62       | 27.3     | 20.6     | 45.0    | 97       | 1.0     | 48.3    | 4.0    | 1.7   |
| B15401    | Zorro/B11312                 | 1        | 27.2     | 19.7     | 45.0    | 94       | 1.0     | 46.7    | 4.0    | 3.7   |
| B15455    | B11561/B11343                | 55       | 26.9     | 22.9     | 44.0    | 93       | 1.0     | 43.7    | 4.3    | 3.0   |
| B15456    | B11594/Zenith                | 56       | 25.9     | 23.4     | 44.0    | 95       | 1.0     | 47.3    | 4.3    | 3.0   |
| B15423    | B10215/Zenith                | 23       | 25.7     | 25.0     | 46.0    | 95       | 1.0     | 46.7    | 3.7    | 4.0   |
| B04554    | B00103*/X00822, <b>ZORRO</b> | 71       | 25.4     | 19.1     | 45.0    | 98       | 1.0     | 49.7    | 4.3    | 3.0   |
| B15461    | B11611/B11343                | 61       | 24.8     | 25.1     | 46.0    | 97       | 1.0     | 46.3    | 3.0    | 3.3   |
| B15460    | B11611/B11343                | 60       | 24.7     | 21.0     | 44.0    | 93       | 1.0     | 44.0    | 3.7    | 3.3   |
| B15467    | Zenith/X11528                | 67       | 24.6     | 21.8     | 45.0    | 92       | 1.0     | 44.7    | 3.7    | 3.7   |
| B15437    | B11312/Zenith                | 37       | 24.2     | 21.7     | 45.0    | 94       | 1.3     | 46.7    | 4.0    | 3.7   |
| B15424    | B10215/Zenith                | 24       | 22.9     | 22.0     | 46.0    | 96       | 1.0     | 45.3    | 3.3    | 4.3   |
| B15468    | Zenith/X11530                | 68       | 20.1     | 20.6     | 46.0    | 93       | 1.0     | 43.0    | 3.0    | 4.0   |
| B15459    | B11611/Zenith                | 59       | 16.4     | 21.3     | 46.0    | 92       | 1.0     | 42.7    | 3.0    | 5.0   |
| MEAN (72) |                              |          | 30.3     | 23.5     | 44.9    | 94.9     | 1.0     | 47.2    | 4.3    | 2.8   |
| LSD (.05) |                              |          | 3.8      | 1.5      | 1.1     | 2.0      | 0.3     | 2.3     | 0.8    | 1.1   |
| CV (%)    |                              |          | 9.2      | 4.8      | 1.4     | 1.6      | 18.7    | 3.6     | 14.3   | 28.7  |

| EXPERIM | ENT 5105 STANDARD GREAT NORT  |       |           |          |         |          |         | PLANTED: |       |       |
|---------|-------------------------------|-------|-----------|----------|---------|----------|---------|----------|-------|-------|
| NAME    | PEDIGREE                      | ENTRY | YIELD CWT | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT   | DES.  | CBB   |
|         |                               |       | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)     | SCORE | (1-5) |
| P07863  | AN-37/P02630, <b>ELDORADO</b> | 30    | 24.7      | 43.2     | 42.0    | 97       | 2.0     | 54.0     | 5.0   | 3.3   |
| G12901  | G07321/Fuji, <b>SAMURAI</b>   | 2     | 24.4      | 26.2     | 45.0    | 97       | 1.0     | 52.0     | 5.0   | 4.0   |
| G14510  | G11471/G11469                 | 18    | 23.5      | 30.4     | 46.0    | 97       | 2.0     | 50.5     | 4.5   | 2.3   |
| G14506  | G11469/G11417                 | 17    | 23.4      | 34.4     | 46.0    | 95       | 2.0     | 50.0     | 5.0   | 3.3   |
| 107113  | PNE-6-94-75/Kodiak, LAPAZ     | 37    | 22.4      | 37.9     | 45.0    | 94       | 1.5     | 51.0     | 4.5   | 3.3   |
| l14509  | PT11-13                       | 42    | 21.8      | 37.0     | 44.0    | 91       | 2.0     | 47.0     | 4.0   | 4.0   |
| P14815  | P08522/LONG'S PEAK            | 32    | 21.7      | 37.4     | 45.0    | 93       | 1.5     | 49.5     | 5.5   | 3.0   |
| G14530  | P11518/G11405                 | 4     | 21.5      | 37.6     | 47.0    | 99       | 2.0     | 55.0     | 3.5   | 2.3   |
| P14814  | P08522/LONG'S PEAK            | 31    | 21.2      | 38.7     | 47.0    | 94       | 2.0     | 51.5     | 4.5   | 3.7   |
| G14505  | G11429/P08175                 | 20    | 21.0      | 27.0     | 44.0    | 94       | 2.0     | 49.0     | 4.0   | 3.3   |
| G14503  | G11404/G11469                 | 21    | 20.9      | 41.3     | 44.0    | 95       | 2.0     | 49.5     | 4.0   | 3.0   |
| G13468  | G08259//Eldorado/G08210       | 6     | 20.6      | 32.5     | 45.0    | 95       | 1.5     | 49.0     | 5.0   | 3.0   |
| P11519  | SANTA FE/P07806               | 38    | 20.3      | 39.9     | 47.0    | 96       | 1.5     | 56.5     | 4.5   | 2.3   |
| G14525  | P09425/G11429                 | 25    | 19.7      | 42.2     | 45.0    | 94       | 1.5     | 47.5     | 4.5   | 3.0   |
| P14802  | P08162/P11518                 | 35    | 19.7      | 37.8     | 47.0    | 92       | 1.5     | 49.0     | 4.5   | 2.7   |
| G11440  | G07309/P08401                 | 11    | 19.3      | 33.0     | 44.0    | 93       | 1.5     | 48.5     | 5.0   | 3.0   |
| P14812  | P09425/P08161                 | 34    | 19.3      | 36.7     | 45.0    | 91       | 1.0     | 47.0     | 4.0   | 3.0   |
| G11438  | G07309/P08401                 | 10    | 19.2      | 35.5     | 43.0    | 93       | 1.0     | 50.0     | 4.5   | 3.3   |
| P13701  | G09305/Eldorado               | 40    | 19.1      | 39.8     | 44.0    | 93       | 1.5     | 48.5     | 4.5   | 2.3   |
| G13444  | G07302//G08274/P08410         | 3     | 19.1      | 36.6     | 42.0    | 93       | 1.0     | 49.0     | 5.0   | 2.3   |
| G13479  | Eldorado/G09312               | 1     | 18.8      | 30.2     | 42.0    | 94       | 1.0     | 48.5     | 4.5   | 2.7   |
| P11523  | P04203/P06125                 | 41    | 18.5      | 38.2     | 45.0    | 93       | 1.0     | 49.5     | 5.0   | 2.7   |
| G13456  | G08217//P08372/P08410         | 13    | 18.4      | 29.4     | 44.0    | 92       | 1.0     | 45.5     | 5.0   | 3.3   |
| P14811  | P08403/G11405                 | 33    | 18.1      | 34.8     | 41.0    | 93       | 1.0     | 47.5     | 4.5   | 3.0   |
| P14806  | P08162/P11518                 | 39    | 17.9      | 36.3     | 46.0    | 92       | 2.0     | 49.5     | 3.0   | 3.3   |
| 114519  | 23ST-27                       | 28    | 17.7      | 32.8     | 44.0    | 91       | 2.0     | 43.5     | 3.0   | 4.3   |
| G14523  | P08403/G11405                 | 22    | 17.7      | 41.2     | 40.0    | 93       | 1.0     | 47.5     | 4.0   | 2.3   |
| P14804  | P08162/P11518                 | 36    | 17.6      | 32.4     | 45.0    | 92       | 2.0     | 48.0     | 4.0   | 4.0   |
| G14513  | G11402/Powderhorn             | 26    | 17.1      | 33.7     | 44.0    | 93       | 1.0     | 48.5     | 4.5   | 3.3   |
| G14507  | G09329/G10412                 | 19    | 16.9      | 25.2     | 45.0    | 95       | 1.5     | 48.5     | 4.0   | 3.0   |

| EXPERIME  | NT 5105 STANDARD GREAT NORTHE | RN AND F | PINTO YIELD | TRIAL    |         |          |         | PLANTED: | 6/4/15 |       |
|-----------|-------------------------------|----------|-------------|----------|---------|----------|---------|----------|--------|-------|
| NAME      | PEDIGREE                      | ENTRY    | YIELD CWT   | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT   | DES.   | CBB   |
|           |                               |          | /ACRE       | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)     | SCORE  | (1-5) |
| G14511    | G11417/G11404                 | 27       | 16.8        | 34.8     | 39.0    | 94       | 1.5     | 48.5     | 4.0    | 2.7   |
| G11463    | G07309//G04207/I07130         | 7        | 16.7        | 39.0     | 45.0    | 95       | 2.0     | 48.5     | 3.5    | 3.7   |
| G13450    | G08217//P08372/P08410         | 9        | 16.6        | 31.8     | 45.0    | 93       | 1.0     | 47.5     | 5.0    | 3.7   |
| G14519    | P08162/G11404                 | 23       | 16.1        | 37.6     | 42.0    | 94       | 1.5     | 49.5     | 3.5    | 3.3   |
| G14520    | P08369/G09303                 | 24       | 15.4        | 27.9     | 45.0    | 94       | 1.0     | 49.5     | 4.0    | 3.7   |
| G14509    | G11404/Eldorado               | 16       | 15.3        | 33.4     | 44.0    | 93       | 2.0     | 48.5     | 4.0    | 3.7   |
| G13412    | Powderhorn//G09301/Eldorado   | 8        | 15.1        | 34.4     | 45.0    | 94       | 1.0     | 48.0     | 4.5    | 2.7   |
| G13423    | Powderhorn//Eldorado/G09312   | 5        | 15.0        | 34.3     | 45.0    | 95       | 1.5     | 50.5     | 5.0    | 2.7   |
| G08254    | G04514/Matterhorn, POWDERHORN | 15       | 14.4        | 34.0     | 43.0    | 92       | 1.0     | 47.0     | 4.0    | 3.7   |
| G13452    | G08217//P08372/P08410         | 12       | 13.6        | 30.5     | 41.0    | 91       | 1.0     | 45.5     | 4.5    | 3.7   |
| G93414    | MATTERHORN                    | 14       | 11.9        | 32.3     | 44.0    | 91       | 2.0     | 47.0     | 4.0    | 3.3   |
| l14520    | SF103-8                       | 29       | 10.2        | 32.8     | 39.0    | 95       | 2.0     | 52.0     | 2.5    | 3.7   |
| MEAN (42) |                               |          | 18.5        | 34.8     | 43.8    | 93.4     | 1.5     | 49.1     | 4.3    | 3.2   |
| LSD (.05) |                               |          | 2.9         | 3.0      | 2.2     | 1.9      | 0.6     | 1.8      | 1.0    | 0.9   |
| CV (%)    |                               |          | 13.5        | 7.5      | 3.0     | 1.2      | 25.4    | 2.1      | 13.5   | 22.1  |

| EXPERIME  | NT 5106 STANDARD RED AND P   | INK YIEL | D TRIAL   |          |         |          |         | PLANTE | D: 6/4/15 |         |
|-----------|------------------------------|----------|-----------|----------|---------|----------|---------|--------|-----------|---------|
| NAME      | PEDIGREE                     | ENTRY    | YIELD CWT | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT | DES.      | CBB     |
|           |                              |          | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)   | SCORE     | (1-5)   |
| l13401    | SR 09303, <b>VIPER</b>       | 2        | 32.4      | 30.2     | 46.0    | 101      | 1.3     | 51.5   | 4.3       | 3.0     |
| I13446    | SR 09304, <b>RUBY</b>        | 19       | 29.4      | 34.4     | 45.0    | 100      | 2.0     | 49.8   | 3.8       | 3.0     |
| R13752    | Merlot/SER48                 | 3        | 29.0      | 40.7     | 45.0    | 96       | 1.0     | 51.3   | 5.0       | 3.0     |
| R98026    | R94037/R94161, <b>MERLOT</b> | 13       | 27.1      | 40.4     | 45.0    | 99       | 2.0     | 52.0   | 4.0       | 3.0     |
| R12844    | SR9-5/R09508                 | 5        | 26.7      | 34.4     | 45.0    | 95       | 1.5     | 48.8   | 4.5       | 2.0     |
| R13848    | Merlot/I11209                | 16       | 26.5      | 35.3     | 47.0    | 102      | 1.5     | 53.8   | 3.5       | 4.0     |
| S08418    | S02754/S04503, ROSETTA       | 6        | 26.0      | 36.2     | 45.0    | 98       | 1.5     | 52.5   | 5.0       | 3.0     |
| R13821    | Merlot/I11209                | 20       | 25.8      | 37.2     | 49.0    | 102      | 1.5     | 53.8   | 3.8       | 4.0     |
| R12845    | SR9-5/R09508                 | 1        | 25.7      | 37.0     | 44.0    | 99       | 1.8     | 52.0   | 4.5       | 2.0     |
| R13526    | X10308/R08514                | 12       | 25.7      | 38.1     | 47.0    | 95       | 1.5     | 50.0   | 4.5       | 3.0     |
| S14706    | Rosetta/S11707               | 8        | 25.2      | 37.1     | 44.0    | 99       | 1.3     | 50.3   | 5.0       | 2.0     |
| R12843    | SR9-5/R09508                 | 4        | 25.1      | 34.3     | 44.0    | 96       | 1.5     | 49.0   | 4.8       | 1.0     |
| R13537    | Merlot/X10316                | 9        | 24.2      | 35.0     | 46.0    | 98       | 1.8     | 51.3   | 4.3       | 3.0     |
| R11801    | X07712/X07721, DESERT SONG   | 18       | 23.8      | 32.9     | 43.0    | 94       | 2.3     | 45.0   | 4.0       | 3.0     |
| S14707    | Rosetta/S11707               | 15       | 22.2      | 32.4     | 44.0    | 96       | 1.3     | 48.5   | 4.3       | 2.0     |
| S14702    | S11707/S08419                | 7        | 22.1      | 35.2     | 44.0    | 97       | 1.0     | 50.3   | 4.5       | 4.0     |
| R11806    | X07714/X07710, GYPSY ROSE    | 17       | 21.7      | 32.0     | 48.0    | 101      | 2.3     | 49.0   | 4.0       | 3.0     |
| S14704    | S11707/S08419                | 11       | 21.7      | 36.8     | 46.0    | 101      | 1.0     | 50.0   | 4.5       | 2.0     |
| S14708    | Rosetta/S11707               | 14       | 21.3      | 32.7     | 44.0    | 98       | 1.0     | 50.0   | 4.5       | 1.0     |
| S14703    | S11707/S08419                | 10       | 19.7      | 34.1     | 44.0    | 97       | 1.3     | 50.3   | 4.3       | 3.0     |
| MEAN (20) |                              |          | 25.1      | 35.3     | 45.1    | 98       | 1.5     | 50.4   | 4.3       | 2.7     |
| LSD (.05) |                              |          | 2.8       | 1.7      | 1.2     | 2        | 0.5     | 1.6    | 0.5       | (1 Rep) |
| CV (%)    |                              |          | 9.4       | 4.1      | 1.5     | 1        | 28.2    | 2.6    | 10.4      |         |

