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Abstract

A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed
population code of speed tuning, that realizes a size–speed correlation, can be derived from the simplest mechanisms whereby
activations of multiple spatially short-range filters of different size are transformed into speed-tuned cell responses. These
mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These
mechanisms are proposed to occur in the V1�MT cortical processing stream. The model reproduces empirically derived speed
discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus
contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been
used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that
has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides
a computational foundation for an emerging neural theory of 3-D form and motion perception. © 1998 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

How are estimates of retinal speed of moving objects
extracted from continuously changing optic input?
Classic computational models of motion detection in-
volving Reichardt-like or motion-energy mechanisms
have focused on the recovery of motion direction [1–4].
Primate units of MT exhibit both speed and directional
tuning, however [5–8].

The code for speed at a particular spatial location for
our model is a distribution of activity in a bank of
neural units of multiple scales, whereby units of larger
spatial scale code for faster speeds. These multiple
spatial scales model the short-range motion process of
Braddick [9], including the fact that the short-range
motion limit Dmax depends on the spatial frequency
content of the image [10–15]. Such a multiple-scale
short-range filter was introduced in earlier versions of
the motion model that is developed here, where it was
used to stimulate data about long-range apparent mo-
tion [16], including beta motion, gamma motion, delta

motion, reverse motion, split motion, Ternus motion,
reverse-contrast Ternus motion, and Korte’s laws [17–
19]. Here we show how such a multiple-scale filter can
be appropriately combined with other model mecha-
nisms to explain psychophysical and neural data about
speed perception.

Heeger [20] has earlier shown how spatiotemporal
filtering over a coarse set of units of different spatial
extent can encode motion direction and speed. Heeger’s
model expresses a computational intuition about multi-
scale speed coding in a set of channels conceived as
independent, quasi-linear filters. Later Anadan [21] also
employed a multiscale approach in a computational
algorithm for robust motion estimation from image
sequences. Our concern is to ask how the nonlinear,
coupled neural units with limited dynamic range, that
have already been used to explain many other psycho-
physical and physiological motion data, can be orga-
nized to display speed-tuning in a distributed multiscale
representation.

In the present model, speed is represented through
the distributed activity of speed-tuned units, or cell
populations. We define speed-tuned cells as those that
respond preferentially to a limited, continuous range of
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speeds, as opposed to speed-sensitive cells, which vary
their response with speed, but do not exhibit a prefer-
ence for a particular speed. There is considerable neuro-
physiological evidence for speed-tuned cells in the
visual systems of cat and monkey [22–25]. In the
model, the speed-tuned cells are arranged in a topo-
graphic neural map so that at each location there is a
set of cells tuned to a range of speeds. The distribution
of activity across the cells in the map then implicitly
codes speed estimates at different locations. Cheng et
al. [26] have reported that the distribution of cells as a
function of speed is not uniform in MT, with most cells
peaking at high velocities (32–64°/s). While such a
distribution would seem ill-suited to support discrimi-
nation among lower speeds, Cheng et al.’s animals were
anesthetized, possibly resulting in a need for stronger
(i.e. faster) stimuli to drive them than would normally
be the case. Also, as we will demonstrate, most of the
cells at intermediate stages of our model respond to
high velocities, and specific mechanisms operate to
ensure that the tuning of cells of subsequent stages is
more specific to lower or intermediate velocities. Thus
the cells recorded by Cheng et al. may more closely
correspond to intermediate than to final stages of our
model.

The speed-sensitivities of the model cells arise pri-
marily from their different spatial scales, which deter-
mine the size of their input fields, in accord with recent
evidence that receptive field sizes of foveal motion
sensitive units range from approximately 0.03–1°, as
inferred from psychophysical methods [27,28]. In the
primate nervous system, speed tuning appears to arise
in cortex through the combination of signals from more
peripheral cells. Although cells in cat or monkey retina
and LGN may exhibit speed-sensitivity, there is no
evidence for speed-tuning until striate cortex in both cat
[29,30] and monkey [31], in which some, but not all,
cells are speed-tuned. Speed and directional tuning both
become more prevalent in monkey area MT [6,8,32,33],
suggesting that this area is further upstream in a spe-
cialized motion processing system that successively refi-
nes motion signals. Such speed-tuned cells are usually
directionally-selective and exhibit both facilitatory and
suppressive interactions within their receptive fields,
indicating that peripheral signals may be nonlinearly
combined to yield speed tuning.

Our primary goal in developing this model was not
to determine a computationally optimal method of
extracting speed from optic input, but to simulate im-
portant characteristics of human speed perception. Of
particular interest are the sensitivities or insensitivities
of speed perception to non-speed parametric variations
in the stimulus. These sensitivities can reveal details of
the operation of the mechanisms that underlie speed
perception. In this model we account for and qualita-
tively simulate data showing changes in speed discrimi-

nation resulting from changes in stimulus contrast [34]
and duration [35]) as well as changes in perceived speed
resulting from changes in stimulus contrast [34] and the
density of moving random dot fields [36]. In addition
we also account for variations in reaction times at
different stimulus speeds [37].

A key model hypothesis is that the spatial scale or
input field size of a cell determines its speed-sensitivity,
such that larger scales respond preferentially to faster
stimuli. We call this covariation the size-speed correla-
tion. Analogously, cells in monkey area MT typically
have larger receptive fields, exhibit directional interac-
tions over larger areas and are directionally tuned for a
greater range of velocities than cells in V1 [7]. Likewise,
in cat visual areas 17 and 18, cells with slow speed
preferences are generally unaffected by masking of pe-
ripheral portions of their receptive fields, while cells
preferring intermediate and high speeds showed re-
duced responsiveness at higher speeds after the same
masking [38].

The theme of multiscale representation occurs in
many traditions in the study of vision, notably research
on psychophysical channels for pattern perception and
in the development of efficient image coding procedures
for machine vision. Among the modalities of primate
vision, coding at multiple spatial scales is perhaps most
familiar in stereo vision [39] (see Ref. [40] for a review).
Here sensitivity to amount of disparity is known to
covary with sensitivity to size [41–45]). This covariation
is often called the size-disparity correlation [41–45].

The visual system is faced with the problem of main-
taining sensitivity to a wide range of speeds, using
mechanisms with limited operating ranges, without sac-
rificing speed resolution or spatial resolution, such as
when small objects travel very fast. Since a simple
‘match filter’ scheme using neurons uniquely tuned to
every combination of speed, size, contrast, and so forth
is hopelessly impractical, units with overlapping sensi-
tivities to spatial and temporal parameters of inputs
must be used. These considerations lead, in turn, to
issues concerning how speed codes of units sensitive to
a range of spatial and temporal frequencies can be
properly tuned. The main problem in understanding
how the brain represents speed using a multiple scale
population code can be succinctly stated: why does not
the largest scale always win in response to all input
speeds, simply because it has a larger receptive field
with which to attain a higher level of activation? This
problem arises because each scale is turned ON
whenever a contrast passes through the region corre-
sponding to the filter’s spatial extent. For this to hap-
pen, signals from any changing visual cue input to units
of all scales. A continuously moving contrast has a
longer dwell time in the domain of a large-scale filter
than in the domain of a small-scale filter centered at a
corresponding retinal location. Without further pro-



J. Chey et al. / Vision Research 38 (1998) 2769–2786 2771

cessing, units corresponding to the largest scales will
fire more vigorously. How does one prevent these
largest scales from always being the most active,
thereby winning the competition for coding a moving
feature’s speed, regardless of the feature’s true speed?

