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Summary  1 

Sarcomas are a diverse group of rare malignancies comprised of multiple different clinical 2 

and molecular subtypes. Due to their rarity and heterogeneity, basic, translational, and clinical 3 

research in sarcoma has trailed behind that of other cancers. Outcomes for patients remain 4 

generally poor due to an incomplete understanding of disease biology and a lack of novel 5 

therapies. To address some of the limitations impeding preclinical sarcoma research, we have 6 

developed Sarcoma_CellMinerCDB, a publicly-available interactive tool that merges publicly-7 

available sarcoma cell line data and newly generated omics data to create a comprehensive 8 

database of genomic, transcriptomic, methylomic, proteomic, metabolic, and pharmacologic data 9 

on 133 annotated sarcoma cell lines. The reproducibility, functionality, biological relevance, and 10 

therapeutic applications of Sarcoma_CellMinerCDB described herein are powerful tools to 11 

address and generate biological questions and test hypotheses for translational research. 12 

Sarcoma_CellMinerCDB (https://discover.nci.nih.gov/SarcomaCellMinerCDB) aims to contribute 13 

to advancing the preclinical study of sarcoma. 14 

 15 
 16 
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Introduction 1 

 Sarcomas represent a heterogeneous group of rare cancers that affect children, 2 

adolescents, and adults. This broad group of malignancies includes numerous distinct clinical and 3 

molecular subtypes. There are two main categories of sarcomas, those that arise from bone, such 4 

as osteosarcoma and Ewing sarcoma, and those that arise from soft tissue, such as 5 

rhabdomyosarcoma, liposarcoma, leiomyosarcoma, and others. Moreover, even within these 6 

general categories, sarcomas demonstrate strikingly heterogenous biology, which affects the 7 

pathological diagnosis, clinical presentation, progression, and outcome of these cancers.1 8 

Biologically, sarcomas exhibit extreme molecular diversity. Some subtypes have recurrent 9 

oncogenic alterations, including oncogenic fusion proteins or recurrent amplifications and point 10 

mutations, whereas other subtypes demonstrate more complex genomic profiles.2,3 Due to the 11 

relative rarity of sarcoma compared to other cancers, the collection of data, including genomic 12 

clinical data, and the compilation of large datasets lags behind other malignancies.4 In addition, 13 

the field suffers from a dearth of publicly shared and well-annotated preclinical models, particularly 14 

for the rarer subtypes, which has hindered progress towards new therapeutic advances.5 As a 15 

result, very few sarcomas are treated with a targeted approach, and therapy for most subtypes 16 

still consists of multiagent systemic chemotherapy and local control, a highly toxic approach that 17 

fails to cure all patients.6-8 Consequently, outcomes for patients with most sarcoma subtypes have 18 

not improved in several decades due to an incomplete understanding of disease biology and a 19 

lack of novel therapies.1,9-11 20 

 To remedy some of the limitations hindering the preclinical study of sarcoma, we have 21 

developed Sarcoma_CellMinerCDB, a publicly-available interactive tool for the research 22 

community (https://discover.nci.nih.gov/rsconnect/SarcomaCellMinerCDB/). 23 

Sarcoma_CellMinerCDB merges both publicly-available sarcoma cell line data with additional 24 

novel omics data to create a comprehensive database containing genomic, transcriptomic, 25 

methylomic, proteomic, metabolic, and pharmacologic data on 133 annotated sarcoma cell lines. 26 
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 5 

Importantly, the data are displayed using an interface that allows for easy visualization, analysis 1 

of the information, and development of hypotheses by users. Herein we introduce these unique 2 

resources and data assembled in Sarcoma_CellMinerCDB, and describe the reproducibility, 3 

functionality, biological relevance, and therapeutic applications of this database.  4 

 5 

Results 6 

Summary of resources and data included in Sarcoma_CellMinerCDB 7 

Sarcoma_CellMinerCDB assembles data from 133 sarcoma cell lines, representing 15 8 

distinct clinical entities (4 bone and 11 soft tissue) as shown in Figure 1A. Osteosarcoma (n=23 9 

cell lines), Ewing sarcoma (n=42 cell lines), and rhabdomyosarcoma (n=26 cell lines), which are 10 

the most common clinical entities, represent the largest groups of cell lines. However, rarer 11 

sarcomas, including alveolar soft part sarcoma and fibrosarcoma are also represented. Genomic 12 

and drug response data are compiled from six publicly-available sources (CTRP, CCLE, GDSC, 13 

MD Anderson, Achilles, NCATS)12,13 with the addition of new previously unpublished data from 14 

NCI. Data types include mutation (exome), gene expression (Affymetrix and RNAseq), gene copy 15 

number, methylation, microRNA (Nanostring), pharmacologic, proteomic, metabolic and CRISPR 16 

Cas9 knockout screen results. As previously described for SCLC-CellMiner,12,14 we also 17 

developed Global Z-score expression sets by regrouping all datasets for expression (Affymetrix 18 

and RNAseq) using Z-score normalization. This enables analyses of transcriptomic data across 19 

all datasets. In addition, we used Affymetrix SNP6.0 Array data to generate GDSC copy number. 20 

Figure 1B shows a summary of data sources and the number of cell lines per data source. 21 

Detailed information regarding the data source and name of each individual cell line, as well as 22 

available clinical data, is shown in Figure 1C and Supplemental Table S1. For many cell lines, 23 

similar analyses were derived from multiple sources (data overlap). The extent and type of data 24 

overlap are described in Figures 1C-E and Supplemental Figures S1A-B.  25 
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 6 

Reproducibility and functionality of Sarcoma_CellMinerCDB  1 

  Sarcoma_CellMinerCDB has multiple capabilities that are summarized in Table 1. To 2 

validate the data across individual datasets, we first compared their general reproducibility by 3 

performing Pearson and Spearman correlation analyses on methylation, expression, and copy 4 

number data for overlapping cell lines from the different genomic databases. We found that 5 

datasets are highly reproducible, with median Pearson correlations between 0.65 and 0.86 for 6 

methylation data, between 0.68 and 0.92 for expression data, and between 0.55 and 0.83 for copy 7 

number data across the data sources (Figure 2A and Supplemental Figure S2A). In addition, 8 

comparison of our Global Z-score for expression to the expression data from the other data 9 

sources revealed strong correlations (Pearson correlations between 0.92 and 0.97; Spearman 10 

correlations between 0.89 and 0.95) (Supplemental Figures S2B-C). Taken together, these 11 

analyses demonstrate that the expression, methylation, and copy number data are reproducible 12 

across the data sources, and that the cell lines grown and analyzed independently have overall 13 

conserved genotypes. 14 

 To illustrate the high reproducibility across datasets, we used the Sarcoma_CellMinerCDB 15 

Univariate Analysis tool and visualized the expression of an exemplary gene (SLFN11; Schlafen 16 

11),15 across the broad sarcoma cell line panel (Figure 2B). In this example, SLFN11 expression 17 

from the NCI database is highly correlated with SLFN11 expression from the CCLE database 18 

(r=0.96) and with the Global Z-score for SLFN11 expression (r=0.99). Furthermore, when 19 

assessed by individual sarcoma subtype, SLFN11 expression level was found to be highest in 20 

Ewing sarcoma and highly variable across cell lines in the other subtypes, across each of the 21 

datasets. This both demonstrates that there is consistency across the database and confirms 22 

what has been previously described regarding expression of SLFN11 in Ewing sarcoma.16,17 23 

 In addition to exploring and validating gene expression across databases, the Univariate 24 

Analysis tool can be used to interrogate correlations between data on two genes, either in the full 25 

sarcoma cell line panel or within individual sarcoma subtypes. For example, when expression of 26 

Jo
urn

al 
Pre-

pro
of



 7 

the ETS family transcription factor FLI1 is plotted against the expression of SLFN11 or CD99 1 

(encoding a cell surface and T-cell adhesion glycoprotein) in the full sarcoma cell line panel, the 2 

scatter plots reveal highly significant correlations between FLI1 and both SLFN11 and CD99 3 

expression in the majority of Ewing sarcoma cells, which is consistent with known disease biology 4 

(Figure 2C, left and middle panels)16,18. Importantly, even in subtypes with fewer available cell 5 

lines, the Univariate Analysis tool can identify distinct biological features characteristic of those 6 

subtypes. For example, the expression of MDM2 (a key p53 ubiquitin ligase that downregulates 7 

p53) is highest in liposarcoma cell lines LS141 and DDLS and correlates with high MDM2 copy 8 

number (Figure 2C, right panel). This too is expected based on known disease biology.19 9 

  The Multivariate Analysis tool can be used to examine relationships between multiple 10 

parameters across the cell line panel. In the example shown, expression of two genes SLFN11 11 

and ABCG2 (which encodes the drug efflux transporter BCRP) are plotted against sensitivity to 12 

irinotecan across the broad sarcoma cell line panel (Figure 1D). This analysis demonstrates a 13 

strong relationship between high SLFN11 expression, low ABCG2 expression, and high sensitivity 14 

to irinotecan, particularly among Ewing sarcoma cell lines. High SLFN11 expression has been 15 

described as a biomarker for topoisomerase I (TOP1) inhibitor sensitivity in cancers including 16 

Ewing sarcoma.16,17 While ABCG2 expression has been described as a biomarker for TOP1 17 

inhibitor sensitivity in some tumor types,20 it has yet to be established in Ewing sarcoma. Taken 18 

together, these examples highlight the reproducibility and functionality of Sarcoma_CellMinerCDB 19 

to confirm known biological features of sarcoma subtypes in the cell line models and potentially 20 

making new discoveries that can be translated in the clinic. 21 

Biological relevance of sarcoma cell lines as preclinical models based on oncogenic 22 

fusions 23 

 Oncogenic fusions are a hallmark of several subtypes of sarcomas, including Ewing 24 

sarcoma,21 fusion-positive rhabdomyosarcoma,22 synovial sarcoma,23 and alveolar soft part 25 
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 8 

sarcoma.24 Identified fusions in the Sarcoma_CellMinerCDB cell lines are listed in Supplemental 1 

Table S2. Fusion status can be accessed under the “NCI” dropdown in the x- or y-Axis Cell Line 2 

