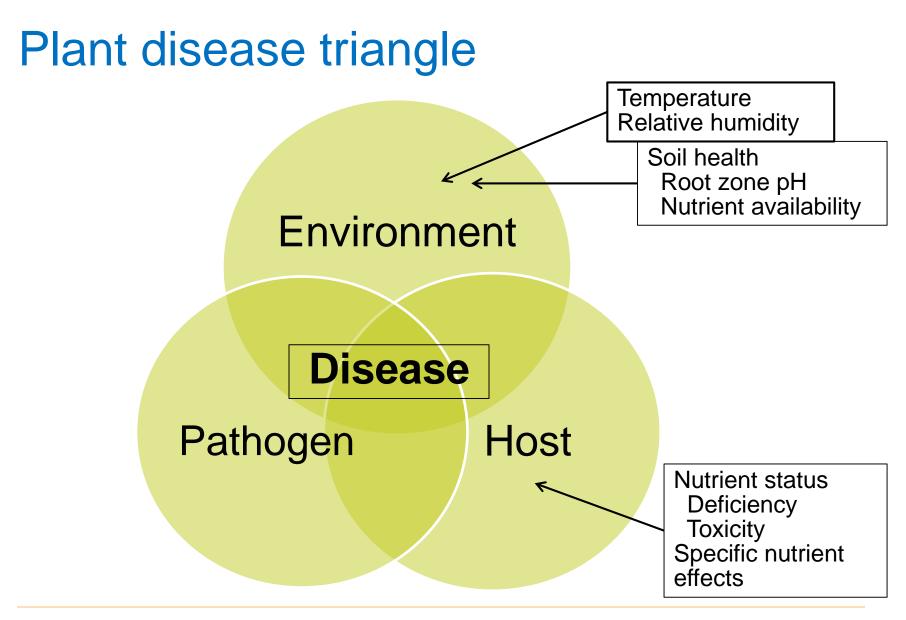


Knowledge grows

Impact of Improved Plant Nutrition on Pest Management

Dr. Steve Petrie Director of Agronomic Services



Impact of improved plant nutrition on pest management

- Fertilizers are not pesticides
- Fertilizers are not PGR's
- Fertilizers do not mitigate pests
- Fertilizers supply plant nutrients to crops

Plant nutrition effects on diseases

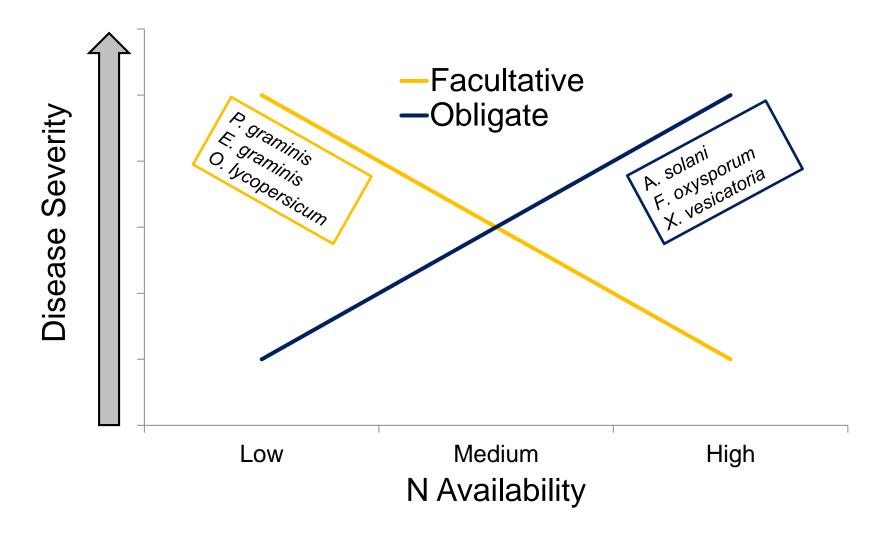
Improved mineral nutrition helps plants escape diseases by two mechanisms:

- 1. Formation of physical barrier that reduces infection by pathogens
- 2. Stimulation of natural defense compounds
 - 1. Anti-oxidants
 - 2. Phytoalexins
 - 3. Flavenoids