|        | ENT 5107 PRELIMINARY RED     |       |           |         |      |          |         | PLANTE |       |       |
|--------|------------------------------|-------|-----------|---------|------|----------|---------|--------|-------|-------|
| NAME   | PEDIGREE                     | ENTRY | YIELD CWT |         |      |          | LODGING |        | DES.  | CBB   |
|        |                              |       | /ACRE     | WT. (g) |      | MATURITY | (1-5)   | (cm)   | SCORE | (1-5) |
| 113401 | SR 09303, <b>VIPER</b>       | 45    | 36.9      | 31.3    | 45.0 | 102      | 1.7     | 52.0   | 4.0   | 3.0   |
| 115602 | PK12-3                       | 35    | 31.4      | 37.7    | 48.0 | 100      | 3.0     | 44.3   | 3.0   | 3.0   |
| 113446 | SR 09304, <b>RUBY</b>        | 46    | 31.4      | 34.3    | 44.0 | 102      | 2.0     | 48.7   | 3.7   | 3.0   |
| R15629 | SR9-5/R09508, R12845-05      | 29    | 31.1      | 33.5    | 45.0 | 98       | 1.0     | 52.0   | 5.0   | 1.0   |
| R12844 | SR9-5/R09508                 | 41    | 30.8      | 34.9    | 45.0 | 96       | 1.7     | 50.0   | 4.7   | 1.0   |
| R15626 | SR9-5/R09508, R12845-01      | 26    | 30.7      | 37.3    | 45.0 | 97       | 1.7     | 52.0   | 5.0   | 1.0   |
| R12845 | SR9-5/R09508                 | 42    | 30.6      | 33.7    | 45.0 | 96       | 1.7     | 51.3   | 5.0   | 1.0   |
| R15625 | SR9-5/R09508, R12844-06      | 25    | 30.3      | 34.6    | 45.0 | 96       | 2.0     | 51.0   | 4.3   | 2.0   |
| R15630 | SR9-5/R09508, R12845-06      | 30    | 30.0      | 33.5    | 45.0 | 98       | 1.7     | 51.7   | 5.0   | 1.0   |
| R15628 | SR9-5/R09508, R12845-04      | 28    | 28.9      | 35.8    | 44.0 | 96       | 2.0     | 50.7   | 4.3   | 1.0   |
| R15624 | SR9-5/R09508, R12844-05      | 24    | 28.9      | 34.0    | 44.0 | 95       | 1.3     | 50.7   | 4.3   | 1.0   |
| R13752 | Merlot/SER48                 | 48    | 28.4      | 40.5    | 45.0 | 97       | 1.0     | 50.7   | 5.0   | 3.0   |
| R15620 | SR9-5/R09508, R12844-01      | 20    | 28.4      | 35.2    | 44.0 | 94       | 2.0     | 49.0   | 4.0   | 1.0   |
| R15610 | Merlot//IBC301-204/R11633    | 10    | 28.2      | 33.1    | 49.0 | 103      | 3.0     | 45.0   | 3.0   | 3.0   |
| R98026 | R94037/R94161, <b>MERLOT</b> | 43    | 27.9      | 39.9    | 45.0 | 99       | 2.0     | 50.7   | 3.7   | 2.0   |
| R15622 | SR9-5/R09508, R12844-03      | 22    | 27.7      | 36.3    | 45.0 | 99       | 2.0     | 52.0   | 4.0   | 1.0   |
| R15609 | Merlot//Dorado/R11615        | 9     | 27.4      | 44.3    | 46.0 | 99       | 1.3     | 53.3   | 4.7   | 3.0   |
| 115605 | SR10-2-1                     | 38    | 26.6      | 39.3    | 43.0 | 94       | 2.0     | 47.7   | 4.3   | 3.0   |
| R15623 | SR9-5/R09508, R12844-04      | 23    | 26.1      | 35.7    | 44.0 | 95       | 2.0     | 50.7   | 4.3   | 1.0   |
| R15627 | SR9-5/R09508, R12845-03      | 27    | 26.1      | 35.7    | 45.0 | 99       | 2.0     | 52.0   | 4.3   | 1.0   |
| R15612 | Merlot//IBC301-204/R11633    | 12    | 25.9      | 34.5    | 46.0 | 96       | 2.0     | 49.7   | 4.3   | 3.0   |
| S08418 | S02754/S04503, ROSETTA       | 44    | 25.8      | 35.3    | 44.0 | 101      | 1.3     | 51.7   | 4.3   | 2.0   |
| R15607 | R11614/PS02-050-2            | 7     | 25.7      | 29.7    | 44.0 | 100      | 2.0     | 48.7   | 4.0   | 2.0   |
| R15602 | R11614/PS02-050-2            | 2     | 25.5      | 28.6    | 44.0 | 100      | 1.7     | 53.7   | 4.7   | 2.0   |
| 113428 | PK10-19-2                    | 33    | 25.5      | 34.4    | 42.0 | 94       | 1.7     | 49.0   | 4.0   | 3.0   |
| R15621 | SR9-5/R09508, R12844-02      | 21    | 25.3      | 33.2    | 45.0 | 96       | 2.0     | 50.7   | 4.0   | 1.0   |
| 115603 | PK12-11-6-B                  | 36    | 24.9      | 33.7    | 44.0 | 93       | 1.7     | 45.3   | 3.3   | 3.0   |
| S14706 | Rosetta/S11707               | 47    | 24.7      | 34.7    | 45.0 | 99       | 1.0     | 50.0   | 5.0   | 3.0   |
| l15607 | SR12-9                       | 40    | 24.6      | 36.8    | 44.0 | 99       | 2.0     | 49.3   | 4.0   | 3.0   |
| R15606 | R11614/PS02-050-2            | 6     | 24.1      | 30.2    | 43.0 | 97       | 2.0     | 49.7   | 4.3   | 2.0   |
| R15601 | R11614/PS02-050-2            | 1     | 24.1      | 29.9    | 44.0 | 99       | 1.0     | 49.7   | 5.0   | 2.0   |
| R15605 | R11614/PS02-050-2            | 5     | 24.0      | 29.2    | 44.0 | 98       | 1.3     | 49.7   | 5.0   | 2.0   |
| 115601 | PK11-5-5-B2                  | 34    | 23.6      | 27.2    | 40.0 | 93       | 2.0     | 48.7   | 3.3   | 4.0   |
| R15611 | Merlot//IBC301-204/R11633    | 11    | 23.5      | 31.6    | 46.0 | 94       | 2.0     | 49.0   | 4.0   | 2.0   |
| 115606 | SR10-20-7                    | 39    | 23.5      | 27.7    | 44.0 | 93       | 1.0     | 47.0   | 4.0   | 3.0   |

| EXPERIME  | NT 5107 PRELIMINARY RED A   | ND PINK | <b>YIELD TRIA</b> | L        |         |          |         | PLANTE | D: 6/5/15 |         |
|-----------|-----------------------------|---------|-------------------|----------|---------|----------|---------|--------|-----------|---------|
| NAME      | PEDIGREE                    | ENTRY   | YIELD CWT         | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT | DES.      | CBB     |
|           |                             |         | /ACRE             | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)   | SCORE     | (1-5)   |
| R15613    | Merlot//F07-449-9-3/R11633  | 13      | 23.4              | 34.4     | 47.0    | 104      | 1.3     | 54.3   | 3.3       | 3.0     |
| R15615    | R11610/PS02-050-2           | 15      | 23.2              | 26.1     | 44.0    | 93       | 1.7     | 46.3   | 4.3       | 3.0     |
| R15614    | Merlot//F07-014-22-2/R11633 | 14      | 23.2              | 32.0     | 48.0    | 99       | 1.3     | 51.3   | 4.0       | 3.0     |
| R15603    | R11614/PS02-050-2           | 3       | 22.9              | 26.4     | 44.0    | 96       | 1.7     | 48.0   | 4.7       | 2.0     |
| I15604    | SR10-2-4(1)                 | 37      | 22.7              | 34.8     | 43.0    | 93       | 1.0     | 46.3   | 4.0       | 3.0     |
| R15618    | R11616/R12824               | 18      | 22.5              | 26.6     | 44.0    | 94       | 1.0     | 44.7   | 4.0       | 2.0     |
| R15616    | R11610/PS02-050-2           | 16      | 22.0              | 27.4     | 43.0    | 94       | 2.0     | 47.3   | 4.0       | 4.0     |
| R15617    | R11616/R12824               | 17      | 21.2              | 24.6     | 43.0    | 94       | 1.0     | 47.3   | 4.0       | 3.0     |
| R15619    | R11616/R12824               | 19      | 20.2              | 28.5     | 44.0    | 94       | 1.0     | 45.0   | 3.7       | 3.0     |
| R15604    | R11614/PS02-050-2           | 4       | 19.8              | 25.7     | 44.0    | 103      | 2.0     | 51.7   | 3.7       | 1.0     |
| R15608    | R11616/R12859               | 8       | 19.6              | 35.5     | 45.0    | 104      | 2.0     | 55.0   | 3.7       | 3.0     |
| 113427    | PK10-3-6                    | 32      | 19.6              | 32.1     | 43.0    | 95       | 2.0     | 50.3   | 4.0       | 3.0     |
| 109204    | PK9-1                       | 31      | 18.6              | 32.4     | 40.0    | 92       | 2.7     | 47.7   | 3.0       | 3.0     |
| MEAN (48) |                             |         | 25.8              | 33.0     | 44.2    | 97.1     | 1.7     | 49.6   | 4.2       | 2.3     |
| LSD (.05) |                             |         | 3.4               | 1.9      | 1.4     | 1.1      | 0.4     | 1.2    | 0.5       | (1 Rep) |
| CV (%)    |                             |         | 9.7               | 4.2      | 1.9     | 0.9      | 17.3    | 1.8    | 9.1       |         |