Our work suggests that two simple mechanisms
suffice. The first is a scale-proportionate, or self-similar,
threshold, which requires units of larger scales to have
larger absolute activity (or, equivalently, similar pro-
portions of their maximum possible activity) to trans-
mit a signal. The second is competition, both among
units of similar scales and across units of differing
scales. These simple ideas suffice to explain many data
about speed tuning. They can be reviewed as perhaps
the simplest way to realize a size-speed correlation.

2. The speed-sensitive MOC filter

We now outline the architecture of a speed-sensitive
filter network and give a functional description of each
processing level, illustrated by results of a simulation
of the network’s behavior. In these descriptions we
concentrate on the rationale for each network level
without specifying the equations that implement it.
Details of the equations and simulation parameters
are given in Appendix A. Since the response properties
of a cell are determined by the activity of other network
cells as well as the network input, each simulation
must include a set of cells that contains all neighbor-
ing cells whose activity affects the cell or cells at
the location reported upon. For simplicity, the model
is simulated using one-dimensional stimuli. This allows
us to here concentrate on the speed-sensitivity of the
network without reference to more complex two-
dimensional spatial summation or segmentation. An-
other report describes how a two-dimensional imple-
mentation of a speed-tuned network such as the one
presently described can address data on the aperture
problem, motion capture, and related effects wherein
both motion direction and speed need to be taken
into account [46]. Each network simulated here there-
fore consists of a sequence of neighboring cells. Ac-
tivity is always reported from the middle cell in this
sequence.

A schematic representation of the network is given in
Fig. 1. This diagram shows the five processing levels
and how cells in each level interact to provide input to
the next. The components of the network are: (1)
change-sensitive units; (2) transient cells; (3) short-
range spatial filters; (4) intra-scale competition; and (5)
inter-scale competition.

3. Level 1: Change-sensitive units

In the model (Fig. 1), visual input is initially regis-
tered by change-sensitive units that respond briefly to
changes in luminance over time at a location. An
output pulse of fixed length, independent of input
speed, is generated when a moving object enters the
receptive field of such a unit, conceived as a simplified
photoreceptor. The exact response profile of these cells
is not important; for simplicity, a square wave output is
assumed. The simulations of our model work despite,
not because of, the square waveform, which makes it
harder to generate smoothly modulated speed profiles
than would be the case if realistic profiles of receptor
impulse functions were incorporated. Fig. 2 displays
representative activity profiles over time for change-sen-
sitive units.

Fig. 1. Schematic outline of model layers. Level 1 consists of change-
sensitive units that are transiently activated for fixed time intervals by
a moving stimulus. Level 2 transient cells sum and time-average the
activities from fixed, non-overlapping sets of the change-sensitive
units. Multiple short-range filters occur at Level 3 at each spatial
position. Each filter draws input from a set of transient cells, the size
of which is determined by the spatial scale of the filter. As depicted,
scale 1 receives input from one transient cell, scale 2 from three cells
and scale 3 from five cells. The transient cells that input to each filter
overlap both between scales at a single position and between posi-
tions at a single scale. Thus, the largest scale depicted in the outline
draws input from a superset of the transient cells from which the
smaller scale draws. The outputs of the short-range filters input to
Level 4 intra-scale competition across space. This competition is
enacted through a spatial center-surround network. At Level 5,
inter-scale competition takes place between all scales at each spatial
position, again through a center-surround network. The activities
across this final competitive stage form the output of the network and
are pooled to define a population measure of speed.
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Fig. 2. Representative time-courses of simulated cellular activities
from each level of the network: (a) change-sensitive unit; (b) transient
cell; (c) thresholded short-range spatial filter. For each level, a single
cell’s activity is shown as a function of time in response to an input
which traverses a range of simulated cells. The input moves at a speed
of ten change-sensitive units per simulation time unit. For (a), activity
is shown for the first (leftmost) of the series of simulated units. All
other activities are taken from cells in the middle of the simulated
series. For (c), an intermediate sized scale (5) is chosen for display
purposes. These plots are shown on the same horizontal time scale
but not on the same vertical scale.

2 outputs by spatial filters at Level 3 cannot achieve
such a result. Specifically, at Level 3, larger scale cells
always respond at least as vigorously to an input as
smaller scale cells, since they draw input from more
transient cells (Fig. 3(b)). At slow speeds, however,
spatially adjacent transient cell responses (Level 2)
show little temporal overlap, nullifying the advantage
of a large input field, so large scales at Level 3 respond
just a little better than small scales. At fast speeds, there
is significant temporal overlap of transient cell re-
sponses within larger scales, so large scales respond
significantly more vigorously than small.

The model’s Level 3 cells use a fixed time averaging
rate. This rate affects how vigorously each cell responds
to an input, how long it remains active and, therefore,
at which input speed it begins to respond vigorously.
Since all scales are assumed to respond at the same rate
in the current implementation of the model, the spatial
extent of the inputs to a cell (i.e. the cell’s scale)
determines what this speed will be. Fig. 3 shows the

4. Level 2: Transient cells

Model transient cells accumulate inputs from a series
of adjacent change-sensitive units and time-average
these inputs. Once again, we do not claim to have
modeled all important characteristics of the dynamics
of such units in vivo, although model cells are assumed
to correspond to retinal cells with transient response
properties, such as cat Y cells [47] or monkey M cells
[48]. Each transient cell responds with an exponentially
rising and decaying activity whose duration is deter-
mined both by the spatio-temporal parameters of the
cell and the response duration and amplitude of the
change-sensitive units (see Fig. 2). Due to their time
averaging properties, activation of adjacent transient
cells may overlap in time even though the input fields of
the cells do not overlap in space, and this trait proves
important for the ability of subsequent levels of the
network, whose units receive input from several adja-
cent transient cells, to be differentially activated by
different motion speeds. At this level, cell responses rise
monotonically with input speed due to the temporal
summation performed by these cells, whereby more
inputs are ‘counted’ per unit time. (Fig. 3(a)). However,
these transient cells are not speed-tuned and, due to the
small, fixed size of their input fields, their maximal
responses saturate at a low speed.