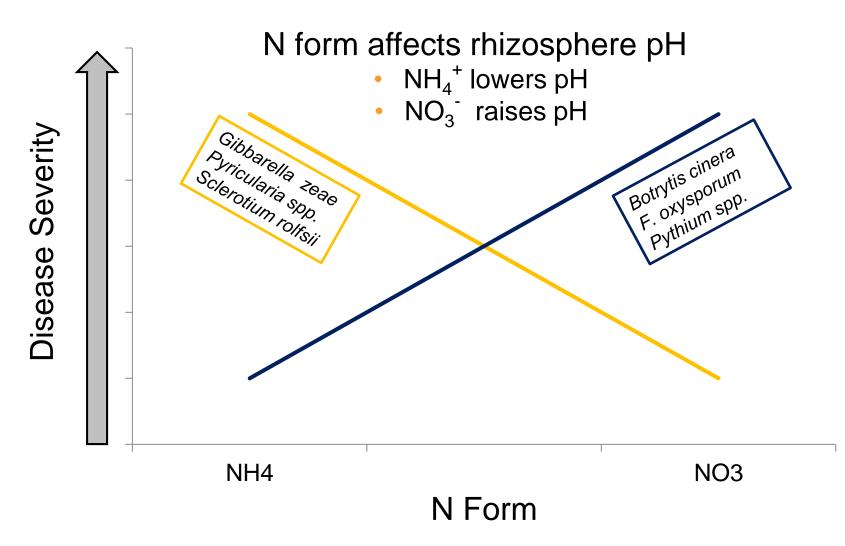
Specific nutrient effects on diseases

- Macronutrients
 Micronutrients
 - N
 - P
 - K
 - Ca

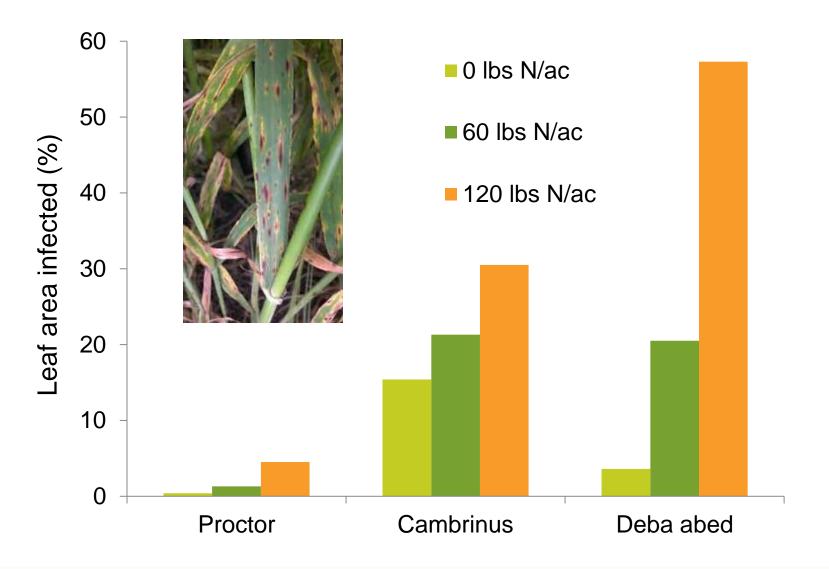
- - B
 - Cl
 - Cu
 - Mn


Knowledge grows

N effects on plant diseases



N rate effects



N form effects

N effect on leaf blotch of spring barley

Knowledge grows

P effects on plant diseases

P effects on plant diseases

- P has inconsistent effects on plant diseases
- Beneficial when applied to seedlings to help plants escape disease
- P banded at planting to help wheat escape pythium

P effects on Hessian fly

Variety	P_2O_5	Infested plants	Infested tillers	Pupae	Yield
	Lbs/ac	;	# /3 ft of row		Bu/ac
Alpowa	0	24.2	42.8	67.5	31.7
Alpowa	20	7.3	22.4	14.4	40.5
Zak	0	3.0	3.9	3.9	37.1
Zak	20	0.5	0	0.7	38.8
LSD (0.05)		12.7	11.9	29.3	5.4

Alpowa is susceptible to Hessian fly, Zak is resistant

Knowledge grows

K effects on plant diseases

K effects on pathogenic diseases

- Potassium is widely recognized for its role in minimizing pathogenic diseases
- Potassium uniformly reduced infection of both obligate and facultative pests
- Three extensive literature reviews have documented the benefits of applying K

K effects on bacterial diseases

Crop	Disease	Pathogen	K effect
Apple	Fire blight	Erwinia amylovora	Increase
Cabbage	Bacterial blight	Pseudomonas syringae	Decrease
Cotton	Leaf spot	Xanthomonas malvacearum	Decrease
Cucumber	Leaf spot	Pseudomonas lachrymans	Decrease
	Bacterial wilt	Erwinia tracheiphila	Increase
Corn	Stewart's wilt	Erwinia stewartii	Decrease
Peach	Bacterial spot	Xanthomonas pruni	Decrease
Pear	Fire blight	Erwinia amylovora	Decrease
Rice	Bacterial blight	Xanthomonas oryzae	Decrease
Tomato	Blotchy ripening	Erwinia herbicola	Decrease
	Soft rot	Erwinia carotovora	Decrease
	Wilt	Pseudomonas solanacearum	Decrease

