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SUMMARY
Cancer-microbe associations have been explored for centuries, but cancer-associated fungi have rarely
been examined. Here, we comprehensively characterize the cancer mycobiome within 17,401 patient tissue,
blood, and plasma samples across 35 cancer types in four independent cohorts. We report fungal DNA and
cells at low abundances across many major human cancers, with differences in community compositions
that differ among cancer types, even when accounting for technical background. Fungal histological staining
of tissuemicroarrays supported intratumoral presence and frequent spatial association with cancer cells and
macrophages. Comparing intratumoral fungal communities with matched bacteriomes and immunomes re-
vealed co-occurring bi-domain ecologies, oftenwith permissive, rather than competitive, microenvironments
and distinct immune responses. Clinically focused assessments suggested prognostic and diagnostic ca-
pacities of the tissue and plasma mycobiomes, even in stage I cancers, and synergistic predictive perfor-
mance with bacteriomes.
INTRODUCTION

Fungi are understudied but important commensals/opportu-

nistic pathogens that shape host immunity and infect the immu-
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nocompromised, including cancer patients (Galloway-Peña and

Kontoyiannis, 2020; Iliev et al., 2012; Jain et al., 2021; Köhler

et al., 2014; Ost et al., 2021; Underhill and Iliev, 2014). Fungi

were found in individual tumor types (Alam et al., 2022; Aykut
ber 29, 2022 ª 2022 The Authors. Published by Elsevier Inc. 3789
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et al., 2019; Banerjee et al., 2015, 2017, 2018, 2019; Gamal et al.,

2022; Luan et al., 2015; Mukherjee et al., 2017; Perera et al.,

2017; Zhu et al., 2017) and contribute to carcinogenesis in

esophageal and pancreatic cancer (Alam et al., 2022; Aykut

et al., 2019; Zhu et al., 2017), but their presence, identity, loca-

tion, and effects in most cancer types are unknown. Recent

studies found metabolically active, immunoreactive, intracel-

lular, and cancer type-specific communities of bacteria and vi-

ruses in tumor tissues (Geller et al., 2017; Kalaora et al., 2021;

Le Noci et al., 2018; Mima et al., 2015; Nejman et al., 2020; Parhi

et al., 2020; Poore et al., 2020; Pushalkar et al., 2018; Riquelme

et al., 2019; Sepich-Poore et al., 2021; Shi et al., 2020; Tsay et al.,

2021; Wieland et al., 2021; Zapatka et al., 2020), leading to their

inclusion in updated cancer ‘hallmarks’ (Hanahan, 2022). Many

of these bacteria affect cancer therapies (Geller et al., 2017; Ka-

laora et al., 2021; Le Noci et al., 2018; Nejman et al., 2020; Push-

alkar et al., 2018; Shi et al., 2020; Wieland et al., 2021). Whether

fungi act similarly and should be included under the cancer hall-

marks’ polymorphic microbiomes is unknown, motivating char-

acterization of the pan-cancer mycobiome. Symbiotic and

antagonistic relationships between fungi and bacteria (Frey-Klett

et al., 2011; Peleg et al., 2010; Shiao et al., 2021) further motivate

studying their interactions in tumors, and recent data suggest

that combining their information provides synergistic diagnostic

performance for colorectal cancer (Liu et al., 2022). We thus

comprehensively characterized cancer mycobiomes in tissues

and blood, compared fungal communities with matched bacter-

iomes and immunomes, and explored fungal utility for prognosis

and diagnosis.

RESULTS

Fungal nucleic acids exist in many human cancer types
We profiled fungal DNA in two large cohorts of cancer sam-

ples we previously examined for bacteria (Nejman et al.,

2020; Poore et al., 2020). The first (Weizmann [WIS])

comprised 1,183 formalin-fixed paraffin-embedded (FFPE) or

frozen samples of tumor and normal adjacent tissue (NAT;

often paired) from eight tissue types (breast, lung, melanoma,

ovary, colon, brain, bone, and pancreas) and non-cancer

normal breast tissue. All samples were studied for fungal pres-

ence using internal transcribed spacer 2 (ITS2) amplicon

sequencing (Figure 1A; Tables S1 and S2). To account for po-

tential contamination by environmental fungi or fungal DNA

introduced via sample handling and processing, we included

104 paraffin-only and 191 DNA-extraction negative controls.

These controls enabled detection and removal of fungal con-
Figure 1. Fungal nucleic acids exist in human cancers

(A) Table of all studied samples.

(B) Fungal DNA abundance inWIS cohort quantified by 5.8S qPCR. Blue bars show

extraction controls (n = 89, far left): paraffin controls (n = 48), p = 5.8 3 10�4; GB

p = 6.6 3 10�5; lung (n = 56), p = 2.1 3 10�6; ovary (n = 26), p = 4.2 3 10�6; pan

p = 1.5 3 10�5. All p values have an FDR of %0.2.

(C) Percentage of fungal or bacterial reads in TCGA primary tumors versus tota

bacterial counts. Two-sided Wilcoxon tests for each cancer type; ****p % 0.000

centiles, and 1.5 3 interquartile range (IQR). See Data S1.2F for paired analysis.

(D) Phylogenomics of TCGA-derived fungal bins >85 kbp using Benchmarking U
taminants and separation of signal from noise in ITS2 data

(STAR Methods).

The second cohort encompassed whole genome sequencing

(WGS) and transcriptome sequencing (RNA-seq) data from The

Cancer Genome Atlas (TCGA) (Figure 1A; Table S1). For quality

control, we re-aligned all (�1011) unmapped DNA and RNA reads

to a uniformhuman reference (GRCh38), then removedpoor-qual-

ity reads.Remaining readswere aligned to theRefSeq release 200

multi-domain database of 11,955 microbial (with 320 fungal)

genomes (STAR Methods). 15,512 samples (WGS: 4,736; RNA-

seq: 10,776) had non-zero microbial feature counts, of which

15,065 (97%) contained fungi. Of 6.06 3 1012 total reads, 7.3%

did not map to the human genome: 98.8% of these unmapped

reads mapped to no organism in our microbial database. Of the

remaining 1.2%of non-human reads thatmapped toourmicrobial

database (0.08% of total reads), 80.2% (0.067% of total) were

classified as bacterial, and 2.3% (0.002% of total) as fungal,

providing 1.172 3 108 fungal reads for downstream analyses

with an average read length of 57.4 bp (SD = 15.9; median =

51bp; methods enforced 45-bp minimum). Fungal-containing

TCGA samples had an average of 7,780 (95% CI: [7,039, 8,521])

fungal reads/sample. Although TCGA lacked contamination

controls, we implemented in silico decontamination based on

sequencing plate and center (Poore et al., 2020) and cross-refer-

enced all fungal species against the WIS decontaminated ampli-

con cohort, the Human Microbiome Project (HMP)’s gut myco-

biome cohort (Nash et al., 2017), and >100 other publications to

obtain a final decontaminated list (Table S3).

We quantified fungal DNA in the WIS cohort using quantitative

polymerase chain reaction (qPCR) of the fungal 5.8S ribosomal

gene in a random subset comprising 261 tumor samples and

137 negative controls (Figure 1B; Data S1.1A). All tumor types

tested had higher fungal load than negative controls and fungal

load differed among tumor types (Figure 1B). Fungal load was

significantly higher in colon and lung tumors than adjacent tissue

(Data S1.1B). A similar non-significant trend was found in breast

tumors versus NAT and normal (Data S1.1B). Fungal and bacte-

rial load correlated across tumor types (Data S1.1C), with breast

and bone cancers highest in fungal (Figure 1B) and bacterial

(Nejman et al., 2020) DNA. We then subjected all WIS samples

to ITS2 amplification and sequencing to characterize fungi.

This analysis also found more fungal reads in all cancer types

than in negative controls (Data S1.1D).

In the TCGA cohort, we observed significant, cancer type-spe-

cific differences in the percentage of classified fungal, bacterial,

and pan-microbial reads of the total or unmapped reads (Data

S1.1E-S1.1H and S1.2A-S1.2D). In 31 of 32 cancer types,
medians. Values clipped at 1,000. One-sided t tests between tumor types and

M (n = 25), p = 3.1 3 10�5; melanoma (n = 31), p = 2.1 3 10�7; colon (n = 19),

creas (n = 25), p = 4.5 3 10�10; bone (n = 25), p = 0.014; and breast (n = 54),

l reads. Sample sizes inset in blue, and vary slightly when samples had only

1; ***p % 0.001; ns, not significant. Boxplots show median, 25th and 75th per-

niversal Single-Copy Orthologs (BUSCO) against NCBI fungal genomes.
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bacterial read proportions in primary tumors were significantly

higher than fungal reads (Figure 1C), and all cancer types had

significantly higher bacterial proportions during paired analyses

(Data S1.2F) or after normalizing by genome sizes (Data S1.2E).

Calculating average relative abundances of bacteria and fungi in

TCGA primary tumors revealed 86.7% bacteria and 13.3% fungi

without genome size normalization (Data S1.3A) or 96% bacteria

and 4% fungi (Data S1.3B) with normalization, suggesting that

bacteria predominate over fungi in the tumor microbiome. Fungal

and bacterial read proportions had high Spearman correlations

(Data S1.3C–S1.3E), including primary tumors (r = 0.76,

p < 2.2 3 10�308), NATs (r = 0.84, p < 2.2 3 10�308), and blood

(r = 0.84, p < 2.23 10�308). These data support a bacterial-domi-

nated but polymicrobial cancer microbiome.

Motivated by the�117million fungal reads in TCGA, we calcu-

lated per-sample and aggregate fungal genome coverages

across all WGS and RNA-seq samples (Table S4). This revealed

31 fungi with R1% aggregate genome coverage, including

Saccharomyces cerevisiae (99.7% coverage), Malassezia

restricta (98.6% coverage), Candida albicans (84.1% coverage),

Malassezia globosa (40.5%coverage), andBlastomyces gilchris-

tii (35.0% coverage). No one sample explained these top five

aggregate coverages (Table S4.2). M. restricta and globosa

had no samples above 26.0% or 4.3% coverage, respectively.

S. cerevisiae,C. albicans, and B. gilchristi had no samples above

64.8%, 50.0%, or 30.0%coverage, respectively. Many fungi had

equally contributing coverages from different diseases and

sequencing centers (Data S1.3F–S1.3H). Moreover, WIS-TCGA

overlapping fungi were significantly more likely to have R1%

aggregate genome coverage than non-WIS-overlapping species

(Fisher exact test: p = 1.05 3 10�8, odds ratio = 13.1). We

constructed de novo metagenome co-assemblies per cancer

type using non-human primary tumor WGS reads, finding large

(>85 kb) fungal metagenome-assembled bins placed within

Saccharomyces (Figure 1D; Data S1.4A). Smaller bins contained

contigs matching the fungal mitochondrially encoded ATP

synthase membrane subunit 6 (ATP6) locus of Malassezia

restricta (Data S1.4B); the fungal mitochondrially encoded

cyclooxygenase-2 (COX2) locus of Blastomyces dermatitidis

(Data S1.4C); and two partial sequences of Candida albicans’s

chromosome I and chromosome ‘‘R’’ (data not shown). Thus,

metagenomic analyses support fungal presence and verify

several well-covered taxa from our bioinformatic pipeline.

The WIS and TCGA cohorts each have distinct advantages

and drawbacks. Advantages of the WIS cohort include aseptic

sample processing, mechanical shearing to optimize microbial

DNA extraction, hundreds of experimental contamination con-

trols, complementary tissue imaging, and fungal-specific

qPCR, which together improve confidence in the true pres-

ence/absence of intratumoral fungi. However, ITS2 amplicon

sequencing precludes genome-wide coverage analyses and

has limited taxonomic resolution (Data S1.5A). Conversely, the

TCGA cohort’s shotgun metagenomic approach with large sam-

ple sizes enables reconstruction of near-complete fungal ge-

nomes, comparison with host information, inference across

most human cancer types, and represents a scalable approach

compatible with historical data; however, lacking experimental

contamination controls, its in silico decontamination yields less
3792 Cell 185, 3789–3806, September 29, 2022
confident presence/absence calls. Differences in sample prepa-

ration, sequencing, bioinformatic pipelines, and reference

databases (STAR Methods)—which affect bacteriome analyses

(Sinha et al., 2017)—exist between these cohorts. Despite these

differences, we identified, within the intersection of the WIS

cohort and TCGA fungal reference database, 87.2% of WIS spe-

cies and 93.4% of fungal genera in matched TCGA cancer types

(Data S1.5B and S1.5C). To be conservative, we included ver-

sions of TCGA mycobiome data subset to WIS-intersecting

fungi, with similar conclusions irrespective of the cohort.

Fungi are detected by multiple staining methods in
human tumors
We visualized fungi in human tumors by staining melanoma,

pancreas, breast, lung, and ovarian cancer tissue microarrays

(Figure 2; Data S2.1A). Because no staining method can detect

all fungi in tissues, we integrated four staining methods with vary-

ing levels of sensitivity and specificity: (1) a fungal cell wall-spe-

cific anti-b-glucan antibody with a high false-negative rate (Data

S2.1), (2) an anti-Aspergillus antibody that also binds several addi-

tional fungal species (Data S2.1), (3) fluorescence in situ hybridi-

zation (FISH) against three conserved fungal 28S rRNA se-

quences with selective sensitivity for yeast over hyphal

morphologies due to lower hyphae probe penetration (Data

S2.1B and S2.2A), and (4) fungal cell wall-specific Gomori methe-

namine silver (GMS) stain with high false-positive background

staining in tissues. Numerous negative controls mitigated false

positives (Data S2.3 and S2.4). Overall, we found 0%–25% of

the tumors per cancer type to be positive for either b-glucan or

Aspergillus staining (Figure 2; Data S2.3, and S2.4). Fungal 28S

rRNA FISH staining was less prevalent, showing positive stain

in 12% of pancreatic cancer samples. GMS staining was difficult

to interpret due to high background but was useful for rare cases

where canonical fungal cells were identified (Data S2.2B).

Interestingly, images showed cancer type-specific localization

patterns. Although fungal staining wasmainly evident within can-

cer cells in pancreatic, breast, and ovarian cancer, it mostly

localized to macrophages in melanoma and lung cancers (Fig-

ure 2; Data S2.3 and S2.4). In rare cases where canonical fungal

cells were identified, they were extracellular (Data S2.2).

Different cancer types exhibit cancer-type-specific
mycobiomes
Tumor bacterial richness was significantly higher than fungal

richness (Figure 3A), similar to the gut microbiome (Nash et al.,

2017). Mycobiome richness varied significantly across cancer

types in WIS and TCGA cohorts (Data S3.1). However, WIS (am-

plicon) cohort richness was lower than the TCGA (shotgun meta-

genomic) cohort, likely due to (1) numerous negative controls

that were used to decontaminate the WIS cohort, (2) flooring

theWIS data to counteract index hopping sequencing noise (Re-

itmeier et al., 2021), and (3) potential read splitting during

shotgun metagenomic alignments in the TCGA cohort (STAR

Methods). Interestingly, four of seven cancer types shared by

both cohorts showed significant positive correlations between

intratumoral fungal and bacterial richness (Figure 3B). No such

correlation was observed in WIS extraction negative controls

(Figure 3B).
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Figure 2. Visualization of fungi in human cancer tissue

(A) Table summarizing percent of tumor microarray cores from five cancer types with positive fungal staining of a-b glucan, a-Aspergillus, and 28S rRNA FISH

probes, and their localization.

(B) Representative stained tumor microarrays from five cancer types using hematoxylin and eosin (H&E), antibodies against b-glucan, Aspergillus, CD45, CD68,

CD8, and by FISH probes against fungal 28S rRNA sequences. Negative controls for all these cores are in Data S2.3. Scale bars shown. Squares in H&E images

demarcate areas presented at higher magnification. PDAC, pancreatic adenocarcinoma; FISH, fluorescence in situ hybridization.
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WIS intratumoral mycobiome alpha diversity was low, but beta

diversity was high between tumor samples (Data S3.2A), pre-

venting rarefaction plot saturation (Figure 3C). We found that
clustering bymycobiome composition grouped samples by can-

cer type (F = 1.65, R2 = 0.02, p = 0.029 by permutational multivar-

iate analysis of variance [PERMANOVA]; Data S3.2B). Beta
Cell 185, 3789–3806, September 29, 2022 3793
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diversity analyses within TCGA sequencing centers similarly re-

vealed cancer-type-specific mycobiome compositions (Fig-

ure 3D; Data S3.2C–S3.2G and S3.3).

Across WIS cancer types, Ascomycota and Basidiomycota

phyladominated the intratumormycobiome (Figure3E). TheAsco-

mycota toBasidiomycota ratio (A/Bratio)washighest incoloncan-

cer (A/B = 8.8), due to abundant Saccharomycetes, and lowest in

melanoma (A/B = 0.86), due to abundant Malasseziomycetes.

Thesedifferencescorrespond to theknown fungal taxa that inhabit

thegut (Nashet al., 2017) and skin (Findley et al., 2013), suggesting

a possible seeding of the tumors from tissue-specific ecologies.

Indeed, unsupervised clustering of tumors alongside normal and

NAT samples showed tissue-specific clustering by themost prev-

alent fungi in these tissues (Figure 3F; Data S3.2H and S3.2I).

Moreover, both WIS and TCGA cohorts demonstrated co-clus-

tering of tumor and NAT samples when comparing beta-diversity

scores, supporting similar tumor and NAT compositions (Fig-

ure 3G; Data S3.2J). PERMANOVA analyses within each TCGA

disease type for Aitchison and Bray-Curtis distances also failed

to show significant differences between tumor and NAT

(Table S5). Co-clustering of tumor and NAT profiles in the WIS

cohort still occurred after discarding from the analysis pairs of tu-

mor-NAT samples from the samepatients (DataS3.2K),which had

a higher similarity than unmatched samples from the same tumor

type (Data S3.2A). Collectively, these analyses portray ubiquitous,

low-abundance, cancer-type-specific mycobiomes that have

community assemblies similar to those in adjacent normal tissues.

