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PUBLIC SUMMARY  195 

• The current global development systems perpetuate the continuous creation 196 

and release of new contaminants, posing ongoing environmental challenges. 197 

• Pollution remains a significant global threat, impacting human and 198 

environmental health at various levels, necessitating urgent action. 199 

• Green production practices and sustainable environmental management play a 200 

pivotal role in controlling pollution and promoting environmental 201 

sustainability. 202 

• This review provides an in-depth exploration of the sources and impacts of 203 

emerging contaminants on planetary health, with a specific emphasis on 204 

pollution control and prevention strategies. 205 

• Adopting a One Health approach through interdisciplinary collaboration is 206 

crucial for effectively addressing pollution and its complex impacts. 207 

 208 

  209 
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ABSTRACT  210 

Environmental pollution is escalating due to rapid global development that often 211 

prioritizes human needs over planetary health. Despite global efforts to mitigate legacy 212 

pollutants, the continuous introduction of new substances remains a major threat to both 213 

human and ecosystem health. In response, global initiatives are focusing on risk 214 

assessment and regulation of emerging contaminants, as demonstrated by the 215 

establishment of the UN’s Intergovernmental Science-Policy Panel on Chemicals, 216 

Waste, and Pollution Prevention. This review identifies the sources and impacts of 217 

emerging contaminants on planetary health, emphasizing the importance of adopting a 218 

One Health approach. Strategies for monitoring and addressing these pollutants are 219 

discussed, underscoring the need for robust and socially equitable environmental 220 

policies at both regional and international levels. Urgent actions are needed to transition 221 

towards sustainable pollution management practices to safeguard our planet for future 222 

generations.  223 Jo
urn
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INTRODUCTION  224 

Before the Industrial Revolution, naturally occurring pathogens, including bacteria, 225 

fungi, and viruses, were the primary contaminants of concern, presenting threats to both 226 

human and ecosystem health (Wang et al., 2020b). However, industrialization brought 227 

about significant changes in pollution patterns, introducing new contaminants into the 228 

environment such as heavy metals, industrial chemicals, and particulate matter. With 229 

the onset of the Anthropocene, humans have increasingly depleted natural resources 230 

and developed new chemical molecules, or novel entities, in pursuit of global 231 

development, resulting in waste streams transgressing planetary boundaries and 232 

disrupting natural ecosystems (Matlin et al., 2022; Steffen et al., 2015), and inducing 233 

changes in agricultural practices, which led to the evolution of wild-type pathogens 234 

(Lebarbenchon et al., 2008). Various geogenic chemicals, encompassing metal(loid)s 235 

and other hazardous substances, are consistently discharged into the environment 236 

through diverse anthropogenic activities like mining, mineral processing, energy 237 

production, construction, and agriculture (Naidu et al., 2021).  238 

Beyond geogenic chemicals, the production of synthetic chemicals has surged 239 

since the mid-20th century, marking what is often referred to as the second chemical 240 

revolution, i.e., unprecedented development and use of novel synthetic chemicals 241 

(Calvo-Flores et al., 2018). This surge is evidenced by the rapid growth of the Chemical 242 

Abstract Service Registry, which grew from 20 million in 2002 to over 204 million by 243 

2023, suggesting an addition of nearly 15,000 new chemicals daily (Escher et al., 2020). 244 
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Moreover, there has been a significant rise in efforts to genetically modify 245 

microorganisms (Then, 2020; Hanlon and Sewalt, 2021; Rafeeq et al., 2023). While 246 

synthetic chemicals and genetically engineered microorganisms have contributed 247 

positively to human well-being by facilitating the development of new drugs and 248 

advanced materials and enhancing agricultural productivity, concerns have been raised 249 

over their risks to public health and the environment. Persson et al. (Persson et al., 2022) 250 

recently highlighted that humanity has exceeded the planetary boundary, or safe 251 

operating space, for anthropogenic chemicals, as the rate of chemical production 252 

outpaces the rate of hazard assessments and the establishment of regulatory measures. 253 

Similarly, Bernhardt et al.(Bernhardt et al., 2017) argued that synthetic chemicals are 254 

agents of global change. 255 

Emerging contaminants (ECs), also known as contaminants of emerging concern 256 

(CECs), are newly identified synthetic or naturally occurring substances detected in the 257 

environment, such as chemicals or biological agents, that are potentially harmful to 258 

humans and the environment, or for which the risks have only recently become apparent. 259 

They may include pharmaceuticals and personal care products (PPCPs), per- and poly-260 

fluoroalkyl substances (PFAS), emerging pathogens, cyanotoxins and other natural 261 

toxins, pesticides, industrial chemicals, micro/nano plastics, nanomaterials, antibiotic 262 

resistance genes, and other exogenous substances that are found in the environment but 263 

are not yet well understood in terms of their impacts on humans and natural ecosystems 264 

(Sauvé and Desrosiers 2014; Puri et al. 2023; Cousins et al., 2022). These contaminants 265 
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can enter the environment through various pathways, such as industrial discharge, 266 

agricultural runoff, and improper waste disposal, leading to air, water, soil, and food 267 

contamination. They can become part of complex mixtures of chemical pollutants and 268 

biological hazards (Escher et al. 2020). Furthermore, these ECs have the potential to 269 

undergo additional transformation and long-range transport, creating unforeseen and 270 

uncharacterized chemicals and causing chemical pollution in areas distant from the 271 

source (Kelly et al. 2007). 272 

Pollution continues to pose a significant global threat, resulting in millions of 273 

premature deaths annually (Fuller et al., 2022; Landrigan et al., 2018b) and widespread 274 

environmental degradation (Naidu et al., 2021). Concurrently, thousands of species are 275 

facing extinction (Framba 2019). These alarming challenges underscore the pressing 276 

need for comprehensive strategies to address the interconnected environmental and 277 

human health issues (Wu et al., 2023). Adopting a One Health perspective recognizes 278 

the interconnectedness of human, animal, and environmental health, emphasizing the 279 

need for collaborative efforts to address EC issues. By leveraging expertise from 280 

various fields such as medicine, veterinary science, environmental science, and public 281 

health, integrated approaches will reduce risks linked to ECs and enhance the well-282 

being of all organisms. While focusing on ECs is crucial, dealing with existing 283 

pollutants is equally important. Innovative approaches such as green chemistry, 284 

machine learning, and interdisciplinary cooperation are essential to overcome these 285 

Jo
urn

al 
Pre-

pro
of



14 

 

 

challenges. Moreover, educational reforms are crucial to preparing future generations 286 

to effectively address environmental and health crises (Gao, 2024). 287 

In this review, we provide a holistic perspective on ECs, which are recognized as 288 

significant threats to human health and the sustainability of ecosystems. Through the 289 

One Health approach lens, we acknowledge the intricate connections between the 290 

health of people, animals, plants, and our shared environment. Our focus encompasses 291 

the production, utilization, and dissemination of ECs in everyday life, emphasizing their 292 

potential adverse effects, whether encountered individually or with other pollutants. 293 

These effects span various environments, impacting human health and the well-being 294 

of animals, plants, and microorganisms. We investigate methods for detecting and 295 

analyzing ECs, critically assess regulatory frameworks and policies, and propose 296 

innovative solutions to reduce their detrimental impacts on human and environmental 297 

health. By adopting the One Health approach, we underscore the necessity for a 298 

collaborative, multisectoral, and transdisciplinary response to effectively address 299 

challenges posed by ECs and to promote a sustainable and healthy future for all forms 300 

of life. 301 

 302 

HISTORICAL PERSPECTIVE OF EMERGING CONTAMINANTS  303 

Since the mid-20th century, the global socio-economic landscape has undergone a 304 

profound transformation, marked by a surge in industrial activity and technological 305 
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advancement. This period has seen a dramatic rise in the extraction and utilization of 306 

natural resources, particularly critical minerals and petrochemicals, which are 307 

indispensable for expanding industrial sectors and the broader modernization process. 308 

The repercussions of this intensified resource exploitation have been far-reaching, 309 

leading to modifications in geochemical cycles and the distribution of metals (Borch et 310 

al., 2010). Moreover, this era has been characterized by the synthesis, use, and release 311 

of novel chemical compounds, many of which persist in the environment and have the 312 

potential to accumulate biologically, thus emerging as new environmental contaminants 313 

(Gibson et al., 2023a).  314 

The toxicity of metal(loid)s, such as lead, mercury, cadmium, arsenic, cobalt, and 315 

chromium, as well as organic pollutants like dichlorodiphenyltrichloroethane (DDT) 316 

and polychlorinated biphenyls (PCBs), has long been recognized (Naidu et al., 2021). 317 

Some of these pollutants have been banned or had limits imposed on their use due to 318 

their adverse environmental and health effects, prompting efforts to regulate their 319 

concentrations in water, soils, and other environmental media (Gibson et al., 2023b). 320 

Whereas much is understood about legacy contaminants, ongoing advances in 321 

analytical technology and toxicology continue to reveal new risks to human health and 322 

the environment posed by ECs, enabling a better understanding of the sources, 323 

persistence, bioaccumulation potential, mobility, and toxicity of such contaminants.  324 

The increasing focus on environmental pollution has led to the identification of 325 

substances that have transitioned from being celebrated as beneficial chemicals to 326 

Jo
urn

al 
Pre-

pro
of



16 

 

 

contaminants of significant concern. Examples of such evolving contaminants include 327 

plastics and their byproducts, atrazine, triphenyl phosphate, tungsten, per- and 328 

polyfluoroalkyl substances (PFAS), chlorofluorocarbons, neonicotinoids, glyphosate, 329 

and many others (Table 1). This evolution is attributed to improved detection 330 

capabilities for inorganic and organic contaminants at trace levels and a better 331 

understanding of their wider ecosystem and health effects (Figure 1).  332 

In recent years, significant attention has been devoted to addressing a wide array 333 

of emerging contaminants, which nowadays extends beyond newly introduced 334 

substances to include contaminants of emerging concern, which have been present for 335 

some time but have recently garnered attention due to their potential impacts. As of 336 

February 2024, the Environmental Protection Agency's (EPA) Toxic Substances 337 

Control Act (TSCA) Chemical Substance Inventory contains 86,741 potentially 338 

hazardous chemicals, with 42,293 currently commercially active (Us Epa, 2015). 339 

Additionally, the NORMAN Network consortium has identified over 700 of the most 340 

discussed ECs (NORMAN, 2024). Further, Wang et al. Wang et al. (2020c) identified 341 

that over 350,000 chemicals and chemical mixtures have been registered for 342 

commercial use around the world. The continuous expansion of these inventories is 343 

expected due to the ongoing discovery of new substances and increased scrutiny of 344 

existing ones. Herein, a One Health approach is particularly relevant to the assessment 345 

and management of ECs (Brack et al., 2022; Ogunseitan, 2022, 2023). In the 346 
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subsequent sections, we will focus on prominent emerging contaminants categorized 347 

based on their current attention and potential concern (Table 1).  348 

 349 

 350 

Figure 1. The evolution of emerging contaminants in relation to the advances in the 351 

detection and tracking of potentially toxic chemicals in the environment or biological 352 

systems, even at trace levels. Since the early 2000s the term “Emerging Contaminants” 353 

has been used to describe the discovery of new pollutant classes. Polychlorinated 354 

biphenyls (PCBs), perfluorinated substances (PFAS), and plastics exemplify 355 

problematic substances that were in use for decades (grey bars), but emerged as 356 

contaminants (pins) and were regulated and discontinued (faded-out shadow) with 357 

different lag times. Arrows in the lower panel indicate emerging contaminants that 358 

originated as replacements for other pollutants. 359 

 360 
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Table 1. List of prominent emerging contaminants categorized based on their current 361 

attention and potential concern 362 

Categories Secondary categories 

   Examples of emerging contaminants 

Organic 

emerging 

contaminants 

Endocrine-

disrupting 

compounds 

(EDCs) 

17-Alpha-ethinylestradiol (EE2) (Union, 2015), 17-Beta-

estradiol (E2) (Union, 2015), Estrone (E1) (Union, 2015)  

Steroid hormones (Canasius K. Kanangire, 2023), Phthalate 

acid esters (PAEs), Bisphenols (Weiss et al., 2023) 

Food and feed 

additives 

2,6-Ditert-butyl-4-methylphenol (Union, 2015) 

Persistent organic 

pollutants (POPs) 

Brominated flame retardants (China, 2023), Polychlorinated 

biphenyls (PCBs) (Weiss et al., 2023)Weiss et al., 2023), 

Polycyclic aromatic hydrocarbons (PAHs) (Murnyak et al., 

2011), Dichlorodiphenyltrichloroethane (DDT) (Sauvé and 

Desrosiers, 2014), Perfluorinated chemicals (Sauvé and 

Desrosiers, 2014), Polybrominated diphenyl ethers (PBDEs) 

(Naidu and Wong, 2013; Petrovic et al., 2004) 

Per- and Polyfluoroalkyl Substances (PFAS) (Agency, 2023) 

Pharmaceuticals 

and personal care 

products (PPCPs)  

Disinfectants: Disinfection (Byproducts, Chlorate, 

Formaldehyde) (Agency, 2023), Pentachlorophenol and its 

salts and esters (China, 2023), Diclofenac (Union, 2015); 

Cosmetics: 2-Ethylhexyl 4-methoxycinnamate (Union, 

2015); 

Analgesics and anti-inflammatories (Rathi et al., 2021): 

Flumequine, Trimethoprim, Ketorolac, Pain reliever, Illicit 

drugs (Hernandez-Maldonado and Blaney, 2015), 

Pharmaceutically active compounds  (PhACs) (Murnyak 

et al., 2011) 

Antibiotics (China, 2023), Macrolide antibiotics  (Union, 

2015) 

Surfactants (López-Mahía et al., 2005) 

Organic 

solvents/plastic 

additives 

Hexachlorobutadiene (China, 2023), Dechlorane plus (both 

cis and trans isomers), Dichloromethane (China, 2023), 

Chloroform (China, 2023), Nonylphenols (China, 2023) 

Pesticides 

(Canasius K. 

Kanangire, 2023) 

and Herbicides 

Methiocarb (Union, 2015), Neonicotinoids (Union, 2015), 

Oxadiazon (Union, 2015), Tri-allate (Union, 2015), 

Perchlorate (Agency, 2023), Dicofol (China, 2023) 

Cyanotoxins 

(Agency, 2023) 

Microcystin(s) (Agency, 2023), Cylindrospermopsin 

(Agency, 2023), Anatoxin(s) (Agency, 2023), Saxitoxin(s) 

(Agency, 2023) 

Inorganic 

emerging 

contaminants 

Metal Strontium, Manganese, Tungsten, Lithium (Agency, 2023) 

Nanoparticles (Canasius K. Kanangire, 2023) 

Radionuclides 

and nuclear waste 

(Ahearne, 1997) 

H-3, Sr-90, Cs-137, Tc-99, I-129, Pu-239, Pu-240, (233, 

234, 235, 238) U, Am-241 

Emerging 

biological 

contaminants 

Pathogenic bacteria (Agency, 2023) 

Antibiotic-resistant microorganisms(Rysz and Alvarez, 2004) 

Antibiotic resistance genes (ARGs)(Rysz and Alvarez, 2004) 

Virus (Fuhrman, 1999) 

Protein contaminants (Johnson et al., 2006; Nichols et al., 2009; Saunders et al., 

2009a, b) 

Genetically Modified Organisms (GMOs) 

Inoculations with novel strains 
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Different types of RNA (e.g., RNAi and other Biologicals) 

Certain peptide complexes 

Other 

emerging 

contaminants 

Micro- and nanoplastics (Thompson et al., 2004) 

Liquid crystal monomers (Su et al., 2019b) 

Environmentally persistent free radicals 

Substances of unknown or variable composition, complex reaction products, or 

biological materials 

 

The table categorizes emerging contaminants into three groups: those currently in the 363 

spotlight (highlighted in blue), those with potential concern but less current attention 364 

(highlighted in purple), and contaminants of the past that are now emerging with 365 

renewed concern. Some emerging contaminants have been identified for control by 366 

various environmental regulatory agencies, including the Ministry of Ecology and 367 

Environment of the People's Republic of China (China, 2023), the European Union 368 

(Union, 2015), and the United States Environmental Protection Agency (Agency, 369 

2023). It is important to note that this table provides only a selection of examples for 370 

each category, and there are many more emerging contaminants within each group. 371 

 372 

PRODUCTION, USE, AND ENVIRONMENTAL RELEASE OF 373 

EMERGING CONTAMINANTS  374 

Production and use of emerging contaminants 375 

Over the last century, global population growth, fueled by industrialization and 376 

urbanization, has spurred increased demand for consumer goods. Consequently, 377 

industries producing these goods, such as pharmaceuticals, household products, and 378 

plastics, have expanded significantly (Johnson and Bell, 2022). The extensive use and 379 

improper disposal of these products have led to their omnipresence in the natural 380 

environment, causing continuous contamination with potentially harmful chemicals 381 

from diverse sources (Tong et al., 2022). Taking plastics as an example, their global 382 

production has surged to 460 million tons (Mt) in 2019 from 234 Mt in 2000, resulting 383 

in a doubling of plastic waste generation over the past two decades (OECD, 2022). This 384 
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increase in plastic production and consumption has contributed to the proliferation of 385 

micro/nano plastics in various ecosystems. While microplastics only account for 12% 386 

of plastic waste in the natural environment, they are of significant concern because of 387 

their potential long-term impacts on ecosystems and organisms (Kumar et al., 2020; 388 

OECD, 2022). Over time, larger plastic particles can break down into micro/nano 389 

plastics through mechanical action and biological fragmentation (including microbial 390 

degradation and grind by metazoa during ingestion), leading to the continuous 391 

accumulation of these particles (MacLeod et al., 2021; Martínez-Orgániz et al., 2023; 392 

Zhao et al., 2023a). This pollution is considered irreversible due to the lasting 393 

environmental impact long after the elimination of plastic emission sources (MacLeod 394 

et al., 2021). 395 

Pharmaceuticals and personal care products (PPCPs) represent one of the largest groups 396 

of ECs, encompassing a wide array of compounds with diverse chemical and physical 397 

properties. These substances are commonly used in daily life for various purposes, 398 

including human and animal healthcare. With over 50,000 different types of PPCPs 399 

currently produced and approximately 30 million metric tons used globally, the 400 

prevalence of these compounds may be increasing annually (Liu et al., 2020). 401 

Pharmaceuticals as the main components of PPCPs include numerous types of drugs 402 

and their metabolites, such as antibiotics (for both humans and livestock), hormones, 403 

non-steroidal anti-inflammatory drugs, anticancer drugs, antiepileptics, 404 

antidepressants, and β-blockers (Wilkinson et al., 2022). Among these biologically 405 
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active substances, antibiotics have emerged as the most commonly reported PPCPs over 406 

the past few decades (Berglund et al., 2023; Manaia et al., 2022), with the global 407 

consumption rate increasing from 9.8 to 14.3 defined daily doses per 1000 population 408 

per day between 2000 and 2018 (Browne et al., 2021). The increasing prevalence of 409 

associated antibiotic-resistant genes (ARGs) is a well-documented health concern and 410 

is now recognized as a prominent global threat to public health (Larsson and Flach, 411 

2022). Besides pharmaceuticals, PPCPs also encompass various chemicals in body 412 

lotions, disinfectants, eye care, hair care, handwash, insect repellent, lipsticks, 413 

moisturizers, fragrances, shampoo, soaps, sunscreen creams, and plasticizers used in 414 

product packaging and lining (Chakraborty et al., 2023) and PFAS compounds added 415 

to cosmetics (Whitehead et al., 2021). 416 

Over time, advancements in knowledge and analytical methods have led to the detection 417 

of risks associated with various chemicals. During the recent COVID-19 pandemic, 418 

64.7% of respondents never disinfect their hands using sanitizers before the COVID-419 

19 outbreak, but 91.0% disinfect their hands at least twice per day after the COVID-19 420 

outbreak (Guo et al., 2021). Therefore, particular attention has been paid to biocides 421 

found in disinfectants (Lu and Guo, 2021). With the implementation of advanced 422 

analytical instruments such as high-resolution mass spectrometry (HRMS) and artificial 423 

intelligence (AI) techniques, the potential risks posed by a broader range of PPCPs are 424 

expected to be uncovered PPCPs in the future. After production and application, PPCPs 425 

are primarily introduced to the environment directly or indirectly through the discharge 426 
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of raw sewage or treated effluents of various quality from wastewater treatment, animal 427 

husbandry, animal manure, or municipal treatment plant sludge as fertilizer, and landfill 428 

leachate (Carpenter and Helbling, 2018; Carpenter et al., 2019; Hu et al., 2023). In fact, 429 

the presence of PPCPs in surface water has become an indicator of an urbanizing water 430 

cycle (Brooks, 2014).  431 

Engineered nanoparticles (ENPs), one of the most typical ECs, were included in the list 432 

of ECs by EPA in 2010 (Li et al., 2022d). ENPs such as carbon NPs (De Volder et al., 433 