5. Level 3: Self-similar short-range filters

Level 3 cells utilize short-range spatial filters of a
variety of widths to collect and time-average input from
a series of adjacent transient cells. The different filter
widths, or spatial scales, give rise to different speed
sensitivities. At the final level of the network, the scale
which responds maximally will covary with input speed.
In fact, the basic intuitions behind the network design
concerns how to bring about such a state of affairs,
considering that the first plausible aggregation of Level

Fig. 3. Maximal responses of cells in the network to a variety of
simulated speeds. Plots show (a) transient cells; (b) short-range spatial
filters; (c) thresholded short-range filters; (d) intra-scale competition;
and (e) inter-scale competition. For levels where there are multiple
spatial scales at a single position, activities from all scales are shown
as different curves superimposed on the same plot. The smaller scales
always respond less vigorously to fast speeds, so their activity profiles
always show lower values. This is particularly evident at fast speeds.
Vertical axis scales vary with each plot and are indicated next to each.
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maximal activities from cells at each level of the net-
work plotted against simulated speed. This allows the
speed-tunings of the cells to be observed. These curves
were obtained by simulating 41 different input speeds in
a logarithmically increasing fashion from speed 1 to
speed 100. In the simulation, input ‘speed’ refers to the
number of change-sensitive units traversed in a simula-
tion time unit. Short-range filters are of several spatial
scales, such that some receive input originating from a
few neighboring change-sensitive units, while others
receive input from a greater number. A moving input
crosses the modeled receptive fields at a constant speed,
thereby creating a series of activity pulses each time it
enters the input field of a new Level 1 receptor. Each
simulation is run until activity in all network cells falls
below a threshold. Maximal activities are recorded
during the entire simulation time period.

Fig. 3(b) illustrates the core computational problem
faced by a neural multi-scale filter approach to speed
detection: How to keep the largest scales from always
winning, in the sense of being the most active. Since the
final code for speed is presumed to be a (possibly
weighted) average of activity at Level 5 across all
scales, to a first approximation, which scale is the most
active determines the model’s ‘perceived speed’. Cells of
larger scales can be prevented from always winning a
cross-scale competition (subsequent to Level 3) if a
scale-proportionate threshold is first applied to Level 3
outputs. Note that in Fig. 3(c), the activity curves for
the largest scales, which achieve the highest absolute
level on the right of the plot, begin to exceed zero at
greater levels of input than do the curves for the
smallest scales.

The thresholded short-range spatial filter enables cells
of different scale to be maximally active in different
speed ranges, as in Fig. 3(c). These cells are, however,
not truly speed-tuned because large scales always re-
spond better than small, and the difference in response
between large and small scales increases monotoni-
cally with input speed. True speed tuning requires that
different subsets of cells—i.e. cells of different scales in
the present model—generate the maximal outputs
across all cells as input speed varies. Scale-sensitive
selectivity of response is nonetheless achieved despite
the tendency of larger spatial filters at early levels to
achieve maximal amplitude of activation. This selectiv-
ity-amplitude trade-off occurs because these cells realize
a property of self-similarity; namely, larger scales re-
quire larger total inputs in order to respond, as in Fig.
3(c). This property can be realized, for example, if
larger scale spatial filters arise from larger dendritic
trees of larger cell bodies. The larger cells require a
larger total input in order to fire due to their ability to
dissipate membrane potential over a larger cell surface
area and volume.

6. Level 4: Intra-scale competition across position

Through short-range spatial averaging, the initially
localized moving stimulus is spatially blurred. This
blurring process begins to transform the temporal sig-
nals from a moving stimulus into a spatial map whose
cells respond selectively to different speeds. Competi-
tion across space, within each scale, deblurs these activ-
ity profiles. This competition locates the maximal
activity across space within each scale. For simplicity, a
feedforward on-center off-surround network is here
used to realize this competition. Within each scale, cells
receive excitatory input from cells in the previous net-
work level at spatially proximate locations and in-
hibitory input from cells at spatially distant locations.
In addition to deblurring motion signals, the intra-scale
competition plays a key role in achieving the speed-tun-
ing of cells (Fig. 3(d)), through the suppression of
homogeneous responses of large-scale filters across spa-
tial locations for high speeds. Now each scale tends to
respond unimodally as input speed increases, and the
scale of the maximally active population tends to in-
crease with input speed.

The faster the speed of an input, the more homoge-
nous the activity of neighboring spatial filters, which
sample from overlapping distributions of units at earlier
stages. Since spatial competition tends to enhance dif-
ferences among already differing units and to suppress
regions of homogeneous activity, less activity results for
high speeds. At the extreme, when input activity to a
competitive network is completely homogenous, the
competition completely suppresses responses. There-
fore, it is no longer true that all scales respond maxi-
mally at high input speeds. Now each scale tends to
respond unimodally as input speed increases, and the
scale of the maximally active population tends to in-
crease with input speed. Thus, each cell does achieve a
measure of speed tuning.

Note that the suppression of responses from homoge-
neous patterns is not inconsistent with the perception of
a coherently moving texture, such as a field of random
dots, or periodic pattern, such as a sine wave grating. A
grating, for example, would elicit inhomogeneous re-
sponses at the stages described, because the spatial
modulation of contrast from peak to trough of each
period of the pattern would ensure that neighboring
spatial filters of Level 4 always receive differential
input.

7. Level 5: Inter-scale competition within position

On the other hand, the total network output from all
active cells still tends to become unselective at high
input speeds (Fig. 3(d)), with all scales still responding
at high speeds. The existence of inter-scale competition
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at Level 5, in addition to intra-scale spatial competition
at Level 4, overcomes this imperfection of the collective
speed-sensitivity of the entire network (Fig. 3(e)).

Similar spatial and inter-scale competition stages
have been used to disambiguate the responses of multi-
ple scales to size-disparity correlations during the pro-
cess of static figure-ground separation [40]. In the
present article, the disambiguation is applied to multi-
ple scales that compute a size-speed correlation. The
inter-scale competition further sharpens the speed tun-
ing of the cells as follows. Since larger scales tend to
respond maximally at larger input speeds, they win the
competition and suppress the lesser responses that are
distributed across an increasing number of scales as
input speed increases. Feedforward competition
achieves this result in the present formulation, realized
again by an on-center off-surround network, this time
in scale space. By this means, each scale receives excita-
tory input from cells of the same scale from the previ-
ous network level and inhibitory input from cells of
different scales. Both excitatory and inhibitory inputs
are drawn from the same spatial position. Application
of a power function to the excitatory and inhibitory
inputs biases the competition towards selecting a single
winning scale rather than distributing activity across
multiple scales. This competition also tends to normal-
ize activity across scales at each location.

The final tuning curves produced by this competition
(Fig. 3(e)) are such that each scale responds maximally
to a speed that increases monotonically with scale. The
maximal activities of the middle scales are somewhat
higher than those of the small or large scales, but as we
shall see, it is not the absolute response of any one scale
that is important for speed tuning, but rather the
distribution of activity across the entire set.

8. Relating network activity to perceived speed

The output of the inter-scale competitive level is a
spatial map whose distributed activities implicitly repre-
sent the speed of the input. In order to interpret this
distributed activity pattern for comparison with percep-
tual data, a linking hypothesis is defined that relates the
entire population of active cells to perceived speed. It is
here assumed that perceived speed derives from the sum
of activities over all scales weighted by the size of the
scale. Thus, if large scales are active, speed will be
perceived as fast, and if small scales are active, then
speed will be perceived as slow, with the level of activity
at each scale determining the exact speed percept. We
call the calculated number the speed measure.

The maximum speed representable in the network is
equivalent to the largest scale and the minimum to the
smallest. Fig. 4 shows the speed measure for a range of
stimulus speeds. In the model, perceived speed increases

Fig. 4. Simulated speed measure as a function of input speed. The
speed measure is obtained from a weighted sum of activities at all
scales at the final network level (after the inter-scale competition).
The speed measure increases approximately linearly with input speed
until it saturates.

approximately linearly with stimulus speed until around
speed 20, where it saturates. This saturation is due to
the limited range of scales simulated.