K effects on fungal diseases - 1

Crop	Disease	Pathogen	K effect
Apricot	Gleosporium	Pezicula malicorticis	Increase
Avocado	Root rot	Phytophthora cinnamomi	Decrease
Cabbage	Club root	Plasmodiophora brassicae	Increase
	Gray mold	Botrytis cinerea	Decrease
	Yellows	Fusarium oxysporum	Decrease
Celery	Yellows	Fusarium oxysporum	Decrease
Cereals	Rust	Puccinia spp.	Decrease
	Powdery mildew	Erysiphe graminis	Decrease
Cotton	Wilt	Fusarium oxysporium	Decrease
	Root rot	Phymatorotrichum omnivorum	Decrease
	Seedling blight	Rhizoctonia solani	Decrease
	Leaf blight	Cercospora gossypina	Decrease

K effects on fungal diseases - 2

Crop	Disease	Pathogen	K effect
Corn	Stalk rot	Gibberella zeae	Decrease
	Stalk rot	Diplodia zeae	Decrease
	Stem rot	Fusarium culmorum	Decrease
Grape	Fruit rot	Botrytis cinera	Decrease
Melon	Stem blight	Mycospharella melona	Increase
Onion	Purple blotch	Alternaria porri	Increase
Prune	Canker	Cytospora leucostoma	Decrease
Rice	Leaf spot	Cercospora oryzae	Decrease
	Leaf spot	Helminthosporium spp.	Decrease
	Sheath blight	Corticium sasakii	Decrease
	Stem rot	Helminshosporium signoideum	Decrease
	Blast	Pyricularia oryzae	Decrease

K effects on fungal diseases - 3

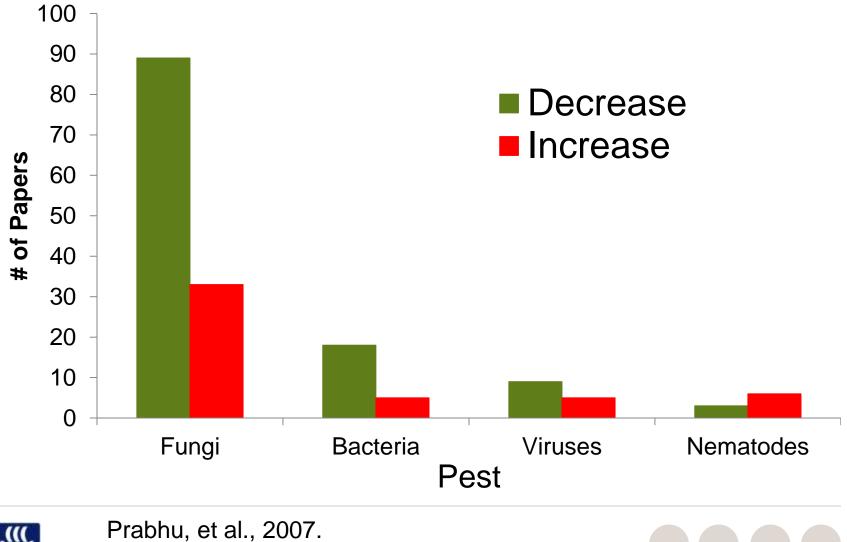
Crop	Disease	Pathogen	K effect
Tomato	Wilt	Fusarium oxysporium	Dec/Inc
	Leaf blight	Alternaria solani	Decrease
Turf	Fusarium patch	Fusarium oxysorium	Decrease
	Ophiobolus patch	Ophiobolus graminis	Decrease
	Leaf spot	Helminthisporium spp.	Decrease
Wheat	Glume blotch	Septoria nodorum	Decrease
	Take-all	Gaeumannomyces graminis	Decrease
	Stem rust	Puccinia graminis	Decrease
	Stripe rust	Puccinia striiformis	Decrease
	Powdery mildew	Erysiphe graminis	Decrease

K effects on viruses and nematodes

Crop	Disease	Pathogen	K effect
Barley	BYD	BYD virus	Decrease
Potato	Mosaic	Potato mosaic virus	Decrease
	Leaf roll	Potato leaf-roll virus	Decrease
Tomato	Blotchy ripening	Tobacco mosaic virus	Decrease