2013), TiO2 NPs (Weir et al., 2012), and hydroxyapatite (Sadat-Shojai et al., 2010) are 434 

widely incorporated in a diverse range of consumable goods, including commercial 435 

cosmetics, sporting goods, sunscreen, and toothpaste. In terms of global production, 436 

SiO2 NP and TiO2 NP were the largest, followed by AlOx NP, CeO2 NP, FeOx NP, and 437 

ZnO NP, carbon nanotubes (CNTs) (100-1000 t/a in 2010) and AgO NPs (55 t/a in 2010) 438 

(Piccinno et al., 2012). The increasing application of ENPs in consumer products has 439 

caused their increased occurrence in the natural ecosystems (Bathi et al., 2021). 440 

 441 

Pathways for environmental release of emerging contaminants 442 

To better understand and address ECs and their harmful impacts, it is crucial to 443 

thoroughly analyze the characteristics of these substances, how they are released into 444 

the environment, and how they can affect living organisms. For example, a number of 445 

big research questions were identified by Boxall et al. (2012) to understand the risks of 446 

PPCPs in the environment, and more recently, a synthesis of progress toward answering 447 
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most of these questions was provided, within which a number of timely research needs 448 

remain unanswered (Boxall and Brooks, 2024). We can work towards a more 449 

sustainable approach by using innovative technologies to identify these contaminants, 450 

eliminate their sources, and apply green chemistry principles for designing safer 451 

chemicals (Erythropel et al., 2018). This comprehensive understanding of problematic 452 

substances and their pathways of exposure is essential for developing effective 453 

strategies (Naidu et al., 2016; Tran et al., 2018). Figure 2 illustrates the release processes 454 

and potential pathways of emerging pollutants in different environmental 455 

compartments. 456 

 In both urban and rural areas, sources of ECs can be categorized as point source 457 

discharges from wastewater treatment plants (WWTPs), which include effluents from 458 

domestic, industrial, and hospital sectors and non-point sources such as stormwater 459 

runoff from agriculture (including livestock and aquaculture) and urban areas (Aguilar-460 

Aguilar et al., 2023; du Plessis, 2022; Morin-Crini et al., 2022; Parida et al., 2021). 461 

Additionally, ECs may originate from household products and leachates from landfills, 462 

among other sources. Conventional WWTPs were not explicitly designed to remove 463 

ECs effectively. As a result, many contaminants have been reported in treated effluents 464 

at concentrations typically ranging from ng/L to μg/L (Ramos et al., 2016; Subedi et al., 465 

2015; Tran et al., 2018). The continuous discharge of ECs in these effluents challenges 466 

existing global chemical management approaches that identify chemicals as persistent 467 

using cutoff values (Brooks et al., 2009) because effective exposure duration increases 468 
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when introduction rates from sewage or effluent discharge exceed the rate of 469 

degradation (Ankley et al., 2007). Efficient treatment of wastewater containing various 470 

chemical contaminants and pathogenic microorganisms remains a significant challenge 471 

in environmental engineering (Majumder et al., 2021), particularly in low and middle-472 

income countries.  473 

Food production has significantly increased in recent years to meet the growing global 474 

demand. As a result, agricultural activities have become common contributors to 475 

releasing emerging pollutants into the environment (Evans et al., 2019; Kumar et al., 476 

2020; Nguyen et al., 2023). This is often linked to the discharge of agrochemicals 477 

(Morin-Crini et al., 2022), antibiotic residue from livestock wastes (Nguyen et al., 478 

2023), microplastic debris resulting from the extensive use of plastic mulching film 479 

(Kumar et al., 2020), and pathogens introduced through the application of livestock 480 

manure or WWTP biosolids as fertilizer (Buta et al., 2021). Without significant 481 

alterations to existing practices, new pollutants produced by intensive farming are 482 

expected to continue accumulating in soils, potentially polluting nearby water bodies 483 

through surface runoff and infiltration (Morin-Crini et al., 2022). Additionally, there is 484 

a risk for these pollutants to enter the atmosphere through agricultural spray drift or 485 

volatilization following pesticide application (Wilkinson et al., 2017).  486 

Beyond the discharge of effluents from WWTPs and agricultural activities, leachate 487 

from landfills, where household wastes are deposited, constitutes a significant source 488 

of emerging pollutants in terrestrial ecosystems (Figure 2) (Eggen et al., 2010; Naidu 489 
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et al., 2016; Qi et al., 2018; Qian et al., 2024; Rogers et al., 2021). PPCPs, endocrine-490 

disrupting chemicals, and ARGs have been identified in untreated landfill leachate at 491 

concentrations ranging from ng/L to μg/L (Qi et al., 2018; Yi et al., 2017), including at 492 

levels (Chung et al., 2018) exceeding proposed predicted no effect concentrations for 493 

development of antibiotic resistance (Bengtsson-Palme and Larsson, 2016). When 494 

these potentially toxic leachates seep out or overflow into water bodies, they can 495 

adversely affect aquatic organisms (Rogers et al., 2021). The construction industry is a 496 

significant environmental concern as it generates various contaminants, including 497 

construction and demolition waste, fly ash, plastic waste, and dust, during construction 498 

(Hong et al., 2021; Zhong et al., 2022). These pollutants can potentially affect the living 499 

conditions of nearby residents and construction workers (Kang et al., 2021). However, 500 

the environmental fate of emerging pollutants associated with building sites remains 501 

largely unknown, and the application of new building materials that are being 502 

developed, such as engineered living materials (McBee et al., 2022), could also 503 

exacerbate this problem. 504 

Particulate contaminants, such as ultrafine particles, micro(nano)plastics, and ENPs, 505 

may be released into the atmosphere through processes including volatilization, aerosol 506 

formation, and diffusive exchange (Barroso et al., 2019; Enyoh et al., 2020). These 507 

airborne pollutants could further be transported to surrounding or remote areas through 508 

dry or wet deposition or wind events (Barroso et al., 2019; Yang et al., 2021). These 509 

particles could also carry other PPCPs and move to a remote area. Fernandez et al 510 
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(Fernandez et al., 2021) found that polycyclic aromatic hydrocarbons (PAHs), PCBs, 511 

and polybrominated diphenyl ethers are present in remote high-mountain European 512 

lakes, indicating a long-range atmospheric movement of such pollutants from urban to 513 

remote areas with the help of aerosol particles. Meteorological factors, including 514 

temperature, precipitation, wind speed, and boundary layer mixing, play vital roles in 515 

affecting the migration behaviour of airborne pollutants (Sridharan et al., 2021). 516 

Atmospheric compartments, mainly consisting of outdoor and ambient air, atmospheric 517 

fallout, and suspended or street/road dust, have become the transport medium of 518 

airborne contaminants and a point source of emerging pollutants in terrestrial and 519 

aquatic ecosystems (Mbachu et al., 2020; Yang et al., 2021).  520 

Nanoparticles can be formed by anthropogenic activities such as combustion in 521 

cooking, vehicles, thermal power plants, aircraft engines, chemical manufacturing, ore 522 

refining, smelting, and welding (Jeevanandam et al., 2018). There are three potential 523 

entry points for NPs into the environment over their lifespan: (i) during the manufacture 524 

of raw materials and nano-enabled goods; (ii) during use; and (iii) after disposal of 525 

items containing NPs (waste treatment) (Gottschalk et al., 2013). Lifecycle estimates 526 

indicate that the majority of NP emissions occur during the use stage and after disposal 527 

in landfills (Keller et al., 2013). However, emissions during manufacture account for 528 

less than 2% of the total output (Gottschalk and Nowack, 2011). ENPs may be released 529 

directly or indirectly into the environment via a built environmental system like 530 

WWTPs or waste disposal facilities. As for direct ENP emission, ENPs can act as 531 
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fertilizers to remediate soil, control the release of plant growth-regulating substances, 532 

detect pathogenic bacteria, and control plant diseases and pests. Potential secondary 533 

emissions may occur through various pathways, including the discharge from WWTPs, 534 

the utilization of biosolids as soil amendments, or leachates from landfill sites. These 535 

engineered systems play a pivotal role in dictating the destiny of ENPs, influencing 536 

whether they are discharged as effluent or incorporated into biosolids, and determining 537 

their state (whether they remain bare, coated, or undergo chemical or physical 538 

transformations) (Zuin et al., 2013). Sun et al (Sun et al., 2016b) reported that in the 539 

European Union in 2014, the sinks of TiO2 NP, ZnO NP, AgO NP, and CNTs were 540 

mainly landfills (7000 t a-1), sediments (7600 t a-1), and soils (8400 t a-1). The 541 

predominant emission pathway of TiO2 NP and ZnO occurs via wastewater and 542 

ultimately accumulates in sewage. CNTs and AgO NPs are primarily discharged into 543 

the environment during their manufacturing and application processes, where they are 544 

subsequently deposited in landfill sites. 545 

 546 

 547 
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 548 

Figure 2. Schematic illustration of the multifaceted pathways of EC production, 549 

utilization, and environmental release. Sectors such as industries, agriculture, 550 

households, hospitals, and wastewater treatment plants all contribute to the distribution 551 

of these contaminants. From industrial processes to agricultural practices and everyday 552 

household activities to medical and treatment facilities to effluent discharges, these 553 

sources collectively disseminate ECs into the environment. 554 

 555 

Additionally, concerns have been raised about the environmental and human health 556 

risks of emerging protein contaminants such as proteinaceous infectious particles 557 

(prions) and Bacillus thuringiensis (Bt) proteins (Saunders et al., 2008; Stanley et al., 558 

1998). Prions are misfolded forms (PrPSc) of normal cellular prion proteins (PrPC) that 559 

are capable of self-templating (thus their infectivity), and various prion strains can 560 

cause fatal neurodegenerative diseases in various hosts, such as Creutzfeldt–Jakob 561 

disease in humans, bovine spongiform encephalopathy in cattle, and chronic wasting 562 
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disease (CWD) in cervids. Take CWD prions as an example: Once released into the 563 

environment, they can bind to soils and persist for years as contamination sources and 564 

infect wildlife (Smith et al., 2011). Bt proteins are produced in genetically modified Bt 565 

crops and are insecticidal, resulting in concerns over their ecotoxicity and 566 

environmental residue levels (Clark et al., 2005; Liu et al., 2021). The prions and Bt 567 

proteins may present unique challenges because their production and source are 568 

associated with wildlife and agricultural crops (Saunders et al., 2008; Clark et al., 569 

2005). Therefore, their occurrence and distribution in the environment are often 570 

associated with the population dynamics and migration of infected animals and the 571 

production, cultivation, and distribution of Bt crops. Thus, prions can be magnified, 572 

while Bt proteins can be continuously produced and released into the environment. 573 

In summary, ECs could, directly and indirectly, enter the environment from various 574 

sources, such as industrial and agricultural operations, mining and construction 575 

activities, oil and chemical leaks, diffuse sources like stormwater drains, roads, and 576 

parking areas, and wastewater treatment systems (Figure 2) (Pal et al., 2010; Tong et 577 

al., 2022) and the use of a wide range of consumer products. Emerging contaminants in 578 

soil or landfills can also seep into adjacent groundwater (Gogoi et al., 2018; Pradhan et 579 

al., 2023). River networks and wind can transport these pollutants from residential, 580 

industrial, and agricultural areas to remote regions and eventually into marine 581 

environments (Tong et al., 2022). Understanding the environmental release processes 582 
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and transformation pathways of ECs is pivotal for evaluating their potential ecological 583 

impacts and for developing efficient mitigation and remediation strategies. 584 

 585 

ADVANCES IN THE DETECTION AND ANALYSIS OF EMERGING 586 

CONTAMINANTS  587 

The development of new analytical techniques and technologies has significantly 588 

enhanced the detection and analysis of ECs. This progress has bolstered our capability 589 

to extract, quantify, and detect ECs in environmental samples. Mass spectrometry (MS) 590 

and bioanalytical techniques have been particularly effective in analyzing emerging 591 

organic contaminants (Pérez-Fernández et al., 2017). Furthermore, electrochemical 592 

detection methods, with a focus on green technology, have emerged to measure ECs, 593 

especially pharmaceuticals (Hassan et al., 2022). These innovations have played a 594 

crucial role in elucidating the sources, classification, fate, and transport of ECs and in 595 

the development of treatment technologies for their removal (Shahid et al., 2021). 596 

 597 

Sampling and analytical methods 598 

Advanced sampling and separation. Recent global initiatives are reshaping the future 599 

of analytical chemistry, focusing on sustainable technologies. This impact is 600 

particularly evident in methodologies for sampling and sample preparation to detect 601 

and characterize ECs. Among these advancements is the solid phase microextraction 602 
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(SPME) chemical biopsy approach, which offers a flexible format for high-throughput 603 

quantification of ECs (Bojko et al., 2021). Enhanced by matrix-compatible thin film 604 

coatings and balanced coverage phenomena, SPME effectively eliminates matrix 605 

effects and extracts a wide range of compounds with diverse physicochemical 606 

properties. It is effective not only with gas chromatography-mass spectrometry 607 

(GC/MS) and liquid chromatography-mass spectrometry (LC-MS) but also with direct 608 

MS coupling, showing versatility and effectiveness in analysis (Reyes-Garces et al., 609 

2017; Zhou and Pawliszyn, 2024; Zhou et al., 2023b). Extraction techniques for ECs 610 

have evolved to enable on-site sampling using thin films, either through spot (Murtada 611 

and Pawliszyn, 2022) or time-weighted average sampling methods (Ahmadi et al., 612 

2017). In-vivo sampling, employing a small needle format, allows for the direct 613 

assessment of exposome effects in response to environmental pollution at the sampling 614 

site (Yu et al., 2021). These designed probes conduct non-exhaustive sampling over 615 

longer periods, accumulating sufficient analytes for sensitive detection via 616 

chromatography or mass spectrometry. Additionally, a filter-incorporated needle-trap 617 

device facilitates the simultaneous determination of free and particle-bound pollutants 618 

in a single step when combined with solid-phase microextraction (SPME) and 619 

measured directly with GC/MS. Portable GC-MS instruments enable gas sampling for 620 

on-site analysis (Zeinali et al., 2022). These advancements promise to enhance 621 

environmental protection efforts by generating large volumes of scientific data using 622 

simple, cost-effective, and sustainable analytical instrumentation. Moreover, these tools 623 
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facilitate the untargeted characterization of samples, thereby aiding in the discovery of 624 

new compounds, including ECs (Reyes-Garces et al. 2017, Yu et al. 2021) 625 

Apart from mass spectrometric detection, chromatographic separation is also crucial in 626 

analyzing ECs. Liquid chromatography (LC) or gas chromatography (GC) is typically 627 

coupled to MS for analysis. However, very polar fractions are a problem for both. Being 628 

nonvolatile, they cannot be analyzed by GC nor retained by the stationary phase of LC. 629 

Alternative chromatographic separation methods are being explored to close this gap. 630 

For example, a recent study combined supercritical fluid chromatography (SFC) with 631 

HRMS to identify unknown disinfection by-products in drinking water (Nihemaiti et 632 

al., 2023). Hydrophilic interaction chromatography (HILIC) is also commonly 633 

employed in orthogonal analysis to analyze polar compounds. For example, HILIC-634 

HRMS was applied in disinfected water analysis, leading to the identification of a new 635 

class of polar disinfection byproducts (DBPs) – halomethanesulfonic acids (Zahn et al., 636 

2016; Zahn et al., 2019). An alternative that has emerged in recent years is an extra 637 

separation dimension (i.e., ion mobility spectrometry [IMS]) hyphenated to the 638 

conventional GC- or LC-MS systems. IMS is a rapid gas-phase separation technique 639 

that separates ions based on their size, shape, and charge. IMS is particularly useful for 640 

the separation of isomeric analytes or coeluting matrix components. The collision cross 641 

section (CCS) values provided by IMS analysis supplement the common identification 642 

parameters like retention time and mass-to-charge ratio (m/z) for the screening and 643 

structural elucidation of ECs. The inclusion of IMS in nontargeted analysis significantly 644 
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improves confidence in the elucidation of unknown chemical structures. For instance, 645 

ion mobility-mass spectrometry (IM-MS) has been used to analyze ECs in human urine 646 

samples (Belova et al., 2021). In another example, a nontargeted LC-IM-MS analysis 647 

of emerging per- and polyfluoroalkyl substances in aqueous film-forming foams used 648 

CCS to enhance confidence in identifying unknown chemical structures and improve 649 

specificity in suspect screening (Luo et al., 2020).  650 

 651 

Advanced mass spectrometry. Mass spectrometry (MS) is among the most applied 652 

techniques for the analysis of ECs. High-resolution mass spectrometry (HRMS) 653 

instruments, like time-of-flight (TOF) and Orbitrap mass spectrometers, offer high 654 

mass accuracy and resolution that are critical for identifying ECs through structural 655 

elucidation (see Table S1). More recently, HRMS has been applied in identifying 656 

transformation products and metabolites of ECs (Tian et al., 2021), and in the non-657 

targeted analysis/suspect screening of ECs (Liu et al., 2021). HRMS has revealed many 658 

new ECs in the environment and elucidated their transformation products and 659 

metabolites. Compared with other analytical techniques, the capability to conduct 660 

nontargeted analysis is an invaluable advantage of HRMS in ECs’ analysis. HRMS 661 

enables the integration of nontargeted analysis with bioassays and in chemico methods 662 

to identify bioactive and toxic chemicals in a sample. This combined approach enables 663 

the precise identification and broad capture of bioactive/toxic chemicals (Hollender et 664 

al., 2017). For instance, an estrogen receptor α (Erα) protein affinity assay combined 665 
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with HRMS has been applied to identify Erα-active compounds in source and drinking 666 

water samples from major rivers in China (Li et al., 2023). In combination with effect-667 

directed analyses, ultrahigh-resolution MS (i.e., Fourier transform ion cyclotron 668 

resonance mass spectrometry) was adopted to identify the toxicity drivers of unknown 669 

disinfection byproducts in chlorinated and chloraminated drinking waters (Dong et al., 670 

2023a). In addition to in vitro bioassays, in chemico methods based on key chemical 671 

reactions (i.e., molecular initiating events) have also been applied to identify and 672 

measure the toxicities of environmental samples (Yeung et al., 2023). The combination 673 

of in vitro and in chemico assays with nontargeted chemical analysis represents a novel, 674 

more effective approach to identifying the bioactive/toxic contaminants in our 675 

environment (Prasse, 2021; Tian et al., 2023).  676 

 677 

Other advanced analytical chemistry techniques. Nuclear magnetic resonance (NMR) 678 

spectroscopy is an advanced method for characterizing the chemistry of environmental 679 

samples (Simpson et al., 2011). NMR has several advantages for the discovery of 680 

contaminants, potential transformation products, and characterizing the reactivity of 681 

contaminants over other techniques. The primary advantage is that structural 682 

elucidation can be performed without an authentic standard because the molecular 683 

profile from different NMR experiments can be used for complete structural 684 

elucidation. Another advantage is that NMR can leverage different nuclei to explore the 685 

structure of different metals and organic contaminants and their interactions with 686 
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environmental and biological media. However, NMR is less sensitive than the 687 

previously described MS techniques, which can result in higher sample needs for 688 

characterization. NMR is also less accessible than other instruments, which has created 689 

a barrier in the broader application of this powerful and versatile technique for 690 

characterizing metals and contaminants and their impacts on both environmental and 691 

human health. 692 

Electron paramagnetic resonance (EPR) can be used to detect environmentally 693 

persistent free radical (EPFR) signals without the need to capture reagents, unlike 694 

common short-lived free radicals. However, the presence of particles or colloids 695 

associated with EPFRs, along with the co-existence of paramagnetic components such 696 

as transition metals in the matrixes and varying environmental conditions like humidity 697 

and temperature, can significantly interfere with EPR detection (Li et al., 2014; 698 

Simpson et al., 2011). The interference of components makes it impractical to separate 699 

them, as they likely contribute to the formation of EPFRs. Additionally, the diverse 700 

chemical structures of EPFRs pose a challenge to their identification. Researchers have 701 

categorized EPFR types based on g values and bandwidth, referring to them as oxygen-702 

centered and/or carbon-centered. However, studies have shown that both parent 703 

chemicals and their degradation byproducts contribute to EPFR formation, potentially 704 

playing simultaneous roles (Yi et al., 2019). The reactivity of EPFRs varies with their 705 

structures, yet attributing signals to specific structures or quantifying the contributions 706 

of different structures remains elusive. 707 
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 708 