Set and the “gene fusions” dropdown in the x- or y-Axis Data Type. The desired fusion can be 3 

typed into the identifier field. Full fusion data from NCI cell lines can be downloaded from the 4 

Metadata tab by again selecting the “NCI” Cell Line Set and “gene fusions” Data Type. 5 

In fusion-driven sarcoma subtypes, the fusions act as the main drivers of disease biology 6 

and impact numerous downstream processes. Examination of the relationship of fusion status to 7 

other available omics data can be used to mine the biology in cell lines in the context of the 8 

disease of origin, discover new correlations for future study, and define “outlier” cell lines that may 9 

be useful for interrogating particular experimental questions. For example, Univariate Analysis 10 

based on EWS-FLI1 fusion reveals the presence of the fusion in all Ewing sarcoma cell lines, with 11 

two exceptions COG-E-352 and CHLA-25 (Figure 3A), which are known to harbor the EWS-ERG 12 

fusion variant type.25 In addition, Sarcoma_CellMinerCDB shows that none of the non-Ewing 13 

sarcoma cell lines express the EWS-FLI1 fusion. When the EWS-FLI1 fusion status is compared 14 

to expression of other known markers of Ewing sarcoma, notable data emerge. FLI1 expression 15 

is tightly correlated with EWS-FLI1 fusion status, with the lowest FLI1 expression seen in the 16 

EWS-ERG fusion cell lines. In contrast, CD99, a pathologic marker which is positive in nearly all 17 

Ewing sarcoma tumors,18 is highly expressed in all but two Ewing sarcoma cell lines (TC32 and 18 

RD-ES) but is independent of the fusion type. High expression of SLFN11 is universal in Ewing 19 

sarcoma lines and is also independent of fusion type. NROB1 (encoding the Nuclear Receptor 20 

Subfamily O Group B Member 1 that acts as a dominant-negative transcription regulator), which 21 

has been described as a downstream target of EWS-FLI1,26 is highly expressed only in EWS-22 

FLI1 fusion cell lines, but not universally (RD-ES does not express it highly). As expected, CD99, 23 

SLFN11, and NROB1 are all expressed more highly in Ewing cell lines than in any other sarcoma 24 

cell lines, supporting the biological relevance of sarcoma cell lines as models. 25 
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 9 

 Analyzing fusion-positive rhabdomyosarcoma cell lines demonstrates the value of 1 

studying fusion in concert with other omics data (Figure 3B). The presence of a PAX3-FOXO1 2 

fusion is identified in 2/5 rhabdomyosarcoma cell lines in the NCI dataset. Published data 3 

describing differential gene expression between fusion-positive and fusion-negative 4 

rhabdomyosarcoma patient tumors have identified a number of genes, including MYOG, NOS1, 5 

OLIG2, and PIPOX, that are highly expressed in tumors with PAX3-FOXO1 fusions, compared to 6 

those that lack the fusion (Figure 3B).27-30 Interrogation of the relationship of these four genes with 7 

PAX3-FOXO1 using Sarcoma_CellMinerCDB reveals concordance between the cell line data and 8 

the tumor data for each of these genes. Furthermore, no other sarcoma cell lines highly express 9 

these genes, suggesting that across sarcomas, they may be specific to fusion-positive 10 

rhabdomyosarcoma and can be used as a classifier of this subgroup. Additionally, as the 11 

biological function of NOS1, OLIG2, and PIPOX remain largely unexplored in 12 

rhabdomyosarcoma, there may be opportunities to study them as prognostic factors and potential 13 

therapeutic targets. 14 

Beyond the correlations between fusions and gene expression, the Univariate Analysis 15 

tool of Sarcoma_CellMinerCDB can be utilized to identify genetic dependencies. Using the 16 

oncogenic fusions to illustrate this, CRISPR data from the Achilles database, which are integrated 17 

in Sarcoma_CellMinerCDB (under the “Achilles” dropdown in the x- or y-Axis Cell Line Set), 18 

confirms that FLI1 is an essential gene for EWS-FLI1 fusion positive Ewing sarcoma cell lines, 19 

but not for COG-E-352, the EWS-ERG fusion positive Ewing sarcoma cell line (Figure 3C). 20 

Similarly, FOXO1 (encoding the Forkhead Box O1 transcription factor) is essential only in 21 

rhabdomyosarcoma cell lines harboring the PAX-FOXO1 fusion (Figure 3D). Taken together, the 22 

fusion data highlight the authenticity of cell lines as biologically relevant models, and demonstrate 23 

the diverse functionality of integrating transcriptomic, fusion, and CRISPR knockout data. 24 
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 10 

Mutation and mutational burden characteristics of sarcoma cell lines 1 

The presence of somatic mutations and tumor mutational burden (TMB) are key features 2 

that can be used to confirm diagnoses and/or dictate therapeutic decisions in certain subtypes of 3 

sarcoma.31-33 To first capture the overall mutational burden of each sarcoma cell line, we 4 

calculated TMB using exome data (Figure 4A). Ewing sarcoma cell lines exhibited the lowest TMB 5 

of all the sarcoma subtypes, which matches the known low mutation burden observed in patient 6 

tumors and is a well-known feature of the disease.34,35 In contrast, soft-tissue sarcomas (excluding 7 

rhabdomyosarcoma) exhibited the largest TMB range, with some cell lines having greater than 8 

35 mutations/megabase, and others fewer than 10. Although this is an expected consequence of 9 

analyzing such a heterogeneous group of tumors together, these data may be useful to identify 10 

models of specific subtypes with certain features to be used for preclinical study. For example, 11 

there is a clinical subset of leiomyosarcoma known to have MSH2 mutations and high 12 

microsatellite instability (MSI).36 Sarcoma_CellMinerCDB identifies leiomyosarcoma cell lines SK-13 

UT-1 and SK-UT-1B as having the highest TMB of all the cell lines. Further analysis reveals that 14 

these cell lines have pathogenic mutations in the mismatch repair gene MSH2 (Figure 4B). This 15 

is associated with low expression of MSH2, potentially conferring a mismatch repair deficiency 16 

phenotype and explaining the accumulation of mutations and high TMB (Figure 4B). These cell 17 

lines may represent valuable models to preclinically study this subgroup of leiomyosarcomas. 18 

Sarcoma_CellMinerCDB can also be applied to explore mutations for a particular disease 19 

entity in specific cell lines. To test this feature for known disease-specific mutations, we looked 20 

for cell lines with isocitrate dehydrogenase (IDH) mutations. We identified just two cell lines in the 21 

whole panel with IDH mutations (one for IDH1 and another for IDH2), both of which were in 22 

chondrosarcoma cell lines (Supplemental Figure S3A). This result is consistent with the clinical 23 

disease biology of chondrosarcoma, as IDH mutations are a known genetic feature of 24 

chondrosarcoma and are found in approximately half of patients.37 25 
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 11 

We also identified deleterious mutations in the STAG2 gene (encoding Stromal Antigen 2, 1 

a component of the cohesin complex) in seven Ewing sarcoma cell lines. Comparison of the 2 

STAG2 mutations present in the Sarcoma_CellMinerCDB Ewing sarcoma cell lines to those 3 

described in Ewing sarcoma patient tumors confirmed that in the cell lines, as in the patient 4 

tumors, the mutations are not hot-spot mutations (Figure 4C). Furthermore, based on the Achilles 5 

data integrated in Sarcoma_CellMinerCDB, we confirmed that presence of STAG2 is not a 6 

dependency in Ewing sarcoma cell lines (Supplemental Figure S3B), which is consistent with the 7 

known biological role of STAG2 mutation as a marker of poor prognosis in Ewing sarcoma 8 

tumors.35,38 However, our analysis did reveal that the frequency of STAG2 mutations in the Ewing 9 

sarcoma cell lines (35%) was higher than what would be expected in patient tumors (Figure 10 

4D).35,39 Although this is a limitation associated with the use of all cell line models, the tool has 11 

sufficient data to allow users to determine whether there are differences between the cell line 12 

models and the patients, reducing the chance of misinterpretation of the data.    13 

Using the Compare Patterns tool of the Univariate Analysis page of 14 

Sarcoma_CellMinerCDB,12 we identified a correlation between STAG2 mutational status and 15 

sensitivity to the tyrosine kinase inhibitor cabozantinib in the Ewing sarcoma cell lines (Figure 4E). 16 

Cabozantinib was recently studied in a clinical trial for patients with bone sarcoma, and in patients 17 

with Ewing sarcoma, 25% of patients experienced a partial response.40 Since no biomarkers of 18 

response were studied in this clinical trial, our findings suggest that it may be worth evaluating 19 

STAG2 mutations as a predictive biomarker of response to this therapy. In summary, the mutation 20 

data readily accessible in Sarcoma_CellMinerCDB is a rich resource for examining both tumor 21 

mutational burden, as well as specific gene mutations in sarcoma cell lines. 22 

Alternative Lengthening of Telomeres (ALT) in the sarcoma cell lines 23 

We next sought to characterize the presence of TERT mutations, as TERT promoter 24 

mutations represent the most common non-coding mutations in cancer cells and have been 25 
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 12 

described in a subset of soft-tissue sarcomas.41-44 TERT encodes the catalytic subunit of 1 

telomerase which maintains telomere length, and mutations in TERT can reduce telomerase 2 

function.42 TERT negative cancer cells use an alternative pathway called the ALT pathway which 3 

is active in about 10-15% of cancers, especially in osteosarcomas, and may have therapeutic 4 

implications.45-48 Using Sarcoma_CellMinerCDB, we analyzed osteosarcoma cell lines for TERT 5 

mutations and expression. Among the 59 sarcoma cell lines sequenced in the NCI database, the 6 

27 cell lines of the GDSC and the 30 cell lines of the CCLE, deleterious TERT mutations were 7 

only found in one cell line sequenced at the NCI: the CHLA-59 osteosarcoma cell line. 8 

Notably, as expected, known ALT positive osteosarcoma cell lines (U2OS, SAOS2, CAL-9 

72, Hu09 and NY),49,50 lack TERT expression (Supplemental Figure S4), whereas known ALT 10 

negative cell lines express TERT.49 Because for many sarcoma cell lines, the ALT status is 11 

unknown, examination of TERT expression may therefore provide clues to their ALT status. For 12 

example, the osteosarcoma cell line Hs 870.T and the spindle cell sarcoma Hs 321.T cells have 13 

no TERT expression and may represent additional ALT positive bone sarcoma cell lines 14 