Intratumoral mycobiome-bacteriome-immunome
interactions
Fungi interact with bacteria by physical and biochemical mech-

anisms (Peleg et al., 2010), motivating exploration of inter-

domain connections between mycobiome and bacteriome

data in WIS and TCGA cohorts (Nejman et al., 2020; Poore

et al., 2020). For the WIS cohort, we compared presence/

absence data at different taxonomic levels with shuffled counter-

parts to calculate the normalized mutual information between

domains (Neeson and Mandelik, 2014). Most significant inter-

domain co-occurrences presented in breast cancer, which had

the most samples, potentially reflecting less power in other can-

cer types (Data S4.1A; Table S6). 96.5% (82 of 85) of significant

fungi-bacteria co-occurrences in breast cancer were positive,

with Aspergillus andMalassezia serving as hubs for inter-domain

co-occurrences (Data S4.1A).
Figure 3. Different cancer types exhibit distinct mycobiomes

(A) Fungal and bacterial species richness for WIS and TCGA cohorts. NC, negat

t test p values inset on plots.

(B) Scatter plot demonstrating significant Spearman correlations (r) and p values

and TCGA cohorts and no correlation in negative extraction controls. Linear regr

(C) Rarefaction plot of the number of species detected in the WIS cohort per tum

shown. Extraction and paraffin controls were grouped together.

(D) Fungal beta diversity analyses using robust Aitchison PCA (Martino et al., 2019

(WGS) samples (n = 259, 8 cancer types). Permutational multivariate analysis of

(E) Mean relative abundance bar plots at class-level phylotypes across WIS tum

(F) Unsupervised hierarchical clustering of fungal prevalence in the WIS cohort us

types. Values represent Z scores per row. Amplicon sequence variants (ASVs) w

they received.

(G) Principal coordinate analysis (PCoA) of Jaccard dissimilarities between comp
Since fungi and bacteria elicit unique host immune responses

(Aykut et al., 2019; Iliev et al., 2012; Jain et al., 2021; Ost et al.,

2021; Sepich-Poore et al., 2021; Shiao et al., 2021; Underhill

and Iliev, 2014; Wolf and Underhill, 2018), we hypothesized

that intratumoral fungal-bacterial-immune clusters exist.

Because bacteriomes (Nejman et al., 2020; Poore et al., 2020),

immunomes (Thorsson et al., 2018), and mycobiomes each

demonstrate cancer type specificity, we also reasoned that

multi-domain clusters likely vary across cancer types. We thus

compared WIS-overlapping fungal and bacterial genera in

TCGA with TCGA immune cell compositions derived from

CIBERSORT (Newman et al., 2015; Thorsson et al., 2018), using

a neural network method previously developed to estimate mi-

crobiome-metabolite co-occurrences (Morton et al., 2019a).

Unsupervised analyses revealed three distinct fungi-bacteria-

immune clusters driven by fungal co-occurrences, herein called

‘‘mycotypes,’’ named F1 (Malassezia-Ramularia-Trichosporon),

F2 (Aspergillus-Candida), and F3 (multi-genera including Yarro-

wia) (Figure 4A). F1 and F2 mycotypes comprised fewer but

more prevalent fungal genera (Data S4.1B). Raw counts were

then aggregated within each domain (e.g., bacteria) and myco-

type (e.g., F1) to form log-ratio comparisons (Morton et al.,

2019b). Log-ratio denominators provide ‘reference frames’ for

stable inferences between groups (Morton et al., 2019b), such

that fungal F1/F2 denotes how Malassezia, Ramularia, and

Trichosporon compositions change relative to Aspergillus and

Candida. Mycotype log-ratios varied across TCGA andWIS can-

cer types (Figure 4B; Data S4.1C–S4.1F; Table S7.1). Six of nine

TCGA log-ratios between domains significantly correlated (e.g.,

fungal F1/F2 versus bacterial F1/F2; Table S7.2), suggesting

similar shifts within multi-domain ecologies among diverse hu-

man cancers and validating inferred co-occurrences.

We then tested whether mycotypes were associated with im-

mune responses previously identified in TCGA patients (catego-

rized into six immune subtypes, C1–C6 (Thorsson et al., 2018))

and/or patient survival. Log-ratios of immune cells co-occurring

with F1, F2, or F3-clustered fungi significantly separated immune

response subtypes (Figure 4C; Table S7.3), suggesting that

different intratumoral mycobiomes may elicit distinct host re-

sponses. Two of the three significant comparisons were associ-

ated with higher inflammatory (C3) and lymphocyte-depleted,

strongmacrophage (C4) responses (Figure 4C,middle and right),

whereas the third comparison (Figure 4C, left) was enriched in

the two immune subtypes with the strongest macrophage
ive controls. Boxplots show median, 25th and 75th percentiles, and 1.5 3 IQR.

between fungal and bacterial richness in four tumor types shared betweenWIS

ession lines and 95% confidence intervals shown.

or type with 100 random subsamples per number of samples. Mean and SD

) on decontaminatedmycobiome data from TCGAMDAnderson primary tumor

variance (PERMANOVA) statistics (999 permutations) shown on plot.

or types. Colors correspond to fungal class.

ing species that appear in R10% of samples in R1 tumor/NAT/normal tissue

ithout species level classification were aggregated by the lowest classification

osite fungal species profiles across tissues.

Cell 185, 3789–3806, September 29, 2022 3795



B

C

D

Fu
ng

i:l
og

(F1 F2
)

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll

su
rv

iv
al

Cox proportional hazards:
P = 0.0115

Fungi: log( F1
F2

)

log-ratio > median
log-ratio <= median

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll

su
rv

iv
al

Cox proportional hazards:
P = 0.0019

log-ratio > median
log-ratio <= median

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll

su
rv

iv
al

Cox proportional hazards:
P = 0.0038

log-ratio > median
log-ratio <= median

C1 C2 C3 C4 C5 C6
4
3
2
1
0
1
2
3
4

2

0

2

4

6

8

2

0

2

4

6

8

A 2.0

1. 5

1.0

0. 5

0. 0

0. 5

1.0

1.5

2 .0

log(conditional probabilities) co-occurrence
clusters

1F 2F 3F

Colletotrichum
Fusarium
Cutaneotrichosporon
Phialocephala

Trichoderma

Talaromyces

Yarrowia

Stereum

Aureobasidium

Hyphopichia

Dissoconium

Agaricus

Exophiala

Alternaria

Tilletiopsis

Cryptococcus

Penicillum
Puccinia

Malassezia
Ramularia
Trichosporon

Aspergillus
Candida

C
itr

ob
ac

te
r

B
la

ut
ia

M
or

ax
el

la

H
ym

en
ob

ac
te

r

A
na

er
oc

oc
cu

s

B
ac

te
ro

id
es

S
te

pt
oc

oc
cu

s

E
ub

ac
te

riu
m

S
tre

pt
om

yc
es

D
ei

no
co

cc
us

A
lc

an
iv

or
ax

B
ifi

do
ba

ct
er

iu
m

A
rc

ob
ac

te
r

A
ci

ne
to

ba
ct

er

C
am

py
lo

ba
ct

er

A
ct

in
om

yc
es

P
or

ph
yr

om
on

as

Fu
so

ba
ct

er
iu

m
Ve

ill
on

el
la

S
ta

ph
yl

oc
oc

cu
s

C
or

yn
eb

ac
te

riu
m

P
re

vo
te

lla

M
yc

ob
ac

te
riu

m

S
te

no
tro

ph
om

on
as

A
ch

ro
m

ob
ac

te
r

C
om

am
on

as

R
ho

do
co

cc
us

P
an

to
ea

C
hr

ys
eo

ba
ct

er
iu

m

B
la

st
oc

oc
cu

s

Ta
nn

er
el

la

N
ov

os
ph

in
go

bi
um

E
rw

in
la

N
oc

ar
di

oi
de

s

P
ar

ac
oc

cu
s

A
ct

in
ob

ac
ill

us

R
ot

hi
a

C
at

en
ib

ac
te

riu
m

H
ae

m
op

hi
lu

s

P
ae

ni
ba

ci
llu

s
E

nt
er

ob
ac

te
r

G
em

el
la

P
ep

to
ni

ph
ilu

s

M
0 

m
ac

ro
ph

ag
es

R
es

t. 
N

K 
ce

lls
R

es
t. 

m
as

t c
el

ls

R
es

t. 
m

em
. C

D
4+

T 
ce

lls

M
2 

m
ac

ro
ph

ag
es

M
1 

m
ac

ro
ph

ag
es

M
on

oc
yt

es
C

D
8+

T 
ce

lls

N
aï

ve
 B

 c
el

ls
Ac

tiv
at

ed
 D

C
s

Ac
tiv

at
ed

 N
K 

ce
lls

R
eg

ul
at

or
y

T 
ce

lls
Pl

as
m

a 
ce

lls

Ac
tiv

at
ed

 m
as

t c
el

ls

T 
fo

llic
ul

ar
 h

el
pe

r c
el

ls
Ac

tiv
at

ed
 m

em
. C

D
4+

T 
ce

lls

N
eu

tro
ph

ils

M
em

or
y 

B 
ce

lls
Eo

si
no

ph
ils

R
es

t. 
D

C
s

G
am

m
a 

de
lta

T 
ce

lls
N

aï
ve

 C
D

4+
T 

ce
lls

R
hi

zo
bi

um

BR
C

A

U
VM

LI
H

C
SK

C
M

KI
R

P

LG
G

PR
AD

BL
C

A

KI
C

H

C
O

AD

C
ES

C

LU
AD

TH
C

A

KI
R

C

R
EA

D
U

C
ECO

V

ST
AD

ES
C

A

H
N

SC

BR
C

A

U
VM

LI
H

C

SK
C

M

KI
R

P

LG
G

PR
AD

BL
C

A

KI
C

H

C
O

AD

C
ES

C

LU
AD

TH
C

A

KI
R

C

R
EA

D

U
C

EC O
V

ST
AD

ES
C

A

H
N

SC

BR
C

A

U
VM

LI
H

C

SK
C

M

KI
R

P

LG
G

PR
AD

BL
C

A

KI
C

H
C

O
AD

C
ES

C

LU
AD

TH
C

A

KI
R

C

R
EA

D

U
C

EC O
V

S T
AD

ES
C

A

H
N

SC

Fu
ng

i:l
og

(F1 F3
)

Fu
ng

i:l
og

(F2 F3
)

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

Im
m

un
e:

lo
g(

F1 F2
)

Im
m

un
e :

lo
g(

F1 F3
)

Im
m

un
e:

lo
g (

F 2 F3
)

Immune: log( F1
F3

) Immune: log( F2
F3

)

-2
0
2
4
6
8

10
12

-2

0

2

4

6

8

10

-8
-6
-4
-2
0
2
4
6
8

ANOVA:
F=33.43
P=2.22 x 10 97

ANOVA:
F=10.85
P=2.82 x 10 30

ANOVA:
F=34.29
P=1.40 x 10 99

ANOVA:
F=10.72
P=8.45 x 10 -10

ANOVA:
F=5.49
P=0.0001

ANOVA:
F=3.60
P=0.0055

Immune cells Bacteria

Figure 4. Establishing pan-cancer mycotypes through mycobiome-bacteriome-immunome interactions

(A) Co-occurrence analyses ofWIS-overlapping TCGA fungal and bacteria genera (Table S7.5), and TCGA immune cell compositions (Thorsson et al., 2018) using

MMvec (Morton et al., 2019a). Hierarchical clustering linkage information identified three distinct clusters (‘‘mycotypes’’) associated with groups of fungal genera:

F1, F2, and F3.

(legend continued on next page)
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responses (C4, C5) (Thorsson et al., 2018). Inflammatory re-

sponses (C3) have the best survival prognosis (Thorsson et al.,

2018), and we found that a greater abundance of C3-linked im-

mune mycotypes was associated with better overall survival

(OS) across 20 cancer types (Figure 4D,middle and right) without

sequencing center associations (Table S7.4). Although most

fungal or bacterial comparisons did not stratify OS (Data

S4.2A) or separate immune subtypes (Data S4.2B), the log-ratio

of just five fungal genera (Malassezia-Ramularia-Trichosporon to

Aspergillus-Candida) significantly prognosed pan-cancer sur-

vival (Figure 4D, left). Cox proportional hazards analyses

confirmed that categorization using log-ratio medians signifi-

cantly stratified OS in many individual cancer types—excluding

separation solely by differential cancer ranking—and cancer

type and stage (Data S4.3), warranting further investigation.

Statistical and machine learning analyses demonstrate
cancer-type-specific mycobiomes
We next tested whether machine learning (ML) on mycobiomes

discriminates between and within cancer types. We first evalu-

ated ML models on raw, decontaminated TCGA fungal count

data (n = 14,495 non-zero decontaminated samples) with exten-

sive positive and negative control analyses, revealing pan-can-

cer discrimination, and found synergistic performance when

adding bacterial information in TCGA and WIS tumors

(Figures 5A–5D; Data S5 Note and S5.1–S5.5). Toward building

a pan-cancer classifier, we combined all decontaminated

TCGA mycobiome data using supervised batch correction, as

previously done with TCGA bacteriomes and viromes (Poore

et al., 2020) (Data S5.6A). Evaluating one-cancer-type-versus-

all-others models on batch-corrected mycobiome species re-

vealed strong discrimination across 32 cancer types (Figure 5E;

area under receiver operating characteristic [ROC] curve

[AUROC] 95% CI: [83.27, 85.39]%). Negative controls showed

null performances (Data S5.6B). We then cross-tested models

built on two independent raw or batch-corrected TCGA halves,

finding significantly correlated performance among primary tu-

mor comparisons (Data S5.3G, S5.3H, S5.6C, and S5.6D). Sub-

setting the batch-corrected data to fungi identified by EukDetect

(Table S8.1) (Lind and Pollard, 2021), a eukaryotic-specific,

marker-based taxonomy assignment algorithm, gave strong

performance similar to our high-coverage fungi (Data S5.1K–

S5.1P). Notably, our 31 high coverage fungi were significantly

more likely to be detected by EukDetect (Fisher exact test: p =

5.67 3 10�11, odds ratio = 28.0), suggesting that marker-based

methods may be limited in low biomass settings.

We next applied differential abundance (DA) testing (Lin and

Peddada, 2020) and ML between stage I and stage IV tumor my-

cobiomes. DA testing revealed stage-specific fungi for stomach,

rectal, and renal cancers among RNA-seq samples (Data S5.7),
(B) Log-ratios of fungal mycotype abundances across TCGA cancer types, revea

(C) Varying mycotype immune log-ratios across pan-cancer immune subtypes (Th

C4, lymphocyte depleted (but with secondmost macrophages); C5, immunologic

pairwise log-ratio comparisons across all immune subtypes.

(D) Significant associations with overall survival in 20 cancer types based on the

middle; F2/F3, right). Table S7.6 shows the sample sizes above and below the m

(B and C) Boxplots show median, 25th, and 75th percentiles and 1.5 3 IQR.
and ML supported stomach and renal cancer stage differentia-

tion (Data S5.8A), agreeing with previous results on stage-spe-

cific bacteriomes excluding colon cancer (Poore et al., 2020).

Mycobiomes may not correlate with cancer stages, as defined

by host tissue, for all cancer types.

Tumor and NAT mycobiome samples are similar in composi-

tion (Figures 3G; Data S3.2J); hence, discriminating them may

be hard. Tumor versus NAT ML performed poorly on most

TCGA raw data subsets and WIS data (Data S5.8B–S5.8G).

Stomach and kidney cancers may comprise exceptions (Data

S5.8B, S5.8C, S5.8E, and S5.8F) but were absent in the WIS

cohort. Nonetheless, the small tumor-NAT effect size seemed

surmountable when re-examining the full, batch-corrected data-

set (Data S5.8H). Analogously, comparing breast tumors with

true normal tissue in the WIS cohort revealed differential fungal

prevalence and better ML performance (Data S5.8I and S5.8J).

These analyses suggest tissue mycobiomes may distinguish tu-

mor and NAT in sufficiently powered studies.

Previous bacteriome-centric analyses revealed cancer-type-

specific, blood-derived microbial DNA (Poore et al., 2020),

prompting us to examine fungal DNA in TCGA WGS blood sam-

ples. DA testing and ML on raw, decontaminated fungal data

with extensive controls showed strong discrimination between

cancer types and synergy with bacterial features (Figures 5F

and 5G; Data S5 Note and S5.9–S5.12). ML on batch-corrected

fungal species also showed pan-cancer discrimination (AUROC

95% CI: [92.42, 94.02]%; Figure 5H) with null performance on

negative controls (Data S5.13A). Subsetting the analysis to stage

Ia–IIc cancers in raw and batch-corrected datasets suggested

stage-invariant performance (Data S5.13B and S5.13C).

We then repeated all raw and batch-corrected tumor, blood,

and NAT analyses using differing ML model types and sam-

pling strategies, finding similar results (Data S5.14 and

S5.15), suggesting generalizable performance. Statistical

and ML analyses support cancer-type-specific tissue and

blood mycobiomes, with potential clinical utility. To encourage

hypothesis generation, we summarized our results on an

interactive website (http://cancermycobiome.ucsd.edu/).

Clinical utility of cancer mycobiomes
We next explored the cancer mycobiome’s diagnostic and prog-

nostic capacities, as previously established for cancer bacter-

iomes (Nejman et al., 2020; Poore et al., 2020; Sepich-Poore

et al., 2021, 2022). Using the WIS cohort, we first tested fungal

associations with disease phenotypes, patient survival, and

treatment response.