9. Computer simulations of psychophysical data

The model stimulates challenging characteristics of
human speed perception data. Many phenomena lie
outside the domain of speed filtering as a sole mecha-
nism. Experiments were selected that probe speed filter-
ing processes. Such experiments use parametric changes
in displays where perceptual grouping effects are not
rate-limiting on judgments of speed, as is the case for
the reorganization of perceived speed that characterizes
the transition from component to plaid motion, or the
barberpole effect. See Chey et al. [46] for an analysis of
how an extension of the present model handles such
cases.

In all simulations reported below, the same network
parameter set is used. Network responses are robust
across variation of parameters, and network equations
were written so as to make the effects of each parame-
ter as clear as possible, rather than to derive the
smallest number of parameters by dimensional analysis.
As it is, only two parameter values (1 and 10) were used
in all the model equations. What is essential for model
function is the operation of the conceptually simple and
robust processes of a scale-proportionate threshold fol-
lowed by competition. As long as larger scales have
larger thresholds, speed tuning results, though good
selectivity depends on maintaining approximate propor-
tionality between the size of the threshold and the size
of the maximum possible (unthresholded) activity at a
scale. The former generates selectivity at low speeds,
and intra-scale competition suppresses responses of
larger scales at high speeds, which produce spatially
homogeneous activation across a wide region. All
parameter choices are listed in the Appendix. The pri-
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mary goal of the simulations is to show how the model
naturally generates qualitative parametric properties of
the data. Quantitative fits were deemed premature,
since many simplifications were made in model compu-
tations to make them tractable, and additional mecha-
nisms such as directional-selectivity and long-range
motion grouping need to be added before the model
can be said to be complete.

10. Speed discrimination

Human velocity discrimination can be measured by
requiring subjects to judge the relative speeds of two
successively presented stimuli moving at different veloc-
ities. Using this technique, de Bruyn and Orban [35]
found that observers could discriminate random dot
speeds ranging from, at least, 0.5–256° of visual angle
per second. Discrimination performance within this
range varied such that optimal discrimination was
achieved at intermediate speeds, with poor discrimina-
tion at either extreme (Fig. 5(a)). They found that, at its
best, the Weber fraction for perceived speed reached
around 5%, a level which remained roughly constant
for speeds from 4 to 64°/s. Orban et al. [49] found
similar discrimination properties using a moving bar
stimulus.

These data were simulated using the hypothesis that
two stimuli can be discriminated by their speed if the
total difference in activity across all scales in the model
at those speeds exceeds a threshold. By total difference
in activity is meant the sum of the differences in activity
between each corresponding scale at the two speeds (see
Appendix A for the exact formula).

In order to obtain a measure similar to a Weber
fraction, maximal speed measures from the network
were calculated using a variety of stimulus speeds,
generated in a logarithmic progression from a base
speed. A reference speed was selected from these
speeds. Test speeds were then selected, again from the
logarithmic series of simulated speeds, just above and
below the reference speed. The number of increments or
decrements of the test speeds necessary to obtain an
above threshold difference in response of the reference
from either the higher or lower test speed was then
calculated. Since the simulated series of speeds increases
in a logarithmic fashion, a constant number of incre-
ments or decrements of speed in this series corresponds
to a constant ratio of speeds. For example, if the test
speed is four increments above the reference speed, then
the ratio of the test to reference speed is the same
regardless of how the reference speed is chosen.

We call the minimum number of increments or decre-
ments of the test speed required to exceed the difference
threshold the discrimination measure. The use of higher
or lower test speeds to form the discrimination measure

was a convenience adopted solely to reduce discretiza-
tion aliasing in our simulations. This discrimination
measure is plotted against the simulated reference speed
in Fig. 5(b.) The discrimination measure has the same
form as the discrimination data in Fig. 5(a). The char-
acteristic U-shaped profile in the simulation results
from the lack of change in network output at low and
high speeds. At very low speeds, the only scale active is
the smallest, so changes in input speed do not result in
significant changes in network activity. Correspond-
ingly, at high speeds only the largest scale is active, and
at very high speeds no scales are active at all. Optimal
discrimination is achieved at intermediate speeds where
several scales are active simultaneously and any speed
change results in a substantial change in active scales.

Fig. 5. Plot (a) shows experimentally derived Weber fractions illus-
trating just noticeable differences in velocity as a function of velocity.
Reproduced with permission from Ref. [35]. Plot (b) shows simulated
discrimination measures, hypothesized to correspond to the data in
(a). These simulated discrimination measures are obtained by deter-
mining the number of speed changes (selected from a logarithmic
range of simulated speeds) required to generate a difference in speed
measures that exceeds a threshold. The simulated discrimination
measures reproduce the U-shaped curve of the data.
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11. Speed-sensitivity range and self-similar cortical
magnification

Humans are capable of perceiving and discriminating
many orders of magnitude of speeds. As noted above,
de Bruyn and Orban [35] found that subjects could
discriminate speeds as slow as 1°/s and as fast as 256°/s,
though performance was poor at the extremes. If such
discrimination is based on mechanisms whose speed-
tuning scales approximately linearly with size, as in our
model, then the sizes available must increase exponen-
tially in order to account for the full range of reported
sensitivities. Such an exponential increase in size or
scale could be caused in part by the cortical magnifica-
tion factor [50–53].

Correspondingly, in the model, at each retinal eccen-
tricity there exists a range of scales whose size increases
with the cortical magnification factor. This paper does
not seek to reproduce the exact form of cortical mag-
nification or to assess whether this magnification is due
to retinal or cortical sampling characteristics. Instead, it
is shown below that, using a range of scales whose ratio
of largest to smallest remains the same at each location,
a greater range of speeds can be discriminated if the
entire set of scales is enlarged at peripheral locations.
Again, a property of self-similarity obtains, here across
position and scale, instead of across threshold and
scale, as at the short-range spatial filter. Using this
scheme, the total number of scales need not increase
across position to achieve a significant expansion of the
speed-sensitivity range. An analogous use of self-similar
cortical magnification has been used to compensate for
larger binocular disparities at larger eccentricities dur-
ing the computation of planar surface representations
in 3-D form perception [40].

Burr and Ross [54] have measured an ability to
identify the direction of motion of an 80° bar at speeds
up to 1000°/s. This task is rather different from discrim-
ination between two speeds, and may reflect sensitivities
of a direction-of-motion, as opposed to a speed-tuned,
mechanism. Even this study, however, found a high-
speed cut-off for visual sensitivity. Such a cut-off neces-
sarily exists in any system, such as a brain, that is
composed of finitely many processing units.

Fig. 6 reproduces the discrimination measures shown
in Fig. 5(b), this time using two sets of scales, the
second of which is an order of magnitude larger than
the first. The range of speeds which can be discrimi-
nated is increased by an order of magnitude. This
simulation assumes that the input traverses both ranges
of scales.