(Supplemental Figure S4A). Additionally, based on lack of TERT expression, there may be a 15 

significant number of other types of sarcoma cell lines with ALT positivity, including 3 out of the 16 

25 rhabdomyosarcoma cell lines of the Sarcoma_CellMinerCDB database (Rh30, Rh41, and 17 

SJCRH30) and 2 out of the 5 fibrosarcoma cell lines (Hs 414.T, Hs913.T and Hs 93.T). Notably, 18 

a significant number of cell lines lack DAXX expression which is a signature of ALT (Supplemental 19 

Figure S4B). Further experiments are warranted to expand these results in the cell lines and to 20 

determine whether the frequency of ALT and its therapeutic implication are underappreciated in 21 

soft tissue sarcomas.51  22 

Methylome and methylation profiling 23 

  Given the heterogeneity of sarcomas, particularly non-rhabdomyosarcoma soft-tissue 24 

sarcomas, the diagnosis of certain subtypes remains a challenge. New approaches using 25 
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 13 

promoter methylation data as an adjunct to traditional pathological and molecular techniques are 1 

increasingly being utilized.52 In addition, a lack of knowledge regarding the cell(s) of origin giving 2 

rise to sarcomas remains a knowledge gap in the field, and access to methylation data may help 3 

to answer this question. Using promoter methylation data from each cell line, we were able to 4 

broadly classify sarcoma subtypes (Figure 5A). 5 

All the Ewing sarcoma cell lines clustered tightly together, with the exception of A673, a 6 

widely used cell line bearing the EWS-FLI1 fusion, that has been shown to paradoxically maintain 7 

a normal growth rate in experiments silencing EWS-FLI1.53 Hs 913.T, a fibrosarcoma cell line, 8 

clusters with the Ewing sarcoma cell lines, although the reason for this is unclear. Similarly, most 9 

of the rhabdomyosarcoma cell lines cluster together, with an apparent separation between 10 

alveolar/fusion-positive and embryonal/fusion-negative lines, as has been previously reported for 11 

patient samples.54 The one exception to this is the Hs 729 cell line, which is a pleiomorphic 12 

rhabdomyosarcoma and biologically distinct from the embryonal and fusion-positive subtypes; it 13 

clusters with the non-rhabdomyosarcoma soft-tissue sarcomas. As expected, osteosarcomas and 14 

other soft-tissue sarcomas do not separate as clearly into distinct clusters, likely due their 15 

heterogeneity and complex genomic features.    16 

A comparison of overall promoter methylation between the sarcoma subtypes 17 

demonstrates that soft-tissue sarcomas, including rhabdomyosarcoma, have higher levels of 18 

global promoter methylation than bone sarcomas (Figure 5B). Using hierarchical clustering, 19 

comparison of promoter methylation profiles between each of the sarcoma subtypes 20 

demonstrates the presence of six gene clusters (Figure 5C, Supplemental Tables S4, S5). 21 

Pathway enrichment analysis identifies three clusters (1,2, and 4) with significant pathway 22 

enrichment (Supplemental Figure S5A).  As is the case with other methylation studies, this 23 

clustering may be more reflective of the cell(s) of origin than the oncogenic pathways 24 

themselves.55 25 
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 14 

Sarcoma_CellMinerCDB readily allows the visualization of the relationship between 1 

expression and promoter methylation status (Table 1). As a representative gene, we used 2 

MYOD1, a key gene in rhabdomyosarcoma, as an example. As expected, there is a negative 3 

correlation between MYOD1 expression and MYOD1 promoter methylation in 4 

rhabdomyosarcoma cell lines (Figure 5D). In contrast, there is no relationship between MYOD1 5 

expression and promoter methylation in other sarcoma cell lines, suggesting that the expression 6 

of MYOD1 is regulated by promoter methylation status specifically in rhabdomyosarcoma. 7 

Recent work has shown that in addition to promoter methylation, gene body methylation 8 

may be important for predicting gene expression.56-58 In Sarcoma_CellMinerCDB, we integrated 9 

gene body methylation data to augment the predictive value of the promoter methylation data. A 10 

representative comparison of gene expression and methylation of SLFN11 at the promoter versus 11 

at the gene body, shows the expected negative correlation with promoter methylation and a 12 

positive correlation with body methylation. Importantly, both correlations show highly significant 13 

p-values (Supplemental Figure S5B). Furthermore, the use of promoter and body methylation 14 

together improves the significance of the predicted gene expression (Supplemental Figure S5C). 15 

Taken together, the Sarcoma_CellMinerCDB methylation data provide comprehensive resource 16 

of methylation status for sarcoma cell lines and could serve as the foundation for further epigenetic 17 

studies, as we demonstrated for the small lung cancer cell lines.58 18 

Predictive biomarkers of drug response 19 

 As an overarching feature of preclinical models is to uncover biological mechanisms that 20 

may translate into a clinical impact on patient outcomes, a unique feature of 21 

Sarcoma_CellMinerCDB is the inclusion of drug activity data in the cell lines. These data 22 

incorporate drug response data from the NCI, the Broad and Sanger Institutes, as well as the 23 

recent data from the National Center for Advancing Translational Science (NCATS) reporting on 24 

drug activity for >2500 compounds in 183 cancer cell lines (see Figure 1C and 1E).13 25 
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Figure 6A displays data generated from Sarcoma_CellMinerCDB showing seven 1 

conventionally used therapeutics for the treatment of sarcoma, and their relative activity across 2 

the sarcoma cell lines. These data are consistent with what is clinically known about the activity 3 

of these agents for specific subtypes of sarcomas; for example, the high sensitivity of 4 

rhabdomyosarcoma to dactinomycin, osteosarcoma to methotrexate, and some non-5 

rhabdomyosarcoma soft-tissue sarcomas to pazopanib. In addition, they suggest some new 6 

insights for drugs that are not currently being implemented as upfront standard of care in the 7 

clinic, such as the exquisite sensitivity of Ewing sarcoma to irinotecan. While irinotecan is a 8 

common agent in relapse regimens for Ewing sarcoma, it is not presently part of first-line therapy, 9 

and in these results, its activity appears to exceed that of current front-line agents. To understand 10 

the genomic determinants of drug sensitivity, the Compare Patterns tool from the Univariate 11 

Analysis page can be used to identify biomarkers of response.12 This unbiased approach reveals 12 

that SLFN11 expression is highly correlated with irinotecan sensitivity in the Ewing sarcoma cell 13 

lines (Figure 6B). SLFN11 expression was also correlated with response to the PARP inhibitor, 14 

talazoparib, in Ewing sarcoma cell lines (Figure 6B), which is consistent with independent 15 

publications.16,17,59 16 

 Presently, there are very few examples of targeted therapies that are effective in 17 

sarcomas, and even fewer examples of immunotherapeutic approaches that have shown efficacy 18 

in patients with sarcoma.60-62 To interrogate the potential utility of repurposing approved targeted 19 

therapies for other cancers in sarcoma, we generated a heatmap showing RNA expression of 20 

surface targets with approved antibody-drug conjugates (ADCs) across the full cell line panel 21 

(Supplemental Figure S6A). For the three most common sarcoma subtypes, Ewing sarcoma, 22 

osteosarcoma, and rhabdomyosarcoma, none of the targets of approved therapies were highly 23 

expressed within or across the sarcoma subtypes, suggesting that approved targeted therapies 24 

are unlikely to be an effective approach for most patients with these malignancies. However, 25 

within the non-rhabdomyosarcoma soft-tissue sarcoma group, there were a small number of cell 26 

Jo
urn

al 
Pre-

pro
of



 16 

lines expressing potential targets. For example, two chondrosarcoma cell lines (SW 1353 and 1 

JJ012) exhibit high expression of CD33. This has not been reported in the literature but may 2 

suggest that there is a role for testing an anti-CD33 therapeutic in a subset of patients with 3 

chondrosarcoma, or at the very least examining chondrosarcoma tumors for CD33 positivity, 4 

given that gentuzumab ozagamicin, an anti-CD33 ADC conjugated to the antineoplastic antibiotic 5 

calicheamicin, is approved for acute myeloid leukemia and is available. 6 

 Sarcoma_CellMinerCDB can be used to potentially identify new targets of diagnostic and 7 

therapeutic interest for sarcoma. As an example, we generated a heatmap illustrating RNA 8 

expression of surface markers across the panel of sarcoma cell lines (Figure 6C, Supplemental 9 

Table S5). For each subtype, distinct expression patterns emerged. We focused further on the 10 

genes from the heatmap for Ewing sarcoma, selecting four genes with high transcript levels 11 

compared to other sarcoma types: SLCO5A1, NPY5R, PCDH17, and CDH8. Using FLI1 12 

expression as a comparator, we verified high gene expression for each of the four genes in all 13 

Ewing sarcoma cell lines (Figure 6D). Notably, the Ewing sarcoma cell line with an EWS-ERG 14 

fusion also expressed high levels of each gene, and no non-Ewing cell lines expressed high 15 

levels, confirming the high degree of specificity of these surface markers for Ewing sarcoma. 16 

Notably, NPY5R expression was recently described as correlating with high SUV measurements 17 

in FDG-PET scans of Ewing sarcoma tumors.63 There are currently no reports describing an 18 

association with or function of SLCO5A1, PCDH17, or CDH8 in Ewing sarcoma.  19 

Given that gene expression levels in cancer cells can be indicative of an overlapping 20 

biology of normal tissues, we next examined the expression of the surface markers which are 21 

overexpressed in Ewing sarcoma in 7862 normal tissues from 32 tissues of origin (Supplemental 22 

Figure S6B). Several genes, including ITM2A and FCGRT, both of which had been previously 23 

identified as EWS-FLI1 target genes,64,65 were widely expressed across nearly all normal tissue, 24 

limiting their potential as therapeutic targets. In contrast, SLCO5A1, NPY5R, PCDH17, and CDH8 25 

expression was low in most normal tissues, suggesting that these targets may be suitable for 26 
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future development of diagnostics, ADCs, and cellular immune therapies in Ewing sarcoma. 1 