In breast cancer, we found Cladosporium sphaerospermum

and the Cladosporium genus, previously reported in breast can-

cer (Banerjee et al., 2021), enriched in tumors of patients R50

years old. Cladosporium was also enriched in human epidermal
ling significantly differing values (one-way ANOVAs).

orsson et al., 2018). C1, wound healing; C2, IFN-g dominant; C3, inflammatory;

ally quiet (but with most macrophages); C6, TGF-b dominant. Table S7.3 shows

F1/F2 fungal mycotype log-ratio (left) or mycotype immune log-ratios (F1/F3,

edians. Note: the C3 immune subtype has the best prognosis.
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growth factor receptor 2 (HER2) negative tumors (Figures 6A and

6B), although known age-HER2-status associations complicate

causality (Howlader et al., 2014). We also found significantly

shorter OS in patients with intratumoralMalassezia globosa (Fig-

ure 6C), a common fungus on human skin (Findley et al., 2013), in

breast milk (Boix-Amorós et al., 2017), and in pancreatic tumors,

in which it has oncogenic effects (Alam et al., 2022; Aykut et al.,

2019). Malassezia restricta, another abundant skin fungus pre-

sent in breast cancer, was not correlated with OS (data not

shown). In lung cancer, we found higher intratumoral fungal rich-

ness and enrichment of Aspergillus and Agaricomycetes in cur-

rent smokers compared with never smokers (Figures 6D and 6E).

In ovarian cancer, patients with intratumoral Phaeosphaeria-

ceae, or related Phaeosphaeria genus, had significantly shorter

progression free survival (PFS), shortening median PFS from

498 to 135 days (Figure 6F; Data S6.1A). We also examined

fungal associations with immunotherapy response in metastatic

melanoma. Fungal richness did not significantly vary (p=0.88,

two-sided Wilcoxon test), but Capnodiales, and its genus, Cla-

dosporium, were significantly enriched in non-responders

(Figure 6G).

Blood-derived, stage-invariant, cancer-type-specific fungal

compositions in TCGA suggest their utility as minimally invasive

diagnostics, analogous to bacterial counterparts (Poore et al.,

2020). We validated these findings in two independent, published

cohorts (Hopkins, UCSD) comprising 330 healthy and 376 can-

cer-bearing subjects (Table S1) that underwent shallow whole

genome plasma sequencing (Cristiano et al., 2019; Poore et al.,

2020). The Hopkins cohort focused on treatment-naive, early-

stage cancers, whereas the UCSD cohort focused on treated,

late-stage cancers, collectively addressing most clinical sce-

narios across 10 cancer types. Additionally, the Hopkins cohort

benchmarked well established (Lo et al., 2021), state-of-the-art

fragmentomic diagnostics (Cristiano et al., 2019), providing direct

performance comparisons to microbial-centric methods.

The Hopkins cohort underwent the same stringent human-read

removal, microbial classification, and fungal decontamination as

TCGA (n = 537; 8 cancer types). Examining treatment-naive,

earliest-time point samples (n = 491), we estimated pan-cancer-

versus-healthy diagnostic performance of raw microbial abun-

dances using a published ML framework and hyperparameters

(Cristiano et al., 2019). Decontaminated fungal species (n = 209)
Figure 5. Machine learning (ML) analyses reveal cancer-type-specific

(A) One-cancer-type-versus-all-others predictions on Harvard Medical School tu

(B) Negative control analyses for (A) using scrambled metadata or shuffled sa

**** q < 0.001; ns, not significant.

(C) Multi-class pan-cancer discrimination among TCGA WGS tumor samples u

10-fold CV).

(D) Aggregated one-cancer-type-versus-all-others ML performance in WIS coho

(E) One-cancer-type-versus-all-others predictions using batch-corrected, TCGA

(F) One-cancer-type-versus-all-others predictions using HMS blood samples (n

(G) Multi-class pan-cancer discrimination among TCGA WGS blood samples u

10-fold CV).

(H) One-cancer-type-versus-all-others predictions using batch-corrected, TCGA

(A, E, F, and H) Area under ROC curve (AUROC) and area under precision-recall c

[CV]) to estimate averages (dots) and 95% confidence intervals (brackets). ‘‘Hig

Weizmann,’’ 34 WIS-overlapping fungal species; ‘‘decontaminated,’’ 224 decont

(B, C, D, and G) Two-sided Wilcoxon tests with Benjamini-Hochberg correction.
provided moderate discriminatory performance, and perfor-

mance with multi-domain feature sets exceeded state-of-the-

art, fragmentomic approaches (average AUROCs: 96%–98%),

including a subset of 287 WIS tumor-overlapping fungi and bac-

teria (Figure 6H). RunningMLmodels withWIS-overlapping fungi,

bacteria, or both also revealed significant, synergistic perfor-

mances (Data S6.1B). Per cancer type ML versus controls per-

formed similarly (Figure 6I), with best fungal performance in breast

cancer (AUROC 95% CI: [81.40, 93.53]%). Fungal discriminatory

performance mostly plateaued at the taxonomic class level until

species (Data S6.1C). Negative controls had null performances

(Data S6.1D). All log-ratios of fungi from treatment-naive TCGA

tumor mycotypes (Figure 4B) significantly varied among treat-

ment-naive Hopkins cancer types in plasma (Data S6.1E–

S6.1G), and the F1/F3 fungal log-ratio was significantly higher in

cancer than controls (Data S6.1H). Testing ML models between

cancer types also revealed moderate discrimination for decon-

taminated fungi and best performancewithmulti-domain features

(Data S6.2A). Collectively, these analyses suggest clinical utility of

plasma-derived, multi-domain microbial nucleic acids in treat-

ment-naive patients.

We then focused our ML analyses on Hopkins’s 45 stage I,

treatment-naive samples across eight cancer types versus

healthy controls (Figure 6J). Decontaminated fungal species

provided notable performance, and multi-domain features

matched or exceeded published fragmentomic approaches

(average AUROCs: 94%–96%; Figure 6J). ML across individual

stages continued this pattern (Data S6.2B), with AUROCs not

significantly varying across stages for any feature set (Data

S6.2C) or area under precision-recall curves (AUPRs) for multi-

domain feature sets (Data S6.2D). These data suggest stage-

invariant performance of microbial-augmented liquid biopsies.

Hopkins pan-cancer versus healthy ML analyses revealed that

the top 20 ranked, decontaminated fungal species (9.6%of total)

performed at least as well as all 209 decontaminated fungi (Data

S6.2E; Table S8.2). This reduced signature performed similarly to

all decontaminated fungi in the Hopkins cohort when examining

individual cancer types (Figure 6I), stages (Data S6.2B), and

negative controls (Data S6.1D). These 20 fungi also strongly

discriminated among batch-corrected, pan-cancer TCGA blood

samples (AUROC 95% CI: [87.76, 89.79]%; Data S6.2F), collec-

tively affirming a pan-cancer plasma mycobiome signature.
tumor and blood mycobiomes

mors (HMS, n = 876).

mples. All one-cancer-type-versus-all-others performances are aggregated.

sing WIS-overlapping features across 500 independent folds (50 iterations of

rt tumors.

primary tumor data (n = 10,998).

= 835).

sing WIS-overlapping features across 500 independent folds (50 iterations of

blood data (n = 1,771).

urve (AUPR) measured on independent holdout folds (10-fold cross-validation
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We then reprocessed all 169 plasma samples from the

UCSD cohort, which tested different experimental methods

(fragmented versus unfragmented DNA), patient types (treated

versus treatment-naive), and cancer types than the Hopkins

cohort (1 of 8 Hopkins cancer types overlapped with UCSD).

Although these differences limited direct comparisons, we

tested whether the Hopkins 20-fungi signature provided similar

healthy-versus-cancer performance, which it did (average

AUROCs: 80%–86%; Figure 6K). The Hopkins 20-fungi signa-

ture performed similarly to the full set of UCSD decontaminated

fungi in pan-cancer versus healthy (Data S6.2G) or per-cancer-

type versus healthy comparisons (Data S6.2H), demonstrating

its generalizability. Comparing performances with this signature

or all decontaminated fungi in the UCSD cohort to negative con-

trols revealed expected results (Data S6.3A). Log-ratios of

TCGA-derived mycotype fungi did not significantly vary among

UCSD cancer types (data not shown), potentially due to treat-

ment status, but ML between cancer types showed detectable

differences (Data S6.3B). Like the Hopkins cohort, the F1/F3

fungal log-ratio was significantly higher in cancer versus healthy

samples (Data S6.3C), highlighting their potential clinical utility.

Exploratory analyses of immunotherapy response information

on UCSD cohort patients also revealed that WIS-overlapping

fungi moderately discriminated responders from non-re-

sponders in melanoma (Data S6.3D) but not lung cancer (data

not shown), although this remains to be validated in other co-

horts. Overall, analyses across two independent cohorts and

10 cancer types show the utility of multi-domain cancer diagnos-

tics and the plasmamycobiome, with a 20-fungi signature poten-

tially able to distinguish pan-cancer versus healthy individuals.

DISCUSSION

We characterized the mycobiomes of 17,401 tissue and blood

samples in four independent cohorts across 35 cancer types

with complementary strategies. The study revealed cancer-type-

specific fungal ecologies with lower diversities and abundances

than matched bacteriomes; however, although fungi were de-

tected in all examined cancer types, not all individual tumors

were found positive for fungal signal. Imaging showed most fungi
Figure 6. Clinical utility of cancer mycobiomes

(A and B) Differential prevalence of fungal taxa in WIS breast tumors by (A) age o

(C) Kaplan-Meier survival probability of WIS breast cancer patients positive (n =

(D) Fungal richness in WIS lung tumors by smoking status. Boxplots: median, 25

(E) Differential prevalence of fungi in WIS lung tumors by smoking status.

(F) Kaplan-Meier plot demonstrating progression free survival (PFS) probability in

family. p value from log-rank test.

(G) Differential prevalence of fungi in WIS melanoma tumors by immune checkpo

(H) Treatment-naive pan-cancer versus healthy discrimination in the Hopkins plas

and bacteria (blue, 287 species), or decontaminated fungi (orange, 209 species)

(I) Per cancer type versus healthy discrimination in the Hopkins cohort with 10-

versus healthy machine learning model. Dots and brackets represent average per

colored) denote null AUROCs and AUPRs.

(J) Stage I pan-cancer versus healthy discrimination in the Hopkins cohort with e

(K) Pan-cancer versus healthy controls discrimination in the Hopkins (purple) and

(A, B, E, and G) p values calculated by Fisher’s exact test.

(H, J, and K) 10-fold cross-validation repeated ten times.Mean performance with 9

denoting single repeats.
to be intracellularwithin cancer and immunecells, analogous to in-

tratumoral bacteria (Nejman et al., 2020).Wealso found significant

correlations between specific fungi and age, tumor subtypes,

smoking status, response to immunotherapy, and survival mea-

sures. Whether these fungi are correlated or causally associated

is yet to be determined. Interestingly, we found Malassezia glo-

bosa, which promotes pancreatic oncogenesis (Alam et al.,

2022; Aykut et al., 2019), correlated to shorterOS inbreast cancer.

Although fungal pancreatic oncogenesis occurs via complement

cascadeactivationand IL-33 secretion, little is knownabout fungal

functional repertoires inother cancers. Functional characterization

remains difficult due to low fungal abundances and a paucity of

published fungal genomes that limit gene content inference from

amplicon data, as possible for bacteria (Douglas et al., 2020).

To infer potential effects of fungi in tumors, we examinedmyco-

biome-bacteriome-immunome interactions. We identified fungal-

driven, pan-cancer ‘‘mycotypes’’ with distinct immune responses

that stratified patient survival. Although our data do not establish

causal relationships behind these clusters, they suggest that fungi

are sparse but immunologically potent, analogous to PD1+ cells in

immunotherapy (Kather et al., 2018). The associations of fungi

with clinical parameters including OS in breast cancer, PFS in

ovarian cancer, immunotherapy response in melanoma tumors,

and detection of early-stage cancers support their clinical utility

as potential biomarkers and therapeutic targets.

We observed strong positive correlations between fungal and

bacterial diversities, abundances, and co-occurrences across

several cancer types, suggesting tumor microenvironments

(TMEs) may be non-competitive spaces for multi-domain micro-

bial colonization, which we term a ‘‘permissive’’ phenotype. This

differs from the gut, especially under anti-cancer or antibiotic

therapies, where fungal and bacterial populations alternate and

compete over shared resources—an ‘‘antagonistic’’ phenotype

(Seelbinder et al., 2020; Shiao et al., 2021). It remains unclear

whether a permissive phenotype is passively allowed by immu-

nosuppressed, nutrient-rich TMEs (Hinshaw and Shevde, 2019)

or denotes active synergy for greater ecosystemmultifunctional-

ity (Wagg et al., 2019) or a selection advantage for tumors

(Aykut et al., 2019; Geller et al., 2017; Pushalkar et al.,

2018). Mechanism(s) notwithstanding, the presence of spatially
r (B) human epidermal growth factor receptor 2 (HER2) status.

11) or negative (n = 69) for Malassezia globosa. p value from log-rank test.
th and 75th percentiles, and 1.5 3 IQR.

WIS ovarian patients positive (n = 9) or negative (n = 45) for Phaeosphaeriaceae

int inhibitor response.

ma cohort across all database hits (red, 7,418 features), WIS-overlapping fungi

.

fold cross-validation. The ‘‘top 20 fungi’’ (green) are derived from pan-cancer

formance and 95% confidence intervals, respectively. Horizontal lines (gray or

quivalent feature sets and colors as (H).

UCSD (teal) plasma cohorts using the ‘‘top 20 fungi’’ features.

9%confidence intervals (colored ribbons) and gray or lightly colored lines each
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heterogeneous, intracellular, and polymicrobial communities

in tumors motivates exploring cancer clonal evolution as a

multi-species process with joint (e.g., TME nutrient limitations)

and disjoint (e.g., antibiotic) selection pressures affecting

fungal-bacterial-cancer-immune cell compositions (Sepich-

Poore et al., 2022).

We provide the first analysis of plasma mycobiomes in treat-

ment-naive, early-stage cancers, with stage-invariant diagnostic

performance from multi-domain biomarkers that exceeds host-

centric fragmentomics (Cristiano et al., 2019). Although sources

of cell-free plasma-derived fungal or bacterial DNA remain un-

known (Sepich-Poore et al., 2021), tumor-derived WIS species

provided similar performance to a multi-domain database

26-fold larger, suggesting significant tumor origins.

Limitations of the study
Our study has several caveats. Despite the relatively large num-

ber of samples per cohort, the strength of cancer type separation

by mycobial data varied somewhat by cohort. We also note that

low alpha diversity within samples and high beta diversity be-

tween samples of the same cancer type (Figures 3A, 3C, and

3D) yielded a high variation component in the data that required

thousands of samples to obtain robust signals of cancer-specific

mycobiomes. Thus, we have often displayed primary results as

averages across samples within cancer types (Figures 3F and

3G) and positioned per-sample distributions in the supplement

(Data S3.2B–S3.2F and S3.2I).

In TCGA data analysis, data aggregation across samples was

needed to achieve high fungal genome coverages. The low per-

sample genome coverages of fungi indicated fungal undersam-

pling in the available TCGA data. Intersecting datasets increased

confidence of fungal calls, but low coverage species could be

impacted by false assignments to mobile genetic elements.

More work is needed on the technical impact of mobile elements

in characterizing microbiome communities usingWGS technolo-

gies. The assembly of fungal genomes per cancer type identified

fungal genomic bins that were phylogenetically concordant to

our taxonomy data, but the size and complexity of fungal ge-

nomes resulted in relatively incomplete and possibly mixed

fungal bins (Table S8.3).

The low fungal biomass in our samples presented many chal-

lenges. Although we have utilized multiple methods to control for

possible contaminations, including extraction and paraffin con-

trols and bioinformatic decontamination, we cannot rule out all

false-positive results. The low biomass and bioinformatic chal-

lenges further precluded functional characterization of the tumor

mycobiome. Our work also did not include truly normal tissues,

excludingbreast, limitingconclusions around tumor fungal origins,

including whether tumor fungi derive from such surrounding tis-

sues or vice versa, or the broad characterization of normal tissue

mycobiomes—an effort complicated by ethical and acquisition

difficulties of normal human tissues. Ideally, future studies will

validate these findings in geographically diverse cohorts with

matched, truly normal tissues in addition to tumor and NAT

samples.

Additionally, although four different staining methods revealed

intratumoral fungal presence and tumor-specific localization

patterns, they proved challenging, with differing sensitivities
3802 Cell 185, 3789–3806, September 29, 2022
and specificities across cancer types. Indeed, as all of these

stainingmethods can only detect a subset of the fungal kingdom,

we expect them to have a relatively high false-negative rate.

Moreover, although negative controls for each of these methods

were used, some false-positive results are inevitable.

Finally, although our study broadens the cancer microbiome

landscape, our findings do not establish causality. Nonetheless,

this first pan-cancer mycobiome atlas informs future study

directionswhile characterizing a new layer of information for can-

cer diagnostics and therapeutics for the benefit of patients

worldwide.
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sai, N., Sültmann, H., andMoch, H.; PCAWGPathogens (2020). The landscape

of viral associations in human cancers. Nat. Genet. 52, 320–330. https://doi.

org/10.1038/s41588-019-0558-9.

Zhang, C., Scornavacca, C., Molloy, E.K., and Mirarab, S. (2020). ASTRAL-

Pro: quartet-based species-tree inference despite paralogy. Mol. Biol. Evol.

37, 3292–3307. https://doi.org/10.1093/molbev/msaa139.

Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2014). PEAR: a fast and

accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620.

https://doi.org/10.1093/bioinformatics/btt593.

Zhu, F., Willette-Brown, J., Song, N.-Y., Lomada, D., Song, Y., Xue, L., Gray,

Z., Zhao, Z., Davis, S.R., Sun, Z., et al. (2017). Autoreactive T cells and chronic

fungal infection drive esophageal carcinogenesis. Cell Host Microbe 21, 478–

493.e7. https://doi.org/10.1016/j.chom.2017.03.006.