One implication of this scheme is that fast speeds are
relatively poorly discriminated in the foveal region and
slow speeds poorly in the periphery. The experimental
results discussed above were gathered using large stim-
uli that cover both central and peripheral locations and

Fig. 6. Simulated discrimination measures using two ranges of scales,
hypothesized to occur as a result of cortical magnification. The range
of speeds which can be discriminated is increased while maintaining
the same qualitative discrimination properties. The second set of
scales is five times as large as the first.

so do not address these issues. However, Maunsell and
Van Essen [6] found that higher speeds tended to be
coded at greater eccentricities in velocity-sensitive cells
in cat visual cortex. Orban et al. [31] have found the
same in monkey areas V1 and V2.

12. Contrast effects on speed discrimination

Speed perception can be altered by stimulus contrast.
Orban et al. [49] found that discrimination performance
deteriorated at lower stimulus contrasts. This deteriora-
tion was particularly severe at slow and high speeds
(Fig. 7(a)). McKee et al. [55] have disputed this conclu-
sion; they found no contrast effect on velocity discrimi-
nation using contrast levels ranging from 5 to 82%. In
Orban et al. [49], contrast, defined as log(DI/I), ranged
from −0.65 to 3 and velocity ranged from 0.25 to
256°/s. In McKee et al. [55], contrast ranged from
−1.33 to −0.09 and velocity from 1 to 15°/s. Thus,
these experiments investigated different, though over-
lapping, parameter ranges. Our model predicts a limited
range of contrast-induced changes in speed
discrimination.

The model accounts for contrast changes in perceived
speed through the dependence of network output on
the spatial and temporal summation of energy provided
by receptor responses by the short-range filters of Level
3 (Fig. 1). Stimulus contrast changes translate into
changes in receptor activity amplitude in the model, so
that high contrast stimuli generate larger receptor activ-
ity amplitudes and low contrast stimuli smaller activity
amplitudes. Fig. 8 shows the result of altering receptor
amplitudes on the maximal activity of different network
cells.

Since the model is based on spatio-temporal summa-
tion, one might expect that increasing input amplitude
would result in a catastrophic failure of speed estimates,
by causing large scale cells to respond at very slow
speeds where they would normally be inactive. Several



J. Chey et al. / Vision Research 38 (1998) 2769–2786 2777

Fig. 7. Plot (a) shows experimentally derived Weber fractions for velocity discrimination under different contrast conditions. Reproduced with
permission from Ref. [49]. Part (b) shows simulated discrimination measures using different input magnitudes hypothesized to correspond to
different stimulus contrasts. Curves show four input magnitudes: 0.75, 1, 2 and 4. Lower magnitudes have worse discrimination (higher
discrimination measure). Note that the curves (especially that for magnitude 4) fluctuate somewhat owing to the coarse quantization of network
inputs and scales, which in turn were adopted for computational speed and simplicity.

factors work to ensure that this is not the case. Firstly,
the changes in receptor amplitude are limited in their
effects by the membrane or shunting properties of the
transient cells, which restrict the transient cell output
ranges irrespective of their input. Secondly, normaliza-
tion due to intra-scale competition limits activity at fast
speeds, so that activity cannot rise beyond a certain
level nor can cells ever respond at speeds beyond some
high cut-off.

Since large scales have the highest thresholds and
therefore require the greatest input energy to become
active, they are the most significantly affected by any
changes in input amplitude. Thus, one might expect
that, in our model, contrast changes, modeled as
changes to this input amplitude, would primarily affect
discrimination performance at high speeds where the
large scales are active, whereas the data show that
performance is diminished at both high and low speeds.
However, it is necessary to remember that discrimina-
tion performance is based on differential activity be-
tween two speeds. The reason that discrimination

performance is poor at low and high speeds is that
fewer scales are active in these ranges and so any
change in input speed results in a smaller change in
network activity. As input magnitude is reduced, over-
all network activity declines (see Fig. 8), resulting in a
worsening of discrimination performance at all speeds.
Since low and high speed discrimination performance is
already poor, it is most significantly affected by this.
Fig. 7(b) shows the results of computer simulations
with different input amplitudes. The important data
properties from Fig. 7(a) are reproduced in the simula-
tion: lowering input magnitude causes a worsening of
discrimination at low and high speeds and a shift of the
discrimination curve upwards in such a way that the
curves tend not to intersect.

13. Contrast effects on perceived speed

Several studies have reported that contrast also af-
fects the perceived speed of moving objects. Thompson
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et al. [56] reported that low contrast gratings were
perceived to move more slowly than high contrast
gratings. Ferrera and Wilson [57] found that contrast
influenced the perceived speed of coherent plaid pat-
terns formed from superimposed gratings. Castet et al.
[58] found a contrast-induced reduction in perceived
speed of translating lines.

The data simulated here are from a study by Stone
and Thompson [34] in which subjects compared the
speed of two simultaneously presented grating patches,
a test and a reference. The contrast of the reference
grating was varied and the percentage of test gratings
perceived as moving faster were recorded as a function
of the test speed for each contrast level. Results (repro-
duced in Fig. 9(a)) showed shifted psychometric curves
such that low contrast gratings were biased towards
slow speeds and vice versa.

As indicated in Appendix A, the amplitude of inputs
was assumed to covary with contrast. Such would occur
if, for example, inputs in our simulations were them-
selves the output of a shunting center-surround net-
work, which produces peaks whose amplitudes are

Fig. 9. Plot (a) shows how perceived speed is affected by stimulus
contrast. Data reproduced with permission from Ref. [34] shows the
percentage of trials on which a test grating was judged to be moving
faster than a standard grating as a function of the test grating speed
for three different contrast levels expressed as the ratio of the test
speed to the reference speed. Plot (b) shows simulated contrast effects
on perceived speed in the model. Simulated results were obtained by
passing the difference between two speed measures, a test and stan-
dard, through an error function. Three different test input contrasts
were simulated by varying the change-sensitive unit activity ampli-
tude. The ratio next to each curve indicates the ratio of the test speed
to the reference.

Fig. 8. Maximal simulated cellular activities over speed using different
change-sensitive unit activity amplitudes, hypothesized to correspond
to different stimulus contrasts. Plot (a) shows a low amplitude unit
activity (0.75), plot (b) shows an intermediate amplitude (1) and plot
(c) shows high amplitude (2). Increasing unit activity amplitude
causes large scales to respond more vigorously and at lower speeds.
This biases the network to provide higher speed estimates.

proportional to contrast near discontinuities of an in-
put pattern [59].

The model simulates the change in relative speed
judgments due to contrast variations using the previ-
ously defined speed measure. Speed judgments were
calculated from speed measures obtained from two
inputs that were simulated separately. The difference
between the two speed measures was passed through a
sigmoidal ‘error function’ to obtain a simulated proba-
bility of an observer judging one speed as faster than
the other (see Appendix A for details). The results of
this process are shown in Fig. 9(b). For two identical
inputs of unit amplitude, we obtained a sigmoidal
curve. Changing the simulated contrast by varying the
receptor activity amplitude causes a shift in the curve
similar to that observed in the data, with a greater shift
occurring due to increases than decreases of input
magnitude. The sigmoidal shape of the curves in Fig.
9(b) results from the error function. The key result of
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Fig. 10. Plot (a) shows discrimination performance as a function of velocity under different stimulus durations. Data reproduced with permission
from Ref. [35]. Plot (b) shows simulated discrimination measures using different input durations. Four curves are shown, each corresponding to
a different input speed. From left to right these speeds decrease (10, 5, 2.24, 1.78). Qualitative properties of the data are reproduced: discrimination
performance worsens at short durations and this effect is more pronounced for slow speeds.

the simulation is the horizontal shift of model output as
stimulus amplitude is varied.