Overall, Sarcoma_CellMinerCDB is a powerful tool that can be used to elucidate patterns of drug 2 

response and resistance in cell lines according to their genomic characteristics, which is crucial 3 

given the overall heterogeneity of sarcoma subtypes. In addition, its multi-functionality can be 4 

used to discover new therapeutic targets for patients with sarcoma.   5 

 6 

Discussion 7 

 Herein we have described Sarcoma_CellMinerCDB, a unique web-based and exploratory 8 

resource integrating comprehensive data from multiple sources together with novel data into a 9 

single multi-omic research tool allowing easy interrogation of specific genomics and 10 

pharmacological features of sarcoma cell line models. Building on new genomic data and the 11 

existing previously unlinked databases comprising RNA expression, mutation analyses, and 12 

promoter methylation, Sarcoma_CellMinerCDB allows the cross-comparison and full exploitation 13 

of those data including gene fusion status, mutations, gene expression, TMB, genome body 14 

methylation and large-scale drug screening from multiple sources comprising NCATS. In addition, 15 

we built an integrated function, the Global Z-score to facilitate comparisons between 110 cell lines 16 

and across the different but highly reproducible data sources. Given the heterogeneity of 17 

sarcoma, Sarcoma_CellMinerCDB enables users to select analyses that either incorporate the 18 

full group of sarcomas together, the major subtypes of sarcoma, or the rarest diagnoses 19 

represented. These functionalities make Sarcoma_CellMinerCDB a unique resource to deeply 20 

characterize preclinical sarcoma models, drive new biological questions, and generate 21 

hypotheses for translational research. To our knowledge, this is the first public multi-omic 22 

resource of its kind. 23 

 Although cell lines remain a mainstay for the progress of cancer research, including for 24 

sarcoma, concerns have increasingly been raised regarding the reliability of cell lines as models 25 

for disease biology. Potential limitations include the effects of immortalization and selection for 26 
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growth on plastic, which might transform the features of cells or reflect inherently altered biology. 1 

However, cell lines have also been shown to be representative models, for example accurately 2 

predicting drug responses and gene expression.66-68 Encouragingly, we were able to use 3 

Sarcoma_CellMinerCDB to confirm concordance between the genomic and drug response 4 

features of the sarcoma cell lines in this database and those of human tumors, providing evidence 5 

that these cell line models represent biologically relevant entities. Furthermore, 6 

Sarcoma_CellMinerCDB provides extensive characterization of each cell line and enables 7 

comparisons between cell lines, which is especially helpful given the heterogeneity of sarcomas 8 

overall. This information can be used to identify relevant differences between the models and 9 

inform their use in particular experimental settings. For example, we demonstrated that in the 10 

Ewing sarcoma cell lines TC32 and RD-ES, the surface marker CD99 is not highly expressed. 11 

This could be an important factor to consider when selecting representative cell lines for 12 

experiments related to CD99 expression and function, and this type of information can be rapidly 13 

located using  Sarcoma_CellMinerCDB. This tool may also potentially identify outlier cell lines. 14 

For example, we showed through methylation analysis that the Ewing sarcoma cell line A673 did 15 

not cluster with the rest of the Ewing sarcoma cell lines, which may suggest there is something 16 

different about its origin or biology. This may be an important consideration before using certain 17 

cell lines for experimentation or interpreting data generated from their use. 18 

 Sarcoma_CellMinerCDB can also be used to identify new avenues for biological 19 

discovery. Herein, we present examples of several novel hypothesis-generating insights. 20 

Specifically, we describe an association between the PAX3-FOXO1 fusion in rhabdomyosarcoma 21 

and several highly expressed genes, namely NOS1, OLIG2, and PIPOX. We show that these 22 

genes are exclusively upregulated in rhabdomyosarcoma cell lines bearing the PAX3-FOXO1 23 

fusion and not in any other subtypes of sarcoma. Presently, the function of these genes in fusion-24 

positive rhabdomyosarcoma has not been described, nor have they been studied as potential 25 

therapeutic targets for this cancer. Thus, these preliminary findings suggest a new research 26 
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direction for understanding biological mechanisms in this rare malignancy. An additional biological 1 

insight revealed by the  Sarcoma_CellMinerCDB tool is the power of combining methylation data 2 

from the gene promoter and body regions to better predict gene expression and pathway 3 

analyses. We showed that the combined use of promoter and body methylation data increases 4 

the significance of predicted expression for a particular gene.58 Since high quality DNA is easier 5 

to obtain than high quality RNA, particularly in clinical specimens of bone tumors,69,70 assays 6 

relying exclusively on DNA may be more likely to provide insights on gene expression and 7 

pathway activity. Thus, a DNA-based assay that reports both promoter and body methylation and 8 

accurately reproduces RNA-based expression data may be an acceptable alternative when RNA-9 

based sequencing fails. This is of particular importance to clinical translation, as methylation 10 

assays are increasingly being used as part of clinical specimen analysis. Currently, clinical 11 

methylation assays report mostly promoter methylation. However, the increased predictive value 12 

of adding body methylation data58 may justify development of more comprehensive methylation 13 

assays for the future.  14 

Finally, given the relative dearth of novel clinical interventions for sarcoma, perhaps the 15 

most impactful aspect of Sarcoma_CellMinerCDB is its ability to provide preliminary data on 16 

translationally relevant research questions. Here we report several examples of how the tool can 17 

identify novel translational insights for further study. First, a clinical subgroup of leiomyosarcoma 18 

with mismatch repair deficiency has been recently described.36 In our cell line panel of 19 

leiomyosarcoma, we identified a subset with pathogenic MSH2 mutations and MSI phenotype. 20 

These cell lines may represent robust preclinical models for this clinical subgroup. In addition, it 21 

may be informative to compare the behavior of these MSH2-mutated leiomyosarcoma cell lines 22 

to that of other cell lines representing MSI-high colon and non-leiomyosarcoma uterine cancers 23 

to better evaluate whether therapies targeting MSI could be of use in this newly described subset 24 

of leiomyosarcoma. A second illustrative example relates to the challenge of identifying specific 25 

markers for diagnosis, prognostication, and therapeutic targeting in sarcoma, due to subtype 26 
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heterogeneity. Using an original approach based on RNA expression of cell surface markers, we 1 

identified CD33 expression as a candidate marker for chondrosarcoma, a sarcoma subtype with 2 

limited therapeutic options.71 Given that CD33-targeting therapies are currently approved and in 3 

use for other malignancies, such as CD33+ acute myeloid leukemia,72 this finding offers a novel 4 

and potentially promising therapeutic strategy for patients with chondrosarcoma. Although further 5 

preclinical validation is required, there is reason to be enthusiastic about future clinical testing of 6 

the approved anti-CD33 drug conjugate gentuzumab ozagamicin in patients with 7 

chondrosarcoma. The mechanism of action of gentuzumab ozagamicin is based on the payload 8 

calicheamicin, which acts to induce double-stranded DNA breaks.73 Some forms of 9 

chondrosarcoma are known to be sensitive to other systemic cytotoxic agents, such as 10 

doxorubicin, which shares this mechanism,74,75 suggesting that a subset of patients with 11 

chondrosarcoma may benefit from this therapy. Further, ADC technology offers the promise of 12 

more targeted tumor delivery, which may enhance antitumor efficacy and decrease systemic 13 

toxicity for this subset of patients. Our approach further identified additional candidate surface 14 

markers for other sarcoma subtypes, most notably Ewing sarcoma, that may be tractable targets 15 

for the future development of diagnostics and therapies.  16 

The sarcoma field has historically suffered from slow progress due to the rarity and 17 

heterogeneity of the disease and a lack of models and novel therapeutics. 18 

Sarcoma_CellMinerCDB, a publicly-available and interactive resource, is a unique and 19 

multifunctional tool that is designed to address some of these limitations. Overall, this resource 20 

represents a crucial novel contribution for sarcoma researchers that has the ability to substantially 21 

advance the preclinical study of multiple subtypes of sarcoma going forward. 22 

Limitations of the study  23 

A major limitation to this work is the reliance on cell lines as models of disease biology. 24 

As previously described, these limitations include the effects of immortalization and selection for 25 

Jo
urn

al 
Pre-

pro
of

https://discover.nci.nih.gov/rsconnect/SarcomaCellMinerCDB/


 21 

growth on plastic, which might select for certain features that lack fidelity with human tumor 1 

biology. In addition, cell lines lack the heterogeneity present in human tumors and do not reflect 2 

microenvironmental conditions. An additional limitation is the small number of cell lines for some 3 

of the sarcoma subtypes in the panel, particularly some of the non-rhabdomyosarcoma soft tissue 4 

sarcomas. Small sample sizes make it more difficult to generate and test hypothesis and likely do 5 

not reflect the full spectrum of disease for these subtypes. Our goal is to update 6 

Sarcoma_CellMinerCDB with additional cell lines for these rarer subtypes as they become 7 

available. In addition, we anticipate the development of a similar tool that will include data from 8 

sarcoma patient samples. 9 

 10 
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Figure Titles and Legends 1 

Figure 1: Summary of resources and data of Sarcoma_CellMinerCDB  2 

(A) Donut plot summarizing the distribution of 133 sarcoma cell lines by subtype and tissue of 3 

origin.  4 

(B) Summary of the genomic, proteomic, metabolic and drug response data in 5 

Sarcoma_CellMinerCDB. For mutations, expression (Affymetrix microarray), copy number, 6 

methylation and CRISPR data (Achilles), the numbers indicate the number of genes included. For 7 

the RNAseq data, the numbers indicate the number of transcripts. For the microRNA data, the 8 

numbers indicate the number of microRNA included. For the drug response data, including 9 

NCATS, the numbers indicate the number of drugs included. For the proteomic and metabolic 10 

data, the numbers indicate the number of proteins included. The bottom row shows the total 11 

number of cell lines with data in each category, which are part of Sarcoma_CellMinerCDB. Yellow 12 

highlighting indicates Sarcoma_CellMinerCDB data not previously publicly available. 13 

(C) Data available from each data source (listed at the top) for each individual cell line (listed in 14 

the left column). Different sarcoma subtypes (Ewing sarcoma, osteosarcoma, other bone 15 

sarcoma, rhabdomyosarcoma, other soft tissue sarcoma) are identified by color. Black fill-in 16 

represents presence of data from indicated source for each cell line (NCI database (NCATS 17 