Zhu, Q., Huang, S., Gonzalez, A., McGrath, I., McDonald, D., Haiminen, N.,

Armstrong, G., Vázquez-Baeza, Y., Yu, J., Kuczynski, J., et al. (2022). Phylog-

eny-aware analysis of metagenome community ecology based on matched

reference genomes while bypassing taxonomy. mSystems 7, e0016722.

https://doi.org/10.1128/msystems.00167-22.

https://doi.org/10.1002/bies.202100252
https://doi.org/10.1126/science.abc4552
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1084/jem.20192282
https://doi.org/10.1016/j.ccell.2021.07.002
https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1038/nbt.3981
https://zenodo.org/record/5529468#.YxmakD1BzDc
https://doi.org/10.1371/journal.pbio.3001007
https://doi.org/10.1371/journal.pbio.3001007
https://CRAN.R-project.org/package=survival
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1158/2159-8290.CD-20-0263
https://doi.org/10.1158/2159-8290.CD-20-0263
https://doi.org/10.1128/JCM.37.6.1846-1851.1999
https://doi.org/10.1038/nri3684
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1186/2047-217X-2-16
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41467-019-12798-y
https://doi.org/10.1038/s41467-019-12798-y
https://doi.org/10.1101/gr.228429.117
https://doi.org/10.1101/gr.228429.117
http://refhub.elsevier.com/S0092-8674(22)01127-8/sref100
http://refhub.elsevier.com/S0092-8674(22)01127-8/sref100
http://refhub.elsevier.com/S0092-8674(22)01127-8/sref100
http://refhub.elsevier.com/S0092-8674(22)01127-8/sref100
https://doi.org/10.1038/s41586-020-2931-3
https://doi.org/10.1038/nri.2017.136
https://doi.org/10.1038/nri.2017.136
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1038/s41588-019-0558-9
https://doi.org/10.1038/s41588-019-0558-9
https://doi.org/10.1093/molbev/msaa139
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1016/j.chom.2017.03.006
https://doi.org/10.1128/msystems.00167-22


ll
OPEN ACCESSResource
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-1-3 b-glucan abcam Cat#ab233743; RRID: AB_2923478

Rabbit polyclonal anti-Aspergillus abcam Cat#ab20419; RRID: AB_445571

Mouse monoclonal anti-CD45 Thermo Fisher Scientific Cat# 14-0459-82; RRID: AB_467274

Mouse monoclonal anti-CD68 Thermo Fisher Scientific Cat# MA5-12407; RRID: AB_10979558

Biological samples

Ovarian cancer TMA US Biomax Cat#OV8010a

Melanoma TMA US Biomax Cat#ME804a

Lung cancer TMA US Biomax Cat#LC819a

Lung cancer TMA US Biomax Cat#LC813b

Breast cancer TMA US Biomax Cat#BR1191

Breast cancer TMA US Biomax Cat#BC08118a

Pancreatic cancer TMA US Biomax Cat#PA961f

Pancreatic cancer TMA US Biomax Cat#PA804b

Fungus 4-Tissue Artificial TMA Aspergillus,

Candida, Histoplasma and Negative Control

BioSB Cat#BSB-0335-CS

The resource of the WIS samples cohort

was constructed at the Weizmann Institute

of Science. All details are in Table S3.

Nejman et al., 2020 N/A

Critical commercial assays

Phusion Hot Start II DNA Polymerase Thermo Fisher Scientific Cat# F549L

Qiaquick PCR purification kit Qiagen Cat#28104

Agencourt AMPure XP beads Beckman Coulter Cat#A63881

MiSeq Reagent Kit v3 (600-cycle) Illumina Cat#MS-102-3003

KAPA SYBR FAST qPCR Master Mix (2X) ABI Prism Kapa Biosystems Cat#KK4605

Gomori Methenamine-Silver (GMS) Nitrate Stain Kit abcam Cat#ab150671

Bond polymer refine detection kit Leica Biosystems Cat#DS9800

BOND epitope retrieval solution 1 Leica Biosystems Cat#AR9961

Deposited data

Raw data from WIS cohort This paper PRJNA786764

Datasets

TCGA CIBERSORT immune cell abundances

and linked survival data

Thorsson et al., 2018 Table S1

TCGA WGS and RNA-Seq raw data and

metadata (processed and/or downloaded

from Cancer Genomics Cloud)

Lau et al., 2017 Cancer Genomics Cloud

Hopkins plasma WGS raw data Cristiano et al., 2019 EGAD00001005339

UCSD plasma WGS raw data Poore et al., 2020 ENA: ERP119598 (HIV-negative controls);

ERP119596 (prostate cancer); ERP119597

(lung cancer and melanoma)

Experimental models: Cell lines

HS-5 human fibroblast cell line ATCC Cat# CRL-11882

Oligonucleotides

Forward primer for 1st ITS2 PCR: ITS86F

5’-GTGAATCATCGAATCTTTGAA-3’

Turenne et al., 1999 N/A

(Continued on next page)
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Reverse primer for 1st ITS2 PCR: ITS4+rd2

Illumina adaptor 5’-AGACGTGTGCTCTTCCGATCT -

TCCTCCGCTTATTGATATGC-3’

ITS4 from White et al., (1990) N/A

Forward primer for 2nd ITS2 PCR: P5-rd1-ITS86F

5’ - AATGATACGGCGACCACCGAGATCT -

ACACTCTTTCCCTACACGACGCTCTTCCGATCT -

GTGAATCATCGAATCTTTGAA-3’

ITS86F from

Turenne et al., (1999)

N/A

Reverse primer for 2nd ITS2 PCR:

5’- CAAGCAGAAGACGGCATACGAGAT -

NNNNNNNN - GTGACTGGAGTTCAGAC

GTGTGCTCTTCCGATCT-3’

Nejman et al., 2020 N/A

Forward primer for 5.8S qPCR: ITS3 -

5’-GCATCGATGAAGAACGCAGC-3’

White et al., 1990 N/A

Reverse primer for 5.8S qPCR: ITS86R -

5’- TTCAAAGATTCGATGATTCAC-3’

Turenne et al., 1999 N/A

Probe for 28S fungal FISH: D-205:

5’- ATTCCCAAACAACTCGAC-3’

Inácio et al., 2003 N/A

Probe for 28S fungal FISH: D-223:

5’-CCACCCACTTAGAGCTGC-3’

Inácio et al., 2003 N/A

Probe for 28S fungal FISH: D-260:

5’-TCGGTCTCTCGCCAATATT-3’

Inácio et al., 2003 N/A

Software and algorithms

Python version 3.6 Python Software Foundation https://www.python.org/

Qiita cloud-enabled microbiome analyses Gonzalez et al., 2018 https://qiita.ucsd.edu/

Woltka alignment-based taxonomy

classification (used by Qiita)

Zhu et al., 2022 https://github.com/qiyunzhu/woltka

ITS2 classification pipeline This paper https://github.com/microbiofunc/ITS2-pipeline

Dockerized host depletion pipeline This paper https://github.com/knightlab-analyses/mycobiome/

tree/master/Docker_host_depletion_pipeline

Per-sample and aggregate genome coverage Hakim et al., 2022 https://github.com/ucsd-cmi/zebra_filter

MMvec co-occurrence analyses Morton et al., 2019a https://github.com/biocore/mmvec

Robust Aitchison beta diversity Martino et al., 2019 https://github.com/biocore/DEICODE

EMPeror PCoA visualizer Vázquez-Baeza et al., 2013 https://github.com/biocore/emperor

EukDetect Lind and Pollard, 2021 https://github.com/allind/EukDetect

metaSPAdes 3.13.1 Nurk et al., 2017 https://github.com/ablab/spades

MaxBin2 2.2.4 Wu et al., 2016 https://sourceforge.net/projects/maxbin2/

MetaBAT2 2.12.1 Kang et al., 2019 https://bitbucket.org/berkeleylab/metabat

Concoct 1.0.0 Alneberg et al., 2014 https://github.com/BinPro/CONCOCT

BowTie2 2.2.3 Langmead and Salzberg, 2012 https://github.com/BenLangmead/bowtie2

SAMtools 0.1.19 Li et al., 2009 https://github.com/samtools/samtools

metaWRAP 1.1.2) Uritskiy et al., 2018 https://github.com/bxlab/metaWRAP

CheckM (v. 1.0.13) Parks et al., 2015 https://github.com/Ecogenomics/CheckM

EukCC Saary et al., 2020 https://github.com/Finn-Lab/EukCC

BUSCO v5.1.2 Simão et al., 2015 https://busco.ezlab.org/

Mfannot N/A https://github.com/BFL-lab/Mfannot

PEAR version 0.9.10 Zhang et al., 2014 https://cme.h-its.org/exelixis/web/software/pear/

cutadapt version 1.17 Martin, 2011 https://cutadapt.readthedocs.io/en/v1.17/

QIIME 2 version 2018.8 Bolyen et al., 2019 https://qiime2.org/

ITSx version 1.1b1 (Bengtsson-Palme

and Ryberg, 2013

https://microbiology.se/software/itsx/

R version 4.03 R CRAN www.r-project.org

(Continued on next page)
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https://qiita.ucsd.edu/
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phyloseq 1.34.0 McMurdie and Holmes, 2013 https://bioconductor.org/packages/release/

bioc/html/phyloseq.html

caret 6.0-90 Kuhn, 2008 https://topepo.github.io/caret/

PRROC 1.3.1 Grau et al., 2015 https://cran.r-project.org/web/packages/

PRROC/index.html

gbm 2.1.8 Ridgeway, 2007 https://cran.r-project.org/web/packages/

gbm/gbm.pdf

xgboost 1.5.0.1 Chen et al., 2015 https://xgboost.readthedocs.io/en/stable/

R-package/xgboostPresentation.html

randomForest 4.6-14 Liaw and Wiener, 2002 https://cran.r-project.org/web/packages/

randomForest/randomForest.pdf

ANCOM-BC 1.4.0 Lin and Peddada, 2020 https://github.com/FrederickHuangLin/ANCOMBC

decontam 1.14.0 Davis et al., 2018 https://github.com/benjjneb/decontam

limma-voom 3.50.0 Law et al., 2014 https://bioconductor.org/packages/release/

bioc/html/limma.html

snm 1.42.0 Mecham et al., 2010 https://www.bioconductor.org/packages/

release/bioc/html/snm.html

MATLAB version 2019b with the Statistics

and Machine Learning Toolbox

MathWorks https://www.mathworks.com

Cytoscape 3.8.1 Shannon et al., 2003 https://cytoscape.org/

UNITE database (version 8, dynamic,

sh_taxonomy_qiime_ver8_dynamic_

04.02.2020.txt)

Nilsson et al., 2019 https://unite.ut.ee/repository.php

scikit-bio 0.5.6 N/A https://github.com/biocore/scikit-bio

Other

Pannoramic SCAN II automated slide scanner 3D HISTECH N/A
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ravid

Straussman (Ravidst@weizmann.ac.il).

Materials availability
This study did not generate new unique reagents.

Data and code availability
TCGA, Hopkins, and UCSD cohorts: Raw data BAM files comprise sensitive patient data and require data access approval. To ac-

cess raw TCGABAM files, researchers will need to apply to the TCGAData Access Committee (DAC) through dbGaP (https://dbgap.

ncbi.nlm.nih.gov/aa/wga.cgi?page=login). To access raw Hopkins BAM files, researchers will need to apply through the European

Genome-Phenome Archive (EGA): EGAS00001003611. Host-depleted UCSD BAM files are available on the European Nucleotide

Archive (ENA): ERP119598 (UCSD HIV-negative controls); ERP119596 (UCSD prostate cancer); ERP119597 (UCSD lung cancer

and melanoma). Additionally, all host-depleted fastq files and processed biom tables for TCGA, Hopkins, and UCSD cohorts are

available on Qiita (https://qiita.ucsd.edu/): 13722 (TCGA WGS), 13767 (TCGA RNA-Seq), 13984 (Hopkins), 12667 (UCSD HIV-free

controls); 12691 (UCSD prostate cancer); 12692 (UCSD lung cancer andmelanoma). Physical sample accession for TCGA, Hopkins,

and UCSD cohorts is not available. WIS cohort: Breast and colon samples from Sheba; melanoma samples from the Netherlands

Cancer Institute–Antoni van Leeuwenhoekziekenhuis (NKI-AVL); and lung, breast, ovary, and GBM samples from the Israeli Bio-

repository Network for Research (MIDGAM) are available from R.S. under material transfer agreements with the Weizmann Institute.

All processed data of the WIS cohort are available in the manuscript or the supplementary materials. WIS ITS2 amplicon data are

available from the National Center for Biotechnology Information (NCBI) BioProject: PRJNA786764. The ITS2 pipeline scripts are

available on GitHub: https://github.com/microbiofunc/ITS2-pipeline. All files and code associated with phylogenomics of the fungal

bins are available on Zenodo (https://doi.org/10.5281/zenodo.6419964) and GitHub (https://github.com/stajichlab/

Tumor_mycobiome_2022). All code associated with TCGA, Hopkins, and UCSD analyses in this manuscript, including processed
Cell 185, 3789–3806.e1–e17, September 29, 2022 e3

mailto:Ravidst@weizmann.ac.il
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page&equals;login
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page&equals;login
https://qiita.ucsd.edu/
https://github.com/microbiofunc/ITS2-pipeline
https://doi.org/10.5281/zenodo.6419964
https://github.com/stajichlab/Tumor_mycobiome_2022
https://github.com/stajichlab/Tumor_mycobiome_2022
https://bioconductor.org/packages/release/bioc/html/phyloseq.html
https://bioconductor.org/packages/release/bioc/html/phyloseq.html
https://topepo.github.io/caret/
https://cran.r-project.org/web/packages/PRROC/index.html
https://cran.r-project.org/web/packages/PRROC/index.html
https://cran.r-project.org/web/packages/gbm/gbm.pdf
https://cran.r-project.org/web/packages/gbm/gbm.pdf
https://xgboost.readthedocs.io/en/stable/R-package/xgboostPresentation.html
https://xgboost.readthedocs.io/en/stable/R-package/xgboostPresentation.html
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://github.com/FrederickHuangLin/ANCOMBC
https://github.com/benjjneb/decontam
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/snm.html
https://www.bioconductor.org/packages/release/bioc/html/snm.html
https://www.mathworks.com
https://cytoscape.org/
https://unite.ut.ee/repository.php
https://github.com/biocore/scikit-bio


ll
OPEN ACCESS Resource
data, is available at the following GitHub repository link: https://github.com/knightlab-analyses/mycobiome. The website associated

with this paper is http://cancermycobiome.ucsd.edu/.

METHOD DETAILS

WIS cohort: Sample collection
The samples of the WIS cohort were collected from nine medical centers, and we previously reported their DNA extraction as well

bacterial characterization (Nejman et al., 2020). For ITS2 profiling, 1183 samples of this original cohort were used (Figure 1A;

Table S1). Samples include tumor, normal adjacent tissue (NAT) and normal tissue from eight tumor types for a total of 12 conditions

(condition is defined by the tissue type and the tumor/NAT/normal status) (Table S1). Samples included both formalin fixed paraffin

embedded (FFPE) and snap frozen samples. To account for potential contamination by fungi or fungal DNA during sample handling

and processing, our cohort also included two types of negative controls: 104 paraffin-only controls which were made by sampling

paraffin only (without tissue) from the study FFPE blocks and 191 DNA-extraction negative controls in which only sterile DDW was

introduced at the beginning of the DNA-extraction pipeline. These controls enabled detection of potential fungal contaminants and

delineation of signal versus noise allowing for appropriate processing of the data prior to analysis (see below). Note that matching

bacterial data of the same samples that were used in this study, was generated by us and published in Nejman et al. (Nejman

et al., 2020). Also note that all handling of the samples (including DNA extraction and PCR set up) was done in a clean dedicated

pre-PCR room to avoid potential contamination of amplified PCR products from the main lab.

TCGA cohort: Data accession
All TCGA sequence data were accessed via the Cancer Genomics Cloud (CGC) as sponsored by SevenBridges (https://cgc.

sbgenomics.com) (Lau et al., 2017) after obtaining data access from the TCGA Data Access Committee through dbGaP (https://

dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login). Details of how TCGA samples were acquired and processed are comprehensively

described elsewhere (Hoadley et al., 2018), and SOPs for TCGA sample processing are available in the NCI Biospecimen Research

Database (https://brd.nci.nih.gov/brd/sop-compendium/show/701). Metadata for these patients were previously published and

originally compiled using SevenBridges’s metadata ontology (Poore et al., 2020).

Hopkins and UCSD cohorts: Data accessions
RawBAMfiles for the Hopkins plasma cohort were accessed through the EuropeanGenome-Phenome Archive (EGA) under Study ID

EGAS00001003611 with prior data access approval. These files were previously analyzed for host-centric, fragmentomic cancer di-

agnostics by Cristiano et al. (Cristiano et al., 2019). Raw BAM files for the UCSD cohort were internally available after Poore and

Kopylova et al. (Poore et al., 2020) previously published them using bacterial-centric analyses, and host-depleted versions of the files

are publicly available on European Nucleotide Archive (ENA) with the following accession IDs: ERP119598 (UCSD HIV-negative con-

trols), ERP119596 (UCSD prostate cancer), and ERP119597 (UCSD lung cancer and melanoma).