| EXPERIM | ENT 5108 MRPN/CDBN YIELD TRIAL |       |           |          |         |          |         | PLANTED | 6/5/15 |       |
|---------|--------------------------------|-------|-----------|----------|---------|----------|---------|---------|--------|-------|
| NAME    | PEDIGREE                       | ENTRY | YIELD CWT | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT  | DES.   | CBB   |
|         |                                |       | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)    | SCORE  | (1-5) |
| 115647  | CO 14790-3                     | 5     | 32.8      | 43.6     | 44.0    | 105      | 1.7     | 53.0    | 4.0    | 3.0   |
| 115652  | ND121630                       | 14    | 32.1      | 37.8     | 45.0    | 100      | 1.7     | 53.7    | 3.3    | 3.0   |
| I15646  | CO 92737                       | 4     | 30.8      | 32.6     | 43.0    | 93       | 2.0     | 48.3    | 3.7    | 3.0   |
| P07863  | AN-37/P02630, <b>ELDORADO</b>  | 35    | 29.4      | 44.0     | 42.0    | 103      | 2.0     | 53.3    | 4.0    | 3.0   |
| I14530  | CO 86660-14                    | 6     | 29.2      | 40.3     | 44.0    | 92       | 1.7     | 49.3    | 3.7    | 2.0   |
| I11238  | ND090713                       | 13    | 28.8      | 36.6     | 43.0    | 94       | 1.0     | 48.0    | 4.3    | 3.0   |
| I15633  | PT 9-5-6                       | 30    | 28.0      | 35.2     | 44.0    | 93       | 1.7     | 48.7    | 4.0    | 2.0   |
| R11801  | X07712/X07721, DESERT SONG     | 24    | 27.5      | 32.5     | 43.0    | 91       | 2.0     | 46.0    | 3.7    | 3.0   |
| I15630  | ISB13-796                      | 23    | 27.5      | 41.0     | 44.0    | 94       | 2.0     | 49.7    | 3.3    | 2.0   |
| P14815  | P08522/LONG'S PEAK             | 20    | 27.4      | 36.7     | 44.0    | 92       | 1.0     | 50.0    | 6.0    | 3.0   |
| I15648  | CO 03184-13                    | 8     | 26.8      | 36.5     | 43.0    | 92       | 1.0     | 47.7    | 3.0    | 1.0   |
| I15650  | CO 25069-2                     | 10    | 26.2      | 35.2     | 43.0    | 90       | 2.0     | 48.0    | 3.3    | 2.0   |
| R11806  | X07714/X07710, GYPSY ROSE      | 25    | 25.6      | 35.3     | 47.0    | 105      | 2.7     | 49.0    | 3.3    | 3.0   |
| I15639  | UIP-40                         | 37    | 25.3      | 38.4     | 46.0    | 103      | 1.3     | 51.0    | 4.0    | 3.0   |
| I15645  | COSD-44                        | 43    | 24.9      | 37.5     | 43.0    | 92       | 2.0     | 48.0    | 3.0    | 2.0   |
| I15649  | CO 12776-4                     | 9     | 24.9      | 35.8     | 44.0    | 91       | 2.0     | 47.0    | 3.3    | 3.0   |
| l14519  | 23ST-27                        | 44    | 24.5      | 38.8     | 44.0    | 91       | 2.0     | 45.3    | 3.3    | 3.0   |
| I15644  | COSD-35                        | 42    | 24.4      | 38.6     | 44.0    | 96       | 2.0     | 48.3    | 3.0    | 2.0   |
| l11244  | CO 91216-15                    | 7     | 24.0      | 39.7     | 43.0    | 92       | 1.3     | 48.7    | 3.3    | 2.0   |
| I15655  | NE4-14-14                      | 17    | 23.9      | 40.9     | 45.0    | 102      | 2.0     | 48.3    | 3.0    | 3.0   |
| 115640  | UIP-46                         | 38    | 23.9      | 41.1     | 44.0    | 95       | 1.3     | 50.3    | 3.7    | 4.0   |
| G13444  | G07302//G08274/P08410          | 21    | 23.6      | 33.9     | 43.0    | 94       | 1.0     | 48.3    | 4.7    | 3.0   |
| I15635  | ISB1173-1                      | 32    | 23.2      | 44.7     | 40.0    | 94       | 2.0     | 48.7    | 3.0    | 2.0   |
| 115651  | ND121453                       | 11    | 22.8      | 38.3     | 45.0    | 102      | 1.0     | 55.3    | 4.0    | 3.0   |
| 115615  | El Diablo FU                   | 46    | 22.5      | 40.5     | 43.0    | 92       | 2.0     | 47.3    | 3.0    | 2.0   |
| 115654  | NE3-14-15                      | 16    | 22.4      | 36.1     | 43.0    | 97       | 2.3     | 47.0    | 3.3    | 2.0   |
| P14811  | P08403/G11405                  | 19    | 22.3      | 36.1     | 44.0    | 92       | 1.0     | 47.3    | 3.7    | 4.0   |
| G12901  | G07321/Fuji, <b>SAMURAI</b>    | 47    | 22.2      | 27.0     | 44.0    | 105      | 2.0     | 52.7    | 4.3    | 3.0   |
| 115632  | GN10-17-4                      | 27    | 22.2      | 32.9     | 44.0    | 92       | 1.3     | 46.3    | 4.0    | 4.0   |
| G08254  | G04514/Matterhorn, POWDERHORN  | 28    | 21.7      | 31.8     | 44.0    | 92       | 1.0     | 48.7    | 4.7    | 3.0   |
| 199117  | BUSTER                         | 1     | 21.5      | 36.6     | 43.0    | 90       | 2.3     | 43.0    | 3.0    | 1.0   |
| I15636  | ISB1231-1                      | 33    | 21.0      | 42.9     | 38.0    | 91       | 2.7     | 47.3    | 2.7    | 3.0   |
| I15638  | UIP-35                         | 36    | 20.7      | 32.8     | 45.0    | 96       | 2.0     | 48.3    | 3.3    | 4.0   |
| I15642  | COSD-7                         | 40    | 20.5      | 43.1     | 43.0    | 97       | 2.0     | 49.0    | 3.3    | 2.0   |
| G13479  | Eldorado/G09312                | 22    | 20.2      | 30.3     | 39.0    | 92       | 1.0     | 48.3    | 5.0    | 3.0   |

| EXPERIME  | ENT 5108 MRPN/CDBN YIELD TRIAL |       |           |          |         |          |         | PLANTED | : 6/5/15 |         |
|-----------|--------------------------------|-------|-----------|----------|---------|----------|---------|---------|----------|---------|
| NAME      | PEDIGREE                       | ENTRY | YIELD CWT | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT  | DES.     | CBB     |
|           |                                |       | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)    | SCORE    | (1-5)   |
| 115656    | NE4-14-53                      | 18    | 20.0      | 39.0     | 43.0    | 95       | 2.3     | 45.7    | 3.0      | 2.0     |
| I15641    | COSD-3                         | 39    | 18.9      | 36.4     | 44.0    | 94       | 2.0     | 48.3    | 3.0      | 3.0     |
| I15643    | COSD-25                        | 41    | 18.6      | 41.9     | 44.0    | 94       | 2.0     | 48.3    | 3.0      | 2.0     |
| l13450    | CO 91212-4, <b>CENTENNIAL</b>  | 31    | 18.6      | 38.7     | 46.0    | 110      | 2.0     | 50.7    | 3.0      | 1.0     |
| I15631    | GN10-5-6                       | 26    | 17.8      | 35.8     | 46.0    | 106      | 2.0     | 50.0    | 3.0      | 3.0     |
| I10113    | ND080412                       | 12    | 16.8      | 32.3     | 44.0    | 100      | 2.0     | 49.7    | 3.3      | 3.0     |
| I15653    | NE1-14-5                       | 15    | 16.5      | 33.5     | 43.0    | 92       | 2.3     | 46.3    | 3.0      | 3.0     |
| G93414    | MATTERHORN                     | 2     | 16.2      | 33.4     | 43.0    | 91       | 2.0     | 46.0    | 3.0      | 3.0     |
| 198313    | CO51715, MONTROSE              | 3     | 16.2      | 38.5     | 44.0    | 90       | 3.0     | 30.0    | 1.7      | 3.0     |
| C06808    | 101800/C03129, <b>BELLAGIO</b> | 48    | 16.0      | 39.8     | 42.0    | 98       | 2.0     | 50.0    | 4.3      | 2.0     |
| l14520    | SF103-8                        | 45    | 13.6      | 32.7     | 38.0    | 100      | 2.3     | 48.7    | 2.7      | 3.0     |
| l15637    | ISB1259-60                     | 34    | 12.3      | 39.0     | 37.0    | 89       | 1.0     | 47.3    | 2.7      | 3.0     |
| 184002    | NW410//VICTOR/AURORA, OTHELLO  | 29    | 7.8       | 39.9     | 37.0    | 88       | 2.7     | 40.0    | 2.0      | 4.0     |
| MEAN (48) |                                |       | 22.6      | 37.2     | 42.9    | 95.5     | 1.8     | 48.1    | 3.5      | 2.7     |
| LSD (.05) |                                |       | 3.9       | 2.0      | 1.5     | 3.5      | 0.5     | 1.7     | 0.6      | (1 Rep) |
| CV (%)    |                                |       | 12.7      | 4.0      | 2.0     | 2.7      | 18.4    | 2.6     | 13.5     |         |

|                  | IENT 5209 STANDARD ANDEAN YIELD TRI    |          |               |                        |              |                        |                     | PLANTE       |                   |              |
|------------------|----------------------------------------|----------|---------------|------------------------|--------------|------------------------|---------------------|--------------|-------------------|--------------|
| NAME             | PEDIGREE                               | ENTRY    | YIELD CWT     |                        |              |                        |                     |              |                   |              |
| 113421           | ND061106, <b>ROSIE</b>                 | 20       | /ACRE<br>30.0 | <b>WT. (g)</b><br>61.5 | 44.0         | <b>MATURITY</b><br>109 | <b>(1-5)</b><br>1.0 | (cm)<br>48.3 | <b>SCORE</b> 5.0  | (1-5)<br>4.5 |
| 115622           | DYNASTY                                | 20<br>54 | 30.0<br>28.0  | 61.5<br>71.8           |              | 109                    |                     |              | 5.0<br>4.8        |              |
| 115622           | DBY-28-1                               | 54<br>10 | 28.0<br>27.1  | 49.9                   | 43.0<br>47.0 |                        | 1.0<br>1.0          | 47.5<br>45.8 | 4.8<br>4.8        | 3.0<br>2.8   |
|                  |                                        | 10       | 27.1<br>26.0  | 49.9<br>64.3           |              | 103                    |                     | 45.8<br>48.5 | 4.0<br>5.0        | 2.0<br>3.3   |
| K90902<br>I13422 | BEA/50B1807//LASSEN, BELUGA            | 39       | 26.0<br>25.9  | 64.3<br>64.8           | 45.0         | 109<br>109             | 1.0                 | 46.5<br>46.8 | 5.0<br>4.0        |              |
| K15303           | ACUG 10-W1, YETI<br>K11303/K11308      | 42       | 25.9          | 57.2                   | 45.0         | 109                    | 1.0                 | 46.8         | <u>4.0</u><br>5.3 | 3.0<br>3.0   |
|                  | K11303/K11308                          |          |               |                        | 44.0         |                        | 1.0                 |              |                   |              |
| K15302           |                                        | 41       | 24.9          | 57.4                   | 43.0         | 103                    | 1.0                 | 46.3         | 4.5               | 3.8          |
| I15620           | DRK 07323, CHAPARRAL                   | 52       | 24.7          | 55.1                   | 44.0         | 105                    | 1.0                 | 45.3         | 4.3               | 3.8          |
| K15304           | K11306/K11916                          | 43       | 24.6          | 55.9                   | 45.0         | 103                    | 1.0                 | 45.8         | 5.0               | 4.3          |
| Y11405           | FR-07-AZP-14-06                        | 3        | 23.7          | 57.4                   | 46.0         | 109                    | 1.0                 | 48.0         | 5.0               | 3.8          |
| 111201           | Pink Panther//ZAA/Montcalm, CLOUSEAU   | 8        | 23.2          | 74.8                   | 44.0         | 106                    | 1.0                 | 46.3         | 4.0               | 3.3          |
| 111233           | OAC 07-L1, OAC INFERNO                 | 38       | 23.1          | 69.9                   | 45.0         | 109                    | 1.0                 | 48.8         | 4.8               | 3.3          |
| 192014           |                                        | 30       | 22.6          | 70.8                   | 44.0         | 104                    | 1.0                 | 44.0         | 4.3               | 3.0          |
| 110105           | Montcalm/DRK15, <b>MAJESTY</b>         | 53       | 22.6          | 81.9                   | 48.0         | 108                    | 1.0                 | 48.5         | 4.8               | 2.8          |
| K15601           | K11306/K11916                          | 44       | 22.4          | 57.1                   | 43.0         | 105                    | 1.0                 | 45.8         | 4.8               | 4.3          |
| 115619           | LRK 09351, <b>BIG RED</b>              | 51       | 21.4          | 68.4                   | 44.0         | 106                    | 1.0                 | 46.5         | 4.0               | 3.3          |
| K15901           | K11714/K11914                          | 45       | 20.6          | 63.6                   | 44.0         | 104                    | 1.0                 | 45.3         | 4.8               | 3.5          |
| 113420           | ND061210, TALON                        | 16       | 20.3          | 62.8                   | 44.0         | 106                    | 1.0                 | 48.0         | 4.5               | 2.8          |
| K90101           | CHAR/2*MONT, <b>RED HAWK</b>           | 17       | 20.1          | 65.4                   | 43.0         | 106                    | 1.0                 | 46.0         | 3.8               | 3.0          |
| 115624           | UCD 0908                               | 56       | 19.4          | 63.5                   | 45.0         | 111                    | 1.0                 | 48.3         | 4.0               | 3.5          |
| C13411           | CAPRI/108969                           | 31       | 19.3          | 59.7                   | 44.0         | 103                    | 1.0                 | 44.8         | 4.8               | 3.5          |
| K15906           | K08961/K12811                          | 50       | 19.3          | 71.5                   | 43.0         | 104                    | 1.0                 | 46.3         | 4.5               | 3.3          |
| K11709           | K06012//K06014/K07715                  | 4        | 18.4          | 59.9                   | 44.0         | 104                    | 1.0                 | 44.3         | 4.3               | 3.0          |
| 115623           | UCD 0701                               | 55       | 18.3          | 69.7                   | 44.0         | 108                    | 1.0                 | 48.0         | 5.0               | 3.0          |
| K11714           | K08601/K08233                          | 5        | 18.2          | 68.3                   | 44.0         | 106                    | 1.0                 | 48.5         | 5.0               | 2.5          |
| 190013           |                                        | 12       | 17.1          | 70.9                   | 44.0         | 103                    | 1.0                 | 44.5         | 3.8               | 2.3          |
| K74002           | MDRK/CN(3)-HBR(NEB#1), <b>MONTCALM</b> | 19       | 16.9          | 68.2                   | 45.0         | 110                    | 1.0                 | 47.5         | 3.8               | 2.3          |
| 115626           | ND122472                               | 15       | 16.8          | 58.1                   | 45.0         | 110                    | 1.0                 | 47.5         | 3.8               | 3.0          |
| C13414           | C08714/BELLAGIO                        | 34       | 16.8          | 67.5                   | 43.0         | 107                    | 1.0                 | 45.3         | 4.0               | 2.3          |
| <u>I14515</u>    | DBY-60-1                               | 9        | 16.7          | 48.5                   | 44.0         | 105                    | 1.0                 | 43.8         | 4.0               | 2.0          |
| K15301           | K11303/K11308                          | 40       | 16.0          | 60.1                   | 43.0         | 103                    | 1.0                 | 44.3         | 3.8               | 2.5          |
| K08961           | K04604/USDK-CBB-15, <b>SNOWDON</b>     | 11       | 15.8          | 70.2                   | 43.0         | 103                    | 1.0                 | 45.5         | 4.3               | 2.5          |
| C11373           | C08706/C08712                          | 32       | 15.6          | 62.7                   | 42.0         | 101                    | 1.0                 | 43.8         | 4.3               | 3.5          |
| K14101           | K11911/K11304                          | 28       | 15.5          | 67.6                   | 44.0         | 102                    | 1.0                 | 45.3         | 4.3               | 2.3          |
| C13410           | CAPRI/108969                           | 35       | 15.4          | 58.8                   | 44.0         | 105                    | 1.0                 | 43.3         | 4.0               | 2.5          |
| K15904           | K08961/K11909                          | 48       | 15.4          | 58.6                   | 43.0         | 102                    | 1.0                 | 42.8         | 3.8               | 2.8          |
| K14814           | Clouseau/K11308                        | 23       | 15.2          | 58.9                   | 44.0         | 105                    | 1.0                 | 46.3         | 4.0               | 2.0          |
| K14805           | Snowdon/Isabella                       | 24       | 15.0          | 71.5                   | 42.0         | 103                    | 1.0                 | 43.3         | 3.8               | 2.8          |
| C13413           | C07411/C08712                          | 33       | 15.0          | 65.9                   | 44.0         | 104                    | 1.0                 | 44.8         | 4.3               | 2.8          |
| K15905           | K08961/K11909                          | 49       | 13.4          | 59.5                   | 43.0         | 103                    | 1.0                 | 44.3         | 3.8               | 3.5          |