As previously noted, the effects of increasing input
magnitude are bounded by the shunting properties of
the transient cells. Thus the model predicts that there
should exist a saturation level beyond which there exists
no discernible effect of increased stimulus contrast. As
contrast decreases, perceived speed also decreases until
the input energy is sufficiently low as to cause the
stimulus to be no longer visible, or visibly in motion. At
the same time as the speed measure decreases, the total
activity in the network also decreases. We predict that
at very low activity levels, speed measures obtained
from the network are indistinguishable from noise.
Thus, it may not be the case that decreasing stimulus
contrast always results in slower perceived speeds; that
is, there may be a network energy threshold below
which the speed measures are no longer relevant. In
summary, the range of stimulus contrasts under which
a contrast-induced speed change can be effected in the
model is bounded below by the energy present and
above by the shunting properties of the transient cells.
Stimuli outside this range may not result in contrast-in-
duced changes in speed perception.

14. Duration effects on speed discrimination

De Bruyn and Orban [35] showed an influence of
stimulus duration on speed discrimination performance
(Fig. 10(a)). At short durations, discrimination perfor-
mance worsened. This effect was particularly noticeable
for slow velocities, as would be expected if the relevant
variable is spatio-temporal integration of unit
responses.

In any model that requires inputs to traverse a
certain distance in order to activate motion-sensitive
units, there will be a minimum duration required for
the stimulus to traverse this distance. In our model, a
number of factors complicate the determination of this
minimum distance. Firstly, the spatial scale of cells
covaries with their speed tuning. Thus, the minimum
duration will not necessarily decrease with input speed.
Secondly, it is not necessary for an input to completely
traverse a receptive field to activate the cell of a partic-
ular scale, as it is in a two-point correlational model
such as a Reichardt detector. For example, a scale may
be partially activated by an input which partially tra-
verses its receptive field. Because of these complexities,
it is not possible to explicitly calculate the minimum
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input durations required at certain speeds. Instead, we
use simulations to observe the effect of this parameter
on model performance.

Fig. 10(b) shows the effect of changing model input
duration at various simulated speeds has the same
qualitative properties as data in the Fig. 10(a). At low
speeds, the input traverses a small distance in a given
time, so any reduction of input duration can prevent
activation of mid- to large-scale units, causing a deteri-
oration in discrimination performance. At high speeds,
input duration is of less importance, as the input will
traverse the input field of each scale even at very short
durations.

15. Dot density effects on perceived speed

Watamaniuk et al. [36] reported that increasing the
density of a field of moving dots increases the perceived
speed of these dots (Fig. 11(a)). In the same paper, this
result was modeled using motion coherence theory [60],

in which a smoothing process integrates the responses
of primitive motion detectors across space. The pres-
ence of additional dots causes this smoothing stage to
provide a higher estimate of the image speed by provid-
ing more evidence for that speed in the smoothing
stage. In our model, the presence of additional dots
provides more inputs to the network, causing an in-
crease in perceived speed before this information is
integrated across later mechanisms.

To simulate such a random dot paradigm using a
single one-dimensional network, we assumed that a
series of dots provide input to the network as they
traverse the change-sensitive units. An increase in dot
density is simulated by a decrease in the mean time
between the appearance of these dots, which decreases
the mean time between the responses of the change-sen-
sitive units. Given a dot density, a fixed width for each
receptor, and the input speed, the expected time be-
tween the arrival of two successive dots at a receptor
was calculated. Units were then caused to provide input
pulses with a frequency corresponding to that expected
time. Note that since our simulations are one-dimen-
sional, they do not code the distinction between a dot
moving horizontally and a vertical bar moving horizon-
tally. Chey et al. [46] implement a two-dimensional
extension of the present model that simulates data in
which direction is crucial, such as the barberpole illu-
sion and plaid coherence data, without undermining the
simulations reported herein.

More frequent receptor responses (greater numbers
of dots) increase the responses of the larger scales by
providing more input energy and thus lead to an in-
crease in perceived speed, just as greater receptor ampli-
tude (greater contrast) did. Again, however, several
factors limit these effects. Saturation of transient cell
responses limits the energy obtainable from any one
transient cell, just as it did in simulations using greater
receptor activation amplitude. However, in these simu-
lations, it is not the activity at any one transient cell
that increases input energy, but rather the increase in
the number of simultaneously active transient cells.
This effect is limited by the inter-scale competition,
which suppresses activity when cells are active at the
same time as their neighbors. Fig. 11(b) shows that, as
a result, there is a range over which changes in density
affect speed judgments in the simulation. On either side
of this range the speed measure asymptotes. At low
densities, increasing density has no effect, as activity
from previous dots has already dissipated by the time
the next dot arrives. At high densities, additional dots
do not increase response, as transient cell response
saturation and inter-scale competition limit activity.
Thus, simulated dot density effects, like simulated con-
trast effects, are observable only in a limited range.
Watamaniuk et al. [36] reported results from a range
where density effects could be observed. It is not clear
from their data what the limits of this range are.

Fig. 11. Plot (a): perceived speed of moving random dot patterns is
affected by dot density. Data reproduced with permission from Ref.
[36] shows that the perceived speed of a random dot pattern (com-
parison stimulus) increases with its density. Plot (b): decreasing mean
arrival time between successive inputs, hypothesized to correspond to
increasing density, increases simulated speed measures in the network.
In the simulation, this effect can be observed only over a range of
densities.
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16. Spatial frequency effects on perceived speed

It is difficult to isolate the effect of spatial frequency
on speed estimates, since this factor may well help to
maintain velocity constancy through its influence on
perceived depth. Therefore, it is not surprising that a
number of different claims have been made regarding
changes in speed perception in response to spatial fre-
quency variations. Diener et al. [61] reported that in-
creasing the spatial frequency of sinusoidal gratings
increased perceived velocity. However, this result was
obtained only with very low spatial frequencies (below
0.07 cd). In a later study, Smith and Edgar [62] found
the opposite effect; namely, that increasing spatial fre-
quency led to decreases in perceived velocity. The
model of Johnston et al. [63] predicts this effect. Camp-
bell and Maffei [64] reported that the perceived speed
of rotating gratings increased with spatial frequency up
to 4 cd and then decreased, and Ferrera and Wilson
[57] found that the spatial frequency of sinusoidal
gratings and perceived speed co-varied. Since each of
these results was obtained under a different experimen-
tal paradigm, it is difficult to compare them. In our
model, increasing spatial frequency, while maintaining
a constant stimulus size, causes more frequent receptor
responses and therefore increases network response in a
manner similar to increasing dot density; that is, there
is saturation as very high spatial frequencies are used.