WIS cohort: ITS2 amplification and sequencing
ITS2 sequencing was used for fungal identification in all samples. In order to avoid batch effects as much as possible, samples from

different cancer types and medical centers were randomized between different batches of DNA extraction, PCR amplification, and

sequencing runs (Table S2.3). PCRwas performed on 100ng of DNA per sample (or themaximum available). For extraction controls a

volume of 5ml per sample was used, and for empty paraffin controls a volume equal to the volume taken for the matching sample

was used. Forward primer ITS86F 5’-GTGAATCATCGAATCTTTGAA-3’ (Turenne et al., 1999) and reverse primer ITS4 (White et

al., 1990) with rd2 Illumina adaptor 5’-AGACGTGTGCTCTTCCGATCT - TCCTCCGCTTATTGATATGC-3’ were used for the first

PCR amplification. PCR mix per sample contained 5ul sample DNA, 0.2mM per primer (primers purchased from Sigma), 0.02 unit/

ml of Phusion Hot Start II DNA Polymerase (Thermo Scientific F549), 10ml of X5 Phusion HS HF buffer, 0.2mM dNTPs (Larova

GmbH), 31.5ul ultra pure water, for a total reaction volume of 50ml. PCR conditions used were 98�C 2min, (98�C 10 sec, 55�C 15

sec, 72�C35 sec) X 35, 72�C5min. A second PCRwas performed to attach Illumina adaptors and barcode per sample for 6 additional

cycles. Samples from 1st PCR were diluted 10 fold and added to the PCRmix as described above. Primers of second PCR included:

forward primer P5-rd1-ITS86F 5’ - AATGAT

ACGGCGACCACCGAGATCT - ACACTCTTTCCCTACACGACGCTCTTCCGATCT - GTGAATCATCGAATCTTTGAA-3’, and reverse

primer 5’- CAAGCAGAAGACGGCATACGAGAT - NNNNNNNN - GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’ (Nejman

et al., 2020). Every 96 samples were combined for a single mix by adding 14ml from each. Before mixing, an aliquot from each of

the samples was run on an agarose gel. In cases where the amplified bands were very strong, samples were diluted between 5

and 20-fold before they were added to the mix (Table S2.3). Each sample mix was cleaned with QIAquick PCR purification kit (-

QIAGEN, catalog # 28104). Four cleaned sample mixes were then combined into a single mix of 384 samples, and size selection

was performed with Agencourt AMPure XP beads (Beckman Coulter #A63881) to remove any excess primers. Beads to sample ratio

was 0.85 to 1. Samples were then run on the Miseq v3 600 cycles paired-end with 30% PhiX. Overall, six runs of Miseq were per-

formed for this study.
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TCGA, Hopkins, and UCSD cohorts: Library preparation and sequencing
Library preparation and sequencing methods of TCGA were described in detail by Hoadley et al. (Hoadley et al., 2018), and primarily

employed QIAGEN products for multi-analyte (DNA, RNA) extraction and Illumina platform sequencing. Sample processing and

sequencing of the Hopkins cohort was described in detail by Cristiano et al. (Cristiano et al., 2019), and, briefly, performed cell-free

plasma DNA extraction using the Qiagen Circulating Nucleic Acids Kit, non-fragmented library preparation using a modified protocol

of the NEBNext DNA Library Prep Kit for Illumina, and sequencing with 100-bp paired-end runs on the Illumina HiSeq machines (Cris-

tiano et al., 2019). Sample processing and sequencing of the UCSD cohort was described in detail by Poore and Kopylova et al. (Poore

et al., 2020), and, briefly, performed cell-free DNA extraction using theQiagenCirculating Nucleic Acids Kit, library preparation using the

KAPA HyperPlus Kit (Kapa Biosystems), and paired-end 23150-bp sequencing on an Illumina NovaSeq 6000 instrument (S4 flow cell).

WIS cohort: ITS2 sequencing analysis
ITS2 read classification pipeline

The ITS2 classification pipeline was built with Python 3.6. For each sequencing library, paired end reads were joined using PEAR

(version 0.9.10) followed by filtering of merged reads by minimum length of 80bp and trimming of primers from both ends with

cutadapt (version 1.17). Note, that after flooring, theminimum length of the remaining amplicons was 143bp. Within the QIIME 2 envi-

ronment (version 2018.8), Dada2 was used to create amplicon sequence variants (ASVs), then ITSx (version 1.1b1) was used to delin-

eate ASVs to ITS2 regions (removing preceding 5.8S and trailing 28S sequences). A taxonomic naive bayesian classifier in QIIME 2

(Bolyen et al., 2019) was trained on theUNITE database (version 8, dynamic, sh_taxonomy_qiime_ver8_dynamic_04.02.2020.txt) and

used to classify the processed ASVs. ASVs were filtered by the ITSx and UNITE classifications to include fungal reads only. Any ASVs

that were classified by ITSx as fungi were included in the downstream analysis. Any ASVs that were classified by ITSx as non-fungal,

were included in the downstream analysis only if their classification as fungi reached a class or lower phylogenetic level by UNITE and

were validated by NCBI BLAST to be fungal. Seventy percent of ASV reads that were included in the downstream analysis were clas-

sified to species level (Data S1.5A). The other 30% of ASV reads were classified to higher taxonomic levels. To make sure that no

human reads were misaligned as fungal reads, we tried to align all ASVs to the human genome or to the human rDNA sequences,

but none of the ASVs aligned to those human sequences. Specifically, all 1191 ASVs in Table S2.2, with and without flanking primer

regions, were aligned to the human genome (hg19) and human ribosomal region (RNA45SN1, NR_145819.1) using Bowtie2 with

–end-to-end and –sensitive parameters to increase local alignment sensitivity. In addition, all ASVs found in the mock human cell

line samples were alsomapped to the human genome. Neither of these produced successful alignments. Any ASV that was classified

as fungus by the naive bayesian classifier against the UNITE database, but wasn’t classified down to species level, we also BLASTed

against the entire nr/nt database with default parameters, which only resulted in significant alignments to fungal sequences. 76 ASVs

which were classified as fungal by the UNITE classifier, but by ITSx as ‘T’ for Tracheophyta, were also BLASTed and found to be

aligned to fungal sequences.

WIS cohort negative controls

The ITS2 dataset includes two types of negative controls (Table S1): (1) 191 DNA extraction controls performed on empty tubes (with

DDW only) in parallel to sample DNA extraction, and (2) 104 paraffin controls which were made by sampling paraffin only (without

tissue) from a subset of the study FFPE blocks. The 295 negative controls allowed for a better understanding of the fungal signal

in the tissues versus technical background noise (i.e., index hopping) as can be detected in the negative control samples. The his-

togram of the number of reads per ASV per sample as well as the number of reads per sample (Data S1.6A and S1.6B) both presented

a bimodal distribution with the peaks found on either side of 1000 reads/ASV or 1000 reads/sample. We found that the chance of an

ASV to have more than 1000 reads was 3 times higher in samples vs controls (21.6% vs 7.1%). We therefore floored the data in a

sample-specific manner, such that if an ASV was assigned less than 1000 reads in a specific sample, its assigned reads were con-

verted to zero.

ITS2 data normalization

Next, we introduced two types of data normalization: (1) Library normalization, where samples were normalized to account for the

difference in the average number of reads/sample per library. A factor was assigned to each of the six sequencing libraries to reflect

the fold change of the mean number of reads/sample in the library as compared to the mean number of reads/sample in all samples

across all six libraries. Then the number of reads for each ASV in each sample was corrected by this factor. (2) Dilution normalization:

as a subset of the samples were diluted before sequencing based on the amplification levels as detected on agarose gel (see above),

their ASV reads were multiplied by the dilution factor per sample to reflect their true original load. Table S2.2 presents the number of

reads per ASV per sample after both data flooring and normalization.

Next, ASVs were aggregated based on UNITE classification, to species level when possible. ASVs that could not be classified to

species level, were grouped together by the lowest known phylogenetic level and labeled ‘‘Other’’. Lastly, data were aggregated by

summing all reads in each taxonomic level by the associated taxa in the level above it (Table S2.3).

WIS cohort decontamination

The negative control samples were then used to flag potential contaminant species (Data S1.6C). Out of 456 species detected in the

data (after flooring and normalization), 13 species unique to the negative control samples were removed from the dataset (Data

S1.6D). For an additional 63 species that were detected in both negative control samples and true samples, statistical testing

was applied: (1) Fisher’s exact test (on the floored normalized data converted to present/absent) was applied to check if a species
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was more prevalent in a specific condition (tissue+tumor/NAT/normal) versus the 191 extraction control samples. (2) Wilcoxon test

(on the number of reads, without flooring, with library and dilution factor normalization) was applied to check if a species was more

abundant in a specific condition (tissue+tumor/NAT/normal) versus the 191 extraction control samples. A species that had a p-value

%0.05 and FDR%0.2 in at least one of these tests passed this filtering step for the condition. Next, the same tests were performed

against the 104 paraffin control samples. Forty-two species (out of the 63 that were tested) passed both filtering steps in at least one

condition. All of these 42 species, as well as the 380 species that did not appear in any of the 295 controls were considered part of the

‘fungal world’ that was used for all downstream analysis. The same filtering steps were also performed for each of the taxonomic

levels (Table S2.4). In addition, we applied the same filtering strategy to the original 1191 ASVs (after flooring and normalization),

yet this approach was more permissive, letting more reads through the filters: 4,138,346 reads (2.67%) removed at ASV level versus

4,295,957 reads (2.77%) removed after decontaminating at species level. This difference was largely due to the removal at the spe-

cies level beingmore stringent in removing all reads from all ASVs classified to a contaminating species, which stems from the natural

variation of ITS2 sequences across multiple copies of the rDNA segment within the same fungal cell/species. Therefore, this ASV-

level decontamination approach was not further used. Note that only fungi and bacteria that passed the filtering steps in at least

one of the tumor types were included in most of the analysis in this work (exceptions are described in figure legends).

WIS cohort clinical utility of cancer mycobiomes

In Figures 6A, 6B, 6E, and 6G, p-values were calculated by Fisher’s exact test. Only fungi that appeared inR5% and at least twice in

one of the groups were included in the analysis. All fungi in these plots had FDR corrected values of %0.2. Data used was after

flooring and normalization as described above. Only fungi that passed the filtering step in at least one of the tumor types were

included in the analysis.

WIS cohort: ITS2 Pipeline validation and testing
A mock community of 17 fungal species was generated to validate the ITS2 experimental procedure and assess the success of de-

tecting different fungi (Data S1.6E). DNA from all fungi was extracted using MasterPure Yeast DNA Purification Kit (Epicentre, MPY

80200). Equal amounts of DNA from each of the fungal species were mixed together and then 0.00032ng DNA of the mix was spiked

into 100ng of human DNA (extracted from the HS-5 human fibroblast cell line (ATCC# CRL-11882)). ITS2 amplification and

sequencing was done as described above. Fourteen out of the 17 species were detected (Data S1.6E). One of the species that

was not detected (Flavodon flavus) was wrongly classified to a different family in the same order (Polyporales). Overall, 99.89% of

the reads belonged to the species included in the mock. We repeated the ITS2 amplification and sequencing two more times and

reached almost identical results, detecting the same fungal species (data not shown).

To assess the reproducibility of our technical and computational pipeline we repeated the ITS2 amplification and sequencing three

times, for 88 human tumor or NAT samples. For 82 samples that passed our quality control, we compared the Bray-curtis dissimilarity

scores between all pairs that belong to the same original sample versus all pairs that belong to different samples within the same

tissue type.We found that the dissimilarity was significantly lower between repeats relative to between samples from the same tissue

(p-value<2.22310-16) (Data S1.6F). Only one sequencing result from each triplicate (the one with the highest amount of reads) was

used for all other analyses that were subsequently done.

TCGA, Hopkins, and UCSD cohorts: Bioinformatic processing
Determining read counts in TCGA

Total and mapped read counts were calculated using SAMtools’s idxstats function (v. 1.11) (Li et al., 2009), which was wrapped in a

Docker container and applied to all available TCGA BAM files on the CGC as an ‘‘app.’’ The app was then run in parallel across files

using Amazon Web Services (AWS) as a backend using 8 cores per file. Total read counts were extracted from the resultant idxstats

output files using awk ’{s+=$3+$4} END {print s}’ and mapped read counts were extracted using awk ’{s+=$3} END {print s}’.

Unmapped read counts were determined via the subtraction of mapped from total. Microbial read counts were derived by summing

all genome-level microbial hits against the ‘‘rep200’’ database (see below formore details). Similarly, fungal-specific or bacterial-spe-

cific counts were determined by summing all genome-level microbial hits against the rep200 database within those domains.

Host depletion of WGS and RNA-Seq data

Previous efforts to mine host genomic or transcriptomic information for microbial nucleic acids relied on extracting unaligned, ‘‘non-

human’’ reads from pre-aligned BAM files, followed by mapping those reads against a database of microbial genomes (Poore et al.,

2020) Since TCGA samples were collected during a decade (2006-2016), the human genome references used for BAM file generation

changed over time, and uniform realignments were not performed until very recently (ICGC/TCGA Pan-Cancer Analysis of Whole

Genomes Consortium, 2020). Although this was not detected to be a problem by Poore and Kopylova et al. (Poore et al., 2020)

for bacterial-centric analyses, we wanted to uniformly host deplete and further quality control all TCGA files prior to multi-domain

mapping and metagenome assembly. Thus we designed, optimized (for speed), and Dockerized a uniform host depletion pipeline

using a combination of SAMtools (v. 1.11) (Li et al., 2009), Minimap2 (v. 2.17-r941) (Li, 2018), and fastp (Chen et al., 2018) capable

of being run on any high performance compute system. The scripts necessary for creating this host-depletion Docker container and

running it on new samples are on the TCGA-associated mycobiome GitHub link (https://github.com/knightlab-analyses/

mycobiome#docker-host-depletion-pipeline-docker_host_depletion_pipeline). The exact one-line piped command being run within

the Docker container is also explicitly shown below.
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Read pairs were subsequently discarded if either matemapped to the GRCh38.p7 human genome (https://www.ncbi.nlm.nih.gov/

assembly/GCF_000001405.33/) or the Phi X 174 viral genome. Reads were also discarded if less than 45 base pairs in length or if they

exhibited poor base quality (using fastp default parameters). Specifically, the following commandwas runwithin theDocker container

to host deplete, where $cpus and $db denote the number of compute cores and a precomputed Minimap2 reference database (as

a.mmi file), respectively:

samtools view -f 4 -O BAM $in_dir/$filename |

samtools bam2fq - |

fastp -l 45 –stdin -w $cpus –stdout –interleaved_in |

minimap2 -ax sr -t $cpus $db - |

samtools fastq -@ $cpus -f 12 -F 256 - -1 $out_dir/$base_name.R1.trimmed.fastq.gz -2 $out_dir/$base_name.R2.

trimmed.fastq.gz.

The final line outputs host-depleted forward (‘‘R1’’) and reverse (‘‘R2’’) fastq files. Sometimes, due to cloud computing constraints,

the first line of the command (samtools -f 4) was done separately from the remaining lines, which were consistently run together.

Typical compute time per file for the host depletion and read extraction ranged from several minutes to a few hours, depending

on the file size, using 8-16 cores and �100 GB of RAM.

We note that this additional, uniform host depletion reduced the number of total files available for the TCGA mycobiome analysis

when files resulted in 0 non-human reads. Specifically, 77WGS files and 2530 RNA-Seq files had 0 non-human reads after additional

host depletion and could not be used for shotgunmetagenomic ormetatranscriptomic microbial assignments. This dropout of�15%

of the total TCGA cohort indicates that there is no ‘‘baseline’’ of bacterial, fungal, or other microbial read percentages, as these 2,607

samples have 0 such reads, and the plots showing microbial read percentages (e.g., Figure 1C) only reflect those samples with non-

zero read counts. Another 16 files repeatedly failed the host depletion pipeline and could not be used. Overall, this reduced the num-

ber of files available for the TCGA mycobiome analysis compared to our previous bacteriome-centric analysis (Poore et al., 2020).

Shotgun metagenomic and metatranscriptomic microbial assignments

Host depleted and quality controlled output fastq files were then uploaded to Qiita web server (Gonzalez et al., 2018) for per-sample

metagenomic or metatranscriptomic microbial classification. Qiita offers a graphical user interface that facilitates shotgun metatran-

scriptomic and/or metagenomic analyses using direct genome alignments based on Woltka v0.1.1 (https://github.com/qiyunzhu/

woltka) (Zhu et al., 2022) against Qiita’s concomitant ‘‘rep200’’multi-domain database. ‘‘Rep200’’ corresponds to RefSeq release 200

(built as of May 14, 2020), which comprises 11,955 genomes with the following taxa numbers and domains: 419 archaea; 11,080

bacteria; 320 fungi; 88 protozoa; 48 viruses (https://qiita.ucsd.edu/static/doc/html/processingdata/processing-recommendations.

html#reference-databases). We note that the only other database used for Qiita metagenomics or metatranscriptomics (Web of

Life, WoL) does not include fungi and was not used for this work. Direct genome alignments against rep200 were run using Bowtie2

v2.4.1 (Langmead and Salzberg, 2012) as the backend. This process is equivalent to a Bowtie2 run with the following parameters:

–very-sensitive -k 16 –np 1 –mp ‘‘1,1’’ –rdg ‘‘0,1’’ –rfg ‘‘0,1’’ –score-min ‘‘L,0,-0.05’’

The sequence alignment is treated as amapping from queries (sequencing data) to subjects (microbial reference genomes). Reads

mapped to a microbial reference genome are counted as hits, such that the resultant feature table comprises samples (rows) by mi-

crobial genome IDs (columns) and concomitant abundances. These microbial genome IDs (named ‘‘operational genomic units’’ or

OGUs) provide a shotgun metagenomic equivalent to ASVs in 16S rRNA gene amplicon sequencing data (Zhu et al., 2022). Of

note, in the case that one sequence ismapped tomultiple genomes by Bowtie2 (up to 16), each genome is counted 1 / k times, where

k is the number of genomes to which this sequence is mapped. The frequencies of individual genomes were then summed after the

entire alignment was processed, and rounded to the nearest even integer, thereby making the sum of OGU frequencies per sample

nearly equal (considering rounding) to the number of aligned sequences in the dataset. The resultant count matrix was saved as a

biom file for downstream analyses. This process was repeated for the TCGA, Hopkins, and UCSD cohorts, with separate Qiita pro-

jects under the following study IDs: 13722 (TCGAWGS), 13767 (TCGA RNA-Seq), 13984 (Hopkins), 12667 (UCSD HIV-free controls),

12691 (UCSD prostate cancer), 12692 (UCSD lung cancer and melanoma).

Running EukDetect on TCGA samples

To verify fungal taxonomic matches, we used EukDetect version 1.0.1 (Lind and Pollard, 2021) against their database built on 1/23/

2021 (https://figshare.com/articles/dataset/Eukdetect_database/12670856/6) and followed their standard processing pipeline

(https://github.com/allind/EukDetect). In summary, host-depleted TCGA fastq files in Qiita were additionally filtered via fastp to

discard sequences shorter than 75bp, since EukDetect requires 75bp minimum to operate and the host depletion pipeline only

removed reads shorter than 45bp (see ‘‘Host depletion of WGS and RNA-Seq data’’ section above). The resulting per-sample fastq

files were then grouped byQiita preparation, and the average length of the first 2500 sequences of all the files in each preparation was

used as the readlen parameter. EukDetect was then run using default settings, and the default filtered tables were extracted for

downstream analyses. We note that EukDetect currently cannot provide accurate relative abundances (see https://github.com/

allind/EukDetect/issues/11) because the calculated abundances are marker dependent (i.e., the more markers there are for a given

fungus, the higher abundance it can have; also, differences in marker size and genome size exist). Thus, we only used the filtered

fungal species outputted by EukDetect to intersect with and subset the TCGA fungal species as features for machine learning.