Suspected-target and non-target screening approaches  709 

The number of anthropogenic chemicals has grown beyond our capacity to study them 710 

using traditional environmental monitoring approaches that rely upon the development 711 

of targeted analytical methods tailor-made to individual chemicals (Muir et al., 2023a). 712 

This challenge drives the need to develop suspect and nontargeted screening (NTS) 713 

methodologies to identify ECs in complex environmental and biological media (Juliane 714 

and Lee, 2017). The past three decades have witnessed the development of a wide range 715 

of HRMS instruments that are capable of resolving hundreds or even thousands of 716 

chemical compounds (M) by measuring the mass-to-charge ratio (m/z) of their 717 

corresponding (quasi)molecular ions (e.g., M•+, [M+H]+, and [M-H]-) with sub-part per 718 

million (<1ppm) accuracy. The following sections provide a brief primer on the 719 

methodologies employed in the NTS of ECs. 720 

 721 

Suspect screening. Modern HRMS can gather both m/z and CCS data for numerous 722 

compounds within a sample. However, sorting through this data and differentiating 723 

between environmental contaminants (ECs) and the matrix is akin to finding a needle 724 

in a haystack. Comparison of experimentally obtained mass spectra with those 725 

compiled in spectral libraries (e.g. the NIST Mass Spectral Library) has been a time-726 

honored approach to identifying an unknown (Holmes et al., 2006; McLafferty and 727 

Turecek, 1993). One drawback of spectral library searching is the finite size of the 728 
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library, which may not contain (bio)transformation products, by-products, or 729 

proprietary compounds whose authentic standards may not be readily available 730 

(Böcker, 2017). Another challenge is the reproducibility of collision-induced 731 

dissociation spectra, which vary between laboratories depending on the instrument and 732 

experimental conditions. Suspected screening practitioners increasingly rely on 733 

structure databases (e.g., PubChem, CompTox Chemicals Dashboard) (McEachran et 734 

al., 2017), which are orders of magnitude larger than spectral libraries. Current suspect 735 

screening methods involve the creation of a list of structures whose computed/predicted 736 

properties are then compared with those obtained by experiment. However, the 737 

database's structural form does not always match the chemical structure observed by 738 

HRMS (McEachran et al., 2018). The experimental measurements are compiled using 739 

a peak-picking algorithm, the choice of which may influence the reliability and 740 

reproducibility of results (Schulze et al., 2023). The analyst is also cautioned that no 741 

single instrumental method is capable of detecting all chemical compounds and that 742 

each step of the analysis could remove compounds present in the sample (Black et al., 743 

2023; Hulleman et al., 2023). This is particularly relevant when a large suspect list, 744 

consists of compounds with a wide range of properties. For example, an instrumental 745 

method suitable for the analysis of anionic PFAS may not be appropriate for emerging 746 

brominated flame retardants. Black et al. (Black et al., 2023) have highlighted the 747 

urgent need to develop predictive methods to assess which compounds will be 748 

detectable using a given set of experimental and instrumental conditions. The identity 749 
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of a compound cannot be confirmed by its mass alone. This is why in silico (i.e. 750 

computer modeling) methods are essential to predicting the dissociation of compounds 751 

on the suspect list, their chromatographic retention time (RT), and, CCS to assist in 752 

differentiating similar compounds. The application of harmonized values, such as the 753 

unified retention time index (RTI), is also utilized in several wide screening workflows 754 

in Europe (Aalizadeh et al., 2021; Alygizakis et al., 2023). With the help of RTIs, the 755 

number of false positives can be reduced in the first screening step from suspect 756 

screening and nontarget screening workflows. Quantum chemical (Koopman and 757 

Grimme, 2021) and machine-learning-based methods (Wang et al., 2021b) are capable 758 

of predicting ion ratios but at greater computational cost. Chromatographic retention 759 

times (RT) (Bouwmeester et al., 2019) and CCS (Zhang et al., 2023a) can also be 760 

predicted using machine learning models.  761 

 762 

Nontargeted screening. A disadvantage of suspect screening is the fact that it requires 763 

prior knowledge of the occurrence of impurities and transformation products that are 764 

often unknown. Consequently, these compounds are absent from structure libraries, 765 

leaving the analyst with the unenviable task of answering the question, “What organic 766 

compounds are present in the environment that should not be there?” without knowing 767 

their structure(s) beforehand. Consequently, the analyst must identify the structures of 768 

the compounds detected in an NTS experiment using first principles interpretation of 769 

their mass spectra. However, this is currently impractical for all compounds detected, 770 
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which number in the thousands. Therefore, practitioners of NTS have developed a range 771 

of experimental and computational strategies to prioritize mass spectra for structure 772 

elucidation. Environmental risk assessment efforts have shown that >60% of 773 

compounds with the potential to persist in the environment and bioaccumulate contain 774 

the elements chlorine, bromine, or fluorine (Mueller et al., 2023). Their mass spectra 775 

also display characteristics unique to the presence of halogens, and NTS strategies to 776 

identify ECs have largely focused on halogenated compounds (Ieda and Hashimoto, 777 

2023; Jobst et al., 2013; Koelmel et al., 2020; Léon et al., 2019; Steeves et al., 2024; 778 

Zhang et al., 2019). Emerging PFAS are more challenging to recognize since 19F is a 779 

single stable isotope. However, a previous study has shown that isotopic ratios (viz. 780 

13C/12C) can still be used to discover PFAS, which are characterized by having relatively 781 

fewer carbon atoms than other non-fluorinated compounds with the same molecular 782 

weight (Zhang et al., 2019). Recently, Zweigle et al. (Zweigle et al., 2023) have 783 

exploited this characteristic to develop a novel approach to PFAS discovery that 784 

involves plotting the mass defect normalised to the number of carbons (MD/C) vs. mass 785 

normalised to the number of carbon atoms (m/C). Cl, Br, and F-containing compounds 786 

can also be revealed using ion mobility because halogenated compounds are 787 

characterised by relatively small CCS compared to their molecular weight (Foster et 788 

al., 2022; MacNeil et al., 2022). However, the most common approach to the discovery 789 

of unknown pollutants involves monitoring a fragment ion that is common to an entire 790 

class of pollutants. Machine learning is increasingly being used to guide NTS. Methods 791 
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that predict a spectrum from a structure, such as CFM-ID (Competitive Fragmentation 792 

Modelling) (Wang et al., 2021b) are becoming more mature. However, the reverse 793 

problem of predicting a structure from a spectrum has yet to be solved. Boiko et al. 794 

(Boiko et al., 2022) have recently reported on an automated tool that can assign 795 

elemental compositions in an unbiased, unconstrained way. It is anticipated that further 796 

growth in the areas of machine learning and artificial intelligence will eventually enable 797 

true, unsupervised NTS (Xu et al., 2021). 798 

 799 

Advanced bioanalysis  800 

Bioanalytical techniques. While chemical analysis-based methodologies offer 801 

significant advantages, such as low detection limits, excellent accuracy, and good 802 

selectivity for monitoring ECs, the steady growth in the development of biosensors, 803 

also known as bioanalytical tools (Neale et al., 2021) for environmental analysis cannot 804 

be overlooked. This growth is largely attributable to their superior capabilities in rapid, 805 

specific analysis and real-time monitoring. Biosensors, which are analytical devices 806 

that combine a biological recognition element with a transducer (Saxena et al., 2021), 807 

have been developed to detect various ECs. Detectable ECs include antibiotics (Zhou 808 

et al., 2021), pesticides (Tahirbegi et al., 2017), bisphenol A (Gao et al., 2022b; Tsekeli 809 

et al., 2021), and microplastics (Tang et al., 2023b). Biosensors effectively detect ECs 810 

in environmental samples (Haigh-Flórez et al., 2014) as well as in foodstuffs and 811 

biological samples (Hejji et al., 2023; Prossner et al., 2022; Sanli et al., 2020; Sarkar et 812 
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al., 2023), particularly within an effects-directed analysis framework (Neale et al., 813 

2023). 814 

Recent advancements in biosensor technology have seen the introduction of novel 815 

biological recognition elements, such as aptamers, in sensor development. Aptamer-816 

based biosensors, or aptasensors, have emerged as robust and powerful analytical tools 817 

for the detection of ECs. This is largely because of their high specificity for small 818 

molecules, low fabrication cost, design flexibility, and high stability. For example, 819 

specific aptamers have been developed to detect chloramphenicol in honey and 820 

enrofloxacin in sewage water (Dong et al., 2022; Zhou et al., 2022). The possibility of 821 

incorporating advanced engineered nanomaterials, such as carbon-based nanomaterials, 822 

metal-organic frameworks, and noble metal nanoparticles, into biosensor systems is 823 

being explored (Liu et al., 2022). With their good electrical conductivity, nanoscale 824 

size, and compatibility with biological molecules, these nanomaterials could 825 

significantly enhance biosensor performance. Indeed, nanomaterials have been found 826 

to increase biosensor sensitivities and lower the limit of detection by several orders of 827 

magnitude (Malhotra and Ali, 2018).  828 

 829 

Advanced analytical techniques for biological contaminants. Recent advancements in 830 

the detection of biological emerging contaminants (ECs), such as pathogens, ARGs, 831 

and functional genes associated with the biosynthesis of cyanobacterial toxins, have 832 

been facilitated by high-throughput quantitative polymerase chain reaction (qPCR) and 833 
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next-generation sequencing-based methods (Karkman et al., 2018; Stedtfeld et al., 2018; 834 

Xie et al., 2023). A comprehensive study recently outlined the advantages and 835 

disadvantages of these methods, including classical cultivation-based techniques, for 836 

ARG detection (Liguori et al., 2022). One of the significant benefits of sequencing 837 

methods is their ability to identify a wide range of pathogens or ARGs across diverse 838 

microorganisms present in samples (He et al., 2022b). Despite their high-throughput 839 

nature, the sensitivity of these methods relies heavily on the effectiveness of the analysis 840 

pipelines (Han et al., 2019). In recent years, computational tools have played a pivotal 841 

role in enhancing pathogen surveillance. Notably, the development of a comprehensive 842 

pathogen database has empowered the MBPD pipeline to achieve holistic habitat 843 

surveillance and coinfections of pathogenic bacteria (Yang et al., 2023). Moreover, 844 

advancements in understanding the genomic signatures of pathogens through deep 845 

learning approaches, such as DCiPatho, have enabled highly accurate identification of 846 

pathogens on a genomic scale (Jiang et al., 2023). Despite the strides made in pathogen 847 

detection through sequencing methods, monitoring the environmental dissemination of 848 

high-risk ARGs, particularly originating from pathogen hosts, remains challenging and 849 

requires novel tools.  850 

The analytical methods for cyanobacterial toxins include biological (mouse bioassay), 851 

biochemical (enzyme-linked immunosorbent assay; protein phosphatase inhibition 852 

assay), chemical (HPLC; LC/MS; high-performance capillary electrophoresis; thin 853 

layer chromatography; and GC), and molecular biological (conventional polymerase 854 
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chain reaction, PCR; quantitative real-time PCR, qPCR; biosensor method) (Massey et 855 

al., 2020). The chemical method is the most researched and well-established and is by 856 

far the most commonly used. 857 

 858 

DISTRIBUTION AND FATE OF EMERGING CONTAMINANTS  859 

Emerging organic contaminants 860 

Terrestrial ecosystems face numerous challenges arising from introducing and 861 

accumulating a range of potentially toxic organic substances (Figure 4). Synthetic and 862 

naturally occurring emerging organic contaminants (EOCs) are widespread across 863 

diverse environmental settings. Despite often existing in low concentrations, these 864 

EOCs can exert significant and enduring effects, prompting extensive research into 865 

their distribution and fate in recent years. EOCs originate from various sources, 866 

including industrial waste, agricultural runoff, and household products. They can be 867 

categorized based on their chemical properties and sources, with subsequent 868 

subsections discussing some of the most prevalent types. 869 

 870 
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 871 

Figure 3 Pathways through which emerging contaminants (ECs) enter the environment 872 

and their subsequent fate. ECs can originate from various sources, such as industrial 873 

discharges, agricultural runoff, and wastewater effluents. Once released, ECs can 874 

undergo transformation processes such as degradation, volatilization, and 875 

bioaccumulation, influencing their distribution across different environmental 876 

compartments, including water bodies, soils, and the atmosphere. 877 

 878 

Pharmaceuticals and Personal Care Products. Pharmaceuticals and personal care 879 

products (PPCPs) represent substances utilized for personal health or cosmetic purposes 880 

that can find their way into the environment through multiple pathways, including 881 

excretion post-consumption (Chen et al., 2023). Among PPCPs, pharmaceuticals, 882 

especially antibiotics, raise significant concerns due to their widespread use and 883 
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potential environmental impact. Antibiotics, primarily administered orally for bacterial 884 

infection treatment in humans and animals, undergo enzyme-mediated metabolism 885 

before excretion, involving phase I and II processes (Berkner and Thierbach, 2014). 886 

Phase I metabolism involves oxidation, reduction, and hydrolysis, transforming parent 887 

compounds into various metabolites, while phase II metabolism entails conjugation 888 

with molecules like glucuronic acid or sulfate, further altering their chemical structure. 889 

Consequently, resulting metabolites may enter the environment at higher 890 

concentrations than their parent compounds due to these metabolic processes (Monteiro 891 

and Boxall, 2010). Some pharmaceuticals resist biochemical transformation during 892 

metabolism and are excreted unchanged, entering the environment in multiple forms 893 

(Adeleye et al., 2022). Understanding these metabolic pathways is pivotal for 894 

identifying the diverse forms of pharmaceuticals in the environment and assessing their 895 

potential ecological and human health impacts. 896 

Pharmaceuticals and other PPCPs enter the environment through various pathways, 897 

such as wastewater discharge from sewage treatment plants and animal farms, excretion 898 

from humans and animals, and improper disposal practices (Adeleye et al., 2022). 899 

Despite efforts in wastewater treatment, PPCPs are not effectively targeted for removal, 900 

often persisting due to treatment conditions (Liu et al., 2017). National surveys, such 901 

as one conducted in the United States, have shown that final effluents from WWTPs 902 

receiving discharges from PPCP manufacturers may contain concentrations of PPCPs 903 

10–1000 times higher than those typically found in WWTPs without such inputs 904 
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(Phillips et al., 2010). This trend was also observed globally, particularly for commonly 905 

used PPCPs like antibiotics (Adeleye et al., 2022). Advanced analytical techniques have 906 

enabled the detection of PPCPs in sewage, groundwater, surface waters, drinking water, 907 

soil, and aquatic organisms across numerous countries, even at low concentrations 908 

(Aydın et al., 2022; Richardson and Ternes, 2020; Wu et al., 2021b). For instance, a 909 

comprehensive survey conducted in 2015 identified over 600 different pharmaceutical 910 

substances and their transformation products across more than 70 countries on all 911 

continents (aus der Beek et al., 2016).  912 

Once in the environment, PPCPs undergo various processes determining their fate. 913 

Some PPCPs can degrade over time through microbial action, although the rate of 914 

biodegradation varies based on the compound's chemical structure. PPCPs can also 915 

adsorb onto soil particles or sediment in water bodies, influencing their mobility and 916 

bioavailability. Aquatic organisms, such as fish, mollusks, and algae, can take up PPCPs 917 

from water through direct exposure or diet. It was evident that log Dow, rather than log 918 

Kow, is a better indicator of their bioaccumulation and trophic magnification for a 919 

marine food web (Guo et al., 2023). However, the apparent volume of distribution 920 

represents a promising proportionality constant to understanding the bioaccumulation 921 

of ionizable chemicals (Zhang et al., 2022a). Once in the water bodies, most PPCPs 922 

remain in the water phase because of their hydrophilic nature, such as sulphonamide 923 

antibiotics, whereas some hydrophobic ones (e.g. estrogens) might sorb to sediments 924 

or be accumulated by organisms (Chaves et al., 2022). The presence of antibiotic 925 
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residues in the environment might increase the risk of antibiotic resistance 926 

dissemination in environmental settings and consequently transfer to the human 927 

microbiome. Terrestrial organisms, including plants and insects, can also be exposed to 928 

PPCPs through the contaminated soil. Antibiotics are usually the most abundant PPCPs 929 

in plants originating from soils that were amended with biosolids and animal manure 930 

applications. For plants, hydrophobic compounds may partition into lipids and will be 931 

predominantly retained by roots, while most hydrophilic compounds will move to the 932 

xylem (in equilibrium with the water) (Bartrons and Peñuelas, 2017). Further studies 933 

are needed to understand the bioaccumulation of ionizable PPCPs in aquatic and 934 

terrestrial organisms (Carter et al., 2024). 935 

  936 

Cyanotoxins and other algae toxins. Risks of toxins produced during harmful blooms 937 

of algae, cyanobacteria, and other organisms represent a classic One Health topic 938 

(www.cdc.gov/habs/ohhabs.html). Cyanobacterial blooms stimulated by multiple 939 

factors, such as global warming and eutrophication of water bodies, have led to a 940 

significant increase in the frequency, distribution range, intensity, and duration of 941 

cyanobacterial blooms, thus further exacerbating the risk of algal toxin poisoning 942 

(Huisman et al., 2018; Zhang et al., 2022d). Cyanotoxins can be classified into three 943 

groups based on their chemical structure: cyclic peptide, alkaloid, and 944 

lipopolysaccharide (LPS). Depending on the mode of toxicity to animals, toxins can be 945 

classified as hepatotoxic cyclic peptide toxins (represented as microcystin and 946 
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nodularin), neurotoxic alkaloidal toxins (anatoxin, saxitoxin), cytotoxic alkaloidal 947 

toxins (cylindrospermopsin), dermatotoxic alkaloidal toxins (aplysiatoxin; 948 

lyngbyatoxin), irritant toxins (LPS), and some other biologically active substances 949 

(Xie, 2006). Globally, microcystin-LR is the most common cyanotoxin in freshwater, 950 

brackish water, and marine habitats (Massey et al., 2022). Lakes and reservoirs differ 951 

in morphology and trophic status, which can impact the dispersal and distribution of 952 

cyanotoxins (Wood et al., 2017). At the same time, cyanotoxins are subject to transport 953 

and diffusion at the sediment-water interface, with different types of sediments 954 

exhibiting different adsorption capacities (Liu et al., 2019). Notably, algae, 955 

cyanotoxins, and toxins present in a variety of freshwater, marine, soil, and terrestrial 956 

species can be wind-driven to float in the air and transported over greater distances 957 

(Wisniewska et al., 2019). Moreover, cyanotoxins in the atmosphere may, under certain 958 

conditions, settle on the ground or in water bodies and impact the surrounding 959 

environments (Wisniewska et al., 2022). The accumulation of cyanotoxins involves a 960 

complex process of gradual accumulation and transfer in ecosystems. The process can 961 

be manifested primarily through the cascading of cyanotoxins through the food chain 962 

and their progressive enrichment in organisms. For example, fish and shellfish, 963 

organisms that consume food rich in cyanobacterial toxins, accumulate the toxin in their 964 

tissues, resulting in a gradual build-up of cyanotoxins in the upper levels of the food 965 

chain (Ferrao and Kozlowsky-Suzuki, 2011). 966 

 967 
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Emerging inorganic contaminants  968 

Engineered nanoparticles. ENPs that accumulate in the environment will undergo a 969 

series of physical, chemical, and biological processes such as chemical transformation, 970 

aggregation, and dissolution. The interplay between these processes and the ENP 971 

transport ultimately determines the potential fate of ENPs (Peijnenburg et al., 2015). 972 

The chemical transformation process mainly includes the dissolution and sulfidation of 973 

ENPs. In a series of studies, it has been found that the dissolution of NP is triggered by 974 

particle-inherent factors (e.g., surface coating, particle size, shape, and aggregation 975 

state) and environmental parameters such as solution pH, dissolved organic carbon, and 976 

temperature (Bundschuh et al., 2018). Thereinto, the most commonly occurring 977 

passivation process, that is, the sulfidation of nanoparticles, makes their surface appear 978 

to be almost inert, thus affecting the reactivity. 979 

The colloidal stability of ENPs is a crucial factor that influences their fate and 980 

environmental effects (Lowry et al., 2012). The homo-aggregation (interactions 981 

between the same ENPs) of NP is positively correlated with the NP concentrations. The 982 

aggregation characteristics are often explained by the classical Derjaguin-Landau-983 

Verwey-Overbeek theory. Owing to the low predicted ambient concentrations of ENPs 984 