| EXPERIME  | ENT 5209 STANDARD ANDEAN YIELD T | RIAL  |           |          |         |          |         | PLANTE | D: 6/10/1 | 5     |
|-----------|----------------------------------|-------|-----------|----------|---------|----------|---------|--------|-----------|-------|
| NAME      | PEDIGREE                         | ENTRY | YIELD CWT | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT | DES.      | STAND |
|           |                                  |       | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)   | SCORE     | (1-5) |
| K15903    | K08961/K11909                    | 47    | 12.9      | 59.9     | 41.0    | 102      | 1.0     | 43.5   | 3.8       | 3.0   |
| K14807    | Snowdon/Isabella                 | 27    | 12.6      | 66.2     | 43.0    | 104      | 1.0     | 43.8   | 3.5       | 2.5   |
| K11306    | K06621/USDK-CBB-15               | 1     | 12.2      | 60.7     | 43.0    | 105      | 1.0     | 46.3   | 3.8       | 2.0   |
| K13909    | K07921//K08971/K08233            | 6     | 12.2      | 55.7     | 43.0    | 103      | 1.0     | 42.0   | 3.5       | 2.8   |
| C13406    | C08714//C08717/CAPRI             | 36    | 11.9      | 62.6     | 44.0    | 104      | 1.0     | 43.5   | 3.8       | 3.0   |
| K13902    | K06939/WALLACE//K08938           | 14    | 11.8      | 62.1     | 42.0    | 103      | 1.0     | 43.3   | 3.5       | 2.8   |
| K14703    | Isabella/Snowdon                 | 22    | 11.7      | 60.8     | 42.0    | 103      | 1.0     | 42.8   | 3.5       | 2.5   |
| C14504    | C08714/I11269                    | 29    | 11.5      | 51.2     | 41.0    | 102      | 1.0     | 42.0   | 3.3       | 3.3   |
| C11269    | C07401//CBB-20/C05653            | 37    | 11.5      | 63.7     | 42.0    | 103      | 1.0     | 43.5   | 3.8       | 2.0   |
| K14104    | K08222/K11803                    | 25    | 11.3      | 63.4     | 43.0    | 106      | 1.0     | 44.8   | 3.8       | 1.8   |
| K14803    | K10902//K08920/K10902            | 26    | 10.5      | 63.6     | 45.0    | 104      | 1.0     | 44.0   | 3.5       | 1.5   |
| K15902    | K12811/K08961                    | 46    | 10.4      | 58.3     | 43.0    | 100      | 1.0     | 41.8   | 3.3       | 3.3   |
| K11919    | K04607/USWK-CBB-17               | 7     | 9.6       | 50.6     | 42.0    | 100      | 1.0     | 42.0   | 2.8       | 3.0   |
| K12803    | K07921//K08971/K08233            | 13    | 9.6       | 59.8     | 44.0    | 102      | 1.0     | 42.0   | 3.0       | 2.5   |
| K14810    | K11907/K11304                    | 21    | 8.9       | 52.0     | 43.0    | 104      | 1.0     | 44.0   | 3.8       | 2.0   |
| K13908    | K07921//K08971/K08233            | 2     | 8.7       | 60.4     | 42.0    | 101      | 1.0     | 42.5   | 3.3       | 2.3   |
| MEAN (56) |                                  |       | 17.6      | 62.5     | 43.4    | 104.6    | 1.0     | 45.2   | 4.1       | 2.9   |
| LSD (.05) |                                  |       | 5.0       | 3.5      | 1.9     | 1.8      | -       | 1.6    | 0.6       | 0.9   |
| CV (%)    |                                  |       | 24.3      | 4.8      | 2.7     | 1.5      | -       | 3.0    | 13.5      | 27.6  |

| EXPERIM | IENT 5210 NATIONAL WHITE MOL  | D YIELD TF | RIAL      |         | PLANTED: 6/10/15 |          |       |        |       |     |       |       |
|---------|-------------------------------|------------|-----------|---------|------------------|----------|-------|--------|-------|-----|-------|-------|
| NAME    | PEDIGREE                      | ENTRY      | YIELD CWT |         |                  |          |       | HEIGHT |       | WM  |       | STAND |
|         |                               |            | /ACRE     | WT. (g) |                  | MATURITY | (1-5) | (cm)   | SCORE | · / | %     |       |
| P07863  | AN-37/P02630, ELDORADO        | 57         | 34.7      | 45.7    | 48.0             | 110      | 1.0   | 52.3   | 5.0   | 2.0 | 22.2  | 4.0   |
| B10244  | B04644/ZORRO, <b>ZENITH</b>   | 43         | 30.7      | 23.7    | 50.0             | 109      | 1.0   | 50.0   | 5.7   | 1.3 | 14.8  | 4.3   |
| 113446  | SR 09304, <b>RUBY</b>         | 63         | 30.5      | 34.4    | 49.0             | 105      | 2.0   | 48.7   | 3.3   | 2.7 | 29.6  | 4.3   |
| B14307  | B11271/B11343                 | 37         | 30.4      | 19.8    | 51.0             | 109      | 1.0   | 52.3   | 5.0   | 2.3 | 25.9  | 4.7   |
| l13401  | SR 09303, <b>VIPER</b>        | 54         | 30.4      | 33.1    | 48.0             | 108      | 1.3   | 49.0   | 4.0   | 1.7 | 18.5  | 4.7   |
| G14506  | G11469/G11417                 | 48         | 29.9      | 33.8    | 49.0             | 104      | 1.3   | 49.7   | 5.3   | 2.0 | 22.2  | 3.7   |
| B13204  | B09174/VCW54-1                | 33         | 29.5      | 28.1    | 47.0             | 108      | 1.0   | 50.3   | 5.3   | 1.7 | 18.5  | 4.3   |
| B13218  | B09175/I09215                 | 31         | 29.3      | 30.2    | 48.0             | 108      | 1.0   | 49.3   | 5.3   | 1.0 | 11.1  | 4.7   |
| N13142  | N08007/N09046                 | 16         | 28.8      | 23.0    | 48.0             | 105      | 1.0   | 49.3   | 5.7   | 1.3 | 14.8  | 5.0   |
| B14311  | B11338/B10241                 | 35         | 28.4      | 24.7    | 50.0             | 109      | 1.0   | 50.0   | 5.7   | 1.0 | 11.1  | 5.0   |
| G14530  | P11518/G11405                 | 46         | 28.2      | 41.3    | 49.0             | 108      | 1.7   | 52.7   | 5.7   | 1.3 | 14.8  | 4.3   |
| R13752  | Merlot/SER48                  | 1          | 28.1      | 42.1    | 48.0             | 106      | 1.3   | 49.3   | 4.3   | 1.3 | 14.8  | 3.7   |
| l13445  | 039-A-5                       | 3          | 27.6      | 41.1    | 48.0             | 107      | 1.0   | 49.3   | 4.3   | 1.3 | 14.8  | 3.0   |
| B14308  | B11301/B10222                 | 39         | 27.5      | 22.8    | 51.0             | 106      | 1.0   | 48.7   | 5.3   | 1.0 | 11.1  | 4.7   |
| N14229  | N11275/N11256                 | 25         | 26.2      | 20.6    | 50.0             | 105      | 1.0   | 49.3   | 5.3   | 1.3 | 14.8  | 5.0   |
| G14507  | G09329/G10412                 | 49         | 26.0      | 34.9    | 48.0             | 105      | 1.3   | 48.0   | 5.3   | 2.3 | 25.9  | 4.0   |
| G12901  | G07321/Fuji, <b>SAMURAI</b>   | 23         | 26.0      | 29.6    | 49.0             | 108      | 1.0   | 50.3   | 5.3   | 3.0 | 33.3  | 4.7   |
| B14309  | B11338/B10222                 | 40         | 25.9      | 22.3    | 49.0             | 106      | 1.0   | 48.7   | 5.7   | 1.0 | 11.1  | 5.0   |
| N14202  | N11249/N11256                 | 22         | 25.4      | 24.9    | 49.0             | 108      | 1.7   | 52.7   | 5.3   | 1.3 | 14.8  | 3.7   |
| N14218  | N11256/N11298                 | 21         | 25.4      | 21.0    | 50.0             | 108      | 1.0   | 48.7   | 5.3   | 1.3 | 14.8  | 4.7   |
| N12457  | B09174/N09056                 | 17         | 25.3      | 22.1    | 48.0             | 105      | 1.0   | 48.3   | 5.0   | 1.3 | 14.8  | 5.0   |
| G14509  | G11404/Eldorado               | 47         | 24.7      | 44.4    | 48.0             | 107      | 2.0   | 50.3   | 4.3   | 3.3 | 37.0  | 4.7   |
| I15628  | LIGHTHOUSE                    | 6          | 24.4      | 24.8    | 49.0             | 110      | 1.0   | 48.0   | 4.7   | 1.0 | 11.1  | 4.3   |
| N12447  | B09174/N09056                 | 15         | 23.9      | 24.9    | 49.0             | 105      | 1.0   | 49.0   | 5.3   | 2.3 | 25.9  | 4.7   |
| G13444  | G07302//G08274/P08410         | 45         | 23.9      | 33.9    | 48.0             | 103      | 1.0   | 48.3   | 5.3   | 1.0 | 11.1  | 3.3   |
| N14201  | N11249/N11256                 | 28         | 23.7      | 22.2    | 51.0             | 109      | 1.0   | 50.0   | 5.7   | 1.0 | 11.1  | 4.7   |
| S14708  | Rosetta/S11707                | 60         | 23.4      | 44.7    | 50.0             | 107      | 1.0   | 49.0   | 4.0   | 1.3 | 14.8  | 2.0   |
| N14230  | N11275/N11256                 | 18         | 23.3      | 21.8    | 49.0             | 107      | 1.3   | 50.3   | 5.3   | 1.3 | 14.8  | 4.7   |
| S08418  | S02754/S04503, <b>ROSETTA</b> | 62         | 23.2      | 41.2    | 50.0             | 109      | 1.7   | 50.0   | 3.7   | 1.0 | 11.1  | 2.3   |
| R12845  | SR9-5/R09508                  | 58         | 22.9      | 38.9    | 47.0             | 103      | 1.0   | 48.7   | 4.7   | 1.7 | 18.5  | 4.3   |
| P14811  | P08403/G11405                 | 55         | 22.7      | 38.8    | 47.0             | 103      | 1.3   | 49.3   | 4.3   | 1.7 | 18.5  | 4.7   |
| N13131  | N09175/N08007                 | 13         | 22.6      | 23.5    | 49.0             | 105      | 1.0   | 47.7   | 5.3   | 1.3 | 14.8  | 4.7   |
| B04554  | B00103*/X00822, <b>ZORRO</b>  | 42         | 22.4      | 26.1    | 49.0             | 109      | 1.0   | 49.0   | 5.0   | 1.7 | 18.5  | 4.0   |
| N14231  | N11275/N11264                 | 19         | 22.3      | 24.3    | 50.0             | 107      | 2.0   | 50.0   | 4.3   | 1.3 | 14.8  | 4.0   |
| 108933  | 37-2, USPT-WM-12              | 4          | 22.2      | 42.1    | 49.0             | 105      | 1.0   | 49.0   | 4.0   | 2.0 | 22.2  | 2.0   |
| N13140  | N05324/MEDALIST               | 10         | 22.2      | 21.7    | 48.0             | 106      | 1.0   | 49.0   | 5.7   |     | 11.1  | 5.0   |
| B13220  | B09175/TARS-MST1              | 34         | 22.1      | 25.1    | 49.0             | 103      | 1.0   | 47.0   | 5.7   | 1.3 | 14.8  | 5.0   |
| G14505  | G11429/P08175                 | 50         | 22.0      | 29.3    | 47.0             | 103      | 1.0   | 47.7   | 4.3   | 1.3 | 14.8  | 4.7   |
| N11283  | MEDALIST/N08003, ALPENA       | 30         | 21.8      | 22.1    | 48.0             | 104      | 1.0   | 49.3   | 6.0   | 2.0 | 22.2  | 4.3   |
| P14815  | P08522/LONG'S PEAK            | 2          | 21.8      | 38.5    | 49.0             | 101      | 1.0   | 48.0   | 5.0   |     | 14.8  | 3.3   |
| 1 14010 |                               | 2          | 21.0      | 00.0    | 40.0             | 101      | 1.0   | 40.0   | 0.0   | 1.0 | 1-1.0 | 0.0   |