(n=14), Achilles (n = 54), MD Anderson (n = 32), GDSC (n = 52), CCLE (n = 42), CTRP (n = 30), 18 

and NCI (n = 78). Full cell line details are provided in Table S1. 19 

(D) Cell line overlap between data sources. 20 

(E) Drug response data overlap between data sources. 21 

 22 

Figure 2: Reproducibility and functionalities of Sarcoma_CellMinerCDB 23 

(A) Violin plots depicting reproducibility between the data sources for gene expression data using 24 

Pearson correlations. Correlations between the indicated individual data sources for matched cell 25 
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lines were 0.92 for NCIexp/NCIRNAseq, 0.76 for NCIRNAseq /CCLERNAseq, 0.76 for GDSCexp/CCLEexp, 1 

0.77 for NCIexp/CCLEexp and 0.68 for NCIexp/GDSCexp. 2 

(B) Representative scatter plot from Sarcoma_CellMinerCDB showing reproducibility of SLFN11 3 

gene expression in the NCI database (y-axis) vs. the CCLE database (x-axis, left panel) and the 4 

Global dataset (x-axis, right panel) across the common cell lines. Each dot represents an 5 

individual cell line; sarcoma subtype is indicated by color. Ewing sarcoma cell lines (dark blue 6 

dots) have the highest SLFN11 expression compared to all other sarcoma subtype cell lines.  7 

(C) Representative scatter plots from Sarcoma_CellMinerCDB demonstrating the Univariate 8 

Analysis tool. In each plot, individual dots represent a cell line; sarcoma subtypes are indicated 9 

by color. Left panel shows a significant positive correlation between FLI1 expression (x-axis) and 10 

SLFN11 expression (y-axis) across all sarcoma cell lines. Middle panel shows CD99 expression 11 

(x-axis) v. FLI1 expression (y-axis) in all sarcoma cell lines, which Ewing sarcoma cell lines (dark 12 

blue) demonstrating the highest expression of CD99. Cell lines with the lowest FLI1 expression 13 

represents COG-E-352, which harbors an EWS-ERG fusion. Right panel shows a significant 14 

positive correlation between MDM2 expression (x-axis) and copy number (y-axis). The highest 15 

MDM2 expression level is found in liposarcoma cell lines LS141 and DDLS, which are highlighted 16 

in orange and is expected based on known disease biology. 17 

(D) Representative example from Sarcoma_CellMinerCDB demonstrating the Multivariate 18 

Analysis tool using the Linear Regression option.  Irinotecan sensitivity is highly associated with 19 

high SLFN11 expression (microarray) and low ABCG2 expression (microarray). This is 20 

particularly the case for Ewing sarcoma cell lines, indicated with the red arrows.  21 

 22 

Figure 3: Gene fusions and alternative lengthening of telomeres (ALT) in the 23 

Sarcoma_CellMinerCDB cell lines 24 

(A) Representative scatter plots from Sarcoma_CellMinerCDB showing correlations between 25 

presence of the EWSR1-FLI1 fusion in Ewing sarcoma cell lines (red) and other sarcomas (blue) 26 
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(x-axis: 0 means EWSR1-FLI1 fusion is absent, 1 means EWSR1-FLI1 fusion is present) and four 1 

key genes known to be upregulated in Ewing sarcoma. Each dot represents a cell line. The plots 2 

show the high correlation between the presence of EWSR1-FLI1 fusion and FLI1, CD99, SLFN11, 3 

and NROB1 gene expression (y-axes). 4 

(B) Representative scatter plots from Sarcoma_CellMinerCDB showing correlations between the 5 

presence of the PAX3-FOXO1 fusion in rhabdomyosarcoma cell lines (red) and other sarcomas 6 

(blue) (x-axis: 0 means PAX3-FOXO1 fusion is absent, 1 means PAX3-FOXO1 fusion is present) 7 

and four key genes involved in PAX3-FOXO1 fusion-positive rhabdomyosarcoma. Each dot 8 

represents a cell line. The plots show the high correlation between the presence of the PAX3-9 

FOXO1 fusion MYOG, NOS1, OLIG2 and PIPOX gene expression (y-axes).  10 

(C) Representative scatter plots from Sarcoma_CellMinerCDB demonstrating the essentiality of 11 

the EWSR1-FLI1 fusion in Ewing sarcoma cell lines (red). Each dot represents a cell line. The 12 

EWSR1-FLI1 fusions are shown on the y-axis: 0 and 1 mean absence or presence of EWSR1-13 

FLI1 fusion, respectively. The dependency score is shown in the x-axis, based on CRISPR 14 

knockout of FLI1 in the CCLE Achilles project (see Fig. 1). 15 

(D) Representative scatter plots from Sarcoma_CellMinerCDB showing the essentiality of the 16 

PAX3-FOXO1 fusion in rhabdomyosarcoma cell lines (red). On the y-axis: 0 means PAX3-FOXO1 17 

fusion is absent, and 1 indicates PAX3-FOXO1 fusion. The dependency score is shown in the x-18 

axis, based on CRISPR knockout of FOXO1 in the Achilles project (see Fig. 1). 19 

 20 

Figure 4: Mutations in Sarcoma_CellMinerCDB cell lines 21 

(A) Tumor mutational burden (TMB) (number of mutations per megabase, y-axis) for Ewing 22 

sarcoma cell lines (dark blue), osteosarcoma cell lines (light blue), rhabdomyosarcoma cell lines 23 

(red), and other soft tissue sarcoma cell lines (orange). Each circle represents a cell line. For each 24 

category, the median (dashed line) and standard deviations (dotted lines) are represented. The 25 

median number of mutations per megabase is statistically lower in Ewing sarcoma cell lines 26 
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compared to osteosarcoma (p<0.0001), rhabdomyosarcoma (p=0.0015) and soft tissue sarcomas 1 

(STS) (p=0.0016) cell lines. 2 

(B) Representative scatter plot from Sarcoma_CellMinerCDB showing the correlations between 3 

TMB (tumor mutational burden, the number of non-inherited mutations per megabase, x-axis) and 4 

MSH2 mutation score (y-axis) (left plot). Each dot represents a cell line. The cell lines with a high 5 

mutational burden (SK-UT-1 and SK-UT-1B, both uterine leiomyosarcomas) have a high MSH2 6 

mutation score. The plot to the right shows the correlation between MSH2 expression (x-axis) and 7 

the MSH2 mutation score (y-axis). The cell lines with a high MSH2 mutation score (SK-UT-1 and 8 

SK-UT-1B) also have low MSH2 expression. The cell line with a moderate MSH2 mutation score 9 

(SW-684, synovial sarcoma) has an intermediate MSH2 expression. 10 

(C) Lollipop plot representing published STAG2 mutations in Ewing sarcoma tumor patients from 11 

the Institut Curie 2014 cohort. Black dots indicate truncating driver mutation, gray dots indicate 12 

truncating variant of unknown significance (VUS), and orange dots indicate splice driver 13 

mutations. The location of the seven STAG2 mutations identified in Ewing sarcoma cell lines 14 

through Sarcoma_CellMinerCDB are designated in red. 15 

(D) Proportion of STAG2 mutations in Ewing sarcoma cell lines. 16 

(E) Representative scatter plot plots from Sarcoma_CellMinerCDB showing the correlation 17 

between STAG2 mutations (x-axis) and cabozantinib sensitivity (y-axis) (left plot). Each dot 18 

represents a cell line. Sarcoma subtypes are defined by colors, with light blue for osteosarcoma, 19 

dark blue for Ewing sarcoma, red for rhabdomyosarcoma, orange for other soft tissue sarcoma 20 

(see legend). The majority of cell lines with STAG2 mutations exhibit increased sensitivity to 21 

cabozantinib compared to those without STAG2 mutations.  22 

 23 

Figure 5: Gene promoter methylation of the Sarcoma_CellMinerCDB cell lines  24 

(A) t-Distributed stochastic neighbor embedding clustering plot using methylation data from the 25 

79 sarcoma cell lines from the NCI data source. Each dot represents a cell line (Ewing sarcoma 26 
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in dark blue, osteosarcoma in light blue, rhabdomyosarcoma in red, and other soft tissue 1 

sarcomas (STS) in orange). 2 

(B) Violin plots showing the median levels of promoter methylation in the sarcoma cell lines. Each 3 

point represents the median methylation level of an individual cell line for the total set of 23,202 4 

genes. Ewing sarcoma cell lines are in dark blue, osteosarcoma in light blue, rhabdomyosarcoma 5 

in red, and other soft tissue sarcomas in orange. **p=0.0075; ****p<0.0001.  6 

(C) Comparison of promoter methylation profiles for 79 sarcoma cell lines from the NCI data 7 

source according to sarcoma subtype (rhabdomyosarcoma, Ewing sarcoma, osteosarcoma, and 8 

other soft tissue sarcomas (STS). The heatmap displays the levels of methylation of 744 genes 9 

with a high dynamic range. Six gene clusters are obtained using hierarchical clustering. Clusters 10 

1, 2, 3, 4, 5 and 6 include 82, 172, 161, 45, 136, and 148 genes, respectively. The details of the 11 

cell lines and gene names by cluster are provided in Supplemental Tables 3 and 4.   12 

(D) Representative scatter plots from Sarcoma_CellMinerCDB showing the negative correlation 13 

between MYOD1 expression (x-axis) and MYOD1 promoter methylation (y-axis) for the 14 

rhabdomyosarcoma cell lines. The left panel shows the correlation with rhabdomyosarcomas cell 15 

lines only and the right panel shows the correlation with all sarcoma cell lines.  16 

 17 

Figure 6: Therapeutic implications of Sarcoma_CellMinerCDB 18 

(A) Relative drug sensitivity of the Sarcoma_CellMinerCDB NCI cell lines to standard therapeutic 19 

agents. Each dot represents a cell line. Sarcoma subtype is indicated by the color of the dot 20 