(e.g., in the range of pg/L to low µg/L for surface water), homo-aggregation is less 985 

likely to happen and is affected by ionic strength. The aggregation rate of NP increases 986 

with the surrounding medium's ionic strength, and multivalent cations are more 987 

efficient than monovalent cations (Adam et al., 2016; Baalousha et al., 2013). However, 988 
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heteroaggregation of ENPs with mineral particles is more common in natural 989 

environments (Zhao et al., 2015), which ultimately affects the environmental fate of 990 

ENPs and their risk to ecosystems and organisms (Zhao et al., 2021). The majority of 991 

the studies on ENP transport in porous media used water-saturated artificial columns 992 

often packed with quartz sand, while only a few involved natural soils (Solovitch et al., 993 

2010). Key environmental factors controlling ENP transport processes are solution 994 

ionic composition, pH, and natural organic matter (NOM) chemistry, while the degree 995 

of water saturation in porous media such as soils is an additional physical factor. The 996 

impact of ionic composition, NOM, and solution pH on the NP fate is similar in aquatic 997 

systems and saturated and unsaturated porous media. For plants, an increasing number 998 

of studies related these factors to plant uptake. For instance, size-exclusion limits that 999 

range from < 10 nm to the uptake of cells exceed 20 nm for the uptake of leaves and 1000 

can reach 100 nm in exceptional cases (Eichert et al., 2008; Jia et al., 2023; Wang et al., 1001 

2016). Assimilation of elements from larger particles is possible if they dissolve, while 1002 

low zeta potentials usually favor direct particle uptake. 1003 

 1004 

Radionuclides and nuclear wastes. Whether released from nuclear power plants, 1005 

medical facilities, or sites where radioactive material was improperly disposed of, 1006 

radionuclides pose considerable challenges to environmental quality and human well-1007 

being (Santhanabharathi et al., 2023). Radionuclides undergo radioactive decay, 1008 

emitting radiation over time (Santhanabharathi et al., 2023). Nuclear wastes threaten 1009 
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ecosystem health. Strict regulations govern the handling and disposal of nuclear waste 1010 

to prevent environmental contamination (Natarajan et al., 2020; Shan and Ding, 2024). 1011 

Consideration should extend beyond physical and chemical interactions to encompass 1012 

biological uptake and long-term ecological consequences of radionuclides and nuclear 1013 

waste.  1014 

 1015 

Biological contaminants  1016 

Pathogenic bacteria. The intricate interplay between pathogenic bacteria and various 1017 

environmental sources, particularly in agricultural settings, underscores the complexity 1018 

of this challenge (Banerjee and van der Heijden, 2023; Zhang et al., 2023c). 1019 

Agricultural soils are often underestimated as reservoirs of human and animal 1020 

pathogens and can give rise to a spectrum of diseases affecting air, water, and food 1021 

(Singh et al., 2023). For example, bacterial species like Bacillus anthracis, Vibrio 1022 

cholera, and Burkholderia pseudomallei have the potential to cause severe infection 1023 

and, in some cases, death through direct contact (Limmathurotsakul et al., 2016; Steffan 1024 

et al., 2020). Foodborne pathogens such as Escherichia coli O157:H7 and Salmonella 1025 

enterica can also enter the food chain, triggering epidemics with severe health 1026 

consequences (Gonzalez-Martin et al., 2014; Scott et al., 2017). 1027 

 1028 

Antibiotic resistant bacteria and resistance genes. Antibiotics and antibiotic-resistant 1029 

bacteria (ARB) carrying ARGs have existed for hundreds of thousands of years before 1030 
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the discovery of antibiotics by humans (D'Costa et al., 2011; Waglechner et al., 2021). 1031 

However, the industrialization and widespread use of antibiotics in both human and 1032 

animal populations have exerted unprecedented selective pressure on bacteria across 1033 

various interconnected niches, including human, animal, and environmental 1034 

microbiomes. This has led to the accelerated development of antibiotic resistance traits 1035 

within these communities on a global scale (Levy and Marshall, 2004; Zhu et al., 2022). 1036 

Thus, anthropogenic activities could increase the emergence of ARB, their resistance 1037 

genes, and their dissemination between the human, animal, and environmental 1038 

compartments, aggravating the existing antibiotic resistance crisis (Fu et al., 2023). For 1039 

example, the extensive use of antibiotics and the intensive agricultural practices 1040 

prevalent in modern farming have transformed soil ecosystems into potential reservoirs 1041 

of pathogens and ARGs (Zheng et al., 2022). Within this soil environment, the 1042 

biopollutome emerges as a complex network of pathogens and ARGs, creating a 1043 

prevalent threat to ecosystems (Wang et al., 2023a). Although multiple barriers restrict 1044 

the flow of both bacteria and genes, pathogens recurrently acquire new resistance 1045 

factors from other species, thereby reducing our ability to prevent and treat bacterial 1046 

infections (Larsson and Flach, 2022), which demands urgent and effective measures to 1047 

control the formation and dissemination of ARB.  1048 

Antibiotic resistance has been referred to as a silent pandemic and has emerged as a 1049 

significant concern in the realm of biological ECs (Mah, 2021). Hence, the increasing 1050 

number of antibiotic-resistant microbes poses threats to human health. Over the last 1051 
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decade, ARGs have been detected in all habitats, including the natural environment and 1052 

human industrial habitats (Zhang et al., 2022e). Anthropogenic activities play a key role 1053 

in selecting genes from environmental and cellular sources, facilitating their subsequent 1054 

co-option to confer antibiotic resistance. With increasing human activities, 1055 

microorganisms and their genetic material move more often between humans, animals, 1056 

and the environment, which collectively increases opportunities for the transmission 1057 

and evolution of ARGs (Danko et al., 2021; Larsson et al., 2023b; Zhang et al., 2022e). 1058 

Once these drug-resistant genes are transferred to human-associated pathogenic 1059 

bacteria, such as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella 1060 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter 1061 

species) pathogens and plant pathogens, it may further exacerbate the clinical 1062 

pathogenic risks (Zhang et al., 2021a). These pathogens are not only present in the 1063 

bodies of humans and animals, but can also enter the water through excretions such as 1064 

feces, urine, and saliva, and spread through respiratory secretions into the air. The threat 1065 

posed by pathogenic bacteria also presents a significant challenge within the One 1066 

Health framework (Fu et al., 2023). Over the past two decades, infectious diseases have 1067 

been accountable for approximately 15 million global deaths annually (Cowie and 1068 

Dore, 2012). Meanwhile, plant diseases contribute to the loss of up to 30% of global 1069 

food production each year (Savary et al., 2019). 1070 

Antibiotic-resistant bacteria and ARGs originating from human activities are 1071 

recognized as emerging biological contaminants that can potentially impact 1072 
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environmental ecosystems (Karkman et al., 2019; Pruden et al., 2006). Apart from 1073 

antibiotics, a range of non-antibiotic pollutants like heavy metals, disinfectants, 1074 

biocides, and non-antibiotic drugs can alter bacterial behavior and contribute to the 1075 

development of antibiotic resistance (Lu et al., 2018; Lu et al., 2020; Luo et al., 2023; 1076 

Pál et al., 2015; Wang et al., 2019). Furthermore, ARB and ARGs can disseminate back 1077 

to the human and animal microbiomes (Vaz-Moreira et al., 2014) through food 1078 

ingestion, drinking water, and direct contact while swimming in contaminated water 1079 

and while in contact with contaminated crops, thus creating a loop between the human, 1080 

animal and environmental microbiomes. Nevertheless, future research should provide 1081 

quantitative information about the dissemination routes of ARB and ARGs from the 1082 

environment to the human microbiome by considering human exposure and the 1083 

probability of successful colonization of the human microbiome by these biological 1084 

pollutants. There is an urgent need to move from descriptive, qualitative, or semi-1085 

quantitative research to quantitative risk assessments of the drivers of antibiotic 1086 

resistance proliferation in the environment and its dissemination to the human 1087 

microbiome (Larsson et al., 2023a). 1088 

 1089 

Viruses. Among microorganisms, viruses are most prone to becoming emerging 1090 

pathogens because they can infect their hosts and adapt to new environments through 1091 

mutation, genetic recombination, and reassortment (Du et al., 2022). The pathogenicity 1092 

of many bacteria is due to the virulence factors they carry encoded by lysogenic phages 1093 
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(Jansson and Wu, 2023). Soil plays a significant role in the distribution and transmission 1094 

of viruses in natural environments (David Walter et al., 2011). Research indicates that 1095 

viruses can survive in soil for varying durations depending on factors like temperature, 1096 

moisture content, pH, and the presence of an envelope. Enveloped viruses like SARS-1097 

CoV-2 can survive for up to 90 days in soils with 10% moisture content (Anand et al., 1098 

2021). Additionally, enteric viruses can persist on surfaces like door handles, banisters, 1099 

and food, contributing to their transmission (Steffan et al., 2020). The abundance of 1100 

viruses in soil is higher in environments with high organic matter and moisture content 1101 

(Anand et al., 2021). Changes in soil moisture levels can impact the composition and 1102 

activity of soil DNA and RNA viruses, potentially affecting soil ecology (Wu et al., 1103 

2021a). Understanding how viruses interact with soil is crucial for assessing their 1104 

environmental impact and potential transmission pathways. Because the size of the host 1105 

is tens to thousands of times larger than the size of the virus, viruses are more flexible 1106 

than bacteria in terms of transport and dispersal by animals, wind, or rain (Prosser et 1107 

al., 2023). Influenza viruses (Wood et al., 2010), hepatitis A viruses, coronaviruses 1108 

(Carlson et al., 2020; Zhu et al., 2022), and others, can survive in the soil for a long 1109 

time, leading to human exposure.  1110 

 1111 

Protein contaminants. Prions and Bt proteins are considered two important classes of 1112 

emerging protein contaminants. Prion proteins can bind to soils and suspend in water, 1113 

thus persisting in the environment for years and serving as a significant environmental 1114 
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reservoir for disease propagation (Johnson et al., 2006; Nichols et al., 2009; Saunders 1115 

et al., 2009a, b). Our understanding of the fate and transport of prion proteins in the 1116 

environment is very limited. Using sand or soil columns, previous studies found that 1117 

recPrP and purified PrPSc had limited mobility, where the migration of recPrP was 1118 

smaller than 1 cm in the quartz sand column and purified recPrP was primarily retained 1119 

near the point of contamination in soil columns (Cooke and Shaw, 2007; Jacobson et 1120 

al., 2010). Bt proteins were found to persist in soils for two months, 180 days, and up 1121 

to 234 days, respectively, and were found to have the potential to be transported through 1122 

the landscape by sediments and crop residue debris in surface runoff (Feng et al., 2011; 1123 

Strain and Lydy, 2015; Tapp and Stotzky, 1998). Nonetheless, significant knowledge 1124 

gaps remain in understanding the fate, transport, and environmental risks of protein 1125 

contaminants (e.g., prions and Bt proteins). 1126 

 1127 

Microplastics and nanoplastics  1128 

As one of the world's most prominent emerging pollutants, microplastics (MPs) are 1129 

ubiquitously distributed across the atmosphere, pedosphere, hydrosphere, and 1130 

biosphere. Micro- and nanoplastics (MNPs) could be widely detected in the terrestrial 1131 

ecosystem and human body (Jiang et al., 2020). Microplastic fragmentation by rotifers 1132 

in aquatic ecosystems has been reported to contribute to global nanoplastic pollution 1133 

(Zhao et al., 2023a). Plastic particles enter the environment from ubiquitous sources, 1134 

posing a potential threat to aquatic organisms, soil, the atmosphere, and human health 1135 
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(McIlwraith et al., 2021; Piehl et al., 2018). Atmospheric microplastics are found in 1136 

both indoor and outdoor air. Indoors, concentrations in residential homes can be as high 1137 

as 1.96 ×104 particles/(m2. day), while in schools, they can be as low as 6.20 ×103 1138 

particles/(m2 .day), and in dormitories [9.9 ×103 particles/(m2.day)] they are 5.5 times 1139 

higher than in offices [1.8 ×103 particles/(m2.day)]. The abundance of MPs in outdoor 1140 

air showed regional differences, with higher abundance of MPs in urban air than in rural 1141 

air, and higher levels of MPs in cities in northern China than in southern cities (Feng et 1142 

al., 2023b). Some studies have shown that atmospheric deposition of MPs ranges from 1143 

0.5 to 1,357 MP m−2 d−1(outdoors) and 475 to 19,600 MP m−2 d−1(indoors). During 1144 

deposition, microplastics can utilize plant stomata (20 - 40 μm long and 5-10 μm wide), 1145 

with 20 - 200 nm of microplastics accumulating in the stomatal lumen and passing 1146 

through the stomata into leaf tissue. Research has validated the capability of polystyrene 1147 

(PS) nanoplastics to infiltrate leaves and migrate to plant roots, demonstrating their 1148 

ability to penetrate plant leaves through foliar exposure (Wang et al., 2022d). Within 1149 

the phloem, nanoplastics can travel alongside bulk water or sap, a process influenced 1150 

by sap's composition and flow rate within the stem (Su et al., 2019b). Furthermore, the 1151 

downward movement of nanoplastics within vascular tissues requires traversal through 1152 

various physiological barriers, including intercellular plasmodesmata, vesicles, and 1153 

conductive cells (Sun et al., 2021b). Consequently, the continuous aggregation of 1154 

nanoplastics could potentially obstruct the vascular system, impeding the downward 1155 

translocation of smaller nanoplastics (Sun et al., 2021b). The average abundance of 1156 
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microplastics in fish in the oceans was 3.5 ± 0.8 particles/stripe, but in highly polluted 1157 

waters, in contrast, oysters had the highest abundance of 99.9 particles/individual 1158 

(Wang et al., 2023d).  1159 

Micro- and nanoplastics accumulate in many organisms in the environment, which 1160 

leads to food chain pollution impacting the life and health of all organisms in the food 1161 

chain. Micro- and nanoplastics are not easy to degrade after being ingested by animals 1162 

so they accumulate continuously in the body. Studies have shown that 0.2~0.3 μm(2.5 1163 

mg·(100 μL)-1) PS labelled with radioactive isotope Cu-DOTA was given to mice by 1164 

gavage, and it was found that plastic particles were absorbed into the blood, liver, brain, 1165 

spleen, testis, bladder and other tissues through the intestinal tract, resulting in various 1166 

organ toxicity (Im et al., 2022). Micro- and nanoplastics can be detected in human feces, 1167 

which indicates that the intake of micro- and nanoplastics is high (Zhang et al., 2021c). 1168 

After micro- and nanoplastics enter the gastrointestinal tract through food, the 1169 

undigested micro- and nanoplastics are excreted with feces, but smaller micro- and 1170 

nanoplastics will enter the systemic circulation. Some studies have found that there are 1171 

micro- and nanoplastics in human blood, so micro- and nanoplastics may be transported 1172 

to various organs through blood, but the mechanism of micro- and nanoplastics entering 1173 

the blood circulation is still unclear and needs further study (Leslie et al., 2022). The 1174 

maximum particle diameter of micro- and nanoplastics uptake by organisms is 1175 

determined by the morphology of species' feeding and digestive organs (Lambert et al., 1176 
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2017). Micro- and nanoplastics mainly enter the respiratory and gastrointestinal tract 1177 

and can then be transferred to other secondary organs according to their size and shape. 1178 

 1179 

5.5 Other emerging contaminants  1180 

Liquid crystal monomers. Liquid crystal monomers (LCMs) are a class of synthesized 1181 

organic chemicals that are key materials for liquid crystal displays (LCDs), which can 1182 

undergo phase transitions between liquid and solid states at specific temperatures. 1183 

LCMs are typically diphenyl-based compounds that contain functional groups like 1184 

cyano, fluorine, chlorine, or bromine (Li et al., 2018). The production output of LCMs 1185 

for LCD panels is approximately 500 tons per year (Zhang et al., 2017). However, the 1186 

environmental release of LCMs during the use and dismantling of waste LCDs is a 1187 

concern, and global estimates range from 1.07 to 107 kg/year (Liang et al., 2021). 1188 

Numerous studies have indicated the widespread presence of LCMs in the environment, 1189 

and projections suggest a significant increase in their prevalence in the near future (Su 1190 

et al., 2019a). These LCMs exhibit environmental persistence, long-range migratory 1191 

capabilities, and potentially harmful impacts on various species (Feng et al., 2023a). 1192 

Consequently, LCMs have gained attention as ECs because of their distinctive 1193 

properties, including persistence, bioaccumulation, toxicity, and extensive 1194 

environmental distribution (Liang et al., 2021). 1195 

LCMs have been found in various environmental matrices, indicating their widespread 1196 

distribution and potential exposure risk to organisms. Air is considered a significant 1197 
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transport medium for LCMs, allowing their migration from e-waste recycling sites to 1198 

the surrounding environment. Investigations into waste LCD panel dismantling 1199 

revealed atmospheric concentrations of LCMs at 68,800-385,000 pg/m3 (Shen et al., 1200 

2022). LCMs have also been observed in indoor and outdoor dust, sediment, landfill 1201 

leachate, sewage sludge, and soil samples. LCMs median levels in dust collected across 1202 

China ranged from 41.6 to 171 ng/g (Zhang et al., 2022c), depending on the sampling 1203 

region. LCM concentrations in urban soils from different functional zones ranged from 1204 

0.774 to 12.9 ng/g dw (Li et al., 2022c). In biota samples, LCMs were found in wild 1205 

aquatic invertebrates and fishes (Wang et al., 2022c). LCMs were also detected in the 1206 

hands, forehead skin wipes, and serum of e-waste dismantling workers (Cheng et al., 1207 

2022). The LCM concentrations in the serum samples of the occupational workers were 1208 

significantly higher than those in the reference serum samples, indicating a high 1209 

exposure risk in the occupational population (Boiko et al., 2022). These studies have 1210 

provided direct evidence of LCMs in the environment, indicating their widespread 1211 

pollution and highlighting the importance of understanding their distribution and fate. 1212 

 1213 

Environmentally persistent free radicals. Unlike traditional free radicals with lifetimes 1214 

spanning milliseconds and microseconds, EPFRs are stabilized on or in specific 1215 

particles, with lifetimes extending beyond days and even months. EPFRs exhibit 1216 

stability and ubiquity in various environmental matrices such as atmospheric 1217 

particulates, soil, biochar, and microplastics (Yang et al., 2017b; Zhu et al., 2020). Their 1218 
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presence is potentially implicated in diverse environmental and biological processes. 1219 

Notably, EPFRs have been observed to mediate the generation of a significant amount 1220 

of reactive oxygen species (ROS) (Kelley et al., 2013), recognized for their involvement 1221 

in chemical degradation (Yang et al., 2016) and the induction of oxidative stress, which 1222 

can adversely affect organisms, leading to DNA damage and diseases such as lung and 1223 

cardiovascular diseases (Mahne et al., 2012). Ongoing research is addressing various 1224 

aspects of EPFRs, each presenting substantial challenges. 1225 

 1226 

RISKS OF EMERGING CONTAMINANTS TO PLANETARY HEALTH 1227 

Environmental quality implications 1228 

Em erging c o ntam inants present substantial risks to  planetary health by disrupting 1229 

ec o system s, endangering w ildlife, and po sing threats to  hu m an w ell-being (Pereira et 1230 

al., 2 0 1 5). These c o ntam inants exhibit characteristics such as persistence, 1231 

bio ac c u m u latio n, and m o bility, po tentially fo rm ing enduring enviro nm ental fo o tprints 1232 

that jeo pardize ec o system s (Yadav et al., 2 0 2 1 ). They can persist in the enviro nm ent 1233 

fo r extended perio ds w itho ut degradatio n, leading to  bio ac c u m u latio n in o rganism s 1234 

and the subsequent risk o f reaching harm fu l c o ncentratio ns. M any ECs dem o nstrate 1235 

ec o to xic ity, po sing threats to  aquatic life, plants, and o ther o rganism s; fo r instance, 1236 

pharm aceuticals like antibio tics and ho rm o nes can disrupt the endo crine system s o f 1237 

terrestrial and aquatic spec ies, causing repro ductive and develo pm ental im pairm ents 1238 

(de Rezende and M o unteer, 2 0 2 3). In natural settings, ec o system s o ften face m ixtures 1239 
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o f ECs rather than iso lated substances, w ith interactio ns betw een these c o m po unds 1240 

po tentially resu lting in synergistic o r antago nistic effects that am plify ec o lo gical risks 1241 