We also noticed that high coverage fungi (R1% aggregate genome coverage in TCGA) were much more likely to be detected by

EukDetect (Fisher exact test: p=5.67310�11, odds ratio=28.0) than low coverage fungi (<1% aggregate genome coverage in
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TCGA), suggesting; see below), suggesting that marker-based taxonomy classification methods may be limited in very low-biomass

settings.

TCGA and WIS cohorts: Alpha and beta diversity calculations
A general note on employed beta diversity distance metrics

Three beta diversity distancemetrics were evaluated in this study—Jaccard, Bray-Curtis, and RPCA—all of which showed significant

cancer type variation via PERMANOVA. However, metagenomic and metatranscriptomic alignment read-splitting in TCGA can arti-

ficially influence Jaccard presence/absence measurements, prompting a focus on using Jaccard for the WIS cohort, which had

decontamination informed by experimental negative controls, and Bray-Curtis for TCGA. Secondly, both Jaccard and Bray-Curtis

require rarefaction and discarding of information to provide accurate comparisons between samples of varying library sizes, and

fungal abundances in these cohorts were already low, motivating usage of a distance metric that did not require rarefaction.

RPCA is an ideal distance metric for accomplishing this task without rarefaction, so we included it for both WIS and TCGA cohorts.

Again, to be clear, statistical significance did not depend on which method was used, but the above logic guided why these metrics

were each included.

TCGA alpha diversity calculations

Raw decontaminated fungal count data from primary tumors was subset to each TCGAWGS sequencing center and processed using

QIIME2 (version qiime2-2020.2) (Bolyen et al., 2019) to calculate richness and shannon alphadiversity per center. Rarefaction amounts

were determined by the fungal read count distribution per TCGA sequencing center, and a common value of 5000 reads/sample was

identified among 4 of the 5 WGS sequencing centers as being approximately the first quartile of reads/sample—Broad Institute WGS

samples excepted, with 2000 reads/sample approximately representing its first quartile, which was used for rarefaction.

TCGA alpha diversity fungi-bacteria correlations

Multi-domain TCGA alpha diversity was calculated using the following procedure: (1) Subset to WGS primary tumor samples; (2)

rarefy the entire WGS rep200 table to 115,000 reads/sample (approximately the first quartile of the read/sample distribution) using

phyloseq (v. 1.38.0) (McMurdie and Holmes, 2013); (3) separate fungal and bacterial features into two separate tables; (4) calculate

richness among both fungal and bacterial rarefied tables; (5) correlate, using Spearman correlations, the paired fungal and bacterial

richnesses (Figure 3B). We also attempted this procedure with the modification that fungal and bacterial feature tables were inde-

pendently rarefied, but we found that this version caused microbial richness to weakly but still significantly, positively correlate

with the sample library sizes (data not shown), so it was discarded in favor of the ‘global’ table rarefaction.

TCGA beta diversity calculations

Given the limited fungal reads/sample in TCGA, we desired to perform beta diversity without rarefying using a method we previously

published named robust Aitchison PCA (RPCA, also called DEICODE) (Martino et al., 2019). DEICODE has a QIIME 2 plugin (https://

library.qiime2.org/plugins/deicode/19/) that was used on the raw decontaminated fungal count data in primary tumors subset to

each TCGAWGS sequencing center with the following parameters: {–p-min-feature-count 10, –p-min-sample-count 500}. The resul-

tant biplots were visualized using EMPeror (Vázquez-Baeza et al., 2013) and the QIIME 2 plugin for ADONIS (i.e., PERMANOVA) was

used to estimate the significance and explained R2 of cancer type with the DEICODE Aitchison distance matrix.

Additionally, Bray-Curtis beta diversity distances, calculated through QIIME2 (Bolyen et al., 2019) on the batch corrected data pro-

portions, were compared for WGS primary tumor samples, if havingR10 samples per cancer type, within a TCGA cancer type to the

distances between that cancer type and all others through a Mann-Whitney U test via Scipy (Virtanen et al., 2020) with an FDR mul-

tiple test correction across cancer types through statsmodels (Seabold and Perktold, 2010), as shown in Data S3.2G.

To compare tumor vs. NAT samples in TCGA, we performed the following analyses:

Analysis #1: (1) Rescale Voom-SNMbatch corrected, decontaminated, species-level pan-cancer data into counts using a scalar of

104; (2) calculate relative abundances using the batch corrected counts; (3) average fungal relative abundances across disease type-

sample type groups (e.g., ‘‘Breast Invasive Carcinoma NAT’’); (4) calculate Bray-Curtis dissimilarity on the averaged relative abun-

dances; (5) plot using a principal coordinates analysis using cancer types also found in the Weizmann cohort and with at least 10

tumors and NATs available in TCGA (Data S3.2J).

Analysis #2: We performed a PERMANOVA analysis within each TCGA disease type for sample-type for both Aitchison and Bray-

Curtis distances on the full sample set of relative abundances and found that no disease type significantly differs between tumor and

NAT after accounting for multiple testing correction (Table S5).

TCGA, Hopkins, and UCSD cohorts: Decontamination
TCGA decontamination

Although TCGA protocols did not include contamination controls during the processing of their samples, we showed that in silico

methods could be used to decontaminate the TCGA bacteriome (Poore et al., 2020). The fundamental principle of these methods is

that consistent negative correlations exist for external (e.g., reagent, environmental) contaminating taxa between their read fractions

and analyte (DNA or RNA) concentrations (Davis et al., 2018). A published tool named decontam (https://github.com/benjjneb/

decontam) (version 1.14.0) (Davis et al., 2018) wraps themethod into anRpackage and function based on two underlyingmathematical

assumptions: (i) the contaminants are added in uniform amounts across samples; and (ii) the amount of contaminant DNA or RNA is

small relative to the true sample DNA or RNA (microbial or host). Since per-sample DNA andRNA concentrations are available in TCGA
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metadata, they can be used to indicate putative contaminating taxa. Importantly, though, our past analyses (Poore et al., 2020) demon-

strated that too stringent of an in silico decontamination threshold actually removes flora known to be associatedwith a given body site

(e.g., too stringent decontamination of NAT colon tissues in TCGA dissociates it from normally-associated fecal material). Additionally,

there are difficulties of strict filtering with taxa that are known commensals and/or pathogens but also can be contaminants in certain

contexts, even at the species level (e.g., Malassezia restricta, a skin fungus). Thus, in our mycobiome analyses, we sought a balance

between strict filtering, allowance of known commensals/pathogens, inclusion of WIS-identified (this study) or HMP-identified (Nash

et al., 2017) fungi, and inclusion of fungi of unknown significance that may be related to cancer biology.

Decontamination was thus broken into two steps: (i) Statistical decontamination via decontam using per-sample DNA or RNA con-

centrations and read fractions across plate-center batches (see below); and (ii) manual curation, comparison against WIS-identified

and HMP-identified fungi, and literature review prior to making final determinations.

Step #1: TCGA sample identifiers (e.g., ‘‘TCGA-02-0001-01C-01D-0182-01’’) denoted the sequencing center and plate within that

center upon which the sample was run (for details, see https://docs.gdc.cancer.gov/Encyclopedia/pages/ TCGA_Barcode/).

These barcodes were used to extract all sequencing plate-center combinations using the last two sets of integers (e.g.,

‘‘0182-01’’ is plate 182 from center 1). We previously found the plate-center method to work well on TCGA bacterial data, as it

removed many likely contaminants while retaining several known commensals and pathogens (Poore et al., 2020). Since decon-

tam effectively performs a regression analysis to determine if a taxon is a contaminant, we requiredR10 samples per plate-center

batch, retaining 329 total plate-center batches among samples positive for fungi. Decontam was then run in ‘‘frequency’’ mode,

identifying putative contaminants using TCGA sample aliquot concentrations, a default P* stringency threshold of 0.1, and the

default batch.combine=‘‘minimum’’ parameter, such that a taxon was removed if identified in any one of the 329 plate-center

batches as a contaminant. This analysis identified 57 putative contaminants out of 319 total fungi withR1 reads identified during

direct genome alignments. Table S3 summarizes the decontam output and contaminant predictions.

Step #2: All 319 fungal taxa found in TCGA were cross-referenced against species identified in the WIS tumor mycobiome cohort

(this study), the HMP gut mycobiome cohort (Nash et al., 2017), and 131 other papers in the literature (Table S3). This compre-

hensive literature survey informed the final decontamination decisions. Specifically, the following decision making process

was applied: (i) Any fungal specie identified in the WIS tumor mycobiome cohort or HMP gut mycobiome cohort was retained;

(ii) any fungal species known in the literature to have caused a clinically pathogenic infection or be a human commensal was re-

tained; (iii) any fungal species with evidence of no known human association was discarded; (iv) any species that had little evi-

dence for or against human associations (i.e., ‘‘unknown’’ human associations) had their fate decided by the plate-center decon-

tam predictions. This process ultimately discarded 95 species (29.8% of total) as contaminants, comprising 2.1% of total reads,

and retained 224 species as non-contaminants (Table S3).

Hopkins cohort decontamination

TheHopkins plasma cohort was originally collected to examine host-centric fragmentomic diagnostics (Cristiano et al., 2019) and did

not employ contamination control samples. Since the TCGA contamination analysis thoroughly covered 319 out of 320 total fungi in

the rep200 database, the contamination decisions from TCGA based on the WIS cohort, HMP gut mycobiome cohort (Nash et al.,

2017), and 131 other papers were applied to the Hopkins cohort. The Hopkins cohort began with 296 identified fungal species and

after decontamination retained 209 fungal species (29.4% removed).

UCSD cohort decontamination

The UCSD plasma cohort was designed to include positive and negative contamination control samples (Poore et al., 2020). Positive

controls included 26 samples of serially diluted Aliivibrio fischeri (bacteria), which were previously analyzed (Poore et al., 2020), while

negative controls included 15 blank DNA extraction samples and 11 blank library preparation samples. All control and biological sam-

ples were run on a single sequencing plate at a single time, as described previously (Poore et al., 2020). Decontamination was per-

formed using decontam in (i) ‘‘prevalence’’ mode with P*=0.5 among blanks and biological samples, and in (ii) ‘‘frequency’’ mode

using the default P*=0.1 (also used in TCGA) with DNA concentrations. Importantly, for ‘‘prevalence’’ mode, P*=0.5 will flag taxa

as contaminants if they are more prevalent in negative controls than in biological samples. These were run separately because

several of the blanks had zero or otherwise undetectable DNA concentrations, which are compatible with ‘‘prevalence’’ filtering

but not ‘‘frequency’’ filtering. ‘‘Prevalence’’ filtering flagged 30 out of 227 (13.2%) identified fungi while ‘‘frequency’’ filtering identified

4 out of 227 identified fungi (1.8%), or 32 unique total fungi (14.1%). These putative contaminants were then compared against the

comprehensive TCGA decontamination analysis and guided the decision of any ‘‘unknown’’ human associated fungi. As with TCGA

and the Hopkins cohorts, fungi matching theWIS cohort, HMP gut mycobiome cohort (Nash et al., 2017), or with known pathogenic/

commensal associations were retained whereas those with evidence against human associations were removed. This ultimately left

215 decontaminated fungi for analysis in the UCSD cohort.

TCGA cohort: Coverage, genome assembly, binning, and phylogenetic placement
Aggregate fungal genome coverage calculations

Tarred output sam alignment files from Qiita were unzipped and searched using grep for all alignments belonging to fungal genome

IDs in rep200. All fungal alignments were then inputted into custom python scripts (https://github.com/ucsd-cmi/zebra_filter) to
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calculate the aggregate fungal genomic coverage across fungal genomes in rep200 (Hakim et al., 2022). The outputs of this analysis

were saved in Table S4.1, and a cutoff of R1% aggregate genome coverage (31 fungal species) was used in machine learning an-

alyses. Additionally, using the extracted fungal alignments, we applied the same custom python scripts on each TCGA sample sepa-

rately, which were run in parallel on a Slurm compute cluster, to calculate per-sample fungal genome coverage (Table S4.2). We also

used the extracted fungal alignments in aggregate to calculate the aligned fungal read length distribution (mean=57.38bp;

SD=15.89bp; median=51bp; note that host depletion enforced 45bp minimum).

Fungal metagenome assembly and binning

Due to the aggregate number and high prevalence of several species of bacteria and fungi in the TCGA metagenomic dataset, we

aimed to better describe them through metagenomic assembly. First, preprocessed (i.e., trimmed, quality controlled, and human

read filtered) WGS samples were coassembled by cancer type. Coassembly by cancer type was motivated by past findings that

microbes are distributed differently across cancer types and that most individual samples had insufficient read depths to assemble

microbial genomes (Nejman et al., 2020; Poore et al., 2020). Coassemblies were performed through metaSPAdes (v. 3.13.1) (Nurk

et al., 2017) with an allocated memory of 1 TB RAM limit, across ten threads, and k-mer sizes 21, 33, 55, 77, 99, and 127. The

resulting contigs from each co-assembly were filtered for a length of greater than 1500 and separated as being either prokaryotic

or eukaryotic in origin with EukRep (v. 0.6.6) (West et al., 2018). Each set of prokaryotic or eukaryotic contigs were binned using

MaxBin2 (v. 2.2.4) (Wu et al., 2016), MetaBAT2 (v. 2.12.1) (Kang et al., 2019), and Concoct (v. 1.0.0) (Alneberg et al., 2014) on default

parameters and with contig abundance profiles estimated independently per sample. Abundance profiles were estimated by map-

ping reads against contigs using BowTie2 (v. 2.2.3) (Langmead and Salzberg, 2012) and SAMtools (v. 0.1.19) (Li et al., 2009). The

three resulting sets of bins were refined into a single set with metaWRAP (v. 1.1.2) (Uritskiy et al., 2018). Quality metrics for the re-

sulting prokaryotic refined bin sets were calculated using CheckM (v. 1.0.13) (Parks et al., 2015) For eukaryotic bins, we did not antic-

ipate generating completed bins given their very low biomass but rather aimed to have phylogenetically placeable contigs or small

bins; nonetheless, we quantified the estimated eukaryotic bin quality with EukCC (Saary et al., 2020) for the two bins with sufficient

marker genes (Table S8.3).

Fungal phylogenomics

Fungal refined bin completeness were assessed with BUSCO v5.1.2 (Simão et al., 2015) using fungi_odb10 and ascomycota_odb10

lineage files. To phylogenetically classify the bins, BUSCOwith fungi was also run on a set of 2,623 fungal genomes fromNCBI relying

on scripts for downloading and processing assemblies and gene sets (https://github.com/1KFG/NCBI_fungi) (Stajich and Ettinger,

2021). Assemblies were processed with BUSCO and ascomycota_odb10 to identify conservedmarker genes, followed by extraction

of the predicted proteins. The proteins were matched against HMMs for the markers using hmmsearch (Eddy, 2011), aligned with

hmmalign, trimmed with clipkit (Steenwyk et al., 2020), and concatenated into super alignment with the PHYling pipeline (https://

github.com/stajichlab/PHYling_unified). A phylogenetic tree to estimate phylogenetic placements of the bins was generated using

individual gene trees computed with FastTree (Price et al., 2010) and combined with coalescent ASTRAL (Zhang et al., 2020). The

small bins with insufficient recovery of BUSCOmarkers with assemblies of less than�85 kb were further processed for identification

of conserved genes by aligning with Minimap2 (Li, 2018) using parameters ‘‘-x asm20’’ against the collection of NCBI fungal ge-

nomes. Further analysis by translated BLASTX searches against NCBI nr database also identified likely closest taxa. The bins iden-

tified to bemitochondrial sequence based on topBLASTX hits were further annotated for their protein coding and ncRNAgenes using

MFannot (https://github.com/BFL-lab/Mfannot). The translated peptides of the predicted genes were used for further phylogenetic

analyses for species assignment.

TCGA cohort: Co-occurrence analyses with MMvec
In order to explore the fungal genera identified in the controlled amplicon based sequencing at a large scale, the TCGAmetagenomic

dataset count table was group summed to the genus level and matched to genera in the WIS amplicon data. This process was then

repeated for the bacterial data, so that both tables were operating at the same taxonomic level and only contained WIS-overlapping

features (Table S7.5). TCGA immune compositions were obtained from Thorsson et al. (Thorsson et al., 2018), who derived them us-

ing CIBERSORT (Newman et al., 2015) on TCGA RNA-Seq samples. Note that TCGA performed combined RNA-Seq and WGS on

many samples, enabling usage of the WGS data to inform microbial composition and paired RNA-Seq data to inform immune cell

composition. RNA-Seq microbial data was not used for co-occurrence analyses due to (i) much lower read microbial depths and

(ii) bias in the bacterial data due to polyA selection as noted in TCGA SOPs. In this case, TCGA patient identifiers published by Thors-

son et al. (Thorsson et al., 2018) were used to match immune cell compositions to microbial data.

MMvec (v. 1.0.6) (Morton et al., 2019a) was optimized between each data modality (i.e., bacteria, fungi, and immune cell compo-

sition) within each submission center (Harvard Medical School, Baylor College of Medicine, and MD Anderson) to (i) mitigate center

effects and (ii) produce a minimized cross-validation (CV) error, log-loss, and a maximized Q-squared (1 � model coefficient of vari-

ation [CV] / null model CV) values. Note that a Q-squared value > 0 ensures a good model fit. Training and test labels were produced

across all tables stratified by cancer type. Each model had the following optimized parameters: 2e3 to 5e3 iterations, batch size of

one fourth the training tables numbed of features, number of epochs as (# of iterations * batch size) / total reads in the training table,

latent dimension of 3, and all other parameters were set to default. The null model operated on the exact same training/test set

and parameters with the exception of the latent dimension set to zero. All models produced between all data modalities and

submission centers had Q-squared values greater than zero, except for fungi and immune co-occurrences predicted from M D
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Anderson - Institute for Applied Cancer Science. To further mitigate any deleterious effect of center effects, only those co-occur-

rences that showed consistent trends between centers were retained.