| EXPERIM         | ENT 5210 NATIONAL WHITE MOLD   |       | RIAL      |         |         |          |         | PLANTE | D: 6/10/1 | 5     |      |       |
|-----------------|--------------------------------|-------|-----------|---------|---------|----------|---------|--------|-----------|-------|------|-------|
| NAME            | PEDIGREE                       | ENTRY | YIELD CWT |         | DAYS TO | DAYS TO  | LODGING | HEIGHT | DES.      | WM    | WM   | STAND |
|                 |                                |       | /ACRE     | WT. (g) | FLOWER  | MATURITY | (1-5)   | (cm)   | SCORE     | (1-5) | %    |       |
| S14706          | Rosetta/S11707                 | 59    | 21.6      | 42.6    | 48.0    | 108      | 1.3     | 50.0   | 3.7       | 1.3   | 14.8 | 2.0   |
| B13223          | PR0443-151/B09175              | 32    | 21.5      | 26.9    | 51.0    | 110      | 1.0     | 49.7   | 5.0       | 2.0   | 22.2 | 5.0   |
| B14313          | B11343/B09196                  | 41    | 21.4      | 21.6    | 48.0    | 103      | 1.0     | 45.7   | 4.7       | 1.3   | 14.8 | 5.0   |
| B14302          | B09197/B11334                  | 36    | 21.4      | 22.8    | 51.0    | 110      | 1.0     | 50.3   | 5.3       | 2.7   | 29.6 | 4.7   |
| N14238          | Alpena/N11249                  | 24    | 21.2      | 19.4    | 48.0    | 104      | 1.0     | 46.7   | 5.3       | 1.0   | 11.1 | 4.3   |
| N14215          | N11256/N11292                  | 20    | 20.5      | 22.0    | 49.0    | 105      | 1.3     | 48.3   | 5.0       | 1.7   | 18.5 | 4.0   |
| P14812          | P09425/P08161                  | 56    | 20.5      | 45.7    | 48.0    | 103      | 1.0     | 47.7   | 5.0       | 2.0   | 22.2 | 3.7   |
| N14243          | N11284/N11277                  | 27    | 20.0      | 20.6    | 51.0    | 103      | 1.3     | 50.3   | 4.7       | 2.0   | 22.2 | 4.3   |
| l15621          | MIST                           | 5     | 20.0      | 24.3    | 48.0    | 110      | 1.0     | 47.7   | 4.7       | 1.0   | 11.1 | 4.0   |
| R98026          | R94037/R94161, <b>MERLOT</b>   | 61    | 19.4      | 40.5    | 49.0    | 106      | 2.0     | 48.3   | 4.0       | 2.0   | 22.2 | 4.0   |
| B14310          | B11338/B10241                  | 38    | 19.3      | 23.2    | 50.0    | 104      | 1.0     | 43.7   | 4.7       | 1.0   | 11.1 | 5.0   |
| B12724          | B09184/B09135                  | 11    | 18.7      | 24.9    | 50.0    | 105      | 1.0     | 47.0   | 5.0       | 1.3   | 14.8 | 4.7   |
| l81010          | JAPON3/MAGDALENE, <b>BUNSI</b> | 7     | 18.6      | 22.9    | 47.0    | 108      | 1.7     | 46.7   | 3.7       | 1.7   | 18.5 | 4.0   |
| R12844          | SR9-5/R09508                   | 12    | 18.4      | 38.1    | 47.0    | 102      | 1.3     | 48.0   | 4.7       | 1.3   | 14.8 | 3.7   |
| l14520          | SF103-8                        | 64    | 17.9      | 46.2    | 43.0    | 106      | 1.3     | 45.7   | 3.3       | 1.0   | 11.1 | 4.0   |
| l11264          | COOP 03019, <b>MERLIN</b>      | 29    | 17.9      | 21.5    | 49.0    | 108      | 1.0     | 49.3   | 4.7       | 1.3   | 14.8 | 4.0   |
| G14503          | G11404/G11469                  | 51    | 17.8      | 41.1    | 48.0    | 104      | 1.0     | 46.7   | 4.7       | 1.0   | 11.1 | 4.3   |
| G08254          | G04514/Matterhorn, POWDERHORN  | 53    | 16.8      | 41.9    | 48.0    | 102      | 1.0     | 47.0   | 4.7       | 1.0   | 11.1 | 3.7   |
| 189011          | RB, <b>BERYL</b>               | 8     | 16.5      | 36.1    | 46.0    | 101      | 2.7     | 43.0   | 3.0       | 2.7   | 29.6 | 4.3   |
| G13479          | Eldorado/G09312                | 44    | 16.1      | 35.5    | 47.0    | 102      | 1.3     | 47.7   | 4.7       | 2.0   | 22.2 | 4.0   |
| N14206          | N11256/N11258                  | 26    | 15.6      | 21.2    | 48.0    | 105      | 1.0     | 45.7   | 4.7       | 1.3   | 14.8 | 4.3   |
| G14520          | P08369/G09303                  | 52    | 15.0      | 34.8    | 48.0    | 102      | 1.3     | 47.7   | 4.3       | 1.3   | 14.8 | 4.0   |
| N13120          | N08003/N05324                  | 14    | 13.0      | 25.5    | 48.0    | 103      | 1.0     | 46.3   | 5.3       | 1.3   | 14.8 | 4.7   |
| 196417          | G122                           | 9     | 8.6       | 46.5    | 43.0    | 109      | 1.3     | 44.3   | 3.0       | 2.0   | 22.2 | 5.0   |
| <b>MEAN (64</b> | .)                             |       | 22.9      | 30.5    | 48.4    | 105.9    | 1.2     | 48.6   | 4.8       | 1.6   | 17.3 | 4.2   |
| LSD (.05)       |                                |       | 4.6       | 1.7     | 1.9     | 2.4      | 0.4     | 2.1    | 0.8       | 0.9   | 9.7  | 1.0   |
| CV (%)          |                                |       | 14.7      | 4.2     | 2.4     | 1.7      | 25.3    | 3.3    | 12.6      | 41.4  | 41.4 | 16.8  |

| EXPERIME  | NT 5111 DRY BEAN DROUGHT NURSERY YIE      | LD TRIA | L         |          |         |          |         | PLANTE | D: 6/5/15 |         |
|-----------|-------------------------------------------|---------|-----------|----------|---------|----------|---------|--------|-----------|---------|
| NAME      | PEDIGREE                                  | ENTRY   | YIELD CWT | 100 SEED | DAYS TO | DAYS TO  | LODGING | HEIGHT | DES.      | CBB     |
|           |                                           |         | /ACRE     | WT. (g)  | FLOWER  | MATURITY | (1-5)   | (cm)   | SCORE     | (1-5)   |
| R12844    | SR9-5/R09508                              | 22      | 30.8      | 34.5     | 43.0    | 93       | 48.7    | 1.3    | 4.3       | 1.0     |
| B10244    | B04644/ZORRO, <b>ZENITH</b>               | 23      | 30.3      | 24.7     | 45.0    | 101      | 51.0    | 1.3    | 5.0       | 1.0     |
| l14550    | Merlotx(98020-3-1-6-2xTacana)             | 13      | 29.6      | 27.3     | 45.0    | 98       | 48.3    | 2.0    | 4.3       | 1.0     |
| 105834    | ND020351, <b>STAMPEDE</b>                 | 20      | 27.2      | 42.0     | 44.0    | 94       | 46.7    | 1.7    | 4.0       | 3.0     |
| 114546    | (USPT-ANT)x('Matterhornx98078-5-1-5-1)    | 9       | 26.1      | 38.8     | 42.0    | 93       | 47.7    | 1.3    | 4.0       | 2.0     |
| l14543    | (Tacana x VAX6)                           | 6       | 25.8      | 24.9     | 43.0    | 97       | 47.7    | 1.0    | 4.0       | 2.0     |
| B04554    | B00103*/X00822, <b>ZORRO</b>              | 24      | 25.1      | 20.2     | 45.0    | 101      | 51.3    | 1.3    | 5.0       | 2.0     |
| l14542    | (MoralesxXAN 176)x('EAP 9503-32A)         | 5       | 24.9      | 27.8     | 43.0    | 91       | 47.0    | 2.0    | 3.7       | 2.0     |
| l14541    | (Black Rhino)x(SEN 10 (SB-DT1)            | 4       | 24.5      | 24.8     | 44.0    | 97       | 48.7    | 1.7    | 4.0       | 1.0     |
| G08254    | G04514/Matterhorn, POWDERHORN             | 21      | 24.3      | 31.4     | 41.0    | 92       | 48.3    | 1.3    | 5.0       | 3.0     |
| 114553    | Merlotx(05F-5055-1x98020-3-1-6-2)         | 16      | 24.0      | 31.0     | 43.0    | 93       | 47.0    | 1.3    | 4.0       | 1.0     |
| l14549    | Merlotx(98020-3-1-6-2xTacana)             | 12      | 24.0      | 28.1     | 44.0    | 97       | 50.0    | 1.7    | 4.0       | 3.0     |
| G93414    | MATTERHORN                                | 17      | 22.0      | 32.9     | 43.0    | 91       | 47.0    | 2.0    | 4.3       | 4.0     |
| l14548    | Merlotx(MerlotxSER 16)                    | 11      | 21.8      | 40.1     | 43.0    | 93       | 45.3    | 2.0    | 3.0       | 2.0     |
| l14552    | 10486 (TARS-MST1)                         | 15      | 19.9      | 21.8     | 44.0    | 98       | 47.0    | 1.0    | 4.0       | 1.0     |
| 114539    | (MoralesxXAN 176)x('BAT 477xB98311)       | 2       | 18.5      | 24.4     | 44.0    | 98       | 48.3    | 2.0    | 3.3       | 1.0     |
| R98026    | R94037/R94161, <b>MERLOT</b>              | 19      | 18.4      | 37.3     | 38.0    | 91       | 42.7    | 1.7    | 2.3       | 2.0     |
| l14540    | (BAT 477xL88-63)x('BelMiDak RMR10xB01741) | 3       | 16.6      | 17.5     | 46.0    | 94       | 47.3    | 1.3    | 3.7       | 4.0     |
| l14544    | (BelMiDak RMR10xB01741)x('BAT 477xL88-63) | 7       | 16.5      | 21.9     | 45.0    | 100      | 48.3    | 2.0    | 3.3       | 2.0     |
| BC138     | Marquis                                   | 18      | 15.8      | 28.2     | 40.0    | 94       | 43.0    | 3.0    | 3.0       | 1.0     |
| 114551    | 10457                                     | 14      | 15.1      | 28.7     | 43.0    | 91       | 44.0    | 1.7    | 3.0       | 2.0     |
| l14538    | (Tacana x VAX6)                           | 1       | 14.6      | 18.9     | 45.0    | 103      | 45.7    | 2.7    | 3.0       | 2.0     |
| 114545    | (Matterhorn)x(SER 21)                     | 8       | 14.4      | 31.0     | 45.0    | 94       | 45.0    | 2.3    | 3.0       | 2.0     |
| 114547    | (ABCP8)x(TARS-PT03-1xVAX 6)               | 10      | 13.6      | 20.9     | 43.0    | 94       | 46.0    | 2.0    | 3.0       | 1.0     |
| MEAN (24) |                                           |         | 21.8      | 28.3     | 43.2    | 95.4     | 47.2    | 1.7    | 3.8       | 1.9     |
| LSD (.05) |                                           |         | 3.8       | 1.6      | 1.1     | 3.8      | 1.6     | 0.7    | 0.5       | (1 Rep) |
| CV (%)    |                                           |         | 12.6      | 4.0      | 1.5     | 2.9      | 2.5     | 28.3   | 8.9       | -       |

#### 2015 White Mold Fungicide Trial

#### Greg Varner, Michigan Dry Bean Production Research Advisory Board Doug Bismack Farm-Minden City, Cooperative Elevator Co.-Ruth, MI

| Minden City # 1 |         |            |            |            |            |
|-----------------|---------|------------|------------|------------|------------|
| TREATMENT       | RATE    | YIELD      | %INCIDENCE | %SEVERITY  | %PICK      |
| UNTREATED       |         | 2379       | 75         | 59         | 3.9        |
| ENDURA          | 8 OZ    | 2799       | 56         | 41         | 2.2        |
| PROLINE         | 5.7 OZ  | 3105       | 52         | 37         | 2.1        |
| PROPULSE        | 8.6     | 3125       | 34         | 21         | 1.9        |
| OMEGA           | 8 OZ    | 3195       | 62         | 45         | 2          |
| APROACH         | 12 OZ   | 2990       | 47         | 34         | 2.2        |
|                 |         | LSD=494    | LSD=16.9   | LSD=14.6   | LSD=0.5    |
|                 |         | C.V.=11.2% | C.V.=26.2% | C.V.=32.8% | C.V.=16.8% |
| Minden City # 2 |         |            |            |            |            |
| TREATMENT       | RATE    | YIELD      | %INCIDENCE | %SEVERITY  | %PICK      |
| Untreated       |         | 2497       | 81         | 65         | 4.0        |
| ENDURA          | 8 OZ    | 3128       | 53         | 41         | 1.9        |
| PROPULSE        | 8.55 OZ | 3180       | 37         | 27         | 2.2        |
| OMEGA           | 8 OZ    | 3242       | 59         | 44         | 2.0        |
| APROACH         | 12 OZ   | 3127       | 52         | 41         | 2.5        |
| APROACH+ENDURA  | 8+8 OZ  | 3337       | 48         | 36         | 1.9        |
| 2ND-OMEGA       | 8 OZ    |            |            |            |            |
|                 |         | LSD=402    | LSD=15.7   | LSD=13.7   | LSD=0.8    |
|                 |         | C.V.=9.6%  | C.V.=18.6% | C.V.=21.1% | C.V.=18.4% |
|                 |         |            |            |            |            |

Ruby Small Red Beans planted in 20" rows.

Planted: June 5, Harvested: September 17, First Spray: July 24, Second Spray: August 4 Rating Date for % infection and % severity on September 17

Two applications sprayed with 4 row bicycle-wheel CO2 sprayer using 30 gpa at 65 psi. Twin-Jet nozzle placed directly over the row. Plot size sprayed was 4 rows by 30 feet. Harvest area was middle 2 rows by 15 feet.