(Escher et al., 2 0 2 0 ). M o reo ver, so m e ECs, such as plastics and m icro plastics, can 1242 

serve as carriers fo r o ther c o ntam inants, fac ilitating their ac cu m u latio n in aquatic 1243 

o rganism s and po tential entry into  the fo o d chain (Kinigo po u lo u et al., 2 0 2 2 ; W ang et 1244 

al., 2 0 2 1 c). Understanding the m o vem ent o f ECs thro ugh the enviro nm ent is vital fo r 1245 

assessing their risks; facto rs like vo latility, so lubility, and adso rptio n to  so il partic les 1246 

influence c o ntam inant transpo rt thro ugh air, w ater, and so il, im pacting their 1247 

distributio n and expo sure pathw ays. Investigating the effects o f ECs o n so il, w ater, and 1248 

air ec o system s is cruc ial fo r c o m prehensively evaluating their enviro nm ental 1249 

im plicatio ns. Here w e c o nsider so m e enviro nm ental quality im plicatio ns o f ECs in 1250 

atm o spheric , terrestrial and aquatic system s. 1251 

 1252 
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 1253 

Figure 4 Effects o f em erging c o ntam inants o n hu m an health, air quality, w ater system s, 1254 

and so il ec o system s.  1255 

 1256 

Soil ecosystems. Emerging contaminants, such as PPCPs, pesticides, and industrial 1257 

chemicals, have been increasingly detected in soil environments worldwide (Snow et 1258 

al., 2017). These contaminants threaten soil organisms, including bacteria, fungi, 1259 

earthworms, insects, and plants. Exposure to ECs can adversely affect soil organisms, 1260 

disrupting their physiological functions, reproductive capabilities, behavior, and overall 1261 

health (Figure 4). Among these, PFAS and MPs have garnered much attention for their 1262 

potential to alter the composition and functionality of soil bacteria and fungi (Bolan et 1263 

al., 2021; Ren et al., 2018; Riveros et al., 2023; Wang et al., 2023c). Studies indicate 1264 

that exposure to such ECs can lead to shifts in microbial community structures (Jiang 1265 
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et al., 2018; Wang and Hou, 2023), affecting the abundance and diversity of key 1266 

microorganisms involved in nutrient cycling and organic matter decomposition (Ma et 1267 

al., 2023; Pagel et al., 2016; Wang et al., 2022a). On the other hand, exposure to ECs 1268 

can lead to the selection of bacteria and fungi that can catabolize these pollutants (Wang 1269 

et al., 2021e). Cyanotoxins can enter the soil through runoff and rainfall leaching. 1270 

Accumulation of cyanotoxins in the soils can adversely affect plant health, animal 1271 

health, microorganisms, and consequently, soil health (Bouaïcha and Corbel, 2016). 1272 

Furthermore, cyanotoxins affect aerobic microbial communities at the sediment-water 1273 

column interface, which may affect nitrogen transformation (Li et al., 2020). The 1274 

repercussions of these disruptions extend beyond the immediate microbial community, 1275 

with potential consequences for soil health and ecosystem functioning. The metabolic 1276 

activities of soil microorganisms, essential for maintaining soil fertility, are particularly 1277 

vulnerable to ECs (Tang et al., 2023c; Tran et al., 2013). The interference with microbial 1278 

functions can hinder nutrient cycling processes, leading to imbalances in the availability 1279 

of essential elements for retaining soil productivity (Khan et al., 2023; Xiang et al., 1280 

2023). Additionally, the disruption of microbial communities may compromise the 1281 

soil’s ability to resist pathogens and maintain resilience in the face of environmental 1282 

stressors and climate change (Hou et al., 2023; Sunyer-Caldú et al., 2022). The 1283 

relationships between soil microorganisms and ECs necessitate further research to 1284 

unravel the mechanisms underlying these effects and develop strategies for mitigating 1285 

their impact on soil health. 1286 
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The effects of ECs on plants reverberate through the entire ecosystem, influencing the 1287 

structure and dynamics of plant communities (Pullagurala et al., 2018; Rizwan et al., 1288 

2021; Zhou et al., 2023a). While the contaminants encompass a broad range, their 1289 

overarching impact on plant health remains a common theme. Emerging contaminants 1290 

in soils can impede plant growth and development, posing challenges to individual 1291 

species and the overall biodiversity of plant communities. One notable consequence is 1292 

the alteration of nutrient uptake mechanisms in plants. Emerging contaminants like 1293 

ENPs, PFAS, and MPs have been shown to interfere with the physiological processes 1294 

that govern nutrient absorption (Jiao et al., 2021; Moreno-Jiménez et al., 2022; Rizwan 1295 

et al., 2021). This disruption can lead to nutrient deficiencies, compromising the health 1296 

and vigour of plant populations. Furthermore, contaminants may accumulate in plant 1297 

tissues, potentially entering the food chain and posing risks to organisms feeding on 1298 

contaminated plants (including human beings) (Lesmeister et al., 2021; Wang et al., 1299 

2023b). Water transport mechanisms within plants are also vulnerable to the presence 1300 

of ECs in soils. Certain contaminants can impede the movement of water through plant 1301 

tissues. This disruption can cause reduced growth, altered reproductive patterns, and 1302 

overall compromised resilience in plant communities (Khalid et al., 2020; Martínez-1303 

Fernández et al., 2016; Wang et al., 2022b). As we strive to understand the broader 1304 

implications of ECs on soil plants, exploring the connections between soil, plants, and 1305 

the myriad ECs that shape their interactions becomes imperative. 1306 
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The impact of ECs on soil animals encompasses a wide range of organisms like 1307 

protozoa, earthworms, nematodes, and arthropods. The broad category of ECs, 1308 

including but not limited to PFAS, POPs, and microplastics, have been reported to 1309 

influence the ecological dynamics of soil animals, with cascading effects on the entire 1310 

soil food web (Burkhard and Votava, 2023; Dummett et al., 2023; Su et al., 2022). 1311 

Bioaccumulation is a common phenomenon observed in soil-dwelling organisms 1312 

exposed to ECs. Contaminants accumulate in the tissues of these organisms, leading to 1313 

elevated concentrations that can disrupt physiological functions and compromise 1314 

overall health. This bioaccumulation introduces complexities to soil food webs, 1315 

potentially affecting higher trophic levels that rely on soil animals for sustenance 1316 

(Hopkins et al., 2023; Okeke et al., 2022). Furthermore, soil animals can also act as 1317 

carriers, leading to the migration of ECs (Sobhani et al., 2021; Wang et al., 2020a). 1318 

Nevertheless, the toxicity mechanisms of ECs in soil animals remain poorly 1319 

understood. Ongoing research efforts should aim to elucidate how ECs impact soil 1320 

animal populations, paving the way for informed conservation and management 1321 

strategies to safeguard soil biodiversity. 1322 

In summary, the effects and impact of ECs on soil ecosystems are complex and 1323 

multifaceted. The overarching influence of these contaminants on soil microorganisms, 1324 

plants, and animals underscores the need for comprehensive research to unravel the 1325 

complex web of interactions within soil ecosystems. By examining the broader category 1326 

of ECs without fixating on specific types, scientists can better comprehend the 1327 
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interconnected challenges posed by these pollutants. Continued investigation is 1328 

essential to inform sustainable soil management practices that mitigate the adverse 1329 

effects of ECs and preserve the health and functionality of soil ecosystems. 1330 

 1331 

Aquatic systems. As a vital component of various ecosystems, the aquatic environment 1332 

faces increasing challenges due to the presence of diverse ECs. For example, EDCs in 1333 

water bodies can impact aquatic ecosystems (Carnevali et al., 2018). These compounds 1334 

interfere with the endocrine systems of aquatic organisms, leading to disruptions in 1335 

reproductive, developmental, and physiological processes (Carnevali et al., 2018; You 1336 

and Song, 2021). Recent studies highlighted the widespread occurrence of EDCs in 1337 

water bodies, emphasizing their potential to disrupt the health of fish and amphibians 1338 

(Carnevali et al., 2018; Celino-Brady et al., 2021; Langston, 2020; You and Song, 1339 

2021). The bioaccumulation of EDCs in aquatic organisms underscores the need for 1340 

continuous monitoring and regulatory measures to mitigate their impact. POPs, 1341 

including PCBs, PFAS, and organochlorine pesticides, have long-lasting effects on 1342 

water and sediment quality (Hagemann et al., 2020; Krithiga et al., 2022). 1343 

Bioaccumulation of POPs in fatty tissues of aquatic organisms poses ecological risks 1344 

(Krithiga et al., 2022). As noted above, PPCPs also enter water bodies through various 1345 

pathways, raising concerns about their potential impact on aquatic organisms (Chaves 1346 

et al., 2022; Corcoll et al., 2014; Osuoha et al., 2023). Cyanotoxins provide a 1347 

competitive advantage for cyanobacteria and drastically reduce the populations of 1348 
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certain species in aquatic ecosystems, upsetting the ecological balance (Chia et al., 1349 

2019; Holland and Kinnear, 2013). At the same time, cyanotoxins can cause water 1350 

pollution problems and directly threaten drinking water quality (Bhatt et al., 2023). 1351 

Cyanotoxins may drastically reduce the populations of some species in water bodies, 1352 

upsetting the original ecological balance. Secondly, the toxic effects of cyanotoxins 1353 

may also affect the variety and abundance of microorganisms in water bodies, thereby 1354 

interfering with aquatic ecological processes. In some locations at some times, 1355 

cyanotoxins and other toxins produced by harmful algae blooms can represent the 1356 

greatest EC water quality threat to public health and ecosystems (Brooks et al., 2016, 1357 

2017).  1358 

To allow for ENP-tailored risk assessment, the developers and regulators must know 1359 

the most important parameters governing the behavior and toxicity of ENPs. 1360 

Engineering nanomaterial wastes in the environment are not easy to degrade and will 1361 

accumulate and remain in the soil and higher plants through transport, which is bound 1362 

to have a significant impact on the growth of higher plants (Rico et al., 2011). The 1363 

biological effects of ENPs on higher plants can directly affect ecosystems' health, 1364 

stability, and sustainable development (Rico et al., 2011). On the one hand, the presence 1365 

of ENPs (such as TiO2 NPs, ZnO NPs, Fe3O4 NPs, and carbon nanotubes) can have a 1366 

catalytic interaction on plant growth by increasing root activity, increasing water 1367 

absorption, enhancing photosynthesis, or improving rhizosphere soil microbial 1368 

communities and increasing metabolic enzyme activity. Several recent reviews have 1369 
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discussed the ENP accumulation in terrestrial plants, which can induce physicological 1370 

and biochemical responses in plants (Du et al., 2017; Marslin et al., 2017; Tripathi et 1371 

al., 2017). Cao et al. documented impacts on carbon fixation andwater use efficiency 1372 

during photosynthesis in response to CeO2 NP exposure (Cao et al., 2017), which may 1373 

indirectly influence soil organisms via the effect on soil moisture. On the other hand, 1374 

ENPs (such as ZnO NPs, AgO NPs, CuO NPs, and CeO2 NPs) may be potentially 1375 

harmful to biota via reducing seed germination, generating reactive oxygen species, 1376 

enhancing membrane permeability, inhibiting antioxidant enzyme activity, or damaging 1377 

root hairs trough physical friction. Mechanism and mode of toxicity vary among ENPs 1378 

(von Moos and Slaveykova, 2014). Oxidative stress is a frequently reported 1379 

phenomenon (Mwaanga et al., 2014). At present, research on the biological effects of 1380 

ENPs mainly includes the mechanism of toxicity of ENPs to plants under different 1381 

conditions and the role of ENPs in environmental systems from the perspective of 1382 

organisms. Although the research has enhanced the theoretical value of nanobiology 1383 

effects and toxicity research to a certain extent, there are often many contradictions in 1384 

related research results. This is due to differences in the physical and chemical 1385 

properties of ENPs themselves (such as composition, shape, surface coating, and 1386 

charge), or differences in culture substrates, treatment methods, and plant species, 1387 

resulting in different stability and biocompatibility in the environment. This then affects 1388 

the interaction between ENPs and plants (Zuverza-Mena et al., 2017). ENPs 1389 
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accumulated in plants may also spread through the food chain to higher trophic 1390 

organisms, causing certain ecological risks.  1391 

In recent years, several independent studies have shown that AgNPs exhibit certain 1392 

cellular or systemic toxicity to cells and body systems under both in vitro and in vivo 1393 

conditions (Ahamed et al., 2010; Dhawan and Sharma, 2010). Ag+ mainly exerts 1394 

cellular/bacterial toxicity through the following toxicological mechanisms: (1) Interfere 1395 

with the normal Na+ and K+ ion channels on the cell membrane, resulting in the 1396 

imbalance of the membrane potential inside and outside the cell (Sun et al., 2016a), or 1397 

bind to the sulfhydryl-containing (-SH) proteins on the cell membrane to inactivate 1398 

them, destroy the barrier function and material exchange function of the cell membrane, 1399 

and directly lead to cell necrosis (Sun et al., 2016a); (2) Enter the cytoplasm of cells, 1400 

interact with sulfhydryl-containing proteins, and destroy the protein structure, resulting 1401 

in the inactivation of biologically active enzymes, the imbalance of intracellular 1402 

REDOX reaction, and the generation of a large number of ROS leading to cell damage 1403 

(Sharma and Dietz, 2009). Nano-copper, a prominent metal nanomaterial, finds 1404 

widespread use across various domains (Hu et al., 2022; Zhao et al., 2022). However, 1405 

concerns have been raised regarding the significant harm nano-coppers can pose to 1406 

human health and environmental safety. The liver is the main organ that is influenced 1407 

by nanomaterials because it is the main organ involved in the metabolism of CuNPs 1408 

(Jani et al., 1990). Tang et al. also found that the liver was the target organ for the 1409 

accumulation of copper nanoparticles through gavage (Tang et al., 2018). Lei et al. (Lei 1410 
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et al., 2008) found that CuNPs could significantly increase triglyceride and 1411 

phospholipid levels in the body through nuclear magnetic resonance technology and 1412 

pattern recognition methods. Oral administration of CuNPs can cause hepatomegaly, 1413 

hepatocyte necrosis, and hepatic insufficiency in rats and mice (Manna et al., 2012). In 1414 

addition, Cu exposure can also produce significant toxic effects on the kidney, spleen, 1415 

nerve, and gastrointestinal tract (Lei et al., 2008; Meng et al., 2007; Xu et al., 2012; 1416 

Zhou et al., 2019). 1417 

Biological contaminants influence the microbial composition of sediments. The 1418 

introduction of ARGs and drug-resistant bacteria into sediments can alter the balance 1419 

of microbial communities, potentially affecting nutrient cycling, sediment stability, and 1420 

other crucial ecological processes (Kong et al., 2024). Viruses and pathogenic bacteria 1421 

contribute to microbial contamination, affecting water quality in aquatic environments 1422 

(Fong and Lipp, 2005; Pandey et al., 2014). Elevated microbial loads can compromise 1423 

the safety of water for both aquatic life and human consumption, leading to the spread 1424 

of waterborne diseases and impacting overall ecosystem health (Leclerc et al., 2002; 1425 

López et al., 2009). Biological contaminants can also be toxic to aquatic plants. Viruses, 1426 

pathogenic bacteria, and other biological agents may induce stress on plants, affecting 1427 

their uptake of nutrients, growth rates, and overall health (Ashbolt, 2015; López et al., 1428 

2009). These effects can lead to changes in the abundance and distribution of aquatic 1429 

vegetation. Aquatic plants can serve as vectors for transmitting pathogenic bacteria and 1430 

viruses (Mehle and Ravnikar, 2012; Sime-Ngando, 2014). The presence of drug-1431 
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resistant bacteria in plant tissues may contribute to the dissemination of antibiotic 1432 

resistance in aquatic environments (Sime-Ngando, 2014; Yuan et al., 2023). This 1433 

transmission pathway can have cascading effects on the health of associated aquatic 1434 

fauna. Aquatic fauna are susceptible to infections caused by biological contaminants. 1435 

Viruses, pathogenic bacteria, and antibiotic-resistant organisms can compromise the 1436 

immune systems of aquatic organisms, increasing their vulnerability to diseases (Pipe 1437 

and Coles, 1995). This heightened disease susceptibility may lead to declines in the 1438 

population of aquatic organisms and disruptions in the ecological balance of aquatic 1439 

ecosystems (Balbi et al., 2021; Mishra et al., 2023; Sun et al., 2023a). Emerging 1440 

biological contaminants can impact the reproduction and development of aquatic 1441 

animals (Balbi et al., 2021; Mishra et al., 2023; Sun et al., 2023a). Genetically modified 1442 

organisms (GMOs) and RNA-based technologies, such as RNAi, can introduce novel 1443 

genetic material into aquatic ecosystems. RNAi and other biological contaminants may 1444 

interfere with the normal reproductive processes of aquatic organisms, potentially 1445 

leading to reduced reproductive success, developmental abnormalities, and altered 1446 

population dynamics (Kim et al., 2015; Mishra et al., 2023).  1447 

Microplastics act as carriers of various pollutants, such as PCBs, PAHs, and heavy 1448 

metal(loid)s (Barletta et al., 2019). These contaminants can leach from the surface of 1449 

microplastics, leading to chemical contamination of water and sediments (Ahmed et al., 1450 

2021). This process introduces a new dimension of pollution to aquatic environments, 1451 

affecting the overall quality of these habitats (Li et al., 2024). Microplastics can also 1452 
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negatively impact the physiology of aquatic plants, affecting processes such as 1453 

photosynthesis and nutrient uptake (Ceschin et al., 2023; Ge et al., 2021). This can lead 1454 

to reduced growth rates, altered reproductive patterns, and diminished aquatic plant 1455 

health (Ceschin et al., 2023; Ge et al., 2021). Moreover, microplastics are often 1456 

mistaken for food by aquatic organisms, leading to ingestion at various trophic levels 1457 

(Egbeocha et al., 2018). This ingestion can cause physical harm, including internal 1458 

injuries, blockages, and interference with digestive processes. The presence of 1459 

microplastics in the digestive tracts of aquatic animals can also lead to malnutrition and 1460 

reduced energy reserves (Alak et al., 2022; Harmon et al., 2024; Rakib et al., 2023). 1461 

The toxicological consequences of microplastic-associated contaminants include 1462 

disruption of endocrine systems, suppression of the immune system, and increased 1463 

susceptibility to diseases. These effects can have profound implications for the health 1464 

and survival of aquatic fauna (Ašmonaitė, 2019; Sreelakshmi and Chitra, 2021). 1465 

Other ECs, such as liquid crystals, oil spills, prions, and a class of ECs called unknown 1466 

or variable composition, complex reaction products, or biological materials (UVCBs), 1467 

can also introduce hazardous substances into aquatic environments. The discharge of 1468 

liquid crystal contaminants can disrupt water quality and affect the health of aquatic 1469 

organisms (He et al., 2024). The presence of these compounds may alter nutrient 1470 

cycling and cause ecological imbalances (He et al., 2024). Organometals, such as 1471 

organomercury and organotin compounds, exhibit high toxicity to aquatic organisms. 1472 

These contaminants can interfere with cellular functions, impair reproduction, and 1473 
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cause behavioural changes in fish and invertebrates (Gojkovic et al., 2023; Li et al., 1474 

2019). Accumulation of organometals in sediments may have long-term implications 1475 

for benthic communities. Oil spills and organic solvents, including methyl tertiary-butyl 1476 

ether (MTBE), can contaminate habitats (Bashir et al., 2020; Li et al., 2019). These 1477 

contaminants can form slicks on the water surface, impact light penetration, and reduce 1478 

oxygen exchange. The effects include the smothering of aquatic vegetation and 1479 

disruption of feeding behaviours in aquatic animals (Bashir et al., 2020; Li et al., 2019). 1480 

Prions associated with neurodegenerative diseases can enter aquatic environments 1481 

through various pathways (de Motes et al., 2008). The presence of prions may pose a 1482 

risk to the health of aquatic animals, potentially leading to neurological disorders. The 1483 

effects on fish and other aquatic organisms are not fully understood but warrant further 1484 

investigation (de Motes et al., 2008; Rickard et al., 2023). The UVCBs may also have 1485 

unpredictable impacts on water and sediment quality and the health of aquatic plants 1486 

and animals (Lai et al., 2022). Therefore, much research is needed to understand the 1487 

specific effects of individual UVCBs. 1488 

 1489 

Air quality. While the Industrial Revolution was a great success in technology, society, 1490 

and services, it also introduced a significant quantity of harmful pollutants into the 1491 

atmosphere (Huang et al., 2023a). These air pollutants can penetrate the respiratory 1492 

system through inhalation. Meanwhile, for certain compounds direct air-to-skin dermal 1493 

uptake is comparable to the inhalation intake, imposing a significant burden on human 1494 
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health (Cai et al., 2023; Garrido et al., 2018; Khan et al., 2024; Lao et al., 2018; 1495 