There is currently, however, no explanation in our
model for a decrease in perceived speed at high spatial
frequencies unless the width of the stimulus also
changes. This may be because the model currently
simulates only how ON cell responses are processed,
since these are sufficient to explain many speed percep-
tion data. An extended version of the model simulates
data for which OFF cell responses are also important
[65], such as second-order motion percepts. To the
extent to which OFF cell responses to high spatial
frequency stimuli inhibit larger scales, then a decrease
in perceived speed due to relatively greater activation of
smaller scales could be explained. Such a decrease
would depend on a change in the overall balance of ON
and OFF cell responses with spatial frequency.

17. Reaction time

Reaction time to stimulus onset is a decreasing func-
tion of stimulus velocity [37,66,67]). Mashhour [37] fit
this function with an expression of the type:
RT=c/Vn+RT0

where RT is the reaction time, RT0 is the asymptotic
reaction time (for fast velocities), V is the stimulus
velocity and both c and n are empirically derived con-
stants. This is an exponentially decreasing function that
asymptotes at RT0.

Fig. 12. Time taken for activity to exceed a threshold as a function of
stimulus speed, hypothesized to correspond to the speed variable
component of reaction time to motion onset. This is a decreasing
function of speed that asymptotes at fast speeds.

We simulated the time-variant component of reaction
time by computing the time taken for activity at any
scale to exceed a threshold after a stimulus starts mov-
ing. As stimulus speed increases, transient cell responses
have greater temporal overlap. This causes an increase
in input amplitude to the short-range spatial filters and
speeds their averaging rate. Faster short-range filter
averaging leads to a decrease in time taken for a filter
to exceed threshold. Thus, we predict a decrease in
simulated reaction time in the model. Fig. 12 shows
that the simulated reaction does decrease in an expo-
nential manner with stimulus speed. The asymptotic
behaviour of this measure is caused by the shunting
properties of the transient cells and the limited overlap
possible between transient cell responses.

18. Discussion

Several other methods by which the human visual
system might extract speed estimates have been pro-
posed. Correlational models, such as the Reichardt
detector, incorporate speed-selectivity into direction-
ally-selective motion sensors. Human speed perception
has been modeled by the elaborated Reichardt detector
[2,3], which differs from the original Reichardt formula-
tion in that preliminary spatial filtering is performed by
the receptors before their outputs are multiplied. A
related model is the motion energy model [1] in which
temporal filtering takes the place of the delay. Watson
and Ahumada [4] proposed that the temporal response
patterns of directionally-selective sensors are used to
derive speed estimates.

We call the model of early motion mechanisms de-
scribed in this article the MOC filter, because units are
responsive to motion of oriented contrasts. The MOC
filter model differs from other formulations in that it
starts with unoriented transient cell responses and
builds directionality and speed sensitivity from these.
Fay and Waxman [68] also used such a system. They
measured speed from the shape of convected activation
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profiles generated by transient detectors. A fundamen-
tal difference between all of these models and the MOC
filter model is that the MOC filter explains contrast-de-
pendent and other non-speed parametrically induced
variations in perceived speed, whereas other formula-
tions are designed to minimize such effects. Adelson
and Bergen [1] introduce an additional contrast normal-
ization that will produce contrast-dependent effects in
certain situations. In addition, as noted in the Introduc-
tion, the MOC filter simulates many other data about
motion perception that the correlational models cannot
explain.

The MOC filter model postulates that speed tuning is
an emergent property of spatio-temporal network inter-
actions across a series of network processing stages; it is
not explicitly defined by any one operation. Spatial and
temporal averaging across multiple spatial scales enable
the network, as a whole, to begin the transformation
from local temporal properties of moving inputs to a
global spatial map that computes a variety of motion
properties, including input speed. Spatio-temporal aver-
aging alone is, however, not sufficient to generate true
speed tuning, since the larger scales then always re-
spond more to all speeds. Self-similar thresholds and
competition within and across scales lead to true speed-
tuned receptive fields. This approach to modeling mo-
tion and speed perception avoids the danger that
miscalibrated delays across motion detectors could
yield biases in individual speed estimates. Instead, the
collective responses of multiple receptive field sizes gen-
erates a spatial pattern of activation that may be used
to vote for the most robust speed estimate. Such a
multiple-scale mechanism also enables the cortical mag-
nification factor to naturally be used to explain the
large range over which humans can discriminate input
speeds.

Another major difference between the MOC filter
and correlational models is that the former does not
presume that only two spatial locations are used in the
correlational process. Instead, all intermediate locations
participate in determining the final speed percept. This
mechanism provides for more robust computation in
the presence of cortical noise, and may help to explain
how sampling at additional spatial locations improves
the quality of apparent motion percepts, as Nakayama
and Silverman [13] have reported.

A key feature of the MOC filter model is that, in
addition to moment-by-moment speed estimates, it pro-
vides a continuously evolving set of speed estimates at
every location. For example, when a fast stimulus starts
its motion across a simulated series of cells, the initial
readings are of slow motion and only over time do the
larger scales become active and signal faster speeds.
Although data are referenced above describing a loss of
discrimination at short durations, these data do not
address a speed bias that may be present at such
durations.

The data discussed in the context of our simulations
support the hypothesis that spatial parameters of speed-
tuned units co-vary with their speed tuning. Others
have attempted to measure the spatial (and temporal)
characteristics of elementary motion detectors in differ-
ent ways. For example, van Doorn and Koenderink
[69,70] looked for the spatial or temporal points that
defined the transition between coherent and incoherent
motion with spatially or temporally alternated motion
directions, respectively. The points at which this transi-
tion took place were taken to reflect the characteristics
of the detector and varied with stimulus velocity, sug-
gesting different spatial and temporal characteristics of
different velocity-tuned mechanisms. The MOC filter
currently contains no explicit variation of temporal
properties (such as averaging rate) with scale. Different
scales nonetheless respond at different rates due to their
spatial properties and their interactions with neighbor-
ing units (see Fig. 13). Thus, one does not need to vary
the temporal processing rates of the cells simply to
achieve speed tuning, and the wide range of observed
speeds can be obtained through use of cortical magnifi-
cation to control spatial scale as a function of
eccentricity.

Johnston and Clifford [71] have developed an alter-
native approach to modeling motion perception. This
model is based upon formal Taylor series of image
brightness around a point of interest. These expansions
are used in conjunction with integral operations to
provide ‘a least squares estimate of image speed based
on measures of how the image brightness and its
derivatives are changing with respect to space and
time’. The present approach directly develops a neural
model of the magnocellular brain mechanisms that
subserve motion perception. It is not yet clear how the
two approaches can be linked. The two models do
share a key property, however: both attempt to explain
key first-order and second-order motion percepts using
a single processing stream. Baloch et al. [65] show how
mechanisms of the present model can be used to simu-
late both first-order and second-order motion percepts.