## 2015 Eastern Huron County White Mold FungicideTrial

Greg Varner, Michigan Dry Bean Production Research Advisory Board Buckley Creek Farms LLC.-Cooperative Elevator Co.-Ruth, MI. Trial in Rapson Area

| TREATMENT      | RATE    | YIELD      | %INCIDENCE | SEVERITY   | %PICK      |
|----------------|---------|------------|------------|------------|------------|
| Untreated      |         | 2093       | 79         | 60         | 4.0        |
| PROPULSE       | 8 OZ    | 2565       | 57         | 45         | 3.1        |
| PROPULSE       | 10.3 OZ | 2766       | 59         | 45         | 2.6        |
| ENDURA         | 8 OZ    | 2666       | 59         | 45         | 3.0        |
| OMEGA          | 8 OZ    | 2932       | 62         | 49         | 2.5        |
| APROACH        | 12 OZ   | 2141       | 65         | 53         | 3.8        |
| APROACH+ENDURA | 8+8 OZ  | 2821       | 57         | 40         | 2.3        |
| 2ND-OMEGA      | 8 OZ    |            |            |            |            |
|                |         | LSD=449    | LSD=15.0   | LSD=12.4   | LSD=0.8    |
|                |         | C.V.=11.8% | C.V.=16.2% | C.V.=17.4% | C.V.=18.7% |

Merlot Small Red Beans planted in 20" rows.

Sprayed on July 24 and August 4 and Harvested September 17

Rating Date for % infection and % severity on September 17

Two applications sprayed with 4 row bicycle-wheel CO2 sprayer using 30 gpa at 65 psi.

Twin-Jet nozzle placed directly over the row. Plot size sprayed was 4 rows by 30 feet. Harvest area was middle 2 rows by 15 feet.

## 2015 Anthracnose Fungicide Trial

# Greg Varner, Michigan Dry Bean Production Research Advisory Board Varner Farm-Merrill

| TREATMENT | RATE    | YIELD      | RATING     |
|-----------|---------|------------|------------|
| UNTREATED |         | 295        | 8.8        |
| PRIAXOR   | 6 OZ    | 2508       | 0.8        |
| HEADLINE  | 6.8 OZ  | 2095       | 2.0        |
| PROPULSE  | 8 OZ    | 1632       | 5.3        |
| VERTISAN  | 13.7 OZ | 298        | 8.0        |
|           |         | LSD=452    | LSD=0.9    |
|           |         | C.V.=23.0% | C.V.=12.2% |

Zorro Black Beans planted June 25, Sprayed August 5, 14, 27, Harvested October 15

Bean plants were inoculated with anthracnose spores eight hours

after first spray. Beans were re-inoculated on August 12.

Rating (1-9) can be multiplied by 10 to show percentage.

Applications sprayed with 4 row bicycle-wheel CO2 sprayer using 30 gpa at 65 psi.

Twin-Jet nozzle placed directly over the row. Plot size sprayed was 4 rows by 30 feet. Harvest area was middle 2 rows by 15 feet.

#### Evaluation of Yellow Bean Germplasm for Agronomic Performance and End Use Quality

Karen Cichy, Jason Wiesinger, and Scott Shaw. USDA-ARS, Sugarbeet and Bean Research Unit

Yellow beans are commercially important in Mexico and South America. They are also increasing in popularity in Africa. They remain a minor class in the United States, but have potential to expand in the future. There is a need for yellow bean varieties adapted to Michigan environmental conditions. The objective of this study was to evaluate a diverse group of yellow beans for agronomic performance, seed color and cooking time. A trial with thirteen yellow beans and two white kidney bean genotypes was planted on June 11, 2015 at the Montcalm Research Farm with two replications per entry. The lines in the trial included numerous lines from Africa as well as a few lines from the U.S. and Canada (Table 1). The yellow color was variable among the genotypes and ranged from pale yellow to bright yellow to yellow brown (Figure 1).

Root rot pressure was very high early in the growing season at the Montcalm Research Farm in 2015 and caused reduced emergence and seedling death in many of the genotypes. A root health score was used to assess the genotypic ability to resist/overcome the root rot. The score was on a scale of 1 to 5 where one indicates a line with 90% or greater reduction in plant stand count at ~20 days after planting and a score of 5 had less than 10% reduction in plant stand. ADP 522 was the best for root health and standing up to the root rot pressure, it was also the only Middle American genotype of the group. Seed yield was reduced because of the root rot. Average seed yield was 1267 kg ha-1 and the highest was 2199 kg ha<sup>-1</sup> in an Angolan line, ADP 523 and the lowest was 490 kg ha<sup>-1</sup> in a Canadian line, ADP 781 (Table 2).

Cooking time was measured post-harvest as follows: 25 seed were soaked in distilled water at room temperature for 12 hours, then they were cooked with a pin drop Mattson cooker in boiling distilled water. The cooking time was recorded as the time it takes for 80% of pins to pierce the beans. The two white kidney genotypes cooked the fastest at 17 min. The pale yellow genotypes, ADP 512 and ADP 521 were the next fastest at 18 min each. The longest cooking genotype, ADP 522, cooked in 73 min, this line also had the darkest seed coat color which was more brown than yellow (Figure 2). The fast cooking trait associated with many of the yellow beans may serve as a means to increase interest in this market class among U.S. consumers.

| ID      | Genotype      | Source            | Туре     | Gene<br>Pool | Growth<br>Habit |
|---------|---------------|-------------------|----------|--------------|-----------------|
| ADP0111 | Uyole98       | Tanzania breeding | variety  | Andean       | indeterminate   |
| ADP0452 | INIAP425      | Ecuador breeding  | variety  | Andean       | determinate     |
| ADP0468 | PI527538      | USGRIN            | landrace | Andean       | determinate     |
| ADP0469 | PI527521      | USGRIN            | landrace | Andean       | determinate     |
| ADP0512 | Ervilha       | Angola collection | landrace | Andean       | indeterminate   |
| ADP0513 | Canario       | Angola collection | landrace | Andean       | indeterminate   |
| ADP0518 | Mantegablanca | Angola collection | landrace | Andean       | determinate     |
| ADP0520 | Chumbo,Cela   | Angola collection | landrace | Andean       | indeterminate   |
| ADP0521 | Cebo,Cela     | Angola collection | landrace | Andean       | determinate     |
| ADP0522 | Amarelo,Cela  | Angola collection | landrace | Middle       | indeterminate   |
|         |               |                   |          | American     |                 |
| ADP0523 | Canario,Cela  | Angola collection | landrace | Andean       | indeterminate   |
| ADP0646 | Myasi         | ADM               | variety  | Andean       | determinate     |
| ADP0761 | Uyole-04      | Tanzania breeding | variety  |              | indeterminate   |
| ADP0779 | CDC-Sol       | U. Saskatoon      | variety  |              | determinate     |
|         |               | Canada            |          |              |                 |
| ADP0781 | L11YL012      | Alberta-Canada    | variety  | •            | determinate     |

**Table 1.** Passport data on the 15 genotypes evaluated at the Montcalm Research Farm in 2015.

| ID      | Genotype      | Days to | Days to  | Root   | Lodging  | Seed wt. | Seed    |
|---------|---------------|---------|----------|--------|----------|----------|---------|
|         |               | flower  | maturity | health | score    | (g/100   | yield   |
|         |               |         |          | score* | (1 to 5) | seed)    | (kg/ha) |
| ADP0111 | Uyole98       | 46      | 108      | 3      | 2        | 45.7     | 1388    |
| ADP0452 | INIAP425      | 48      | 124      | 2.5    | 1.5      | 54.7     | 544     |
| ADP0468 | PI527538      | 46      | 116      | 3      | 1        | 50.0     | 1300    |
| ADP0469 | PI527521      | 48      | 117.5    | 3      | 1        | 42.3     | 1206    |
| ADP0512 | Ervilha       | 48      | 116      | 3      | 1        | 52.7     | 1666    |
| ADP0513 | Canario       | 47      | 111      | 3.5    | 4        | 40.1     | 1720    |
| ADP0518 | Mantegablanca | 49      | 124      | 3      | 5        | 42.8     | 993     |
| ADP0520 | Chumbo,Cela   | 50      | 124      | 3.5    | 5        | 38.7     | 793     |
| ADP0521 | Cebo,Cela     | 46.5    | 124      | 3.5    | 3.5      | 39.6     | 608     |
| ADP0522 | Amarelo,Cela  | 48.5    | 124      | 4.5    | 5        | 29.3     | 1798    |
| ADP0523 | Canario,Cela  | 48.5    | 124      | 3.5    | 5        | 47.5     | 2199    |
| ADP0646 | Myasi         | 45      | 109      | 3      | 1        | 44.3     | 1955    |
| ADP0761 | Uyole-04      | 47.5    | 116      | 2.5    | 2.5      | 45.2     | 1013    |
| ADP0779 | CDC-Sol       | 41.5    | 109      | 2.5    | 1        | 50.7     | 1339    |
| ADP0781 | L11YL012      | 46.5    | 108      | 1.5    | 1.5      | 44.5     | 490     |
|         |               |         |          |        |          |          |         |
|         | Mean          | 47.1    | 117.0    | 3.0    | 2.7      | 44.5     | 1267.4  |
|         | CV%           | 2.5     | 5        | 26     | 19       | 4        | 42      |

**Table 2.** Agronomic data on the 15 genotypes evaluated at the Montcalm Research Farm in 2015.

\*Root Health score 1=no diseases; 5= very susceptible



**Figure 1.** Seed images of the yellow and white bean germplasm evaluated at the Montcalm Research Farm in 2015.

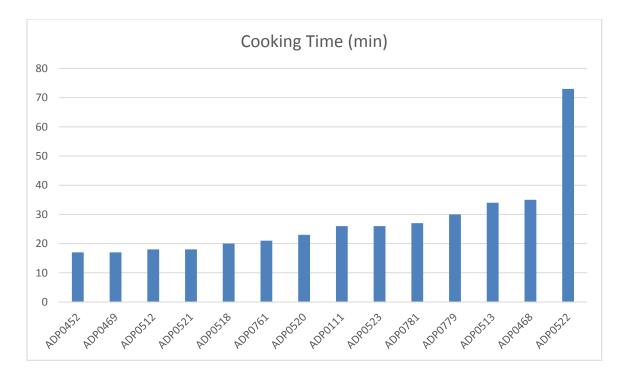



Figure 2. Cooking time of yellow and white beans grown at the Montcalm Research Farm in 2015.



**Michigan State University** 

AgBio**Research** 

## Harvest aid effects on three classes of dry beans

Christy Sprague and Gary Powell, Michigan State University

| Location:             | Richville (SVREC)       | Tillage:            | Conventional               |
|-----------------------|-------------------------|---------------------|----------------------------|
| <b>Planting Date:</b> | June 4, 2015            | Row width:          | 30-inch                    |
| <b>Replicated:</b>    | 4 times                 | Soil Type:          | Clay loam, 2.6% OM, pH 8.1 |
| Varieties:            | 'Zorro' black beans     | <b>Populations:</b> | 106,000 seeds/A            |
|                       | 'Merlin' navy beans     |                     | 106,000 seeds/A            |
|                       | 'El Dorado' pinto beans |                     | 100,000 seeds/A            |

| Table 1. Effect of preharvest treatments on bean desiccation (%) 3 & 7 days after treatment (DAT) and |  |
|-------------------------------------------------------------------------------------------------------|--|
| yield.                                                                                                |  |

|                                            |                    | Zorro |                    |       | Merlin |        | Ι     | El Dorado |        |
|--------------------------------------------|--------------------|-------|--------------------|-------|--------|--------|-------|-----------|--------|
| Treatments                                 | 3 DAT              | 7 DAT | Yield <sup>a</sup> | 3 DAT | 7 DAT  | Yield  | 3 DAT | 7 DAT     | Yield  |
| Sharpen (1 fl oz) + MSO<br>+ AMS           | 90 bc <sup>b</sup> | 97 ab | 18.7 ab            | 76 b  | 93 a   | 23.8 a | 78 b  | 98 a      | 17.6 a |
| Gramoxone (2 pt) + NIS                     | 83 e               | 90 c  | 19.2 ab            | 82 a  | 86 b   | 24.9 a | 80 b  | 80 b      | 19.8 a |
| Valor (1.5 oz) + MSO                       | 85 de              | 93 bc | 18.0 ab            | 70 c  | 91 ab  | 24.3 a | 79 b  | 95 a      | 20.8 a |
| Roundup (22 fl oz) +<br>AMS                | 66 g               | 84 d  | 20.6 a             | 62 d  | 76 c   | 24.8 a | 60 d  | 74 c      | 20.7 a |
| Aim (2 fl oz) + MSO                        | 72 f               | 79 e  | 18.9 ab            | 60 d  | 76 c   | 25.4 a | 65 c  | 84 b      | 21.0 a |
| Sharpen (2 fl oz) + MSO<br>+ AMS           | 93 b               | 97 ab | 17.2 b             | 71 bc | 94 a   | 22.8 a | 80 b  | 97 a      | 18.1 a |
| Sharpen (1 fl oz) +<br>Roundup + MSO + AMS | 87 cd              | 98 a  | 18.2 ab            | 69 c  | 94 a   | 24.3 a | 82 b  | 98 a      | 20.2 a |
| Sharpen (1 fl oz) +<br>Gramox.+ MSO + AMS  | 97 a               | 99 a  | 18.5 ab            | 86 a  | 91 ab  | 23.0 a | 88 a  | 98 a      | 18.1 a |
| Untreated                                  | 52 h               | 65 f  | 19.6 ab            | 52 e  | 58 d   | 24.0 a | 52 e  | 58 d      | 20.5 a |

<sup>a</sup> Yield is in cwt/A obtained by direct harvest and adjusted to 18% moisture

<sup>b</sup> Means within a column with different letters are significantly different from each other

**Summary:** This study was conducted to evaluate the effects of different preharvest treatments on desiccation and yield of three different classes of dry beans that have different speeds of dry down, 'Zorro' black bean (uniform dry down), 'Merlin' navy bean (green stem), and 'El Dorado' pinto bean (green stem). All preharvest applications were made when 80% of the pods were yellow for each variety. There were some differences in the speed and effectiveness of the different treatments between varieties. However, there were some general trends that were similar among the three varieties. For example, Sharpen + Gramoxone always provided the quickest speed of activity 3 DAT. By 7 DAT, most treatments provided greater than 90% desiccation, with the exception of Roundup and Aim; and Gramoxone alone in 2 of 3 varieties. By 14 DAT, Aim was the only treatment for all three varieties that did not reach 90% desiccation. Yield was only lower in one instance, when Sharpen was applied at 2 fl oz/A to Zorro (12% reduction). Overall, many of the treatments provided good bean desiccation and when applied at 80% pods yellow did not reduce yield. This research was supported by the Michigan Dry Bean Commission through the Michigan Department of Agriculture Specialty Crops grant.