Manisalidis et al., 2020; Wu et al., 2016; Xu et al., 2024; Zhang et al., 2023b).  1496 

Numerous animal and human studies have shown that exposure to air pollutants, 1497 

including ECs (e.g. PAHs, perfluoroalkyl sulfonate, organophosphorus ester, PBDEs, 1498 

and paraben), can contribute to respiratory (He et al., 2022a), dermal (Pan et al., 2015), 1499 

cardiovascular (Al-Kindi et al., 2020), immune disease (Wang et al., 2021d), and 1500 

mortality (Fischer et al., 2015). Early exposure to these pollutants in humans tends to 1501 

trigger and exacerbate multiple diseases in their later life (Shimpi et al., 2017; Wang et 1502 

al., 2021d). It is confirmed that these air pollutants contribute to the production of ROS 1503 

in mitochondria, cell membranes, and endoplasmic reticulum, ultimately leading to cell 1504 

injury and adverse outcomes (Ghio et al., 2012; Zhang et al., 2022b). Furthermore, these 1505 

airborne pollutants can greatly impact ecology and human health because of their long-1506 

range transport, persistence, and toxicity (Barroso et al., 2019). Importantly, complex 1507 

airborne ECs can cause unpredictable toxic effects and health risks by interfering with 1508 

transport, metabolism, and bioavailability after entering the human body (Zhang et al., 1509 

2020). For example, triphenyl phosphate levels on the skin surface of e-waste 1510 

dismantlers were negatively correlated with the levels of three thyroid hormones used 1511 

to evaluate thyroid function (Tang et al., 2023a). Human exposure to pollutants from 1512 

coking contamination, including aromatic compounds mixture, metabolites of PAHs 1513 

and their derivatives, chlorophenols, and nitrophenols, could increase DNA damage and 1514 

lipid peroxidation, which is associated with increased disease risks (Jiang et al., 2023; 1515 
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Yang et al., 2023). Unexpectedly, residents near coking plants faced a 1.4 times higher 1516 

risk due to coking contamination (Jiang et al., 2023). In addition, concentrations of ECs 1517 

in the atmosphere reached thousands of picograms per cubic meter in emission sources 1518 

or urban air (Barroso et al., 2019). The presence of ECs also appeared in remote areas, 1519 

such as the Arctic region, because of their persistence and long-range atmospheric 1520 

transport (Shoeib et al., 2006; Wallington et al., 2006).  1521 

Notably, bioaerosol is another air pollutant of concern, which is a subset of atmospheric 1522 

particles composed of bacteria, fungi, viruses, and their products, ranging in size from 1523 

0.001nm to 100μm. Cyanotoxins may enter the atmosphere in the form of aerosols and 1524 

spread further afield, posing a potential threat to atmospheric safety and contributing to 1525 

the ecological risk of “air eutrophication” (Plaas et al., 2023). Bioaerosol is commonly 1526 

released into the atmosphere from soil, water, vegetation, and animals (including 1527 

humans), composting, sewage treatment plants, landfills, farms, and healthcare sites 1528 

(Han et al., 2020; Rai et al., 2021; Rossi et al., 1991; Stockwell et al., 2019). Due to the 1529 

diffusion of plant pollen, spores, and reproductive units of microorganisms, bioaerosols 1530 

can be transported over long distances across geographical barriers (Després et al., 1531 

2012), posing a high public health risk. The occasional epidemiological spread of 1532 

bioaerosol components can be highly disruptive to societies and economies, as 1533 

demonstrated by the COVID-19 global pandemic (Leung, 2021). A previous study 1534 

summarized the size-dependent particle deposition law of bioaerosols in different areas 1535 

of the respiratory tract, showing that particles with a particle size larger than 0.5 μm 1536 
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mainly deposit in the head airway through natural sedimentation and impact, while 1537 

particles with a particle size smaller than 0.5 μm can reach the lower respiratory tract 1538 

through further diffusion (Fröhlich-Nowoisky et al., 2016). It further leads to health 1539 

complications, such as allergic reactions, infectious diseases, acute toxic effects, 1540 

respiratory diseases, neurological effects, and toxic reactions to cancer and non-specific 1541 

symptoms (King et al., 2020).  1542 

 1543 

Risks to human health  1544 

Vario us ECs stem m ing fro m  so urces such as industrial discharges, agric u ltural runo ff, 1545 

and im pro per w aste dispo sal can perm eate the so il, w ater bo dies, and the air, 1546 

establishing intricate expo sure pathw ays fo r w ildlife and hum ans (Fang et al., 2 0 2 1 ). 1547 

These substances m ay enter the hu m an bo dy thro ugh vario us expo sure ro utes, 1548 

inc luding ingesting c o ntam inated w ater o r fo o d, inhaling air po llutants, and derm al 1549 

c o ntact w ith c o ntam inated surfaces (Abhijith et al., 2 0 2 4; L ei et al., 2 0 1 5; Pic ó  and 1550 

Barceló , 2 0 2 3). Their persistent nature, m o bility, and po tential to  ac cu m u late in the 1551 

enviro nm ent heighten the risks o f expo sure, intensifying their im pact o n health (L ei et 1552 

al., 2 0 1 5; W ang et al., 2 0 2 1 a). W e rec o gnize the diverse literature that has exam ined 1553 

the public health effects o f em erging c o ntam inants, and instead o f pro viding a 1554 

c o m prehensive critical review , here w e aim  to  highlight so m e o f the related effo rts in 1555 

this fast-m o ving area o f basic and translatio nal research. 1556 
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The o nset o f vario us o m ic appro aches, inc luding geno m ics, pro teo m ics, 1557 

transcripto m ics, and m etabo lo m ics, has enabled the detectio n o f m o lecu lar-level 1558 

perturbatio ns due to  enviro nm ental expo sure and bec o m e increasingly used to  1559 

investigate ho w  enviro nm ental c o ntam inants alter the bio lo gical functio n o f o rganism s 1560 

(Kim  and Kang, 2 0 2 1 ; Zhang et al., 2 0 2 1 b). O ften these findings are integrated w ithin 1561 

the develo pm ent and applicatio n o f adverse o utc o m e pathw ays, w hich are chem ic ally 1562 

agno stic c o nceptual m o dels that link m o lecu lar initiatio n events to  higher levels o f 1563 

bio lo gical respo nses o f relevance to  chem ic al risk assessm ent (Ankley et al., 2 0 1 0 ).  1564 

Because the experim ental design o f m etabo lo m ic appro aches is highly versatile, it can 1565 

be applied to  study m u ltiple scenario s w ith vario us enviro nm ental c o nditio ns and 1566 

different o rganism s, as w ell as c o m plex c o ntam inant m ixtures and w astew ater effluents 1567 

(Kim  and Kang, 2 0 2 1 ; Ko vacevic and Sim pso n, 2 0 2 0 ; Viant, 2 0 0 9). M any studies have 1568 

dem o nstrated the high utility o f m etabo lo m ic appro aches to  rapidly detect fundam ental 1569 

shifts in o rganism  functio n fo r a ho st o f enviro nm ental m o del o rganism s and 1570 

dem o nstrated ho w  these appro aches can c o m plem ent traditio nal to xic ity indicato rs 1571 

(Dum as et al., 2 0 2 2 ; Gao  et al., 2 0 2 2 b; L abine et al., 2 0 2 3; Tang et al., 2 0 2 0 ; Yang et 1572 

al., 2 0 2 1 ). Despite w idespread c o ncern, understanding the hu m an health risks and 1573 

to xic m echanism s rem ains challenging because o f their dynam ic nature, c o m plex 1574 

c o m po sitio ns, and interactio ns o f c o ntam inants and their m ixtures, w hich present 1575 

diffic u lties fo r c o nventio nal m o nito ring and m o delling fram ew o rks (L ei et al., 2 0 1 5). 1576 
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No netheless, evidence, tho ugh generally no t w ell established, has suggested that 1577 

expo sures to  ECs are asso c iated w ith the fo llo w ing diseases. 1578 

 1579 

Antibiotic resistance and infectious diseases. One of the pressing and increasing health 1580 

threats posed by ECs is the rise of antibiotic resistance. PPCPs (e.g., antibacterial 1581 

creams and ointments), when improperly used, disposed of, or inadequately treated, 1582 

could contribute to the development of ARB (Anwar et al., 2020; Polianciuc et al., 1583 

2020; Zhang et al., 2023c). This outcome poses a significant threat to public health as 1584 

conventional treatments become less effective, leading to an increased prevalence of 1585 

infectious diseases (Polianciuc et al., 2020). For example, symptoms of infectious 1586 

diseases, particularly those related to airway infections (e.g., lung infections), were 1587 

much more common among individuals with compromised health or chronic conditions 1588 

who used antibacterial medications.(Caioni et al., 2023). It has also been suggested that 1589 

antibiotic resistance could amplify the mortality risks during pandemics of bacterial 1590 

diseases, including tuberculosis and cholera, and even viral diseases, particularly in the 1591 

case of influenza, where a significant proportion of deaths often is caused by bacterial 1592 

pneumonia coinfections (Yang et al., 2022).  1593 

 1594 

Endocrine disruption and reproductive disorders. Endocrine-disrupting chemicals, 1595 

such as bisphenol A (BPA) and phthalates in plastics, represent a class of ECs that 1596 

mimic or interfere with the endocrine hormones, often acting as agonists or antagonists. 1597 
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Endocrine-disrupting chemicals primarily target the female reproductive system. They 1598 

can increase the risk of various reproductive disorders, including fertility issues, 1599 

developmental abnormalities, and hormone-sensitive cancers (e.g., breast cancer) 1600 

(Cantonwine et al., 2013; Laws et al., 2021; Matuszczak et al., 2019). For instance, 1601 

individuals with polycystic ovarian syndrome (PCOS), a condition affecting nearly 1602 

10% of women of childbearing age with unclear etiology, have been found to have 1603 

higher BPA in their serum, urine, and follicular fluid compared to those without PCOS, 1604 

suggesting that BPA exposure is an important contributor to the pathogenesis of PCOS 1605 

(Laws et al., 2021).  1606 

 1607 

Cardiopulmonary diseases. Airborne particulates can carry various ECs, including 1608 

heavy metals (loids), POPs, nanoparticles, and even viruses (Dong et al., 2023b). The 1609 

respiratory and cardiovascular systems become the primary targets, with potential 1610 

consequences ranging from irritations (e.g., coughing) to chronic cardiopulmonary 1611 

diseases (e.g., hypertension and chronic obstructive pulmonary diseases) (Qi et al., 1612 

2023; Sun et al., 2023b). A most recent meta-analysis comprising 13 studies showed 1613 

that higher exposure levels of PFASs, especially for PFOS, perfluorooctanoic acid 1614 

(PFOA), and perfluorononanoic acid, were significantly associated with a higher risk 1615 

of hypertension (Pan et al., 2023). Notably, particulates with smaller sizes are much 1616 

more harmful than larger particles because of the longer residence time and greater 1617 

capacity for deeper penetration in the respiratory tract (Enyoh et al., 2020; 1618 
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Schraufnagel, 2020). Therefore, the airborne fine particulates could further amplify the 1619 

health risks of the ECs contained. For instance, the interaction between airborne fine 1620 

particles and viruses, such as H1N1, has been shown to extend viral distribution and 1621 

aggravate respiratory tract infection (Dong et al., 2023b). 1622 

 1623 

Neurotoxicity. Substantial evidence suggests that certain ECs, such as heavy 1624 

metal(loid)s (e.g., arsenic and mercury), cyanotoxins (Stewart et al., 2006), and 1625 

persistent organic pollutants (e.g., perfluoroalkyl compounds), possess neurotoxic 1626 

properties (Kothapalli, 2021; Park et al., 2021). Chronic exposure to these substances 1627 

is associated with an increased risk of neurological disorders, including cognitive 1628 

impairments, developmental delays, and neurodegenerative diseases (Chen et al., 2016; 1629 

Kodavanti, 2006). Even at low concentrations, these substances could exhibit great and 1630 

long-lasting neurotoxicity (Lee, 2018). Early-life exposures are identified as a critical 1631 

causal factor for the later development of Alzheimer’s and Parkinson’s diseases (Li et 1632 

al., 2022b). Regions contaminated with PFAS in the drinking water exhibited a 33% 1633 

higher mortality rate from Alzheimer's disease compared with uncontaminated areas 1634 

(Mastrantonio et al., 2018).  1635 

 1636 

Immune system impacts and allergic reactions. Emerging contaminants may influence 1637 

the immune system, potentially leading to compromised immunity or triggering allergic 1638 

reactions. Studies have reported that these substances can affect the activation and 1639 
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survival of immune cells, potentially contributing to allergic rhinitis and other allergic 1640 

responses (Sollome and Fry, 2015). For example, epidemiological studies have 1641 

demonstrated the immunosuppressive effects of PFAS on pediatric vaccination and 1642 

other immune-related responses for both children and adults (e.g., diminished 1643 

antibodies after vaccinations, increased risk of asthma) (Grandjean et al., 2012; Lee, 1644 

2018; von Holst et al., 2021). A most recent study showed that prenatal exposure to 1645 

PFOS and PFOA increased the risk of non-atopic asthma at the age of six by up to 1646 

twofold (Sevelsted et al., 2023).  1647 

 1648 

The description of EPFR reactivity and risks. Recent research has focused on 1649 

understanding the properties and potential hazards of EPFR-containing particles. These 1650 

particles have been found to display significant reactivity and toxicity, which is a cause 1651 

for concern (Li et al., 2022a; Lieke et al., 2018). As a result, it is crucial to establish 1652 

parameters to describe their reactivities to better understand their potential impact on 1653 

human health and the environment. One potential parameter to describe the reactivity 1654 

of EPFR-containing particles is the intensity of EPFR signals. However, this approach 1655 

has limitations, as the detected EPFR signals are associated with various structures with 1656 

different reactivities (Zhao et al., 2023b). Additionally, the captured ROS may not fully 1657 

explain the reactivity of EPFRs, as their reactivity may occur through direct contact 1658 

with target reactants without the generation of ROS, and the instantly captured ROS 1659 

signals may not represent the reactivity of long-lasting EPFRs (Yang et al., 2017a). 1660 
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Further research is necessary to develop a proper parameter that correlates with the 1661 

reactivity of EPFRs, which differs from the detected electron paramagnetic resonance 1662 

signals, to evaluate their environmental implications accurately. Additionally, 1663 

researchers should consider that EPFRs coexist with other chemical components, such 1664 

as the parent chemicals, their degradation by-products, and reactive inorganic particles. 1665 

The impacts of these coexisting components should be considered when identifying the 1666 

reactivities or risks of EPFRs. 1667 

The reactivities of EPFRs can lead to both adverse and beneficial effects, making their 1668 

manipulation highly context-dependent. When EPFRs have detrimental environmental 1669 

impacts, efforts should be made to mitigate or eliminate them. Conversely, if EPFRs 1670 

play a positive role in pollution control, their influence should be enhanced and utilized, 1671 

as seen in applications like biochar for organic contaminant degradation (Fang et al., 1672 

2015). Although EPFR formation has been studied in various processes (Liu et al., 1673 

2023; Tao et al., 2020), understanding the preferred or unpreferred conditions for EPFR 1674 

formation and quantitative descriptions of their generation and decay kinetics remains 1675 

limited. EPFRs differ from common contaminants, being highly dynamic and 1676 

composed of various structures, necessitating studies on their environmental behavior 1677 

and risks and the development of standardized experimental protocols and standard 1678 

reference samples. 1679 

In summary, the health risks associated with ECs will continue to be a major public 1680 

health concern. More high-quality evidence and comprehensive strategies are urgently 1681 
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needed to better understand and mitigate their health effects. This requires 1682 

interdisciplinary efforts, from establishing standardized contamination and public 1683 

health surveillance systems to employing advanced epidemiological and molecular 1684 

modelling and implementing evidence-based strategies. As we navigate this complex 1685 

terrain, prioritizing research, regulatory measures, and public awareness will be 1686 

paramount to curbing the adverse health effects of ECs and ensuring a healthier future 1687 

for all. 1688 

 1689 

MODEL-BASED ASSESSMENT OF FATE AND TOXICOLOGICAL RISKS 1690 

OF EMERGING CONTAMINANTS 1691 

Modeling migration and environmental impacts of emerging 1692 

contaminants  1693 

The development of mathematical models to understand the migration and impacts of 1694 

ECs in water, soil, and air ecosystems is a current focal point in environmental pollution 1695 

research (Arneth et al., 2012). These models serve as valuable complements to 1696 

monitoring networks, enriching our comprehension of EC sources, distributions, and 1697 

life cycles. They also offer insights into the influencing mechanisms and environmental 1698 

factors shaping EC dynamics. By facilitating comprehensive risk assessments for both 1699 

human health and ecosystems, EC models play a pivotal role in providing early 1700 

warnings, projecting outcomes under future climate scenarios, and evaluating the 1701 

efficacy of remediation technologies.  1702 
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Quantitative structure-activity relationships (QSARs), one class of numerically 1703 

analytical models that are developed highlighting the intrinsic correlations with or 1704 

dependency on a pool of topologically, spectrally, and physicochemically interpretable 1705 

structural information can be used as an alternative approach to unravel the 1706 

toxicologically relevant or environmental influencing mechanism, and the structural 1707 

requirements for transfer, migration, and toxicity of ECs. Furthermore, QSARs 1708 

developed using advanced statistical methods, such as machine learning techniques, 1709 

along with comprehensive datasets encompassing not only structural descriptors but 1710 

also environmental factors, can effectively predict the environmental fate of emerging 1711 

contaminants, including volatilization, photodegradation, and bioaccumulation. 1712 

(Dracheva et al., 2022; Xiong et al., 2023). Though QSARs were classically applied to 1713 

the virtue-screening of novel effective drugs for human health, the application of 1714 

QSARs in environmental research arouses new vitality and greatly facilitates 1715 

understanding the cause for the variance of toxicology and behaviour of pollutants and 1716 

even provides basic data guiding risk management and remediation administration. 1717 

Nevertheless, the development of QSAR models is typically hindered by several 1718 

limitations. These include a scarcity of experimental training data, issues related to 1719 

over-fitting and noise in statistical techniques, and a lack of consideration for 1720 

environmental factors. These environmental factors play a crucial role in influencing 1721 

the transport, precipitation, adsorption, and desorption processes in environmental 1722 

matrices. On the contrary, the stability, reliability, and predictability of QSARs would 1723 
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be enhanced if meta-learning big data were involved in development (Schlender et al., 1724 

2023). The integration of environmental and structural factors of ECs is likely to 1725 

aggravate the uncertainty of QSARs because they are hardly accommodated with the 1726 

significant correlation in one model, whereas it is of particular interest for augmentation 1727 

of the QSAR applicability domain. Given the numerous limitations of QSARs, high 1728 

uncertainty or application factors are applied to QSAR modeling outputs during early 1729 

tiers of risk assessment.  1730 

Various modelling approaches have been developed to study the transport and impacts 1731 

of ECs, including fate and transport models, multimedia models, and pharmacokinetic 1732 

models. Fate and transport models simulate the movement and transformation of 1733 

pollutants in different environmental compartments, such as air, water, soil, and biota 1734 

(Wania and Mackay, 1996). Multimedia models integrate the fate and transport 1735 

processes across multiple compartments to assess the overall environmental behavior 1736 

of pollutants on regional to global scales (Liu et al., 2023). Pharmacokinetic models 1737 

focus on the uptake, distribution, metabolism, and elimination of pollutants within 1738 

organisms. These models draw from the findings of laboratory and field experiments to 1739 

represent the physicochemical, mineralogical, and hydraulic properties of ECs, 1740 

adsorption-desorption, chemical/biological transformation, and their retention in and 1741 

exchange across environmental compartments.  1742 

Numerical models that integrate multiple components, multiphase flow, and multiple 1743 

reaction mechanisms have become the mainstream for simulating ECs in soil-1744 
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groundwater systems. Notable examples include TMVOC (Pruess and Battistelli, 1745 

2005), TOUGHREACT (Xu et al., 2004), RT3D (Clement, 1999), PFLOTRAN 1746 

(Hammond et al., 2014), and PHT3D (Prommer et al., 2003). For ECs in ecosystems, 1747 

bioaccumulation models have been developed to integrate ecological principles, 1748 

dynamic processes, and complex environmental conditions to describe and predict 1749 

contaminants accumulation and migration processes within ecosystems, such as 1750 