Crop	Disease	Nematode	K effect
Cotton		Rotylenchulus reniformis	Decrease
Cucurbits	Root knot	Meloidogyne incognita	Increase
Rice	White tip	Aphelenchoides oryzae	Increase
Tomato		Rotylenchulus reniformis	Increase
	Root knot	Meloidogyne incognita	Increase

K effects on pests and yield


Summary of more than 2,400 research reports demonstrating the benefits of adequate K nutrition on pests and crop yield

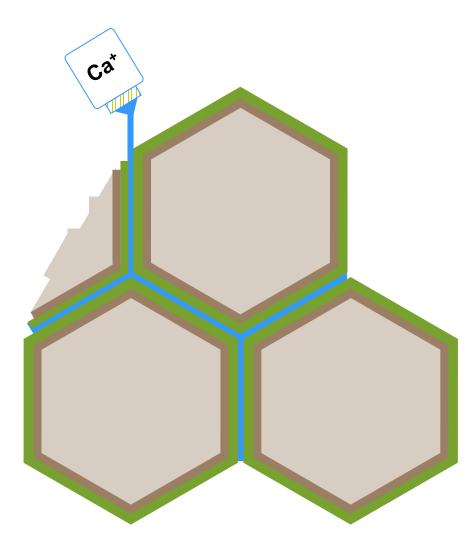
Pest	Reduction	Crop yield increase
		%
Bacteria	70	42
Fungi	69	57
Insects	63	36
Viruses	41	78

Perrenoud, 1990.