(Ewing sarcoma in dark blue, osteosarcoma in light blue, rhabdomyosarcoma in red, and other 21 

soft tissue sarcomas (STS) in orange). Arrows represent agents that are part of the therapy for 22 

upfront or relapsed disease for each specific subtype. Drug activity is presented for each of the 23 

drugs across the (x-axis) and was calculated using -log10 IC50 molar measurements converted to 24 

z-scores across cell lines (y-axis).  25 
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(B) Representative scatter plots from Sarcoma_CellMinerCDB showing SLFN11 expression (x-1 

axis) versus irinotecan sensitivity (left panel) and talazoparib sensitivity (right panel). Each dot 2 

represents an individual cell line. Ewing sarcoma cell lines, shown in red, highly express SLFN11 3 

and demonstrate high sensitivity to both irinotecan and talazoparib, as compared to the other 4 

sarcoma cell types.  5 

(C) Heat map showing RNA expression of genes coding for surface markers. Highly expressed 6 

genes specific to each sarcoma subtype are listed on the left. Sarcoma subtypes are indicated by 7 

the colored bar on the top. Individual cell line names are shown at the bottom. Additional 8 

information is included in Supplemental Figure S5. 9 

(D)  Representative scatter plots showing FLI1 expression (x-axis) versus SLCOSA1 expression 10 

(y-axis) (upper left panel), NPY5R expression (y-axis) (upper right panel), PCDH17 expression 11 

(y-axis) (lower left panel), and CDH8 expression (y-axis) (lower right panel) in all CCLE cell lines. 12 

Each dot represents a cell line. Ewing sarcoma cell lines are shown in red.  13 

 14 

STAR METHODS 15 

RESOURCE AVAILABILITY 16 

Lead contact 17 

Further information and requests for reagents may be directed to and will be fulfilled by 18 

Lead Contact Yves Pommier (pommier@nih.gov). 19 

Materials availability 20 

The Sarcoma_CellMinerCDB software is the same as CellMinerCDB and is freely 21 

available, open source, and hosted in GitHub at github.com/CBIIT/cellminercdb. 22 

Data and code availability 23 

• Data: Data are from CellMinerCDB (https://discover.nci.nih.gov/rsconnect/cellminercdb) and 24 

the NCI database (https://sarcomacelllines.cancer.gov/sarcoma). The data sources and the 25 
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method used to obtain the new generated data are detailed below in Method Details. The 1 

data are publicly available at https://discover.nci.nih.gov/SarcomaCellMinerCDB). 2 

• Code: All codes used are publicly available in GitHub at github.com/CBIIT/cellminercdb. 3 

• Other: Any additional information required to reanalyze the data reported in this paper is 4 

available from the lead contact upon request. 5 

 6 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 7 

The cell line sets included in Sarcoma_CellMinerCDB are from the National Cancer 8 

Institute (NCI) Sarcoma cell lines from the Developmental Therapeutics Program (DTP) and 9 

Center for Cancer Research (CCR), Cancer Cell Line Encyclopedia (CCLE), Genomics and Drug 10 

Sensitivity in Cancer (GDSC), Cancer Therapeutics Response Portal (CTRP), MD-Anderson, 11 

Achilles, National Center for Advancing Translational Sciences (NCATS) and a new resource, 12 

Global Z-score. The data source details are described in “Help” section of the 13 

Sarcoma_CellMinerCDB website. 14 

 15 

METHOD DETAILS 16 

Data Sources 17 

Sarcoma_CellMinerCDB is a dedicated CellMinerCDB version for sarcoma cell lines 76-79 18 

https://discover.nci.nih.gov/cellminercdb/).  19 

Most of the data including drug activity and genomics experiments were processed at the 20 

institute of origin and were downloaded from their website or provided from their principal 21 

investigator. The genomic data from CTRP and CCLE are common for the overlapping cell lines. 22 

However, expression, methylation, mutation and copy number data were processed at 23 

Development Therapeutics Branch (DTB), CCR, NCI to generate a gene level summary as 24 

described previously.80-84 The new Global Z-score was developed at DTB by merging the gene 25 

expression of all the data sources.14  26 
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Newly Generated Data 1 

The following section will detail methods for generation and analysis of previously 2 

unpublished data present in Sarcoma_CellMinerCDB. 3 

NCI Mutation data  4 

We ran the CCBR exome sequencing pipeline as previously described 5 

(https://github.com/mtandon09/CCBR_GATK4_Exome_Seq_Pipeline). In summary, BWA MEM 6 

(version 0.7.17) was run to map reads to Hg38 reference genome. Then Mutect2 in GATK 4.2 7 

was used to call the variants with a panel of normal (PON). We processed the variants in a similar 8 

fashion to that detailed for the previous dataset.77 The variants were filtered for those with 6 or 9 

more reads. For insertions and deletions we had a further filter of Quality>60 while for other 10 

mutations we had a filter of Quality>30. The processing was the same, resulting in a gene 11 

mutation summary between 0 and 100 for each gene for each sample as previously described.77 12 

Tumor Mutation Burden (TMB) 13 

The TMB was computed using the R package MAFtools based on Mutect2 variants and 14 

the following filtering criteria: 15 

1. Minimum read depth of 20 16 

2. VAF>=10% 17 

3. Population AF<0.5% (in the ExAC database) 18 

4. Amino acid changing variant (any one of "frameshift", "missense", 19 

"nonframeshift", "nonsense", "read_through", "splicesense" or "initiation_loss") 20 

Fusion Data 21 

Fusion data were obtained for 40 cell lines using RNAseq from NCI. 22 

Expressed fusion transcript were detected using three different algorithms FusionCatcher,85 23 

Star Fusion,86 and TophatFusion87 and further filtered using the following criteria:  24 

1. Remove fusions present in normal samples 25 

2. Keep fusions classified as one of these "Tier 1.1", "Tier 1.2", "Tier 1.3", "Tier 2.1" 26 
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3. Remove fusions called by only "Star Fusion" or "Fusioncatcher", but to keep any called by 1 

two or more callers regardless of spanning reads 2 

4. Keep fusions with spanning reads >= 5 for Tophat only. 3 

5. For right gene intact look at the gene expression value of the right gene, if high then likely 4 

true positive 5 

6. In frame fusions were classified as having more credence. 6 

Promoter Gene Level Methylation Data 7 

Promoter gene-level methylation using the 850K Illumina Infinium MethylationEPIC 8 

BeadChip array was summarized based on.76 In short, methylation data were normalized using 9 

the minfi package using default parameters, where probe-level beta-values and detection p-10 

values were calculated for each probe. This provided 866,091 methylation probe measurements. 11 

Methylation probe beta-values for individual cell lines with detection p-values >=10-3 were set to 12 

missing. Also probes with median p-value >=10-6 were set to missing for all cells and removed 13 

from the analysis. Probe locations on the human genome (hg19 version) defined by Illumina was 14 

used for the analysis, annotating proximal gene transcripts and CpG islands. Probes were 15 

designated as category “1” or “2”, with category “1” considered to be most informative. Category 16 

“1” probes overlapped CpG islands and they overlapped either the TSS region within a 1.5kb 17 

distance, the first exon or 5’-UTR region. Additionally, probes on the upstream shore of a CpG 18 

island with a maximal distance of 200bp from the TSS were also included as category “1” probes. 19 

Category “2” probes were positioned either in the upstream- or downstream shore of a CpG island 20 

and overlapping the first exon, or on the downstream shore of CpG islands overlapping a 200bp 21 

region from the TSS, or in 5’-UTR. In case of genes with multiple transcript start sites, the 22 

transcript methylation with the most negative correlation to the gene level expression was used. 23 

The analysis resulted in gene-level methylation values for 23,202 genes. 24 

Gene Body Level Methylation    25 
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We used the gene body methylation quantification introduced in 58. Briefly, raw methylation 1 

files (idat) format were processed in R using the minfi (v1.34.0) package,88  and the gene body 2 

methylation was computed for each gene in each sample as the average methylation of the 3 

probes overlapping gene bodies (excluding CpG probes, and probes that overlap promoter 4 

areas). For genes with multiple transcripts, the transcript with the most positive correlation was 5 

selected. 6 

Copy Number Analysis 7 

Genome wide copy number for the cell lines was estimated from the methylation array 8 

data using the Chip Analysis Methylation Pipeline (ChAMP) package.89 ChAMP returns lists of 9 

genomic segments with putative copy number estimates. However, the estimate is not valid for 10 

regions with high methylation detection p-values. For this reason, regions spanning more than 11 

1kb with at least 5 probes with high detection p-values (p>0.05) were filtered out. The copy 12 

number estimates were set to missing for those areas. Gene level copy number (for n=25,568 13 

genes) was calculated for each gene individually, by calculating the average estimate between 14 

the transcription start sites and transcription end sites.   15 

Global Expression Data 16 

We generated a new Global Z-score using all combined cell line resources: NCI, CCLE, 17 

CTRP and GDSC. The data sources have a mixture of microarray and RNA-seq gene expression. 18 

For each experiment, genes were scaled across all cell lines to create a z-score normalized 19 

dataset. The Global Z-score expression was calculated by averaging the z-scored gene 20 

expressions from all sources.  21 

 22 

QUANTIFICATION AND STATISTICAL ANALYSES  23 
 24 
t-SNE Clustering of NCI Sarcoma Cell Lines Using Promoter Methylation 25 

Sarcoma cell line grouping was performed with the gene expression data from the NCI 26 

promoter methylation dataset using the t-SNE algorithm in R (v3.5.1). The random seed was set 27 
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to 1, the Euclidean distance of genes was calculated with the dist() function with default settings. 1 

The t-SNE grouping was calculated using the Rtsne() function from the Rtsne 90 package (v0.15) 2 

using the calculated distance matrix, with perplexity set to 10, and 5k maximum iterations. 3 

Methylome Cluster Analysis 4 

The methylation cluster analysis was performed using the methylation data from the 79 5 

NCI-sarcoma cell lines. Genes with high standard deviation (>0.25) in the NCI sarcoma cell lines 6 

were selected for the analysis. The number of reported clusters was selected based on the 7 

cutreeDynamic() function of the dynamicTreeCut R package (v1.63-1), which split genes into 6 8 

main clusters and sarcoma cell line subtypes (rhabdomyosarcoma, Ewing sarcoma, 9 

osteosarcoma, non-rhabdomyosarcoma soft tissue sarcoma as reported in the figure). The 10 

methylation heatmap was created with the ComplexHeatmap 91 R package (version 1.20.0).  11 