CalTOX (Mckone and Enoch, 2002), KABAM (USEPA, 2009). However, due to the 1751 

complex toxic mechanisms and biological effects involved in the transport processes of 1752 

ECs in organisms (Muir et al., 2023a), there is currently a lack of universal, process-1753 

based models for the migration of ECs in ecosystems. 1754 

Research efforts have increasingly focused on exploring the potential of atmospheric 1755 

transport as a significant mechanism for redistributing ECs across various 1756 

environmental compartments on both regional and global scales. To study this 1757 

phenomenon, scientists have developed trajectory models as well as regional and global 1758 

three-dimensional chemical transport models. These models aim to simulate the 1759 

transport and evolution of a wide array of ECs, including microplastics, POPs, PFOSs, 1760 

and PAHs. For instance, certain POPs undergo long-range atmospheric transport, 1761 

leading to their subsequent deposition onto the Earth's surface and potential re-emission 1762 

(Mackay, 1993). This process, commonly referred to as "hopping," facilitates the rapid 1763 

transport of POPs to Northern high latitudes at rates approximately ten times faster than 1764 

in tropical regions (Wania and Mackay, 1996). Studies also reveal that, despite global 1765 
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reductions in PAH emissions in recent decades, the concentrations of airborne PAHs in 1766 

the Arctic region have not shown a significant decline because of the offset from 1767 

increased volatilization from surfaces (e.g., ocean, snow, ice, permafrost, and soil) 1768 

because of climate warming (Yu et al., 2019). 1769 

Despite recent progress, important challenges remain in modelling ECs to understand 1770 

their fates and impacts. The scarcity of observations is a key limiting factor in 1771 

evaluating the models of most ECs, which calls for the design of multi-scale 1772 

observation networks guided by models. Additionally, in the case of many ECs, there 1773 

is still a lack of comprehensive understanding of transport and fate processes and 1774 

toxicology within and across environmental compartments. In particular, researchers 1775 

have increasingly highlighted the complex impacts of multi-pollutant interactions. 1776 

Finally, the framework to represent ECs through different environment compartments 1777 

may see a revolution catalyzed by the rapid development of Earth system models. 1778 

 1779 

Advancing evaluation and management of emerging contaminants 1780 

through artificial intelligence  1781 

In recent years, there has been a significant increase in the use of machine learning to 1782 

understand and predict the chemical reactivity, toxicity, transport, and remediation of 1783 

environmental contaminants (Zhong et al., 2021). Among the various environmental 1784 

contaminants being explored by these computational methods, PFAS has garnered 1785 

particular scientific attention (Biswas et al., 2022; Yamijala et al., 2020). The majority 1786 
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of machine learning studies on PFAS have focused on supervised learning techniques, 1787 

with only a handful of studies using unsupervised learning approaches. Within the 1788 

former, Wong Group carried out the first machine learning study on PFAS to predict 1789 

and rationalize carbon-fluorine (C-F) bond dissociation energies to aid in their efficient 1790 

treatment/removal (Raza et al., 2019). Using Random Forest, Least Absolute Shrinkage 1791 

and Selection Operator Regression, and Feed-forward Neural Networks, accurate 1792 

predictions for C–F bond dissociation energies within chemical accuracy of the PFAS 1793 

reference data were obtained (deviations less than 0.70 kcal/mol). In addition, this 1794 

pioneering study demonstrated the efficiency of the machine learning approach, which 1795 

required less than 10 min to train the data and less than a second to predict a new 1796 

compound's C–F bond dissociation energy.  1797 

Within the area of unsupervised machine learning, new unsupervised/semi-supervised 1798 

machine learning models have been created to automatically predict the bioactivities of 1799 

PFAS in various human biological targets, including enzymes, genes, proteins, and cell 1800 

lines (Kwon et al., 2023). The semi-supervised metric learning models were used to 1801 

predict the bioactivity of PFASs found in the recent Organisation of Economic Co-1802 

operation and Development (OECD) report list, which contains 4730 PFASs used in a 1803 

broad range of industries and consumers. Other studies have also used machine learning 1804 

to predict the bioconcentration of organic contaminants by plants, the ecotoxicity of 1805 

chemicals, and the dissipation of organic contaminants in plants (Gao et al., 2022a; 1806 

Watts, 2012). Together, these studies highlight the capabilities of machine learning to 1807 
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understand the reactivity of PFAS, which other researchers can leverage to predict and 1808 

screen other environmental contaminants.  1809 

Artificial intelligence is poised to revolutionize pollution control at the source, 1810 

sustainable remediation of contaminated sites, and the implementation of sustainable 1811 

management practices to prevent contamination (Figure 5). Through the utilization of 1812 

AI technologies, such as machine learning and deep learning, significant progress can 1813 

be achieved in addressing environmental challenges (Xu et al., 2021). AI can improve 1814 

the efficiency and effectiveness of pollution control measures by analyzing intricate 1815 

datasets, forecasting contaminant behavior, and refining remediation strategies (Xu et 1816 

al., 2023). Furthermore, AI can play a pivotal role in monitoring air and water quality, 1817 

pinpointing pollution sources, and predicting the dispersion of pollutants to enable 1818 

prompt and targeted remediation actions. In addition, AI-driven digital simulations and 1819 

digital twins can replicate environmental scenarios, assess remediation approaches, and 1820 

monitor the success of mitigation efforts to enhance decision-making and resource 1821 

allocation in pollution management (Wang et al., 2023e). Overall, AI serves as a potent 1822 

tool for enhancing environmental sustainability by offering data-driven insights, 1823 

optimizing remediation endeavors, and advocating proactive measures to safeguard the 1824 

environment. 1825 

Jo
urn

al 
Pre-

pro
of



91 

 

 

GLOBAL EFFORTS TO CONTROL EMERGING CONTAMINANTS  1826 

Pollution prevention  1827 

The increasing recognition of ECs has led to global efforts to devise efficient strategies 1828 

for their prevention, detection, and remediation (Figure 5). Governments worldwide 1829 

have initiated policies to encourage industries and economic sectors to reduce source 1830 

pollution by changing their production processes, operations, and material usage. For 1831 

instance, the European Union has implemented a series of policies and regulations to 1832 

ensure the protection of the environment and reduce pollution. One of the key 1833 

components of this environmental framework is the Integrated Pollution Prevention and 1834 

Control (IPPC) directive, which came into effect in 2008 to prevent and reduce 1835 

pollution from industrial operations (Ramos Peralonso 2024). This directive applies to 1836 

various sectors, including energy, mining, and manufacturing, and requires industries 1837 

to adopt Best Available Techniques (BAT) to reduce emissions and waste generation 1838 

(Daddi et al. 2014). The IPPC directive complements other regulations such as the 1839 

Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH), the 1840 

Zero Pollution Action Plan, and the “polluter pays” principle (European Commission 1841 

2021). These regulations hold industries and businesses accountable for their 1842 

environmental impact, promote sustainable practices, and ensure the long-term health 1843 

and well-being of people and ecosystems. Similarly, the United States Congress enacted 1844 

the Pollution Prevention Act (PPA) to promote industry pollution prevention and 1845 

reduction efforts (Gad 2024). The act aimed to encourage businesses to adopt practices 1846 
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that would minimise or eliminate pollution at the source through changes in production 1847 

processes, operation methods, and the use of raw materials.  1848 

To balance economic development and environmental stewardship, the Chinese 1849 

government has implemented diverse laws and regulations to address pollution and 1850 

enhance the country's environmental conditions (Yang, Gao, and Li 2022). The 1851 

Environmental Protection Law (EPL), initially enacted in 1989 and revised in 2014, 1852 

stands as a cornerstone of legislation governing environmental protection in China 1853 

(Zhang et al. 2017). Beyond the EPL, the country has introduced specific laws and 1854 

regulations focusing on distinct facets of environmental protection, encompassing the 1855 

Water Pollution Prevention and Control Law, Air Pollution Prevention and Control 1856 

Law, and Soil Pollution Prevention and Control Law (Feng and Liao 2016; Liu et al. 1857 

2023; Wu et al. 2015) and recently the Action Plan for Controlling Emerging 1858 

Contaminants in 2022 issued by the state council. Several other countries have also 1859 

enacted numerous regulations to prevent pollution and minimize environmental 1860 

contamination across different industries. The United Nations Environment Programme 1861 

has reported a 38-fold surge in environmental legislation implemented from 1972 to 1862 

2019 (UNEP 2019). As of 2017, 176 countries possess legislative frameworks for the 1863 

environment, and 150 countries have incorporated environmental protection or the 1864 

entitlement to a healthy environment in their constitutions (IISD 2019). Additionally, 1865 

164 countries have instituted government-level entities tasked with overseeing 1866 

environmental protection.  1867 
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Despite these advancements, enforcing these laws faces challenges, as weak 1868 

enforcement is a global trend exacerbating environmental threats. The difficulties in 1869 

enforcing global environmental law stem from the reluctance of individual states and 1870 

the lack of effective enforcement mechanisms on the international level (Sago 2019). 1871 

While there has been a rise in cooperative international efforts to protect the 1872 

environment, the enforcement of these laws remains a common issue. The disparity in 1873 

environmental protection legislation between high-, middle-, and low-income countries 1874 

may result in outsourcing production-linked emissions to low-income countries. In 1875 

some developing nations, the execution and enforcement of pollution control policies 1876 

are hindered by underfunded and politically weak government bodies responsible for 1877 

implementation, which hampers effective enforcement (Bell and Russell 2018). The 1878 

focus on economic growth over environmental protection during the transition phase 1879 

has resulted in inconsistent and incoherent environmental laws and regulations (Gupta, 1880 

Saksena, and Baris 2019). Additionally, weak property rights, poor access to credit, and 1881 

limited technology choices distort the costs of improvements to environmental quality, 1882 

further hindering effective pollution control (Ekstrom 2015). The inadequacy of current 1883 

pollution prevention measures necessitates more concrete actions to address pollution 1884 

on a global scale. Several strategies can be implemented to achieve this, including 1885 

enforcing regulatory frameworks, adopting sustainable practices, promoting 1886 

technological innovation, and engaging the public actively. These multifaceted 1887 

approaches are essential for reducing pollution levels and ensuring the preservation of 1888 
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the environment for future generations. Herein, green chemistry presents particularly 1889 

important opportunities for innovation and pollution prevention as we strive to achievee 1890 

the Sustainable Development Goals (Lou et al., 2022). However, as identified by 1891 

Erythropel et al. (Erythropel et al., 2018), two green chemistry principles of particular 1892 

relevance to ECs, design benign chemicals (principle 4) and design for degradation 1893 

(principle 10), have received relatively less attention, and thus represent timely research 1894 

opportunities for pollution prevention. 1895 

 1896 

 1897 

Figure 5. Strategies for controlling emerging contaminants encompass various 1898 

measures, including pollution control at the source, sustainable remediation to clean up 1899 

contaminated sites, and sustainable management practices to prevent contamination. 1900 

 1901 
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Pollution remediation technologies  1902 

Many remediation technologies have been developed to tackle the urgent global 1903 

problem of the environmental accumulation of anthropogenic pollutants (Singh and 1904 

Ram, 2022). These technologies are vital in cleaning up contaminated sites and 1905 

restoring them to environmentally acceptable conditions. Remediation methods span a 1906 

spectrum of approaches, including physical techniques like excavation, soil vapour 1907 

extraction, and chemical and biological treatments designed to degrade or immobilize 1908 

contaminants in both soil and water (Hamadani et al., 2020). The choice of a specific 1909 

environmental remediation method is contingent on the type and extent of 1910 

contamination, with each method having its own set of advantages and disadvantages. 1911 

Physical remediation techniques employ various processes and technologies to extract 1912 

pollutants from the soil, restoring its usability. These encompass physical engineering 1913 

measures, soil heat treatment technology, and adsorption technology (Baldissarelli et 1914 

al., 2019; L. Li et al., 2023). Soil heat technology, conventionally used for pollutant 1915 

removal via soil heating-induced volatilization, also emerges as an alternative for 1916 

enhancing soil conditions (Lee et al., 2024; Sun et al., 2024). Additionally, adsorption, 1917 

a conventional physical remediation method, relies significantly on the robust 1918 

adsorptive capacities of activated carbon and biochar materials (Liu et al., 2021; Qi et 1919 

al., 2022; Zhao et al., 2023). The large specific surface area, porous structure, and 1920 

various forms of activated carbon enable efficient absorption of a broad spectrum of 1921 

pollutants (Fan et al., 2023). Biochar, recognized as an environmentally friendly 1922 
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material, not only plays a pivotal role in alleviating soil contamination but also 1923 

enhances the properties of degraded soil, serving as an ideal habitat for beneficial 1924 

microbes (Blenis et al., 2023; Cabral Mielke et al., 2022). Ultrasonic waves are effective 1925 

in destroying the structure of algae cells through the mechanical vibration effect 1926 

(Dehghani, 2016). Additionally, physical methods such as manual salvage or 1927 

mechanical algae removal equipment can be used to prevent the accumulation of 1928 

cyanobacteria. Furthermore, the photocatalytic degradation of cyanotoxins can be 1929 

achieved through the use of ultraviolet or visible light irradiation (Khadgi and Upreti, 1930 

2019). 1931 

The handling of environmental pollutants like agricultural film and other plastic waste 1932 

could be effectively addressed through physical recycling methods followed by the 1933 

reuse of processed materials (Picuno, 2014; Picuno et al., 2012). Physical recycling 1934 

involves systematically sorting, cleaning, shredding, and melting of plastic waste to 1935 

create new raw materials. These materials find application in producing diverse items 1936 

such as fertilizer bags, garbage bags, and agricultural recycling water pipes (Civancik-1937 

Uslu et al., 2021). This approach not only mitigates the environmental repercussions of 1938 

plastic pollution by diverting waste from landfills but also contributes to diminishing 1939 

the need to produce new plastic. However, it is essential to acknowledge that 1940 

mechanical recycling processes, including sorting, grinding, washing, drying, and re-1941 

granulation, may introduce pollution, such as volatile organic compounds and 1942 
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microplastic emissions (Fuller et al., 2020; Süß and Fischer, 2023). The economic 1943 

viability of the recycling technology is also a major consideration. 1944 

In the realm of chemical remediation, the focus is on transforming and reducing the 1945 

mobility, effectiveness, and toxicity of pollutants in the environment using various 1946 

chemical technologies. These include photolysis, Fenton processes, photocatalysis, and 1947 

motorized repair processes (Brillas, 2021; Qu et al., 2023a, 2023b). Photolysis 1948 

leverages light radiation to decompose contaminants in soil, water, or air(Curran et al., 1949 

1992). When contaminants are exposed to light radiation, the energy from the light can 1950 

initiate chemical reactions that break down the contaminants into less harmful 1951 

substances. Photolysis is particularly effective for degrading organic compounds, such 1952 

as industrial chemicals, that are difficult to remove using other methods(Carena et al., 1953 

2020). 1954 

Fenton technology is a chemical remediation method that uses the oxidation of iron 1955 

ions (Fe2+) in the presence of hydrogen peroxide to generate hydroxyl radicals(Ribeiro 1956 

and Nunes, 2021). These hydroxyl radicals are highly reactive and effectively oxidize 1957 

pollutants, transforming them into less toxic substances. This process has been widely 1958 

studied and applied to treat various types of contaminated water and soil (W. Li et al., 1959 

2023; Xu et al., 2024). Photocatalysis is another commonly used chemical remediation 1960 

method that involves using catalysts to produce hydroxyl radicals, which then facilitate 1961 

the rapid oxidation and decomposition of pollutants (Ahmad et al., 2020). This method 1962 

has shown promise in treating organic pollutants and has been extensively researched 1963 
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for its potential applications in environmental remediation (McCullagh et al., 2011; 1964 

Mohammed et al., 2023). Electric remediation, also known as electrokinetic 1965 

remediation, uses direct electric current to remove organic and inorganic contaminants 1966 

from contaminated soils (Felter et al., 2021) by enriching contaminants to either the 1967 

cathode or anode zone through electroosmosis, electromigration, and electrophoresis 1968 

under an electric field (Cameselle, 2014). This technology is considered 1969 

environmentally friendly and can be used to migrate and remove pollutants from the 1970 

soil and sediment matrix.  1971 

While physical and chemical remediation methods have played crucial roles in 1972 

combatting environmental contamination, they come with inherent limitations, 1973 

including the necessity for advanced infrastructure, skilled personnel, high processing 1974 

costs, increased reagent requirements, and the potential generation of secondary 1975 

pollutants. For instance, in situ chemical oxidation is considered a rapid and effective 1976 

means of eliminating organic pollutants from contaminated areas (Rosas et al., 2013; 1977 

Suanon et al., 2020). However, it is expensive and can yield undesirable harmful 1978 

oxidation by-products, further harming the environment. Additionally, potent oxidizing 1979 

agents pose substantial health risks to those handling them, underscoring the ongoing 1980 

need for research and innovation in developing more sustainable and efficient 1981 

remediation strategies (Xiang et al., 2022). 1982 

Bioremediation is a remediation approach that uses a biological system, such as 1983 

bacteria, fungi, microalgae, or plants, to eliminate or neutralize pollutants from a 1984 
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contaminated site (Huang et al., 2023b). This method is considered cost-effective 1985 

because of the relatively low cost of implementing and maintaining bioremediation 1986 

systems compared with other remediation techniques (Line et al., 1996; Watanabe, 1987 

1997). Additionally, bioremediation is viewed as an eco-friendly approach because it 1988 

relies on natural processes and does not involve the use of harsh chemicals that may 1989 

further harm the environment. Furthermore, bioremediation is socially acceptable as it 1990 

aligns with the growing emphasis on sustainable and environmentally conscious 1991 

practices(Xiang et al., 2022). While bioremediation is a promising approach for 1992 

managing pollutants in the environment, its full potential has yet to be realized because 1993 

of several challenges associated with its implementation in natural environments 1994 

(Borchert et al., 2021). One of the primary challenges is the poor colonization and 1995 

performance of inoculated microbes in natural environments. When introduced into 1996 

contaminated sites, these microbes may struggle to survive and effectively degrade 1997 

pollutants due to competition with native microorganisms, limited availability of 1998 

nutrients (including trace concentration of micropollutants well below KM (Kundu et 1999 

al., 2019; Sun et al., 2021a), and adverse environmental conditions (Radwan et al., 2000 

2019). Additionally, the use of plants in bioremediation can be time-consuming, as they 2001 

require sufficient time to grow and establish themselves before they can effectively 2002 

remove pollutants from the environment. Furthermore, high concentrations of mixed 2003 

pollutants in contaminated sites can inhibit the growth of both plants and microbes, 2004 

limiting their ability to remediate the environment (Harindintwali et al., 2024). The 2005 
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environmental heterogeneity of contaminated sites also poses a challenge, as different 2006 

areas within a site may have varying levels and types of contamination, requiring a 2007 

tailored approach for effective remediation. To address these challenges, researchers 2008 

have proposed integrating plants, adsorbents (such as biochar), and microbes into a 2009 

single system for remediating contaminated sites (Harindintwali et al., 2020; Xiang et 2010 

al., 2022). This integrated approach aims to leverage the complementary abilities of 2011 

plants, adsorbents, and microbes to enhance the overall remediation process. By 2012 

combining these elements, researchers seek to create a synergistic system that can more 2013 

effectively mitigate the challenges associated with bioremediation and improve its 2014 

overall performance in diverse environmental settings. Microbiome management is also 2015 

an interesting development perspective in bioremediation (Kour et al., 2021). 2016 

 2017 

Sustainable management strategies  2018 

In addressing the challenges of ECs, sustainable management plays a pivotal role in 2019 

their control and governance. Emphasis should be directed to advancing technologies 2020 

for the management of ECs and undertaking critical research on environmental risk 2021 

assessment and management of toxic and hazardous chemicals. Further research on the 2022 

ecological and environmental harm mechanisms of ECs should be accelerated, and 2023 

investments should be made in research on new theories and technologies for 2024 

sustainable management strategies related to ECs. An environmental risk management 2025 

information system for chemical substances should be established, and a platform for 2026 
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calculating toxicology and exposure prediction of chemical substances should be built. 2027 

The early assessment and identification of key pollutants are essential for efficient 2028 

control. Besides, innovation and education in green and sustainable chemistry, 2029 

technology, and engineering can promote the generation of greener and more 2030 

sustainable products and processes (Constable, 2021; Kümmerer and Clark, 2016). 2031 