To explore co-occurrence clusters between all data modalities, MMvec conditional probabilities were z-score transformed along

the first axis (i.e., across columns of the MMvec output, as done elsewhere (Allaband et al., 2021)). In order to minimize the effect of

the TCGA submission center, we explored only those features with consistent co-occurrences across TCGA submission centers—

defined as features whosemedian co-occurrence values were less than the standardmean error (SEM) of their co-occurrence values

across centers. Next, the median of these filtered features were taken across all submission centers. To explore the co-occurrence

clustering and define subtypes across modalities, hierarchical clustering was performed through Scipy’s (v. 1.3.0) hierarchy linkage

function (Virtanen et al., 2020) via Seaborn’s (v. 0.11.2) (Hunter, 2007) clustermap plotting function. Three fungi-driven ‘‘mycotypes,’’

or subtypes, were identified across the highest partition of linkages on the immune co-occurrences. These subtypes were defined as

follows: F1 (Malassezia,Ramularia, and Trichosporon), F2 (Candida,Aspergillus), and F3 (Tilletiopsis,Penicillium,Cryptococcus,Puc-

cinia, Agaricus, Alternaria, Phialocephala, Fusarium, Hyphopichia, Exophiala, Stereum, Colletotrichum, Dissoconium, Aureobasi-

dium, Talaromyces, Cutaneotrichosporon, Yarrowia, and Trichoderma). The immune cells and bacterial genera associated with

each mycotype were then defined by their within-linkage-cluster maximum co-occurrences.

To explore these fungal-bacterial-immune mycotypes further, pairwise log-ratios with a pseudocount of one (to reduce sample

dropout) were taken across mycotypes in each data modality and explored across cancer type, submission center, and previously

defined immune subtypes in Thorsson et al. (Thorsson et al., 2018) visually and through type-one ANOVA via statsmodels (Seabold

and Perktold, 2010). Note that Thorsson et al. (Thorsson et al., 2018) defined their immune subtypes as follows: C1 = wound healing,

C2 = IFN-g dominant, C3 = inflammatory, C4 = lymphocyte depleted (with second highest macrophage activity), C5 = immunolog-

ically quiet (with highest macrophage activity), C6 = TGF-b dominant. Comparison of mycotype log-ratios across fungi, bacteria, and

immune compositions were performed using Spearman correlation across samples, to evaluate similarity in log-ratio shifts across

samples via Scipy. Overall survival (OS) data were obtained using data published by Thorsson et al. (Thorsson et al., 2018).

Kaplan-Meier survival analysis for OS across partitions greater or less than the median value for each mycotype log ratio was per-

formed using the survival package (v. 3.2) in R (Therneau, 2022) and statistically evaluated through Cox Proportional Hazards

(CoxPH) in R modeling. All p-values across all statistics were corrected for False Discovery Rate (FDR) correction using the

Benjamini-Hochbergmethod. For the survival analyses, the sample sizes of groups that were categorized above or below themedian

log-ratio values are shown in Table S7.6.

WIS cohort: Construction and analysis of the multi-domain interaction networks
The following analysis was performed with MATLAB version 2019b with the Statistics and Machine Learning Toolbox. To construct

the network, we first chose a taxonomic level for the fungi and bacteria. We then constructed three different networks of interaction

for each tumor type, fungus-to-fungus (FF) network, bacteria-to-bacteria (BB) network, and fungus-to-bacteria (FB), independently.

The relationship between each pair of taxa was calculated based on the presence/absence data, using the normalized mutual in-

formation (NMI) measure, which has been shown to perform as good or better than other ecological indicators of co-occurrence

(Neeson and Mandelik, 2014)

Given two vectors, X and Y , each withM discrete elements (corresponding toM samples), xi and yi (i = 1.M) which can be equal

to either 0 or 1, the NMI between them is defined as

NMIðX; YÞ =
IðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðXÞHðYÞp ;

where IðX; YÞ = HðXÞ+HðYÞ � HðX; YÞ is themutual information between X and Y,HðXÞ andHðYÞ are the Shannon entropies of X
and Y respectively, and HðX; YÞ is the joint entropy of X and Y , i.e.,

HðXÞ = � Pðx = 0Þ logPðx = 0Þ � Pðx = 1Þ logPðx = 1Þ ;
HðYÞ = � Pðy = 0Þ logPðy = 0Þ � Pðy = 1Þ logPðy = 1Þ ;
and

HðX; YÞ = �
X

xi ˛ ð1;0Þ

X

yi ˛ ð1; 0Þ
Pðx; yÞ logPðx; yÞ :

The NMI is bounded between 0 and 1, where 0 indicates no relationship between the presence/absence of taxon X and Y and 1

indicates maximal relationship (can mean that both always appear together or never appear together, i.e., it does not distinguish the

sign of the relationship).

The p-value is calculated as the fraction of times a random reshuffling process of the taxon had outputted greater or equal NMI

value to the original samples:
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p =
#NMIðXshuffle; YshuffleÞRNMIðX; YÞ

#Shuffle realizations
:

To fairly compare the NMI values of random realizations, the shuffling is done in a weighted manner which preserves the total num-

ber of observed taxa in each sample. The weight wi of each sample i is defined as

wi =
#Observed taxa in sample i

#Total observed taxa in all the samples

Then, the presence/absence of species X is randomly shuffled between the samples, with probability corresponding to the weight

of each sample (i.e., the total number of fungi and the total number of bacteria present in each tumor was always kept as in the original

data). The process is repeated 1000 times to calculate the p-value. We then perform BH FDR multiple comparison analysis on the

p-values list of each tissue type and interaction type (FF, BB, and FB). Finally, a positive or negative sign of interaction was given

to each pair of taxa according to Pearson correlation. Only pairs with FDR%0.2 were used in the figures (Data S4.1A).

WIS cohort: 5.8S real-time quantitative PCR (RT-qPCR)
RT-qPCRwas performed on the 5.8S region of the fungal rDNA. The following primers were used: Forward primer (ITS3) - 5’-GCATC-

GATGAAGAACGCAGC-3’ (White et al., 1990) and reverse primer (ITS86R) - 5’- TTCAAAGATTCGATGATTCAC-3’ (Turenne et al.,

1999). qPCR was performed on 40ng of DNA per sample (or the maximum available in 5ul). For extraction controls a volume of

5ul per sample was used. For empty paraffin controls a volume equal to the volume taken for the matching sample from the same

block was used. The PCR mix included 0.2uM of each primer, 5ul Kapa SYBR FAST qPCR Master Mix (2X) (Kapa Biosystems,

#KK4605) and ultra pure water to a total volume of 10ul. PCR conditions used were 95�C 3min, (95�C 3sec, 58�C 20sec, 72�C
30sec) X40 cycles and included a dissociation curve at the end. ViiA 7 Real-Time PCR System (Applied Biosystems) was used for

the qPCR. qPCR was performed in triplicates per sample and results were averaged across repeats. Fungal load was estimated

by comparison to a standard curve created with Saccharomyces cerevisiae DNA that was spiked into human DNA.

WIS cohort: Staining methods
Human tumor tissue microarrays (TMAs) were purchased from US Biomax and included over 600 cores representing the following

tumor types: breast (Cat#BR1191, Cat#BC08118a), lung (Cat#LC819a, Cat#LC813b), melanoma (Cat#ME804a), ovary

(Cat#OV8010a) and PDAC (Cat#PA961f, Cat#PA804b). All TMAs were stained by H&E using standard protocol and serial sections

from the same TMAs were used for the different stains (Figure 2; Data S2.3 and S2.4). All fungal antibodies were tested and their pro-

tocols calibrated on TMAs with known fungi in them that served as positive controls (Bio SB #BSB-0335-CS) (Data S2.1A).

Modified Gomori Methenamine-Silver (GMS) Nitrate Stain

GMS (abcam #ab150671) was used for staining. Slides were deparaffinized and rehydrated as described above. Next they were

washed in distilled water twice and incubated in chromic acid solution for 20minutes. Slideswere rinsed in tapwater, and thenwashed

in distilled water twice. Slides were then incubated in sodium bisulfite solution for 1 minute and then rinsed as before (1 tap water, 2

distilled water). Next slides were incubated in a pre-warmedGMS solution for 7minutes at 60�C after which they were rinsed 4 times in

distilledwater and incubated in gold chloride solution for 30 seconds. Four additional distilled water rinses were performed followed by

incubation in sodium thiosulfate solution for 2minutes. Slides were next rinsed in tapwater and 2 changes of distilledwater. Next slides

were stained with light-green solution for 2 minutes. Finally, slides were rinsed in absolute alcohol 3 times, left to dry andmounted with

synthetic resin. For GMS protocol all tools used were plastic or glass (no metal-containing tools were used).

28S fungal fluorescence in-situ hybridization (FISH)

28S fungal FISH was performed with a mix of three fungal probes. ‘D-205’ probe: 5’- ATTCCCAAACAACTCGAC-3’; ‘D-223’ probe:

5’-CCACCCACTTAGAGCTGC-3’; and ‘D-260’ probe: 5’-TCGGTCTCTCGCCAATATT-3’ (Inácio et al., 2003), all conjugated to cy5 at

the 50 end (IDT). Non-specific complement probes for each of the three probes as well as a mix of all probes together were tested on

positive control tissues that were known to contain fungi in them, and found to have no background fluorescence (Data S2.2A). For

staining: slides were deparaffinized and rehydrated (Xylene for 10 minutes, Xylene for 5 minutes, 100% ethanol for 10 minutes X2,

96% ethanol for 10 minutes, 70% ethanol for 2-12 hours at 4�C). Slides were next rinsed in RNAse-free 2X SSC (Ambion

#AM9765) for 10 minutes and proteinase K solution (10mg/ml in 2X SSC, Ambion #AM2546), pre-heated to 50�C was added to

the slides. Slides were incubated for 10 minutes at 42�C. Slides were then rinsed twice with 2X SSC for 5 minutes each, followed

by 2 rinses in wash buffer (2X SSC, 15% formamide (Ambion #AM9342)) for 5 minutes each. Next, slides were incubated overnight

at 30�C with a probe mix of 1mM per probe in hybridization buffer (10% Dextran sulfate (Sigma #D8906), 15% formamide, 1mg/ml

EcolitRNA (Sigma #R4251), 2X SSC, 0.02% BSA (Ambion #AM2616), 2mM vanadyl ribonucleoside (New England Biolabs

#S1402S)). Slides were rinsed in wash buffer for 30 minutes at 30�C followed by incubation in wash buffer with DAPI with a final con-

centration of 1mg/ml. Finally, slides were washed in 2X SSC, 10mM TRIS pH 8 and 0.4% glucose and mounted with ProLong Gold

Antifade Mountant (Life technologies #P36930).

Immunofluorescent staining

Slides were deparaffinized and rehydrated using the following protocol: Xylene for 10 minutes X2, 100% ethanol for 5 minutes, 96%

ethanol for 5 minutes, 70% ethanol for 5 minutes and 3 washes in PBS for 2 minutes each. Next endogenous peroxidase quenching
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was performed (1%H2O2, 0.185%HCl) for 30 min, followed by antigen retrieval using citric acid buffer (pH 6) for 10 minutes at 95�C.
Slides were left to cool at room temperature and then washed 3 times in PBS. Blocking was done with 1% BSA and 0.2% Triton in

PBS for 60 minutes at R/T. Slides were incubated with primary antibodies that were diluted using a staining buffer (2% horse serum,

0.2% Triton in PBS) overnight at 4�C. The following antibodies were used: anti-1-3 b-glucan (abcam #ab233743; 1:50), anti-CD45

(eBioscience #14-0459-82; 1:100), anti-CD68 (Invitrogen #MA5-12407; 1:50), anti-Aspergillus (Abcam ab20419; 1:100), anti-CD8

(Abcam ab17147, 1:50). Slides were washed in PBS for 2 minutes and secondary antibodies and DAPI (1mg/ml) diluted in staining

buffer were added for 30 minutes at room temperature. The following secondary antibodies were used: Goat anti-Mouse IgG2b

Cross-Adsorbed Secondary Antibodywith Alexa Fluor 555 (Invitrogen #A21147; 1:200), Goat anti-Mouse IgG1Cross-Adsorbed Sec-

ondary Antibody with Alexa Fluor 647 (Invitrogen #A21240; 1:200), Goat anti-Mouse IgG3 Cross-Adsorbed Secondary Antibody with

Alexa Fluor 488 (Invitrogen #A21151, 1:200) and Donkey anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody with DyLight

755 (Invitrogen #SA5-10043, 1:100). Slides were washed twice in PBS andmounted with ProLong Gold AntifadeMountant (Life tech-

nologies #P36930).

Immunohistochemistry

Slides were stained by anti-fungal 1-3 beta-glucan (abcam #ab233743; 1:100) or no primary antibody (negative control) with the auto-

mated slide stainer BONDRXm (Leica Biosystems) using the Bond polymer refine detection kit (Leica Biosystems #DS9800), accord-

ing to the manufacturer’s instructions. Acidic antigen retrieval was done by a 20 min heating step with the epitope retrieval solution 1

(Leica Biosystems #AR9961).

Imaging

Slides stained in all staining methods (IHC/IF/FISH/GMS/CFW) were scanned with the Pannoramic SCAN II automated slide scanner

(3D HISTECH) at 40X.

TCGA and UCSD cohorts: Batch correction
TCGA data was collected across a decade at multiple sequencing centers, sequencing platforms, and experimental strategies

(WGS vs. RNA-Seq) among other technical variables. Fortunately, strict SOPs limited other forms of variation between centers.

Our previous analyses on the TCGA bacteriome suggested that the largest technical factors were (in order from most to least)

experimental strategy, sequencing center, and sequencing platform. Collectively, these factors explained 95.9% of the variability

in bacterial data (Poore et al., 2020) using principal variance components analysis (PVCA) and necessitated batch correction prior

to pan-cancer analyses. We found a similar effect within the fungal data, which motivated subsetting all samples to Illumina HiSeq

platform, comprising 97% of samples (see Data S5 Note), and performing batch correction on the experimental strategy and

sequencing center, which explained 49% and 30% of variance, respectively, using PVCA (Data S5.6A). Batch correction was

applied using the combination of Voom and SNM, as done previously (Law et al., 2014; Mecham et al., 2010; Poore et al.,

2020). Briefly, Voom converts discrete counts to pseudo-normally distributed (‘‘microarray-like’’) data (Law et al., 2014), which

is then used by SNM to iteratively remove batch effects in a supervised manner (Mecham et al., 2010), such that biological signal

is not removed while technical variance is removed. PVCA was used before and after batch correction (Scherer, 2009), as recom-

mended by the National Institute of Environmental Health Sciences (NIEHS) (https://www.niehs.nih.gov/research/resources/

software/biostatistics/pvca/index.cfm). We set the single tunable parameter for PVCA (the percentage of variance explained to

obtain a number of PCA components) to 80%, based on NIEHS’s recommendation of 60–90% and our past analyses (Poore

et al., 2020).

For Voom and SNM, the biological variable was sample type (e.g., tumor, NAT, blood) for TCGA and disease type for the UCSD

cohort, both as done previously (Poore et al., 2020). During exploratory analyses of immunotherapy response in the UCSD cohort

(Data S6.3D), the patient treatment response status was included as another biological variable in addition to disease type.We briefly

but importantly note that SNM was designed for all possible biological variables to be included, including those that would later be

examined using differential expression/abundance testing (Mecham et al., 2010). For technical factors, the TCGA cohort used exper-

imental strategy and sequencing center, whereas age and sexwere used for theUCSD cohort, both also done previously on the same

cohorts (Poore et al., 2020). As with bacterial-centric data, PVCA on TCGA before and after batch correction on mycobiome data

showed remarkable reduction in technical variable variance up to 15.5-fold while retaining or increasing (i.e., improving the

signal-to-noise ratio) biological variable variance up to 7.9-fold (Data S5.6A).

When subsetting feature sets to those with (i) 34 WIS-overlapping fungal species, (ii) 31 fungal species with R1% aggregate

genome coverage, (iii) the top 20 Hopkins-associated fungi, or (iv) overlapping WIS fungi and bacteria (approximately 300 spe-

cies depending on the intersected dataset), the raw count data were first subset followed by Voom-SNM. This means that

batch correction occurred independently on each smaller feature set prior to downstream machine learning. Performing

PVCA on each of these feature sets before and after batch correction frequently showed similar reductions in technical

variable variance and maintenance or increases in biological variable variance (data not shown). For the 22 fungal species

detected by EukDetect (Lind and Pollard, 2021), the post-batch-corrected, decontaminated, species-level data in TCGA

were subset prior to running downstream machine learning, which resulted in highly correlated performance to machine learning

done on the 31 fungal species with R1% aggregate genome coverage that separately underwent batch correction

(Data S5.1K–S5.1P).
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All cohorts: Machine learning methods
Note of caution when interpreting AUROC and AUPR values

It is common to estimate ML performance using area under ROC (AUROC) and PR (AUPR) curves; however, there are important dif-

ferences between them, as they measure different aspects of discrimination and have different null values. Specifically AUROC on a

model that performs as good as random coin flipping would be approximately 50%, and this calculation takes into account both true

positives and true negatives. However, the AUPR of a model that has null performance would actually have differing null areas de-

pending on the underlying prevalence of the positive class, and the calculation does not take into account true negatives. For

example, TCGA contains many more tumor samples than NAT samples, and we model tumor samples as the positive class since

it represents an active diagnosis of cancerous tissue. A model that performs randomly on tumor vs. NAT discrimination would

have an AUROC of �50% but a much higher AUPR (e.g., in a hypothetical case, if we had 90 tumors and 10 NAT samples, the

null AUPR would be 90%). Furthermore, the calculations of precision and recall on the resultant predictions would not take into

account how many samples were true negatives (i.e., those predicted to be NAT and indeed being NAT). Both of these can make

interpretation of AUPR difficult, especially when compared to one-cancer-type-versus-all-others ML models, where the prevalence

of the positive class (cancer type of interest), and thus null AUPR, is often in the range of 1-10%. Nonetheless, it is common to advo-

cate for measuring AUPR in addition to AUROCwhen classes are imbalanced, since large class imbalances in certain circumstances

can artificially raise AUROCs. Thus, for these analyses, we have consistently calculated both and indicated the null AUROCs and null

AUPRs on most ML performance plots, and we continue to caution that for analyses where true negatives are important AUROCs

may be more appropriate to examine.