Drug Analysis 12 

The scatter plot of the drug activities of 12 standard of care sarcoma drug activities was 13 

created using drug activity data downloaded from the Sarcoma_CellMinerCDB\ Metadata for NCI 14 

selections. The 61 NCI cell lines were analyzed. The data was z scored across cell lines and then 15 

plotted using  R Computing.92 16 

The cluster image map (CIM) in the drug analysis section was generated using the 17 

Genomics and Pharmacology Facilities CIMMiner tool (https://discover.nci.nih.gov/cimminer/) 18 

selecting the One Matrix CIM, with the Equal width Binning method. The input data is from 19 

Sarcoma_CellMinerCDB\Metadata\NCI cell line set\exp: mRNA Expression (log2) microarray 20 

data.  21 

Statistical Methods 22 

Correlations, heatmaps, and histograms were generated mostly using The R Project for 23 

Statistical Computing. we clustered the cell lines based on gene expression using the raw data 24 

and the normalized data in R using the hclust() for clustering, and the ape package (version 5.3) 25 

to create the clustering dendrograms.  26 
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Some plots and analysis (such as the Kruskal Willis test) were generated using Partek 1 

Genomics suite v7.17.1222 (https://www.partek.com/partek-genomics-suite/), The Xena 2 

Functional Genomics Explorer portal (https://xenabrowser.net/),93  or using 3 

Sarcoma_CellMinerCDB and CellMinerCDB (http://discover.nci.nih.gov/cellminercdb). 4 

Wilcoxon rank-sum tests were used to test the difference between continuous variables 5 

such as drug sensitivity or gene expression. We considered changes significant if p-values were 6 

below 0.05. In the figures, p-values below 0.00005 were summarized with four asterisks, p-values 7 

below 0.0005 were summarized with three asterisks, p-values below 0.005 were summarized with 8 

two asterisks and p-values below 0.05 were summarized with one asterisk.  9 

 10 

  11 
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KEY RESOURCES TABLES 1 

 2 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

CellMinerCDB cell line data Rajapakse et al94 https://discover.nci.nih.gov/cellminercdb/ 

Sarcoma cell line data NCI DTP https://sarcomacelllines.cancer.gov/sarcom
a/ 

Software and algorithms 

ChAMP  Tian et al89 https://bioconductor.org/packages/release/
bioc/html/ChAMP.html 

STAR aligner Dobin et al95 https://github.com/alexdobin/STAR 

Cufflinks Trapnell et al96 http://cole-trapnell-lab.github.io/cufflinks/ 

Mutation pipeline CCBR mutation pipeline https://github.com/mtandon09/CCBR_GAT
K4_Exome_Seq_Pipeline 

ape Paradis et al97 https://cran.r-
project.org/web/packages/ape/index.html 

relaimpo Gromping et al98 https://cran.r-
project.org/web/packages/relaimpo/index.ht
ml 

dynamicTreeCut Langfelder et al99 https://cran.r-
project.org/web/packages/dynamicTreeCut/
index.html 

ComplexHeatmap Gu et al91 https://bioconductor.org/packages/release/
bioc/html/ComplexHeatmap.html 

Rtsne Van der Maaten et al90 https://cran.r-
project.org/web/packages/Rtsne/index.html 

clusterProfiler Yu et al100 https://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html 

ReactomePA Yu et al101 https://bioconductor.org/packages/release/
bioc/html/ReactomePA.html 

Partek Genomics Suite 
(software for analysis of 
microarray data) 

Partek http://www.partek.com/partek-genomics-
suite/ 

Xena Functional Genomics 
Explorer portal 

93Goldman et al  https://xenabrowser.net/ 

The cluster image map (CIM) CIM https://discover.nci.nih.gov/cimminer/ 

GraphPad Prism 10 (software 
for drawing graphs and 
statistics analysis) 

GraphPad N/A 

Analysis scripts This paper The Sarcoma_CellMinerCDB software is 
the same as CellMinerCDB and is freely 
available, open source, and hosted in 
GitHub at github.com/CBIIT/cellminercdb 

 3 

  4 
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Table 1: Examples of Sarcoma_CellMinerCDB capabilities. 
 

 Sarcoma_CellMinerCDB 

Explores & Validates 

Method Examples Examples of Findings 

1 Cell line reproducibility, 

robustness & consistency 

Univariate Analyses: Plot Data: Expression of the same 

gene across different datasets (X & Y) 

Fig. 2B Cell lines are highly reproducible 

across datasets. 

3 Integrates all the Sarcoma cell 

line genomic datasets under 

Global Z score (NCI, GDSC, 

CCLE, CTRP) 

Use the pull-down tabs for Cell Line Sets and choose 

“Global”  

Figs. 2B ; 

S2C-D 

110 sarcoma cell lines can be 

compared using gene expression 

status. Among them, highest 

SLFN11 expression are observed in 

Ewing sarcoma cell lines. 

5 Select and compare subsets of cell 

lines based on sarcoma subtypes   

Univariate Analyses: select Y axis: Select Tissue or 

Show color  

Figs. 2B-

C; 3C-D-F 

; 4E ; 5D ; 

6B-D 

SLCOSA1, NPYSR, PCDH17 and 

CDH8 surface cell markers are 

selectively expressed in Ewing 

sarcoma cell lines. 

6 Select and compare subsets of 

sarcoma cell lines based on 

recurrent fusion data  

Univariate Analyses: select NCI : gene fusions and 

write the gene of interest  

Figs. 3A-

B-C-D  

Fusion positive rhabdomyosarcoma 

cell lines selectively over expressed 

specific genes such as  

MYOG, NOS1, OLIG2, PIPOX.  

 Identify essential genes (Achilles) 

in a subset of sarcoma cell lines 

Univariate Analyses: Plot Data select Achilles and 

write the gene of interest (X & Y) 

Figs. 3C-

D 

FOXO1 is essential only in fusion 

positive rhabdomyosarcoma cell 

lines. 

 Select and compare subsets of 

sarcoma cell lines based on the 

Tumor Mutation Burden (TMB)  

Univariate Analyses: select NCI : mda: Signatures, 

Miscellaneous data and TMB  

Fig. 4B  Identification of a subset of 

leiomyosarcoma cell lines with a 

high TMB. 

 Mutation visualization for each 

gene 

Mutation variants: select NCI : and write the gene 

name 

Figs. 4C-

D ; S3 

50% of the chondrosarcoma cell 

lines of our collection have a IDH1 

or IDH2 mutation 

8 Epigenetics: promoter and body 

methylation for any given gene 

Univariate analyses: Plot Data: Expression of a given 

gene vs its body or promoter methylation (X & Y Data 

Type) within a given Cell Line Set or across datasets 

(independent datasets can be tested for missing Data 

Type and confirmation) 

Fig. S4B Both promoter and body 

methylation of SLFN11 are highly 

negatively and positively 

respectively correlated with 

SLFN11 expression.   

9 Gene amplification and deletions 

for any given gene 

Univariate analyses: Plot Data: Expression of a given 

gene vs copy number (X & Y Data Type) within a 

given Cell Line Set or across datasets (independent 

datasets can be tested for validation and missing Data 

Type)  

Fig. 2C MDM2 expression is as expected 

driven by copy number variation in 

dedifferentiated liposarcoma cell 

lines. 

10 Integrate and complement 

different datasets for common cell 

lines 

Univariate Analyses: Plot Data: Plot different 

parameters (Data Type for genomic or drug response) 

across Cell Line Sets (X & Y) to counter missing data 

in one dataset 

Figs. 3C-

D ; S3B 

FLI1 is essential (CRISPR/Achilles 

data) only in ES sarcoma cell lines 

with a recurrent EWSR1-FLI1 

fusion (NCI data).  

12 Discover determinants of drug 

response and targeted drug 

delivery 

Univariate Analyses: Plot Data: Compare Patterns: 

Coregulated genes for a given gene (X or Y) within a 

given dataset (independent datasets can be tested for 

confirmation) 

Figs. 4E ; 

6B  

SLFN11 expression is associated 

with response to talozoparib in 

Ewing sarcoma cell lines. 

14 Examine drug correlations: 

COMPARE analyses 

Univariate Analyses: Plot Data: Data Type: drug vs 

drug (X or Y); also select Compare patterns to identify 

drug-drug ou drug/molecular data correlations 

Fig. 4E STAG2 mutation in Ewing sarcoma 

cell lines is associated with 

response to cabozantinib. 

15 Multivariate models of drug 

response & genomic features 

Multivariate Analyses: Cell Line Set; Response Data 

Type; Predictor Data Type/s; Predictor Identifier: enter 

drug and genomic parameters to be tested as indentifier 

or use LASSO to discover additional non-redundant 

determinants of response or compare response 

according to sarcoma subtypes 

Figs 2D ; 

6A 

ABCG2 transporter expression is 

negatively correlated with SLFN11 

expression and response to 

irinotecan in sarcoma cell lines. 

16 Data download Univariate Analyses: View Data: Download tabs or 

Multivariate Analyses: Download tab 

- Allow further in depth analyses and 

data download in Excel 

17 Drug identifier conversion Not applicable - Allow drug identification across 

different sources 

 Integration with CellMinerCDB Open in parallel: 

http://discover.nci.nih.gov/cellminercdb 

- Identify genes that are selective for 

sarcomas comparing with the entire 

NCI cell line collection including 

several tissues. 
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B

C

D E

A Cell Line Subtype NCATS Achilles MD GDSC CCLE CTRP NCI
A-673 Ewing Sarcoma 1 1

SK-ES-1 Ewing Sarcoma 1 1
TC-71 Ewing Sarcoma 1 1
RD-ES Ewing Sarcoma 1 1

SK-N-MC Ewing Sarcoma 1
TC-32 Ewing Sarcoma 1 1
EW8 Ewing Sarcoma 1

CADO-ES1 Ewing Sarcoma
MHH-ES-1 Ewing Sarcoma

ES1 Ewing Sarcoma
ES3 Ewing Sarcoma
ES4 Ewing Sarcoma
ES6 Ewing Sarcoma
ES7 Ewing Sarcoma
ES8 Ewing Sarcoma
Rh1 Ewing Sarcoma