Enterprises associated with emerging pollutants should actively implement their 2032 

primary responsibility, increasing national and corporate investment in scientific 2033 

research is imperative for effective governance of emerging pollutants. In recognizing 2034 

that scientific research is fundamental to decision-making in pollution control, 2035 

sustained efforts are needed to enhance technological input. This effort involves 2036 

understanding potential emerging pollutants' origins, trends, hazards, and control 2037 

technologies. Scientific decision-making facilitates precise and effective pollution 2038 

control measures.  2039 

Actively engaging in international cooperation is crucial, especially in cases where 2040 

comprehensive research information is lacking. Utilizing global expertise and 2041 

experiences in scientific research and management accelerates the screening and 2042 

environmental risk control of emerging pollutants. Simultaneously, mechanisms for 2043 

fund allocation are established, drawing insights from international conventions to 2044 

support pollution control initiatives at international, national, regional, and corporate 2045 

levels. 2046 
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Rigorous adherence to national and local requirements for the governance and 2047 

sustainable control of ECs is required. Administrative departments should strengthen 2048 

the supervision of the production, processing, use, import, and export of prohibited or 2049 

restricted toxic and harmful chemical substances and their related products and 2050 

scientifically and sustainably manage new pollutants from the source. Those 2051 

comprehensive sustainable management strategies encompassing technological 2052 

innovation, ecological understanding, and corporate responsibility aim to address the 2053 

multifaceted challenges posed by ECs in a sustainable manner. 2054 

 2055 

MANAGEMENT AND EDUCATION  2056 

Regulatory measures and policies  2057 

The increasing global production and use of chemicals in a widening range of 2058 

applications and products requires a strict hazard assessment and management to 2059 

protect public health and the environment. Regulatory measures and policies, therefore, 2060 

play a key role in managing the production, use, and disposal of chemicals to minimize 2061 

potential harm. These measures aim to strike a balance between industrial innovation 2062 

and the search for environmentally safe chemicals to protect the health of organisms at 2063 

all biological scales (Wang et al., 2021a; Wang and Yu, 2024).  2064 

A cornerstone of chemicals management is national regulation like the European 2065 

Registration, Evaluation, Authorisation and Restriction of CHemicals (REACH) and 2066 

the assessment schemes of, for instance, the US Environmental Protection Agency (US 2067 
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EPA) or the Chinese Ministry of Ecology and Environment that require manufacturers 2068 

of chemicals to carry out comprehensive safety studies before placing their products on 2069 

the market. However, regulatory efforts are not effective or equitable without effective 2070 

implementation and enforcement of such policies. On an international scale, 2071 

corresponding frameworks, in which scientific experts assess data on chemicals for 2072 

potential hazards, exposure levels, bioaccumulation, and toxicity, include the Basel (on 2073 

hazardous waste), Rotterdam (on information on exported hazardous substances), 2074 

Stockholm on POPs and Minamata (on mercury) Conventions. The Globally 2075 

Harmonized System of Classification and Labelling of Chemicals is a prime example 2076 

of an international effort at the UN level to standardize management and assessment 2077 

practices. Internationally accepted tools for testing, evaluating, and managing 2078 

chemicals have been developed by the OECD and its members. Outside the OECD, the 2079 

Inter-Organization Programme for the Sound Management of Chemicals provides 2080 

comprehensive support to emerging economies and developing countries, where new 2081 

chemical industries and consumer markets rapidly develop, but often with limited 2082 

infrastructure and capacity for proper management of chemicals and waste. 2083 

One of the 17 Sustainable Development Goals (SDGs), launched by the UN General 2084 

Assembly in 2015, addresses the sound management of chemicals and all wastes 2085 

throughout their life cycles and decreasing their release into air, water, and land. 2086 

However, more effort is needed to achieve the goal of preventing significant adverse 2087 

effects of chemical pollution on human health and the environment, as stated in the 2088 
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United Nations Environment Programme's Global Chemicals Outlook II (Anonymous, 2089 

2019). It is well-documented that chemical pollution causes a wide range of damages 2090 

to human and ecosystem health at local, regional, and global scales (Naidu et al., 2021). 2091 

Among other factors, pollution is responsible for global biodiversity loss (Mueller et 2092 

al., 2023; Sigmund et al., 2023), human diseases (Fuller et al., 2022; Landrigan et al., 2093 

2018a), soil and water degradation (Backhaus et al., 2012; Beaumelle et al., 2021; 2094 

Oginah et al., 2023), stratospheric ozone depletion (Tang et al., 2011) and climate 2095 

change (Isaksen et al., 2009). 2096 

Policymakers need to balance economic, social, and environmental arguments when 2097 

deciding on measures for the sound management of chemicals. Where there is evidence 2098 

of environmental impact and harm from exposure to, e.g., endocrine-disrupting 2099 

chemicals, PFAS, and many other chemicals, regulators may impose restrictions, bans, 2100 

or set limits on emissions and discharges into the environment. These measures are 2101 

often based on scientific evidence and aim to protect vulnerable populations and 2102 

ecosystems. Here, the precautionary principle is an important strategy that requires 2103 

taking preventive action in the face of uncertainty about potential harm. Where 2104 

scientific evidence is inconclusive, regulators should opt for a cautious approach and 2105 

impose restrictions until further research clarifies potential risks.  2106 

Efforts to improve the handling of chemicals go beyond their production and 2107 

application stages to include properly disposing of waste and recycling products 2108 

containing dangerous substances. While progress has been made in many areas, there 2109 
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is an urgent need for a more consistent alignment of all actors on this common goal of 2110 

chemical safety. International cooperation is therefore essential to address the global 2111 

nature of pollution by chemicals and waste. Recently, scientists asked for the 2112 

establishment of an overarching international body to facilitate and foster broad 2113 

bidirectional science-policy interactions on chemicals and waste (Wang et al., 2021f). 2114 

Such a Science Policy Panel (SPP) must address chemical pollution's multifaceted and 2115 

heterogeneous impacts that often show dynamic development. The scope of this new 2116 

SPP goes beyond the remit of the above-mentioned existing bodies because their scopes 2117 

and mandates are limited to certain chemicals, geographical areas, or jurisdictions. 2118 

Rather, the SPP needs to work on the large array of “chemicals of emerging concern” 2119 

and novel waste streams, besides the well-described legacy pollutants, trying to avoid 2120 

“analysis paralysis” (the inability of decision making by overanalysis or overthinking) 2121 

(Ågerstrand et al., 2023). The SPP must establish and enforce a strict conflict-of-interest 2122 

policy (Schäffer et al., 2023). In particular, experts with a conflict of interest connected 2123 

to a financial or material gain would pose a high risk of conflicting and/or incompatible 2124 

outcomes or delayed implementation of solutions in the decision-making process and 2125 

should not be allowed to participate in the core work of the SPP, but may still participate 2126 

and contribute as observers. Independent audits should be established to verify 2127 

compliance with conflict-of-interest provisions to recommend corrective action if 2128 

necessary and ensure that the outputs of SPPs are transparent, impartial, credible, and 2129 

scientifically robust. 2130 
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The new SPP, currently prepared by the UNEP Open-ended Working Group, is expected 2131 

to strengthen these efforts by recognizing the interconnectedness of global chemical 2132 

trade and pollution. Through regulatory measures, society can harness the benefits of 2133 

chemicals while minimizing the adverse effects of hazardous chemicals. 2134 

 2135 

Public awareness and education  2136 

Public awareness and education initiatives are instrumental in engaging individuals and 2137 

communities in the efforts to address emerging pollutants. By increasing public 2138 

knowledge and understanding of emerging pollutants, their sources, and potential 2139 

impacts, we can promote responsible behaviour and encourage individuals to make 2140 

informed choices that contribute to pollution prevention. There is a need to conduct 2141 

public education through educational campaigns, workshops, and outreach programs 2142 

on the scientific aspects of ECs, guiding the public in developing a scientific awareness 2143 

of the environmental risks associated with ECs and fostering a commitment to green 2144 

consumption principles. Those can empower individuals to adopt environmentally 2145 

friendly practices and support sustainable behaviours. Meanwhile, drawing inspiration 2146 

from existing international conventions, the control of emerging pollutants is executed 2147 

in accordance with international law. Besides, leveraging international conventions 2148 

becomes pivotal as it refines its regulatory framework and establishes a robust 2149 

governance system for emerging pollutants. Collaboratively with the global 2150 

community, environmental risk identification, assessment, and control of chemicals are 2151 
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conducted. This not only realizes commitment to controlling emerging pollutants but 2152 

also fosters global initiatives for pollution control, propelling the green development of 2153 

the global chemical industry and contributing to worldwide environmental governance. 2154 

To actively engage in international environmental agreements concerning ECs and 2155 

participate in global initiatives for managing these contaminants is essential. By 2156 

actively contributing to international conventions and actions related to ECs, a positive 2157 

impact can be made on global environmental governance. 2158 

 2159 

SOME LESSONS LEARNED 2160 

The systematic discovery of new contaminants has traditionally been a grand goal of 2161 

Environmental Sciences. Compound classes that were initially considered safe and inert 2162 

(e.g., chlorinated hydrocarbons in the old times, PFAS, at present) turned out to be 2163 

prominent contaminants as more comprehensive evidence emerged (Budtz-Jorgensen 2164 

and Grandjean, 2018). At the same time, the number of chemicals registered by the 2165 

Chemical Abstract Service is increasing exponentially (see Figure 1), augmenting the 2166 

likelihood of adverse effects and reinforcing efforts to recognize potential pollutants of 2167 

tomorrow early on (Muir et al., 2023b). As illustrated in Figure 1, over the years, many 2168 

relevant chemicals, pathogens, and (nano)particles have been discovered. They 2169 

subsequently became the subject of in-depth fate and remediation studies before being 2170 

the equivalent of “usual suspects” and making their way into regulation and routine 2171 
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monitoring efforts. While the term “Emerging Contaminants” is an ephemeral 2172 

classification, a review of the last decades can highlight the drivers that make chemicals 2173 

emerge, and illustrate the timespan between emergence and further action.  2174 

One important driver of discoveries is analytical innovation, as illustrated in Figure 1. 2175 

Biannual reviews on Water Analysis and Emerging Contaminants in the journal 2176 

Analytical Chemistry are a telling record of how access to new methodologies has been 2177 

instrumental in bringing new contaminants to the radar. As exemplified in (Fishman 2178 

and Erdmann, 1973), water analysis in the early 1970s was dominated by spectroscopy, 2179 

electrochemistry, MS, thin layer, and GC and focused on inorganic species, petroleum 2180 

hydrocarbons, and persistent organochlorides. Twenty years later, a broader suite of 2181 

organic compounds had become accessible by dedicated sample extraction, HPLC), 2182 

GC-MS, and the advent of biochemical methods (Clement et al., 1993; MacCarthy et 2183 

al., 1993). In the early 2000s, the introduction of matrix-assisted laser desorption-2184 

ionization (MALDI)-MS made fingerprinting of bacteria possible, and the introduction 2185 

of LC-MS revolutionized routine monitoring of organic compounds like 2186 

pharmaceuticals and personal care products. At that time, the term “Emerging 2187 

Contaminants” came up (Koester et al., 2003). Today, twenty years later, high-2188 

resolution mass spectrometers and advanced data processing have catalyzed non-target 2189 

screening for organic compounds, bringing to our attention a broad contaminant range, 2190 

including PAFS and inadvertent transformation products (Richardson and Ternes, 2191 

2020). 2192 
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Another driver of emerging concern is situations in which chemicals are not necessarily 2193 

new but occur in such quantities that they can no longer be overlooked. Hence, the 2194 

general public feels urged to address them according to the precautionary principle, 2195 

even though analytical methods are yet to be established for some of them. Examples 2196 

are engineered micro- and nanoparticles, microplastics (Ivleva, 2021), or hydraulic 2197 

fracturing chemicals in unconventional gas exploration (Hoelzer et al., 2016). Well-2198 

known chemicals may also become of emerging concern at the moment that they are 2199 

subject to stricter drinking water standards, such as perchlorate (Kucharzyk et al., 2009) 2200 

or PFAS (Braun, 2023). The emergence of new diseases, such as during the SARS-2201 

CoV-2 pandemic, can finally drive the installation of entirely new monitoring efforts, 2202 

such as screening wastewater for COVID variants (Maryam et al., 2023). 2203 

Environmental science can make particularly important contributions if it succeeds in 2204 

discovering problematic transformation products as ECs that would otherwise remain 2205 

overlooked. Examples are disinfection by-products such as bromate during water 2206 

treatment (von Gunten, 2018). A particularly visible case is 6PPD-quinone, a highly 2207 

toxic ozonation product of the tire additive 6PPD (N-(1,3-dimethylbutyl)-N′-phenyl-p-2208 

phenylenediamine), which has led to an enigmatic acute mortality of coho salmon in 2209 

the U.S. Pacific Northwest. 2210 

In particularly notorious cases, chemicals emerge as contaminants after they were 2211 

introduced to replace other, regulated ones. Examples are methyl, tert-butyl ether 2212 

(MTBE), or 1,4-dioxane, which were introduced in lieu of tetraethyl lead to boost 2213 
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octane numbers in gasoline (Grisham, 1999), or the second generation of PFAS, which 2214 

have replaced the first one of PFAS or PFOA – only to be recognized to be equally 2215 

problematic (Sedlak, 2016).  2216 

 2217 

FUTURE DIRECTIONS AND CHALLENGES  2218 

Achieving sustainable development remains a lofty goal rather than a concrete reality 2219 

without unified global endeavors to mitigate and prevent environmental pollution. 2220 

While regulations have been implemented to address legacy contaminants, many 2221 

unregulated chemicals and biological entities continue to be released into the 2222 

environment. Moreover, enforcement and implementation of regulations for existing 2223 

pollutants are inconsistent or lacking in many regions globally, posing significant 2224 

threats to public health, biodiversity, and ecosystem services. The escalating presence 2225 

of ECs in the environment raises apprehensions regarding their enduring and 2226 

unforeseen impacts on ecosystems, water quality, and human welfare. This 2227 

comprehensive review thoroughly examined the sources, behavior, pathways, and fate 2228 

of ECs in the environment from various perspectives. Additionally, we explored the 2229 

impacts of these contaminants on planetary health, encompassing humans, animals, and 2230 

their interconnected environments, all within the framework of One Health. 2231 

Notwithstanding the extensive insights into ECs presented in this review, substantial 2232 
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challenges persist within the current global development systems, hindering effective 2233 

efforts to mitigate the impact of environmental pollution on planetary health. 2234 

A. Chem icals are cruc ial in m o dern so c iety, and their pro ductio n is increasing. 2235 

Ho w ever, regu lating their pro ductio n and use is challenging because o f the glo bal 2236 

develo pm ent fram ew o rk. W hen a regu lated chem ic al is phased o ut, it is o ften 2237 

replaced w ith ano ther, po tentially causing new  o r different types o f enviro nm ental 2238 

o r hu m an health im pacts. This pro cess requ ires a balance betw een the benefits o f 2239 

synthetic chem ic als and the po tential risks. W ith tho usands o f new  synthetic 2240 

chem ic als entering the enviro nm ent, m any no t tho ro ughly tested, there is a need to  2241 

intensify research o n ECs and create a c o m prehensive public database detailing 2242 

their so urces and enviro nm ental behavio ur. W e m ust advance adverse o utc o m e 2243 

pathw ays (Ankley et al., 2 0 1 0 ) and cro ss-spec ies extrapo latio n appro aches 2244 

(L aL o ne et al., 2 0 2 3; M argio tta-Casalu c i et al., 2 0 2 4) to  understand chem ic al 2245 

attributes that target partic u larly susceptible spec ies and advance the prec isio n o f 2246 

enviro nm ental assessm ents fo r ECs (Bro o ks et al., 2 0 2 4). Do ing so  pro m ises to  2247 

info rm  chem ic al substitutio ns in c o m m erce w itho ut regrets (Zim m erm an and 2248 

Anastas, 2 0 1 5) and the sustainable m o lecu lar design o f less hazardo us substances 2249 

(Co ish et al., 2 0 1 6). 2250 

B. Each year, ho useho lds and w o rkplaces c o ntribute significantly to  enviro nm ental 2251 

c o ntam inatio n by releasing harm fu l chem ic als thro ugh vario us everyday pro ducts, 2252 

inc luding to o thpaste, sham po o , bo dy cream s, c leaning agents, and plastic bags. 2253 
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The lack o f transparency fro m  c o m panies regarding the ingredients and quantities 2254 

used in their pro ducts c o m plicates the identificatio n o f the c o ntam inants peo ple 2255 

m ay be expo sed to  and the po tential health risks asso c iated w ith them . PFAS serves 2256 

as a prim e exam ple o f such chem ic als. Despite being in c o m m erc ial use since the 2257 

1 940 s, their to xic ity w as no t w idely rec o gnized until the late 1 990 s. So m e 2258 

c o m panies w ere aw are o f the po tential to xic ity o f PFAS but c o ntinued to  2259 

inc o rpo rate them  into  their pro ducts. This scenario  highlights the im po rtance o f 2260 

transparency in chem ical m anufacturing pro cesses and undersc o res the necessity 2261 

fo r c o m prehensive testing o f chem ic als befo re their inc o rpo ratio n into  c o nsu m er 2262 

go o ds.  2263 

C. Effo rts to  c o m bat enviro nm ental po llutio n face persistent challenges, inc luding the 2264 

c o m plexity o f po llutants, inadequate techno lo gical so lutio ns, and difficu lties in 2265 

im plem enting c o m prehensive enviro nm ental po lic ies. Chem ical rem ediatio n 2266 

techniques, o ften preferred, parado xically result in greater enviro nm ental im pacts 2267 

than the po llutio n they aim  to  rem ediate. W hile bio lo gical m etho ds like 2268 

bio rem ediatio n and phyto rem ediatio n o ffer ec o -friendly alternatives, they are less 2269 

effic ient and m o re tim e-c o nsu m ing. The intro ductio n o f lab-gro w n o r engineered 2270 

m icro o rganism s during bio rem ediatio n also  carries the risk o f disrupting natural 2271 

ec o system s and causing unfo reseen im pacts. Addressing these challenges requ ires 2272 

intensified research o n inno vative rem ediatio n o ptio ns to  effectively c o ntro l 2273 

po llutio n, enhance enviro nm ental health, and m axim ize ec o lo gical sustainability. 2274 
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Tailo red rem ediatio n strategies, c o nsidering spec ific site c o nditio ns and 2275 

c o ntam inant characteristics, need to  be develo ped to  navigate these c o m plex 2276 

challenges. Sim ply stated, w e need to  advance green and sustainable chem istry 2277 

and green engineering to  realize m o re sustainable po llutio n preventio n in the 2278 

future. 2279 

D. The intricate interplay betw een enviro nm ental po llutio n and c lim ate change and 2280 

o ther facto rs o f glo bal enviro nm ental change presents a fo rm idable challenge that 2281 

canno t be tackled in iso latio n. These enviro nm ental issues are interc o nnected and 2282 

can am plify each o ther, resu lting in pro fo und c o nsequences fo r ec o system s, hu m an 2283 

health, and the planet at large. Rec o gnizing the interlinked nature o f these 2284 

challenges is im perative fo r fo rm u lating sustainable so lutio ns that safeguard 2285 

ec o system s, hu m an w ell-being, and the pro spects o f future generatio ns. Hence, 2286 

there is a pressing need fo r integrated appro aches that c o ncurrently tackle glo bal 2287 

enviro nm ental change, underpinned by sc ience-based po lic ies and c o llabo rative 2288 

endeavo urs. This ho listic strategy is im perative fo r steering the w o rld to w ards a 2289 

m o re resilient and sustainable future.  2290 

In summary, the continuous generation and utilization of new products contribute to the 2291 

introduction of ECs into the environment. To confront this challenge effectively, 2292 

comprehensive research is imperative to understand the sources and potential 2293 

repercussions of these pollutants on human health, ecosystems, and animals, embracing 2294 

the One Health approach. Furthermore, evaluating how these contaminants interact 2295 
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with various environmental factors, both living and non-living, is crucial within our 2296 

ever-changing environments. Leveraging advancements in analytical techniques and 2297 

artificial intelligence is indispensable for monitoring these emerging environmental 2298 

pollutants and predicting their behaviour within intricate environmental systems. 2299 

Additionally, careful consideration of the potential risks stemming from advancements 2300 

in material production across diverse domains, including biotechnology and 2301 

nanotechnology, is vital for fostering the responsible development of materials for 2302 

environmental purposes. Addressing environmental pollution demands a paradigm shift 2303 

in our lifestyles, advocating for policies geared towards minimizing contaminants and 2304 

implementing coordinated efforts to tackle existing pollutants through global 2305 

cooperation. This collective endeavor is vital for safeguarding the health and 2306 

sustainability of our planet for the benefit of both current and future generations, 2307 

aligning with the principles of One Health. 2308 
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