MICHIGAN STATE UNIVERSITY EXTENSION **Michigan State University** 

AgBio**Research** 

## Harvest aid effects on common lambsquarters and dry bean desiccation

Christy Sprague and Gary Powell, Michigan State University

| Location:             | Richville (SVREC)   | Tillage:            | Conventional               |
|-----------------------|---------------------|---------------------|----------------------------|
| <b>Planting Date:</b> | June 4, 2015        | Row width:          | 30-inch                    |
| <b>Replicated:</b>    | 4 times             | Soil Type:          | Clay loam, 2.6% OM, pH 8.1 |
| Varieties:            | 'Merlin' navy beans | <b>Populations:</b> | 106,000 seeds/A            |

| Table 1. Effect of preharvest treatment on common lambsquarters and bean desiccation 7 and 14 days |
|----------------------------------------------------------------------------------------------------|
| after treatment (DAT) and yield.                                                                   |

|                                                       | C. lambs           | squarters | 'Merlin' navy bean |        |                    |  |
|-------------------------------------------------------|--------------------|-----------|--------------------|--------|--------------------|--|
| Treatments                                            | 7 DAT              | 14 DAT    | 7 DAT              | 14 DAT | Yield <sup>a</sup> |  |
| Sharpen (1 fl oz) + MSO + AMS                         | 50 bc <sup>b</sup> | 50 c      | 91 a               | 97 a   | 21.7 abc           |  |
| Sharpen $(2 \text{ fl oz}) + \text{MSO} + \text{AMS}$ | 60 b               | 76 b      | 91 a               | 98 a   | 15.9 e             |  |
| Gramoxone (2 pt) + NIS                                | 77 ab              | 90 a      | 84 a               | 84 bc  | 20.3 bcd           |  |
| Valor (1.5 oz) + MSO                                  | 33 cd              | 70 b      | 85 a               | 94 ab  | 19.4 cde           |  |
| Roundup (22 fl oz) + AMS                              | 11 de              | 91 a      | 75 c               | 98 a   | 22.5 abc           |  |
| Aim (2 fl oz) + MSO                                   | 20 d               | 24 d      | 76 bc              | 82 c   | 21.5 a-d           |  |
| Sharpen (1 oz) +Roundup+ MSO +AMS                     | 18 d               | 81 ab     | 84 a               | 99 a   | 17.9 de            |  |
| Sharpen (1 oz) +Gramox.+ MSO + AMS                    | 89 a               | 94 a      | 91 a               | 97 a   | 23.2 ab            |  |
| Valor (1.5 oz) +Roundup+ MSO +AMS                     | 43 c               | 92 a      | 91 a               | 98 a   | 20.1 bcd           |  |
| Valor (1.5 oz) +Gramox.+ MSO + AMS                    | 90 a               | 94 a      | 88 a               | 92 ab  | 19.6 cd            |  |
| Aim (2 fl oz) +Roundup+ MSO +AMS                      | 21 c               | 88 a      | 83 b               | 99 a   | 21.5 abc           |  |
| Aim (2 fl oz) +Gramox.+ MSO + AMS                     | 90 a               | 91 a      | 90 a               | 91 ab  | 21.2 a-d           |  |
| Untreated                                             | 0 e                | 0 e       | 0 d                | 0 d    | 23.5 a             |  |

<sup>a</sup> Yield is in cwt/A obtained by direct harvest and adjusted to 18% moisture

<sup>b</sup> Means within a column with different letters are significantly different from each other

Summary: This study was conducted to evaluate the effects of preharvest herbicide treatments on common lambsquarters and bean desiccation and yield. All preharvest applications were made when 80% of the pods were yellow. Gramoxone or combinations with Gramoxone provided the greatest desiccation of common lambsquarters (77% or greater) 7 DAT. These treatment also provided good desiccation of navy beans 7 DAT. By 14 DAT, Gramoxone, Roundup (glyphosate) or combinations with these herbicides were needed for common lambsquarters desiccation. Navy bean yield was lowest when Sharpen was applied at 2 fl oz/A. Bean desiccation was similar for 1 and 2 fl oz/A of Sharpen, but in two trials this year the higher rate of Sharpen is where we have observed lower yields. While we have several years data comparing preharvest treatments, our recommendation if a grower decides to use Sharpen is to use 1 fl oz/A rate, this also reduces the rotation restriction for following crops, such as sugarbeet. In many cases there were no detriments for applying tank-mixtures of the preharvest herbicides. However, Gramoxone or Roundup were in many cases needed to help with weed desiccation. Please refer to the 2016 MSU Weed Control Guide (E-434) for recommendations for the different preharvest herbicide treatments available in dry bean. This research was supported by the Michigan Dry Bean Commission through the Michigan Department of Agriculture Specialty Crops grant.



## Effect of Stinger tank-mixtures on weed control and sugarbeet yield

Christy Sprague and Gary Powell, Michigan State University

| Locations:             | Richville (SVREC) | Application timings: 2-, 6-leaf beets & @ canopy |
|------------------------|-------------------|--------------------------------------------------|
| <b>Planting Dates:</b> | April 15          | Herbicides: see treatments                       |
| Soil Type:             | Clay loam         | <b>O.M.:</b> 3.0                                 |
| <b>Replicated:</b>     | 4 times           | Variety: Crystal 351NT                           |

*Table 1.* Weed control and sugarbeet yield and recoverable white sugar per acre (RWSA) for combinations of Stinger with Roundup (glyphosate) for potential control of glyphosate-resistant weeds.

| Herbicide treatments <sup>a</sup>    | Timing        | C. lambsquarters <sup>b</sup> | Pigweed | Smartweed | Yield     | RWSA    |
|--------------------------------------|---------------|-------------------------------|---------|-----------|-----------|---------|
|                                      |               | %                             | %       | %         | - ton/A - | -lb/A - |
| Roundup - applied 2X                 |               | 96                            | 98      | 99        | 21.5      | 5547    |
| Stinger (2 oz)                       | 2-lf          | 94                            | 99      | 99        | 21.0      | 5274    |
| Stinger (3 oz)                       | 2-lf          | 96                            | 99      | 99        | 23.7      | 6296    |
| Stinger (4 oz)                       | 2-lf          | 96                            | 96      | 99        | 26.0      | 6700    |
| Stinger (6 oz)                       | 2-lf          | 98                            | 99      | 99        | 24.4      | 6236    |
| Stinger (2 oz) fb. (2 oz)            | 2-lf fb. 6-lf | 99                            | 96      | 99        | 24.2      | 6086    |
| Stinger (3 oz) fb. (3 oz)            | 2-lf fb. 6-lf | 97                            | 99      | 99        | 23.2      | 6384    |
| Stinger (2 oz) fb. (4 oz)            | 2-lf fb. 6-lf | 99                            | 99      | 99        | 23.4      | 6130    |
| Stinger (4 oz)                       | 6-lf          | 98                            | 99      | 99        | 27.6      | 7080    |
| Stinger (6 oz)                       | 6-lf          | 97                            | 99      | 98        | 22.4      | 5662    |
| Stinger (8 oz)                       | 6-lf          | 98                            | 99      | 99        | 22.6      | 5845    |
| Stinger (2 oz) fb. (4 oz) fb. (4 oz) | 2-lf fb. 6-lf | 00                            | 00      | 00        | 21.0      | 5450    |
|                                      | fb. canopy    | 99                            | 99      | 99        | 21.0      | 5459    |
| LSD <sub>0.05</sub> <sup>c</sup>     |               | 4.5                           | 2.9     | 1.3       | 6.6       | 1614    |

<sup>a</sup> Roundup PowerMax at 22 fl oz/A was applied with all POST herbicide treatments when sugarbeet were at the 2- and 6-leaf stages. All POST treatments included ammonium sulfate at 17 lb/100 gal. See recommendations in the MSU Weed Control Guide for Field Crops.

<sup>b</sup> Weed control was evaluated in mid-August.

<sup>c</sup> Means within a column greater than least significant difference (LSD) value are different from each other.

**Summary:** A field trial was conducted to evaluate the effects of Stinger tank-mixtures with glyphosate (Roundup) on weed control and sugarbeet yield. Stinger will be the main component of a program to control glyphosate-resistant horseweed (marestail) and/or glyphosate-resistant horseweed. All treatments contained Roundup PowerMax at 22 fl oz/A at each application timing. Overall, sugarbeet injury was low with all treatments, 10 d after the 6-leaf sugarbeet application. For the weed species evaluated the inclusion of Stinger had minimal effect on weed control, in that weed control was over 90% for all weed species regardless of treatment. None of the treatments reduced yield compared with the Roundup only treatments. Due to low variable horseweed populations at the additional site where this study was conducted we are not able to report horseweed control results. However, in our past studies at least two-applications of Stinger at a minimum rate of 3 oz/A were needed for season-long control of glyphosate-resistant horseweed in the past was three applications of Stinger at 2 oz, fb. 4 oz fb. 4 oz/A at the 2-, 6-leaf sugarbeet stages and at canopy closure. We will continue to examine additional methods for glyphosate-resistant horseweed control.

MICHIGAN STATE

**Michigan State University** 



## Management of glyphosate (Group 9)-resistant Palmer amaranth in sugarbeet

Christy Sprague and Gary Powell, Michigan State University

| Locations: G       | ratiot Co.; SVREC (Richville)      | Application timings: PRE, 2-, 6-leaf beets & @ |  |  |  |
|--------------------|------------------------------------|------------------------------------------------|--|--|--|
|                    |                                    | canopy (see comments)                          |  |  |  |
| Planting Date      | es: May 22 (GR); April 15 (SVREC)  | Herbicides: see treatments                     |  |  |  |
| Soil Type:         | Sandy loam (GR); Clay loam (SVREC) | <b>O.M.:</b> 3.1% (GR); 3.0 (SVREC)            |  |  |  |
| <b>Replicated:</b> | 4 times                            | Variety: Crystal 059 (GR); 351NT (SVREC)       |  |  |  |

*Table 1.* Palmer amaranth control (Gratiot Co.) and sugarbeet yield and recoverable white sugar per acre (RWSA) (SVREC) of selected herbicide programs examined for glyphosate-resistant Palmer amaranth control.

|                                                                                          |                          | Gratiot Co.                  | SVREC (Richville) |         |  |
|------------------------------------------------------------------------------------------|--------------------------|------------------------------|-------------------|---------|--|
| Herbicide treatments <sup>a</sup>                                                        | Timing                   | Palmer amaranth <sup>b</sup> | Yield             | RWSA    |  |
|                                                                                          |                          | %                            | — ton/A—          | -lb/A - |  |
| Roundup - applied 3X                                                                     | 2-lf fb. 6-lf fb. canopy | 0                            | 27.5              | 6913    |  |
| Betamix (2 pt) + Warrant (3 pt)                                                          | 2-lf                     | 80                           | 24.8              | 6501    |  |
| Betamix (2 pt) + Dual II Mag. (1.33 pt)                                                  | 2-lf                     | 84                           | 25.5              | 6703    |  |
| Betamix (2 pt) fb.<br>Betamix (3 pt)                                                     | 2-lf fb. 6-lf            | 75                           | 27.4              | 7160    |  |
| Nortron (3 pt) fb.<br>Betamix (2 pt) fb.<br>Betamix (3 pt) + Warrant (3 pt) <sup>d</sup> | PRE fb. 2-lf fb. 6-lf    | 99                           |                   |         |  |
| Betamix (2 pt) fb.<br>Betamix (3 pt) + Warrant (3 pt)                                    | 2-lf fb. 6-lf            | 79                           | 23.1              | 6066    |  |
| Betamix (2 pt) fb.<br>Betamix (3 pt) + Dual II Mag. (1.33 pt)                            | 2-lf fb. 6-lf            | 60                           | 26.6              | 7015    |  |
| Betamix (2 pt) fb.<br>Betamix (3 pt) + Outlook (18 fl oz)                                | 2-lf fb. 6-lf            | 95                           | 25.8              | 6662    |  |
| Betamix (2 pt) fb.<br>Betamix (3 pt) fb.<br>Betamix (3 pt)                               | 2-lf fb. 6-lf fb. canopy | 96                           | 24.4              | 6535    |  |
| Betamix (2 pt) fb.<br>Betamix (4 pt) fb.<br>Betamix (6 pt)                               | 2-lf fb. 6-lf fb. canopy | 88                           | 27.3              | 6974    |  |
| Nortron $(4 \text{ fl oz}) + \text{Destiny} (1.5 \text{ pt})$                            | 2-lf fb. 6-lf fb. canopy | 30                           | 29.5              | 7795    |  |
| Nortron (4 fl oz) + Warrant (3 pt) +<br>Destiny (1.5 pt)                                 | 2-lf fb. 6-lf            | 73                           | 24.6              | 6279    |  |
| Nortron (4 fl oz) + Dual II Magnum<br>(1.33 pt) + Destiny (1.5 pt)                       | 2-lf fb. 6-lf            | 67                           | 24.1              | 6255    |  |
| LSD0.05 <sup>c</sup>                                                                     |                          | 11                           | 4.55              | 1098    |  |

<sup>a</sup> Roundup PowerMax at 32 fl oz/A fb. 22 fl oz/A and 22 fl oz/A was applied in each of the treatments. All POST treatments included ammonium sulfate at 17 lb/100 gal. See recommendations in the MSU Weed Control Guide for Field Crops.