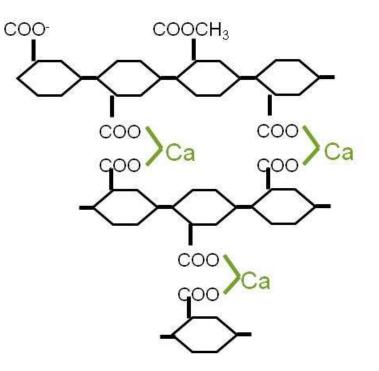
Summary of K effects on pests

Knowledge grows

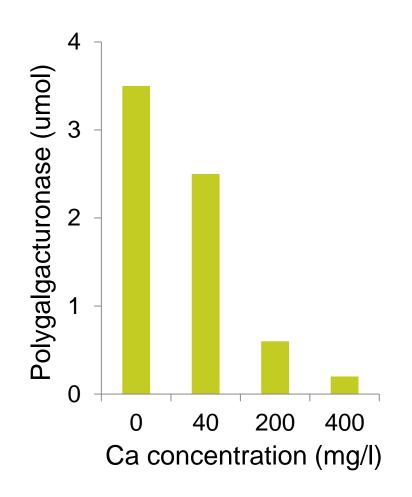
Ca effects on plant diseases

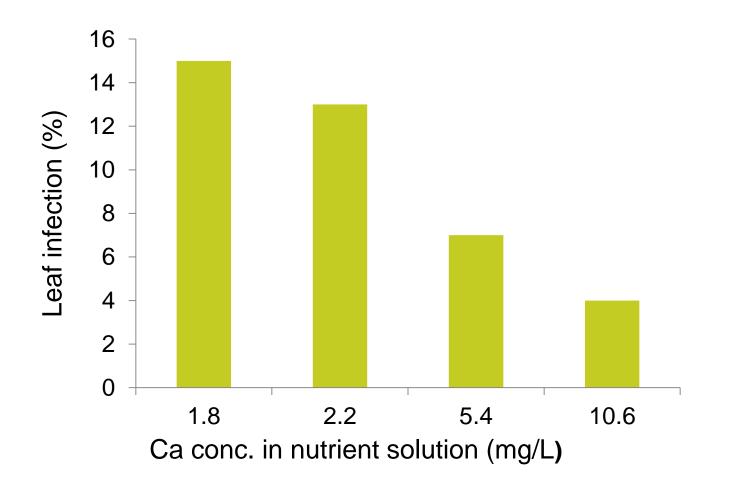


Calcium's role in defense mechanisms

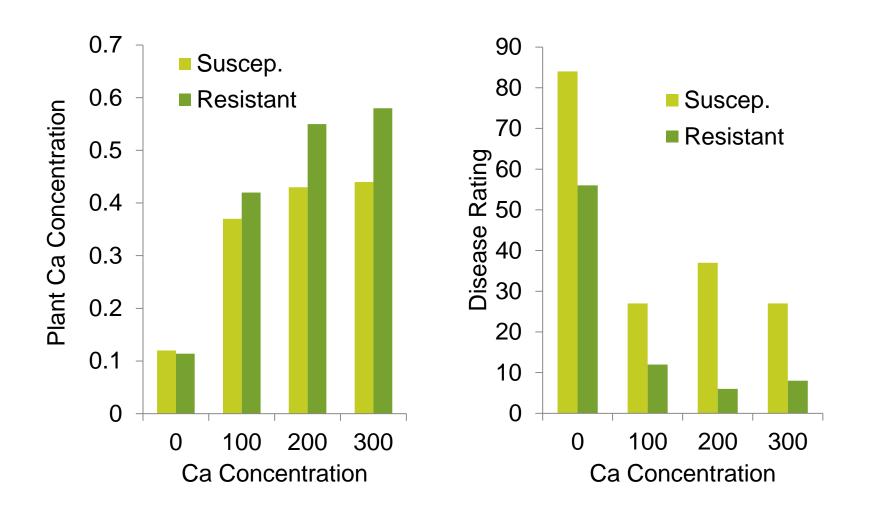

- Calcium for stronger cell walls and better integrity of cell membranes - mechanical resistance
- Speed up leaf hardening (young leaves become firm in a shorter term, and are therefore less attractive to insects/vectors).
- Reduce the activity of enzymes produced by the fungi or bacteria to penetrate the plant tissue

Calcium 'glues' the cells together


Ca saturates the free COOgroups of the pectines in the middle lamella


Ca Inhibits polygalacturonase

- Ca-polygalacturonates are required in the middle lamella for cell wall stability
- Many parasitic fungi and bacterial produce enzymes such as polygalacturonase that degrade the middle lamella
- Ca dramatically reduces the activity of this enzyme



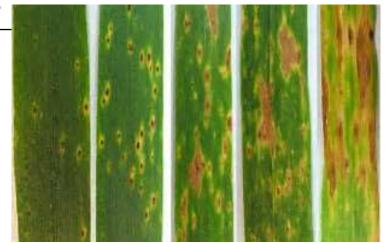
Ca and Botrytis cinerea in lettuce

Ca effect on bacterial canker of tomato

Knowledge grows Micronutrient effects on plant diseases B, CI, Cu, and Mn

B effects on plant diseases

- Most widespread micronutrient deficiency
- Least understood micronutrient
- Role in cell wall structure and cell membrane integrity
- Plant immune responses to diseases
- Diseases reduced by B include:
 - -Plasmodiophoro brassicae in crucifers
 - Verticillium spp tomatoes
 - -Tomato yellow leaf curl virus
 - -Take-all in wheat


Cl effects on plant diseases

- CI has been found to suppress diseases independent of the K
- Mechanism is unknown but may involve water relations/hypersensitive response
- NOT a chlorine disinfection
- Examples of pathogenic diseases reduced by Cl include:
 - Stalk rot in corn
 - •Stripe rust in wheat
 - Take-all in wheat
 - Septoria in wheat
- Cl also reduces physiological disorders

Cl effect on physiological leaf spot (PLS) and yield of 'Madsen' winter wheat

CI Rate	PLS	Yield	Test Wt.
Lbs/A		Bu/A	Lbs/bu
0	3.5	70	55.6
50	1.0	83	56.9
150	1.0	84	57.4

Cu effects on plant diseases

- Cu is used as a fungicide
- But rates are 10 to 100 times greater than for plant nutrition
- Cu plays a role in phenol synthesis and lignin biosynthesis

Cu reduced stem melanosis of wheat

Treatment			Disease	Yield
Cu source	Placement Rate		%	Lbs/acre
		Lbs/ac		
Check			92	260
CuSO ₄	Banded	10	76	460
CuSO ₄	Incorp.	10	34	1800
CuSO ₄	Foliar	10	6	1890
Cu chelate	Foliar	2	7	2240

Trial was conducted on a Cu-deficient soil

Mn effects on plant diseases

- Most studied micronutrient with respect to plant diseases
- Mn mediates enzymes that control lignin and suberin biosynthesis which provide a physical barrier to attack
- Plants require higher concentrations of Mn in soil solution than do fungi and bacteria
- Pathogens exploit this differential requirement
- Mild Mn deficiency situation can lead to attack by pathogens in absence of stark Mn deficiency

Mn reduces incidence/severity of many pathogens

- Powdery mildew
- Downy mildew
- Take-all of wheat
- Tan spot of cereals
- Common scab of potatoes
- Fusarium spp. of cotton
- Sclerotinia sclerotium of squash

Summary

- Nutrients are not pesticides
- Proper nutrient management helps plants escape/avoid diseases
- Key nutrients are: N, K, Ca, B, Cl, Cu and Mn
- The rate, form, and timing of nutrient application affect different diseases in different ways