A more complex model of speed perception will
necessarily include mechanisms for grouping and com-

Fig. 13. Responses of two different cells at different scales (left is
scale 1 and right is scale 5) and different speeds (left is speed 2.24 and
right is speed 10) show that response period or apparent rate can vary
without explicit variation of the time-averaging rates of the cells.
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pleting motion direction and speed signals across space.
Only after such global processes occur do coherent
percepts of object direction and speed emerge. Typical
examples include how speed and direction percepts
both change when plaid patterns are perceived either as
independently moving components or as a coherently
moving plaid [57,72,73]. Chey et al. [46] have modeled
how output signals from our MOC filter input to such
a global motion grouping network. This extended
model proposes a solution of the global aperture prob-
lem, wherein unambiguous feature tracking signals are
used to capture and transform ambiguous motion sig-
nals to generate a coherent representation of an object’s
direction and speed of motion. The model’s central
problem is to understand what type of feature tracking
process can select an unambiguous object direction
without distorting the estimates of object speed that are
computed by the MOC filter. The resultant model,
which is called the motion boundary contour system, or
BCS, simulates data concerning the conditions under
which components of moving stimuli cohere or not into
a global direction of motion, as in barberpole and plaid
patterns (both Type 1 and Type 2), and how the
perceived speed of lines moving in a prescribed direc-
tion depends upon their orientation, length, duration,
and contrast.

The motion grouping, or capture, network of the
motion BCS involves a feedback process that allows
attention to prime a desired motion direction. In other
words, motion capture, which seems to be an automatic
and preattentive process, may be carried out by the
same circuit that permits top-down attention to selec-
tively focus on a desired motion direction [74–76].
Baloch and Grossberg [77] have suggested how this
process can help to explain the interplay of preattentive
and attentive processes during percepts like the line
motion illusion [78,79] and motion induction [80–82].
Thus the simple multiple-scale filtering and competition
circuits simulated here have already provided a founda-
tion for building a more general neural theory of mo-
tion perception.

It is of considerable interest that similar multiple-
scale filtering and competition mechanisms model the
size-disparity correlation that is used to explain how
three-dimensional forms pop-out from their back-
grounds [40]. Taken together, these results suggest that
the brain may utilize a similar multiple-scale filtering
strategy in both the V1�V2 and V1�MT cortical
processing streams. This hypothesis is consistent with
data showing that cells of primate MT exhibit sensitiv-
ity to disparity [32,83,84].

The multiple-scale organization of both streams has
elsewhere been used to model how the V2�MT cross-
stream interaction gives rise to percepts wherein repre-
sentations of object form that emerge in the
V1�V2�V4 stream are seen to move in the V1�

MT�MST stream [17,77]. The present model of mo-
tion speed filtering thus has the dual advantages of
simplicity and embeddability with a larger theory of
3-D form and motion perception.
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Appendix A. Network equations and parameters

The model is defined using differential equations.
Each equation specifies the time varying activity of a
cell, or cell population, within a level. The activity of
each such cell is represented by a variable whose letter
indicates the level in which that cell is located and
whose subscript indicates the cell’s position within that
level and, if necessary, its scale. Spatial locations are
indexed in numerical order within each level, so that a
cell’s number indicates its absolute position in a one-di-
mensional grid in its level. Simulations were conducted
by numerically integrating these equations using Euler’s
method with a time step of 0.01.

A.1. Le6el 1: Change-sensiti6e units

Assume the stimulus to be moving at velocity 6.
Change-sensitive units are activated for a fixed time
period when an input enters their receptive field. The
ith change-sensitive receptor activity xi obeys the
equation:

xi=Ã
Ã

Ã

Á

Ä

h

0

if
i
6
5 t5

� i
6
+o

�
otherwise

(A1)

The magnitude of the activity, h is assumed to co-vary
with the stimulus contrast (see Ref. [65] for details).
The duration of the activity is given by the constant o.
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Eq. (A1) is not intended to be a realistic model of the
temporal impulse response of photoreceptors, and is
employed only for simplicity. Our model works despite,
not because of, the waveform it generates, which makes
it harder for our model, or any model, to generate
smoothly modulated speed profiles.

A.2. Le6el 2: Transient cells

Transient cells space-average and time-average sig-
nals from the change-sensitive units through a mem-
brane shunting equation:

d
dt

yi= −yi+ (1−yi) %
j�Xi

xj (A2)

The ith transient cell activity yi has several important
features: its response rate (1+�j�Xi

xj) increases with
total receptor activity, and its amplitude is bounded by
1 for any receptor activity. The set Xi denotes change-
sensitive units from which the ith subunit draws its
input. Such a set consists of a series of adjacent cells
that do not intersect any other set Xj, j" i.

A.3. Le6el 3: Self-similar short-range spatial filter

Each scale of the short-range spatial filter space-aver-
ages and time-averages transient cell activity over a
different range. Each filter scale is represented at every
position. For example, scale 1 spatial filters draw input
from a transient cell at the same position in the previ-
ous level, scale 2 draws input from the same cell and
the two adjacent cells, scale 3 from those and the next
two adjacent and so on. The activity, zsi, of the short-
range spatial filters obeys:

z; si=10
�

zsi+ %
j�Ysi

yj
�

(A3)

Here the input set Ysi varies with both location, i and
scale, s. The output threshold of each filter increases
with scale:

osi= [zsi−s ]+ (A4)

This thresholded activity forms the input to the next
level.

A.4. Le6el 4: Intra-scale competition

Intra-scale competition occurs across spatial posi-
tions within each scale. The center-surround mechanism
is implemented as follows:

u; si=10
�

−usi+ %
j�Ci

osj− %
k�Si

osk
�

(A5)

The sets Ci and Si define the excitatory center and
inhibitory surround, respectively.

A.5. Le6el 5: Inter-scale competition

A similar equation is used for the inter-scale competi-
tion. The inputs from the previous level, are
thresholded (to keep them from being negative) and
raised to the third power, which causes the stimulations
of Eq. (A6) to equilibrate more rapidly than would
otherwise be the case.

w; si= −wsi+ (1−wsi)
� %

r�Ds

[uri ]+
�3

− (1+wsi)
� %

r�Es

[uri ]+
�3

(A6)

The center and surround are defined by the sets Ds and
Es.

A.6. Speed measure

The estimated speed is obtained from the weighted
sum over the entire set of scales S :

speedi=
%

s�S

s [wsi ]+

%
s�S

[wsi ]+
(A7)

A.7. Discrimination measure

The discrimination measure is obtained by finding
the minimum number of speed increments or decre-
ments that cause the total difference between activity at
each scale to exceed a threshold. Let the superscript
indicate a speed at which an activity is obtained, then
the total difference in activity between two speeds is
defined as:

differencep,q= %
s�S

�wsi
p −wsi

q � (A8)

A.8. Error function

The error function used for the simulations in Fig. 9
is erf (speedi), where:

erf(t)=
2


p

& t

0

e− (1/2)x2
dx (A9)

A.9. Simulation parameters

All parameters were kept the same during the simula-
tions reported in this paper. Only input magnitude was
varied. That is, h in Eq. (A1) was set to 1 for all
simulations except that of Fig. 9, where values of 0.5, 1,
and 2 were used. Every simulation used 15 spatial
locations and activities were measured from the middle
location unless explicitly stated otherwise. Ten scales
were used (so s, which gives the value of the thresholds
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used in Eq. (A4) as well as indexing equations for the
various scales, ranged from 1 to 10). In Eq. (A1), o was
set to 1 for all simulations.

The various sets that determine which units form
input to cells were established as

Xi={j :(i−1)×105 jB i×10} (A10)

Ysi={j :�i− j �5s} (A11)

Ci={j :�i− j �52} (A12)

Si={j :�i− j �53} (A13)

Ds={s} (A14)

Es={t :t"s} (A15)
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