ML of individual cancer types versus each other or controls

We previously published ML on the TCGA bacteriome using stratified 70% training, 30% holdout testing splits (Poore et al., 2020)

across all cancer types. While suitable for the large number of ML models being built and tested within and between cancer types

in TCGA, this strategy did not provide information of performance error ranges. We thus decided to modify the strategy for the my-

cobiome analyses in such a way to provide both the performance estimate and a confidence interval for that performance across

each cancer type without largely increasing compute times for eachmodel. Specifically, for eachmodel, we performed 10-fold cross

validation using gradient boosting models (GBMs) with ten independent, stratified 10% holdouts (i.e., the prediction class propor-

tions are similar in train/test, such that if the entire dataset was 10 positive class and 90 negative class, then each independent

kth holdout would have 1 positive class sample and 9 negative class samples). ROC and PR curves and areas were calculated for

each independent 10% holdout test set, such that ten sets of two-class discriminatory performance—effectively ten sets of 90%

training-10% testing—were obtained for each model. To be clear, the sampling algorithm used in the R caret package for machine

learning (https://topepo.github.io/caret/model-training-and-tuning.html) treated each 10% cross-validation fold set as an indepen-

dent test set when training a model, and that since the hyperparameters were fixed (see below), the test outputs were representative

of ten train/test iterations on different splits in the data. These performance estimates on the ten folds were then aggregated for each

model to calculate the 95% confidence intervals of performance. One other key difference between this and our previous approach

(Poore et al., 2020) is that the hyperparameter grid search was removed in favor of a fixed GBM grid with the following parameters:

{n.trees=150, interaction.depth=3, shrinkage=0.1, n.minobsinnode=1}. We note that these parameters were possible in our past

TCGA analysis (Poore et al., 2020) and were equal to those used in the host-centric fragmentomic analyses of the Hopkins cohort

(Cristiano et al., 2019) (https://github.com/cancer-genomics/delfi_scripts/blob/master/06-gbm_full.r). Equal to our last approach

(Poore et al., 2020), we also up-sampled the minority class in cases of class imbalance while requiring R20 samples in the minority

class to help the model generalize. We also centered and scaled the data prior to ML model building when using Voom-SNM batch

corrected data; however, when using raw count data, we only removed zero variance features prior to theMLmodel building. The one

exception to this comprised models run in the ‘‘Validation of ML approach in TCGA using different models and sampling stra-

tegies’’ section (below), which did not apply any preprocessing on the data. ML was rapidly iterated on TCGA, WIS, Hopkins, and

UCSD cohorts, collectively representing hundreds of models and thousands of independently held out folds. We also note that in the

case ofWIS data, all filtered fungal or bacterial hits were used regardless of taxonomic rank (i.e., ‘‘free rank’’ data), based on empirical

performance benefits, whereas ML in TCGA, UCSD, or Hopkins was performed with data summarized to a single taxonomic level

(e.g., species, genus).

Validation of ML approach in TCGA using different models and sampling strategies

To ensure that the GBM models were not providing artificially higher performance or overfitting the data, we also re-ran all TCGA

primary tumor, blood, and tumor vs. NAT machine learning models, using batch-corrected or raw decontaminated data at every

taxa level, using random forests (RF), which are less prone to overfit, with fixed hyperparameters (n_trees=500, mtry=4). Specifically,

we ran the random forest models with the same kth-fold splits, so that the GBM and RF performances were directly paired. We then

regressed the paired RF and GBM kth-fold performances, as shown in Data S5.14. The very strong, significant performance corre-

lations, which held for all taxa levels, suggested that the strong ML performance was generalizable to other model types that were

less prone to overfitting. For brevity, althoughmodels built on raw decontaminated data at every taxa level were calculated separately

within each TCGA sequencing center, they were plotted in Data S5.14 in aggregate.

Furthermore, to ensure that the ten-fold cross-validation sampling strategywas not providing artificially higher performance, we re-

ran all TCGA primary tumor, blood, and tumor vs. NATmachine learning models, using batch-corrected or raw decontaminated data

at every taxa level, with an explicit holdout test set. Specifically, the following stepswere done: (1) Perform stratified random sampling
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to allocate 90% of the data to a training set and 10% to a holdout test set, (2) train a gradient boosting machine learning model on the

90% training dataset using 4-fold cross-validation, (3) apply the trainedmodel onto the 10% holdout test set, (4) repeat steps #1-3 for

a total of 10-times per comparison using different train-test splits, and (5) calculate the 95% confidence interval of performance

based on the AUROCs and AUPRs measured on the ten independent holdout test sets. The 95% confidence intervals of these per-

formances for all cancer types were then regressed against the 95% confidence intervals generated using the 10-fold CVmethod, as

shown in Data S5.15. The comparison revealed strong, significant correlations between the two methods, which held for all taxa

levels (Data S5.15). For brevity, although models built on raw decontaminated data at every taxa level were calculated separately

within each TCGA sequencing center, they were plotted in Data S5.15 in aggregate.

Multi-class ML in TCGA using raw data

During validation analyses on raw TCGA count data (see Data S5 Note), we noticed that independently training ML models on two

stratified TCGA halves and subsequently testing on the other half provided highly concordant performance (Data S5.3G and S5.3H).

(Note that stratified samples were based on sequencing center, sample type, and disease type and that experimental strategy was

covered since 7 of 8 sequencing centers only performed WGS or RNA-Seq, and the one that did both [Broad] processed 83% of

samples with WGS only.) This motivated testing whether multi-class machine learning was possible. Since experimental strategy

had the largest batch effect (see ‘‘TCGA cohort: Batch correction’’ section above), we conservatively used WGS-only samples to

ensure that multi-class ML performance would not be affected by WGS vs. RNA-Seq variability. We then ran multi-class ML using

the same GBM modeling approach described above with 10-fold cross-validation. This type of multi-class ML came up in two

circumstances: (1) Comparing the pan-cancer ML performance in TCGA of WIS-overlapping fungal species vs. equal sized feature

sets of non-WIS-overlapping features in tumor tissue and blood, and (2) comparing the relative pan-cancer performance in TCGA of

WIS-overlapping fungi, bacteria, or both. Details of these are provided below, and as above, we note that up-sampling the minority

class and removing zero variance samples were continued here.

Case #1: A total of 34 fungal species overlapped between TCGA andWIS cohorts. To test whether these features weremore infor-

mative when discriminating between cancer types versus similarly sized feature sets, we did the following: (1) Randomly sample

34 non-WIS-overlapping fungal species; (2) perform pan-cancer ML using multi-class classification with 10-fold cross-validation

using WIS-overlapping fungi; (3) perform pan-cancer ML using multi-class classification with 10-fold cross-validation using non-

WIS fungi; (4) calculate average performance (AUROC, AUPR) across all one-cancer-type-versus-all-others comparisons based

on the iterative, independent holdout folds for models built in steps #2-3; (5) repeat steps #1-5 for a total of 50 times, thereby

calculating ML performance on 500 aggregate folds; (6) repeat for both primary tumor and blood derived normal samples. The

resultant performance indeed suggested that WIS-overlapping fungi provided better pan-cancer discriminatory performance

(Data S5.5A, S5.12F, and S5.12G).

Case #2: To test whether adding fungal to bacterial information would improve pan-cancer discrimination, we did the same proced-

ure as Case #1 except that three feature sets were used, consisting of WIS-overlapping fungi, WIS-overlapping bacteria, and both

WIS-overlapping fungi and bacteria.We note thatWIS-overlapping featureswere used for these analyses because they represented

themost confident species calls identified in two international cohorts. The resultant performance indeed suggested that combining

fungal and bacterial information synergistically provided better pan-cancer discriminatory performance (Figures 5C and 5G).

Hopkins and UCSD pan-cancer analyses

Cristiano et al. (Cristiano et al., 2019) originally benchmarked the performance of host-centric, fragmentomic, pan-cancer diagnostics

using GBM ML models based on 10-fold cross-validation repeated 10 times using the following model hyperparameters (https://

github.com/cancer-genomics/delfi_scripts/blob/master/06-gbm_full.r): {n.trees=150, interaction.depth=3, shrinkage=0.1, n.minob-

sinnode=1}. Notably, the only major ML difference between their method and ours (described above) was that we did not repeat the

10-fold cross validation ten-times. Thus, to directly compare our pan-cancer performance on the Hopkins cohort with their previously

published results, we implemented an approach to repeat the 10-fold cross-validation ten-times, such that the ten iterations of per-

formance measurement were done on the aggregated predictions. In other words, the first iteration of this method created 10 sets of

predictions of equal dimensions to the input data that were aggregated into a single prediction vector prior to AUROC/AUPR perfor-

mance measurement, rather than having 10 separate predictions per iteration each with AUROC and AUPR measurements. Collec-

tively, this procedure left 10 AUROC and 10 AUPR values, one for each repeat of the 10-fold cross-validation. These ten values were

used to estimate the 99% confidence intervals of performance and were overlaid on plots with the average performance and con-

fidence interval ribbons (Figures 6H, 6J, and 6K).

Regarding plotting, we adapted an approach from the scikit-learn python package (https://scikit-learn.org/stable/auto_examples/

model_selection/plot_roc_crossval.html) in R to estimate the average AUROC and AUPR curves among their 10 repeated iterations.

This can be a challenging task because the specificity breaks of the ten model iterations are not always equivalent to each other,

requiring interpolation. Specifically, to obtain the average performance lines, we performed linear interpolation using the approx()

base R function of each ROC and PR curve across 1000 equally spaced points between 0 and 1, also ensuring that each average

curve begins and ends at the corners of the plots. The 1000 interpolated y-values between x=0 and x=1 were then used to calculate

the average ROC and PR curve and its concomitant 99% confidence interval at each point. Overlaying these average performance

lines with 99% confidence interval ribbons showed good concordance (Figures 6H, 6J, and 6K).
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Immunotherapy response predictions

A small number of patients with melanoma and lung cancer in the UCSD cohort had clinical immunotherapy response information

available. Due to small sample sizes, machine learning on these patients was done using nested leave-one-out cross-validation,

such that each kth patient was iteratively left out and a model was built on the k-1 patients (tuned using internal four-fold cross-vali-

dation) to make a prediction about the immunotherapy response of the kth patient. In this case, a hyperparameter grid search was

employed to select optimal parameters based on the internal four-fold cross validation for each iteration, and this grid included

the following options: {interaction.depth = seq(1,3), n.trees = floor((1:3) * 50), shrinkage = 0.1, n.minobsinnode = 1}. After iterating

through all k patients, the list of predicted responses and known responses were compared to calculate ROC and PR curves and

their respective areas. Using WIS-overlapping fungi, moderate discrimination between responders and non-responders was

observed in patients with melanoma (Data S6.3D) but not in lung cancer (data not shown).

Scrambled and shuffled control analyses

In addition to comparing ML model performances to null AUROC and AUPR values, we wanted to implement additional negative

control analyses. These were done in two independent ways just prior to ML model building: (1) scrambling metadata of prediction

labels and (2) shuffling the sample IDs in the count data. We note that the scrambling and shuffling can occur globally (i.e., once

before all ML models are built and tested) or dynamically (i.e., just prior to ML model building but after data subsetting and labeling).

For example, when discriminating one cancer type versus all others, global scrambling would randomly sample all disease type labels

among all sample types, whereas dynamic scrambling would happen only after subsetting to primary tumors and relabeling the dis-

ease types to two classes (i.e., the cancer type of interest and ‘‘Others’’). We tested both of these approaches and found that both

generally worked; however, the dynamic scrambling and shuffling yieldedmore consistent results (less variance) and showed greater

agreement with known null values (i.e., 50% AUROC and positive class prevalence for AUPR). Hence, we used dynamic scrambling

and shuffling as negative controls when comparing performance to actual samples.

Taxonomic generalizability

To test taxonomic generalizability, we aggregated raw read counts based on the decontaminated fungal data up the taxonomic levels

(species through phylum) prior to ML using the phyloseq R package (v. 1.38.0) (McMurdie and Holmes, 2013). Aggregated counts

were then inputted into the same ten-fold cross-validation models (repeated once) described above to estimate performance and

concomitant 95% confidence intervals (Data S5.2 and S5.11).

Stratified halves validation analyses

As another control, we split raw TCGA count data into two stratified halves using sequencing center, sample type, and disease type

metadata information.We again note that experimental strategywas covered in this stratification since 7 of 8 sequencing centers only

performed WGS or RNA-Seq, and the one that did both [Broad] processed 83% of samples with WGS only. We then used both of

these stratified halves to iteratively train ML models employing ten-fold cross-validation (repeated once) predicting one cancer type

versus all others; each trainedmodel was then immediately applied to the data of the other stratified half to discriminate that particular

cancer type. The ML performance from testing each model on the corresponding half was then compared, revealing highly concor-

dant values (Data S5.3G and S5.3H). This process was repeated using Voom-SNM normalization as well with the same procedure

except that Voom-SNM normalization occurred independently on each half after stratification but prior to MLmodel building/testing.

This additional analysis showed concordant performance among TCGA primary tumors and blood samples (Data S5.6C and S5.6D).

TCGA cohort: Differential abundance testing
As a positive control, yet orthogonal analysis of the cancer type ML, we implemented differential abundance testing using ANCOM-

BC, which is currently the only statistically valid microbiome test that provides appropriate taxon-specific p-values and differential

abundance confidence intervals for each taxon while controlling the false discovery rate (Lin and Peddada, 2020). We thus imple-

mented ANCOM-BC on raw TCGA count data subsetted to each sequencing center to (i) discriminate between cancer types using

primary tumors or blood, or (ii) discriminate between stage I and IV tumors. For (i), ANCOM-BC was applied with the following pa-

rameters: {p_adj_method = "BH", zero_cut = 0.999, lib_cut=1000, tol = 1e-5, max_iter = 100, conserve = FALSE, alpha = 0.05,

global = FALSE}. Statistical discrimination was done per cancer type versus all others within each subset. We then used the calcu-

lated beta values, p-values, and BH adjusted q-values to make volcano plots (Data S5.4, S5.7, and S5.9). For (ii), the ANCOM-BC

parameters were the same except for lib_cut, which was 100. For both (i) and (ii), we required a minimum of 10 samples in each class

before computing differentially abundant taxa.

QUANTIFICATION AND STATISTICAL ANALYSIS

WIS cohort: Statistical analyses
Most of the downstream analysis and plots were performed with R version 4.03. Packages used in analysis include phyloseq 1.34.0,

ggplot2 3.3.4, ggbeeswarm 0.6.0, ggrepel 0.9.1. VennDiagram 1.6.20, pheatmap 1.0.12, ggforce 0.3.3, ggpubr 0.4.0, RColorBrewer

1.1-2, proxy 0.4-26, reshape2 1.4.4, stringr 1.4.0, dplyr 1.0.7, purrr 0.3.4, readr 1.4.0, tidyr 1.1.3, tidyverse 1.3.1. We note that the R

programming language has two numerical limits when it comes to calculating small numbers, including p-values: (1) double eps, or

smallest positive floating-point number x such that 1 + x!= 1, which is 2.220446310�16; (ii) double xmin, or the smallest non-zero

normalized floating-point number, which is 2.225074310�308 (although this limit may be even lower depending on the computing
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environment). Some R packages, notably ggpubr, do not report p-values less than double eps, so they are denoted in our data as

p<2.2310�16; conversely, other R packages, notably rstatix (listed below), report p-values as low as double xmin, and p-values that

were less than double xmin in our data are reported as p<2.2310�308. They are not a range of p-values.

TCGA, Hopkins, and UCSD cohorts: Statistical analyses
Downstream analyses and plots were generated with either R version 4.03 or 4.1.1. Common R packages used include phyloseq

(v. 1.38.0), vegan (v.2.5-7), microbiome (v. 1.16.0), doMC (1.3.7), dplyr (v. 1.0.7), reshape2 (v. 1.4.4), ggpubr (0.4.0), ggsci (v. 2.9),

rstatix (v. 0.7.0), ggrepel (v. 0.9.1), tibble (v. 3.1.6), caret (v. 6.0-90), gbm (v. 2.1.8), xgboost (v. 1.5.0.1), randomForest (v. 4.6-14),

MLmetrics (v. 1.1.1), PRROC (v. 1.3.1), e1071 (v. 1.7-9), gmodels (v. 2.18.1), ANCOM-BC (v. 1.4.0), decontam (v. 1.14.0), limma

(v. 3.50.0), edgeR (v. 3.36.0), snm (v. 1.42.0), biomformat (v. 1.22.0), and Rhdf5lib (v. 1.16.0). The rstatix package corrected for mul-

tiple hypothesis testing where applicable. Sample sizes were not estimated in advance and power calculations were not performed.

The gbm package was used for two-class gradient boosting ML, the xgboost package was used for multi-class gradient boosting

ML, and the randomForest package was used for two-class random forest ML. AUROC and AUPR were calculated using the

PRROC package.

ADDITIONAL RESOURCES

Website
Awebsite summarizing the TCGA analyseswas created using RShiny (https://shiny.rstudio.com/). There are several clickable tabs on

the left-hand side that reveal (1) interactive ANCOM-BC differential abundance volcano plots; (2) hundreds of MLmodels on raw and

batch-corrected data with associated performance plots, confusion matrices, and ranked feature lists; and (3) pan-cancer normal-

ized abundance plots at species and genus-levels for viewing normalized fungal abundances in TCGA. The website can be accessed

at http://cancermycobiome.ucsd.edu/.
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