<sup>b</sup> Palmer amaranth control was evaluated in mid-August.

<sup>c</sup> Means within a column greater than least significant difference (LSD) value are different from each other.

<sup>d</sup> This treatment was not included in the trial at SVREC.

**Summary:** Two field trials were conducted to evaluate possible herbicide treatments to control glyphosate-resistant Palmer amaranth in sugarbeet. The first trial was conducted to evaluate Palmer amaranth control and the second trial was conducted to examine the effects of these treatments on sugarbeet injury and yield. Not all treatments are presented. Results indicate that there are some treatments that show some promise for glyphosate-resistant Palmer amaranth control (Table 1), without reducing yield compared with three applications of glyphosate alone. We will continue to examine additional methods for glyphosate-resistant Palmer amaranth control.

MICHIGAN STATE UNIVERSITY EXTENSION Michigan State University

AgBio**Research** 

## Comparison of chloroacetamide herbicides in sugarbeet

Christy Sprague and Gary Powell, Michigan State University

| Locations:             | Richville (SVREC) | Application timings: 2-,4- and 6-leaf beets |
|------------------------|-------------------|---------------------------------------------|
| <b>Planting Dates:</b> | April 15          | Herbicides: see treatments                  |
| Soil Type:             | Clay loam (SVREC) | <b>O.M.:</b> 3.0 (SVREC)                    |
| <b>Replicated:</b>     | 4 times           | Variety: Crystal 351NT                      |

*Table 1.* Weed control, sugarbeet yield and recoverable white sugar per acre (RWSA) of selected herbicide programs comparing different chloroacetamide programs when tank-mixed with Roundup (POST).

| Herbicide treatments <sup>a</sup>                                           | Timing        | C. lambsquarters <sup>b</sup> | Pigweed | C. ragweed | Yield    | RWSA    |
|-----------------------------------------------------------------------------|---------------|-------------------------------|---------|------------|----------|---------|
|                                                                             |               |                               | - %     |            | - ton/A- | -lb/A - |
| Roundup - applied 2X                                                        | 2-lf fb. 6-lf | 97                            | 99      | 99         | 20.0     | 5347    |
| Nortron (4 fl oz) - applied 2X                                              | 2-lf fb. 6-lf | 97                            | 99      | 98         | 24.1     | 6411    |
| Nortron + Warrant (3 pt)                                                    | 2-lf          | 82                            | 94      | 95         | 21.5     | 5659    |
| Nortron + Warrant (3 pt)                                                    | 4-lf          | 79                            | 96      | 92         | 20.6     | 5381    |
| Nortron + Dual II Mag. (1.33 pt)                                            | 2-lf          | 87                            | 96      | 89         | 18.9     | 4974    |
| Nortron + Dual II Mag. (1.33 pt)                                            | 4-lf          | 96                            | 99      | 91         | 18.6     | 4876    |
| Nortron + Outlook (16 fl oz)                                                | 2-lf          | 93                            | 99      | 92         | 24.7     | 6601    |
| Nortron + Outlook (16 fl oz)                                                | 4-lf          | 96                            | 98      | 99         | 22.6     | 5765    |
| Nortron + Warrant (3 pt) fb.<br>Nortron + Warrant (3 pt)                    | 2-lf fb. 6-lf | 97                            | 96      | 98         | 20.5     | 5459    |
| Nortron + Dual II Mag. (1.33 pt)<br>fb.<br>Nortron + Dual II Mag. (1.33 pt) | 2-lf fb. 6-lf | 99                            | 99      | 97         | 23.1     | 5990    |
| Nortron + Outlook (16 fl oz) fb.<br>Nortron + Outlook (16 fl oz)            | 2-lf fb. 6-lf | 99                            | 99      | 99         | 22.5     | 5916    |
| Untreated                                                                   |               | 0                             | 0       | 0          | 12.3     | 3295    |
| LSD <sub>0.05</sub> <sup>c</sup>                                            |               | 8                             | 4       | 8          | 7.5      | 2022    |

<sup>a</sup> Roundup PowerMax at 32 fl oz/A was applied in each of the treatments. All POST treatments included ammonium sulfate at 17 lb/100 gal. See recommendations in the MSU Weed Control Guide for Field Crops.

<sup>b</sup> Weed control was evaluated in mid-August.

<sup>c</sup> Means within a column greater than least significant difference (LSD) value are different from each other.

**Summary:** A field trial was conducted to compare the addition of three chloroacetamide herbicides, Warrant, Dual II Magnum, or Outlook, as layby herbicides applied in combination with Nortron and Roundup POST for weed control and the effects on sugarbeet yield and recoverable white sugar. There was very little sugarbeet injury from any of the treatments. Overall, weed control was excellent when at least two weed control applications were made. When two POST herbicides were made with the weed species examined there was no detriment on weed control by adding any of the herbicides and there were no reductions in sugarbeet yield or RWSA. Common lambsquarters and in some cases common ragweed control was lower when only one herbicide application was made. While there was not many differences observed in this trial for weed control or sugarbeet yield, the inclusion of Warrant, Dual II Magnum, or Outlook may be valuable tools when tank-mixed with glyphosate at the 2- or 6-leaf stages of sugarbeet. These herbicides would add a different herbicide site of action group in sugarbeet to help control later emerging pigweed species (i.e., Palmer amaranth and/or waterhemp) that are showing up as glyphosate-resistant in many areas of Michigan.

#### **MSU Wheat Breeding and Genetics 2015 Report**

Eric Olson, Wheat Breeder and project PI Lee Siler, Research Assistant Linda Brown, Graduate student researcher Kyle McCarthy, Graduate student researcher Andrew Wiersma, Graduate student researcher

#### Introduction

Michigan had the highest non-irrigated wheat yield in the United States at 81 bu/ac in 2015(nass.usda.gov). The counties of the thumb region have the highest yields in the state and account for up to 35% of all wheat bushels produced in Michigan. To observe highend yield potential and target the largest production area of the state, MSU Wheat Breeding and Genetics (MSU-WBG) conducts early generation selection and preliminary yield testing at the Saginaw Valley Research and Extension Center near Richville, MI.

Two large yield testing projects were conducted at SVREC in 2015. As part of the variety development program, preliminary yield trials (PYT) were conducted in order to target new high yielding varieties to the thumb region. A yield trial was conducted with an introgression and association mapping population that samples diversity from a wild ancestral wheat species to identify new genes conferring high yield potential.

#### MSU Wheat Breeding and Genetics Preliminary Yield Trials Plant Materials and Trial Design

A total of 672 new soft red and soft white winter wheat entries and three check varieties were included in the wheat breeding yield trials. An augmented design was used where new PYT entries planted in single replicates. Check varieties were replicated across the field. A total of 18 blocks were used to account for field variation. The main check, Ambassador, was planted in six plots per block. Other checks, Pioneer 25R39 and AC Mountain were planted twice in each block. The augmented design and its variants allow for balanced resource allocation for testing a large number of new PYT entries.

#### **Data Collected**

Data were collected on flowering and Fusarium head blight on a 0-9 scale (Table 1.). At physiological maturity, spikes were harvested from white wheat entries for pre-harvest sprouting selection and experiments. Grain yield and moisture were collected at harvest. Additional data on resistance to Septoria and Cephalosporium Stripe pathogens are presented in Table 1.

#### **Statistical Analysis**

All statistical analysis was done using R. ANOVA using the three check varieties was used to estimate error across the experiment. Effects of individual blocks were determined and yield values of experimental lines were adjusted accordingly. ANOVA was performed on visual sprouting data and values for individual lines were adjusted based on sampling date.

**Table 1.** Wheat genotypes in preliminary testing with grain yield significantly higher than check varieties. Data on resistance to Pre-harvest sprouting, FHB Septoria, and Cephalosporium Stripe pathogens are presented.

| Line        | Pedigree                                         | Yield,<br>bu/Ac<br>SVREC | FHB<br>SVREC<br>0-9 | FHB<br>Nursery<br>%Severity | PHS<br>0-9 | Septoria<br>0-9,<br>Mason | C. Stripe<br>0-9,<br>Mason |
|-------------|--------------------------------------------------|--------------------------|---------------------|-----------------------------|------------|---------------------------|----------------------------|
| MI14R0029   | SE0010286-7 / VA05W-257                          | 98.4                     | 6                   | 49.5                        | -          | 4                         | 7                          |
| MI14R0354   | E0028 / VA03W-409                                | 98.0                     | 7                   | 49.5                        | -          | 4                         | 7                          |
| MI14R0009   | UNKNOWN                                          | 97.4                     | 7                   | 64.5                        | -          | 2                         | 2                          |
| MI14R0008   | UNKNOWN                                          | 97.2                     | 8                   | 66                          | -          | -                         | -                          |
| MI14R0343   | E0028 // Pioneer 25R47 / AgriPro Branson         | 94.8                     | 6                   | 72.5                        | -          | 3                         | 6                          |
| MI14R0666   | E0039/P 25R18                                    | 94.7                     | 3                   | 27                          | -          | 7                         | 7                          |
| MI14W0298   | Aubrey / MO 050699                               | 93.0                     | 3                   | 17.5                        | 6          | 4                         | 2                          |
| MI14W0598   | E0027/E5201                                      | 92.9                     | 8                   | 66                          | 5          | 2                         | 5                          |
| MI14R0025   | SE0010286-7 / VA05W-257                          | 92.4                     | 9                   | 64.5                        | -          | -                         | -                          |
| MI14W0335   | D8006W // FHB 12 / MSU Line D8006W               | 91.9                     | 8                   | 27                          | 8          | 8                         | 6                          |
| MI14R0353   | E0028 / VA03W-409                                | 91.9                     | 8                   | 50                          | -          | 4                         | 7                          |
| MI14W0307   | E0028 // Pioneer 25R47 / MSU Line E6003          | 91.5                     | 2                   | 27                          | 6          | 5                         | 3                          |
| MI14R0667   | E0039/P 25R18                                    | 91.4                     | 2                   | 27                          | -          | 7                         | 5                          |
| MI14R0360   | E0028 / VA03W-409                                | 91.1                     | 7                   | 49.5                        | -          | 8                         | 8                          |
| MI14W0084   | Crystal /3/ E6003 // MSU Line D8006W /<br>Cayuga | 91.0                     | 4                   | 17.5                        | 4          | 8                         | 1                          |
| MI14R0329   | D8006W // FHB 12 / Pioneer 25R47                 | 91.0                     | 4                   | 27                          | -          | 4                         | 8                          |
| MI14R0154   | Hopewell // E0028 / MO 050699                    | 90.5                     | 4                   | 56                          | -          | 7                         | 5                          |
| MI14W0652   | TW93213 / MI D6234                               | 90.4                     | 7                   | 27                          | 2          | 4                         | 9                          |
| MI14R0352   | E0028 / VA03W-409                                | 90.4                     | 6                   | 43.5                        | -          | 7                         | 8                          |
| MI14W0315   | E0028 // Pioneer 25R47 / MSU Line E6003          | 90.4                     | 3                   | 21                          | 6          | 9                         | 6                          |
| MI14W0344   | E0028 // Pioneer 25R47 / AgriPro Branson         | 90.3                     | 8                   | 66                          | 6          | 4                         | 5                          |
| MI14W0333   | D8006W // FHB 12 / MSU Line D8006W               | 89.8                     | 8                   | 56                          | 7          | 4                         | 6                          |
| MI14R0270   | MCIA Oasis / D8006W                              | 89.5                     | 7                   | 49.5                        | -          | 7                         | 8                          |
| MI14R0665   | E0039/P 25R18                                    | 89.5                     | 2                   | -                           | -          | 6                         | 0                          |
| sMI14W0463  | NY BATAVIA / P25W33                              | 89.4                     | 7                   | 41.5                        | 3          | 4                         | 6                          |
| P25R39      | -                                                | 83.4                     | 5                   | -                           | -          | 5                         | 5                          |
| AC Mountain | -                                                | 79.8                     | 8                   | 64.5                        | 9          | 5                         | 5                          |
| Ambassador  | P27W37/D1148                                     | 77.2                     | 9                   | 70                          | 9          | 8                         | 8                          |

= Yield significantly higher than P25R39

= Yield significantly higher than AC Mountain

= Yield significantly higher than Ambassador

#### **Results and Discussion**

Heavy disease pressure enabled accurate observations of FHB infection in PYT entries. The uniform susceptibility of the Ambassador and AC Mountain indicated uniformity of infection across the field. The entire range of highly resistant to highly susceptible was identified among PYT entries.

Significant variation was identified among field blocks making it necessary to adjust entry values based on block effect. The least significant interval (LSI) to confidently determine an entry yield is higher than the check mean was 12.96 bu/Ac. The significant difference between entries was 9.3 bu/Ac. The significant difference between a new entry and the Ambassador check mean was 7.1 bu/Ac.

Of the 672 entries in preliminary yield trials, 120 yielded higher than the average of the running check variety Ambassador. Of these, 25 had yields that exceeded the LSI interval to out-yield Ambassador, nine out-yielded AC Mountain and four out-yielded P25R39 (Table 1.). Yields of the top 25 entries are not significantly different indicating that the entries all have good yield potential and are superior to the check varieties. A total of 100 entries were moved into advanced yield trials at five locations across Michigan in 2016.