CHLA-10 Ewing Sarcoma 1
CHLA-258 Ewing Sarcoma 1

CHLA-9 Ewing Sarcoma 1
COG-E-352 Ewing Sarcoma 1

5838 Ewing Sarcoma
CHLA-25 Ewing Sarcoma
CHLA-32 Ewing Sarcoma

ES2 Ewing Sarcoma
EWS502 Ewing Sarcoma 1

ES5 Ewing Sarcoma
EW-1 Ewing Sarcoma

EW-11 Ewing Sarcoma
EW-12 Ewing Sarcoma
EW-13 Ewing Sarcoma
EW-16 Ewing Sarcoma
EW-18 Ewing Sarcoma
EW-22 Ewing Sarcoma
EW-24 Ewing Sarcoma

EW-3 Ewing Sarcoma
EW-7 Ewing Sarcoma

SKNEP1 Ewing Sarcoma
SKPNDW Ewing Sarcoma

TC106 Ewing Sarcoma 1
TC138 Ewing Sarcoma 1
TC205 Ewing Sarcoma 1

CHLA-57 Ewing Sarcoma 1
SJSA-1 Osteosarcoma 1 1
U-2 OS Osteosarcoma 1 1

HOS Osteosarcoma 1
SAOS-2 Osteosarcoma 1

G-292, clone A141B1 Osteosarcoma 1
MG-63 Osteosarcoma 1

143B Osteosarcoma 1
Hu09 Osteosarcoma 1

Hs 870.T Osteosarcoma
T1-73 Osteosarcoma

KHOS-240S Osteosarcoma 1
KHOS-312H Osteosarcoma 1

Hs 888.T Osteosarcoma
CHA-59 Osteosarcoma

KHOS NP Osteosarcoma
OHS Osteosarcoma

CAL-72 Osteosarcoma 1
EW7476 Osteosarcoma

HuO-3N1 Osteosarcoma
NOS-1 Osteosarcoma

NY Osteosarcoma
SARC9371 Osteosarcoma

OS252 Osteosarcoma 1
SW 1353 Chondrosarcoma 1
Hs 819.T Chondrosarcoma

OUMS-27 Chondrosarcoma
JJ012 Chondrosarcoma 

CAL78 Chondrosarcoma 
Hs 706.T Giant Cell Sarcoma

RD (Rh18dm) Rhabdomyosarcoma 1 1
Rh18 Rhabdomyosarcoma 1
Rh41 Rhabdomyosarcoma 
Rh30 Rhabdomyosarcoma 1

Hs 729 Rhabdomyosarcoma 
SJCRH30(RMS 13) Rhabdomyosarcoma 

KYM-1 Rhabdomyosarcoma 
TE 441.T Rhabdomyosarcoma 

Rh28 Rhabdomyosarcoma 1
Rh4 Rhabdomyosarcoma 1

TTC-442 Rhabdomyosarcoma 1
TE 617.T Rhabdomyosarcoma 

Rh18c Rhabdomyosarcoma 
Rh28 PX11/LPAM Rhabdomyosarcoma 

Rh36 Rhabdomyosarcoma 
Rh5 Rhabdomyosarcoma 

RMS559 Rhabdomyosarcoma 
SMSCTR Rhabdomyosarcoma 1
TTC-516 Rhabdomyosarcoma 
TE 125.T Rhabdomyosarcoma 
TE 159.T Rhabdomyosarcoma 

RHJT Rhabdomyosarcoma 1
CW9019 Rhabdomyosarcoma 1

JR Rhabdomyosarcoma 1
SCMCRM2 Rhabdomyosarcoma 1

CCA Rhabdomyosarcoma 
SW982 Synovial Sarcoma 1 1
SYO-1 Synovial Sarcoma 1

HSSY-II Synovial Sarcoma
CME1 Synovial Sarcoma 1

SCS214 Synovial Sarcoma 1
YAMATO Synovial Sarcoma 1
HT-1080 Fibrosarcoma 1 1

SW684 Fibrosarcoma
Hs 913.T Fibrosarcoma
Hs 414.T Fibrosarcoma

Hs 93.T Fibrosarcoma
SK-LMS-1 Leiomyosarcoma 1

SK-UT-1 Leiomyosarcoma 1
RKN Leiomyosarcoma 1

SK-UT-1B Leiomyosarcoma
MES-SA Uterine Sarcoma 1

ESS-1 Uterine Sarcoma 1 1
MES-SA Dx5 Uterine Sarcoma

LS141 (LPS141) Dedifferentiated Liposarcoma 1
DDLS Dedifferentiated Liposarcoma

LPS853 Dedifferentiated Liposarcoma 1
LPS27 Liposarcoma 1

LPS6 Liposarcoma 1
95T1000 Well differentiated liposarcoma 1

GCT Pleomorphic sarcoma 1
CCLFPEDS0003T Pleomorphic sarcoma 1

S117 Pleomorphic sarcoma
VA-ES-BJ Epithelioid Sarcoma 1

CCLFPEDS0008T Epithelioid Sarcoma 1
Hs 132.T Spindle Cell Sarcoma
Hs 312.T Spindle Cell Sarcoma

MPNST MPNST
ST8814 MPNST
ASPS-1 Alveolar Soft Part Sarcoma

MHM-25 Not specified
MHM-8 Not specified

CRISPR 
Cas9 KO 
screen

MetabolicProteomicDrugsmicroRNA
(Nanostring)MethylationCopy 

numberRNAseqExpression
(Affymetrix) 

Mutations 
(exome)

---
291 

63 cell 
lines

800 
55 cell lines

23202
77 cell lines (450k)

Body methylation: 23808  
71 cell lines (850k)

25476
77 cell lines

54283
66 cell 
lines

18432
67 cell lines

7711
33 cell lines

NCI
78 cell 
lines

---
481

30 cell 
lines

--23316
30 cell lines-19851

30 cell lines
1667

28 cell lines

CTRP
30 cell 
lines

-225
32 cell lines

214
33 cell lines

24 
21 cell 
lines

734 
39 cell lines

19880
30 cell lines

(RRBS)

23316
42 cell lines

52604
40 cell 
lines

19851 
42 cell lines

1667 
35 cell lines

CCLE
42 cell 
lines

--
297

52 cell 
lines

-
19864

50 cell lines
(450k)

24502
50 cell lines

37263
27 cell 
lines

19562
49 cell lines

18099
51 cell lines

GDSC
52 cell 
lines

-452
32 cell lines-------

MD 
Anderson

32 cell 
lines

2675
14 cell 
lines

------
NCATS
14 cell 
lines

18119
53 cell 
lines

--------
Achilles
53 cell 
lines

53 
cell 

lines

32
cell lines

45 
cell lines

92 
cell 

lines

69 
cell lines

104 
cell lines

108 
cell lines

80 
cell 

lines

97 
cell lines

63 
cell lines

Total
133 cell 

lines 

Global Z score
61639 genes
110 cell lines

Bone

Soft Tissue
N=60, 46%

Type

Giant Cell
(N=1)

Synovial
(N=6) Leiomyosarcoma

Uterus
(N=3)

Fibrosarcoma
(N=5)

Liposarcoma
(N=6)
Pleiomorphic

N=3)
Epithelioid

(N=2)
Spindle Cell

(N=2)
Alveolar
(N=1)

MPNST
(N=2)

Chondrosarcom
a (N=5)

Osteosarcoma
(N=23)

Ewing
(N=42)

(N=4)
Rhabdomyosarcoma

(N=26)

N=71, 54%
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IRINOTECAN 
sensitivity

SLFN11 
expression

ABCG2
expression

A

B

C

D

DRUG RESPONSE

Low sensitivity High sensitivity

GENE EXPRESSION

Low exp High exp

NCIexp_vs_GDSCexp (n = 7786)

NCIexp_vs_CCLEexp (n = 7550)

GDSCexp_vs_CCLEexp (n = 8550)

NCIrna_vs_CCLErna (n = 24875)

NCIexp_vs_NCIrna (n = 7972)

−0.5 0.0 0.5 1.0
Pearson correlationPearson correlation

NCIexp vs NCIRNAseq (N= 7972) 

NCIRNAseq vs CCLERNAseq (N= 24875) 

GDSCIexp vs CCLEexp (N= 8550) 

NCIexp vs CCLEexp (N= 7550) 

NCIexp vs GDSCexp (N= 7786) 

Univariate Analyses        Multivariate Analyses      Mutation Variants      Metadata      Search IDs      Help      Video Tutorial

Univariate Analyses        Multivariate Analyses      Mutation Variants      Metadata      Search IDs      Help      Video Tutorial
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Ewing sarcoma
Other STS
Osteosarcoma
Rhabdomyosarcoma

MYOD1 (meth, NCI) vs MYOD1 (exp, NCI)
Pearson=-0.30, p-value=0.018 

MYOD1 (exp, NCI, microarray log2 intensity)
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MYOD1 (meth, NCI) vs MYOD1 (exp, NCI)
Pearson=-0.73, p-value=0.026 
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MYOD1 (exp, NCI, microarray log2 intensity)
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E

SLFN11 (RNAseq, NCI, log2 RPKM+1)

Irinotecan (NCI) vs SLFN11 (RNAseq, NCI)
Pearson=0.58, p-value=2.6x10-6
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Talazoparib (NCI) vs SLFN11 (RNAseq, NCI)
Pearson=0.58, p-value=1.9x10-6
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SLCOSA1 (exp NCI, microarray log2 intensity)

FLI1 (exp, NCI) vs SLCO5A1 (exp, NCI)
Pearson=0.38, p-value=0.002 
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NPYSR (exp NCI, microarray log2 intensity)

CDH8 (exp NCI, microarray log2 intensity)PCDH17 (exp NCI, microarray log2 intensity)

FLI1 (exp, NCI) vs NPYSR (exp, NCI)
Pearson=0.38, p-value=0.002 

FLI1 (exp, NCI) vs PCDH17 (exp, NCI)
Pearson=0.37, p-value=0.0027 

FLI1 (exp, NCI) vs CDH8 (exp, NCI)
Pearson=0.31, p-value=0.0013 

Non Rhabdo STS

Rhabdomyosarcoma

Osteosarcoma

Ewing sarcoma
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Highlights 
 

• Sarcoma_CellMinerCDB merges publicly-available and new sarcoma cell line data 

• It includes reproducible genomic and pharmacologic data for 133 sarcoma cell lines 

• It is a novel comprehensive resource including the methylome of sarcoma cell lines  

• Its multi-functionality can be used to identify new therapeutic targets for sarcoma 
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