
Evaluation of Software Systems

Günther Gediga∗

Institut für Evaluation und Marktanalysen

Brinkstr. 19

49143 Jeggen, Germany

gediga@eval-institut.de

Kai-Christoph Hamborg∗

Universität Osnabrück

Fachbereich Psychologie und Gesundheitswissenschaften

Arbeits- und Organisationspsychologie

49069 Osnabrück, Germany

Kai-Christoph.Hamborg@uos.de

Ivo Düntsch∗

School of Information and Software Engineering

University of Ulster

Newtownabbey, BT 37 0QB, N.Ireland

I.Duentsch@ulst.ac.uk

1 Introduction

Evaluation as a general endeavour can be characterised by the following features [84]:

• Evaluation is a task, which results in one or more reported outcomes.

• Evaluation is an aid for planning, and therefore the outcome is an evaluation of different possible

actions.

• Evaluation is goal oriented. The primary goal ist to check results of actions or interventions, in

order to improve the quality of the actions or to choose the best action alternative.

∗Equal authorship is implied.

1



• Evaluation is dependent on the current knowledge of science and the methodological standards.

Evaluation as an aid for software development has been applied since the last decade, when the com-

prehension of the role of evaluation within Human-Computer Interaction had changed. In one of the

most influential models of iterative system design, theStar Life Cycle Modelof Hix & Hartson [33],

the activities

“Task analysis”, “Requirement specification”, “Conceptual and formal design”,

“Prototyping”, “Implementation”

are each supplemented by an activity “Evaluation” which helps to decide progression to the next step.

Software can be evaluated with respect to different aspects, for example, functionality, reliability,

usability, efficiency, maintainability, portability [38]. In this survey, we concentrate on the aspect of

usability from an ergonomic point of view. This aspect has gained particular importance during the

last decade with the increasing use of interactive software.

Whereas in earlier times evaluation of software took place at the end of the developing phase, using

experimental designs and statistical analysis, evaluation is nowadays used as a tool for information

gathering within iterative design:

“Explicit human-factors evaluations of early interactive systems (when they were done at

all) were poorly integrated with development and therefore ineffective. They tended to be

done too late for any substantial changes to the system still be feasible and, in common

with other human-factors contributions to development, they were often unfavourably

received [...] This situation has been improved in recent years in a number of ways.” [90]

Within this context, instruments for evaluation are not primarily used for global evaluation of an

accomplished product, but these instruments are applied during the development of a product. Indeed,

most experts agree nowadays that the development of usable software can only be done by a systematic

consideration of usability aspects within the life-cycle model. One prominent part is the evaluation of

prototypes with respect to usability aspects, employing suitable evaluation techniques in order to find

usability errors and weaknesses of the software at an early stage [19, 33, 62, 94].

2



2 Goals and results of evaluation

Any evaluation has pragmatically chosen goals. In the domain of software evaluation, the goal can be

characterised by one or more of three simple questions:

1. “Which one is better?” The evaluation aims to compare alternative software systems, e.g. to

choose the best fitting software tool for given application, for a decision among several proto-

types, or for comparing several versions of a software system. An example of such a strategy

can be found in [77].

2. “How good is it?” This goal aims at the determination of the degree of desired qualities of a

finished system. The evaluation of the system with respect to “Usability-Goals” [9, 94] is one

of the application of this goal. Other examples are the certification of software, and the check

on conformity with given standards.

3. “Why is it bad?” The evaluation aims to determine the weaknesses of a software such that the

result generates suggestions for further development. A typical instance of this procedure is a

system developing approach using prototypes or a re-engineering of an existing system [33].

The first two goals can be subsumed under the concept ofsummative evaluation, while the third goal

is an instance of theformative evaluationapproach.

In general, summative evaluation is concerned with the global aspects of software development, and

does not offer constructive information for changing the design of the system in a direct manner. It is

performed when the development of the system is almost or entirely accomplished [33]. Summative

evaluation is also applied to prototypes in case there is a need for controlling the effect of design

changes in comparison to a preceding version of the system.

In contrast, the goals of formative evaluation are the improvement of software and design supporting

aspects [80]. It is considered the main part of software evaluation, and plays an important role in

iterative system development. In every development cycle, formative evaluation results in

• Quantitative data for the description of the progress of the realisation of usability goals, and

3



• Qualitative data which can be used to detect the usability problems of the system.

The resulting data can be classified by the following criteria [33]:

Objective: Directly observable data; typically user behaviour during the use of the interface or the

application system.

Subjective: Opinions, normally expressed by the user with respect to the usability of the interface or

the application system.

Quantitative: Numerical data and results, e.g. user performance ratings.

Qualitative: Non-numerical data, e.g. lists of problems, suggestions for modifications to improve

the interaction design.

3 Evaluation criteria

It is a matter of some debate in the human-factors community what constitutes an evaluation criterion.

We follow Dzida [14] who advised that “criteria” should mean the measurable part of attributes of

design or evaluation. Although this seems clear enough, the literature on software evaluation shows

only a few attempts how to achieve general principles of design and evaluation criteria.

The concept ofusability, which is a general quality concept for software systems, is often used for the

determination of evaluation criteria [30, 48, 64].

The international standard ISO 9241 (Part 11), which is the methodological foundation of the HCI

standard “Ergonomic requirements for office work with visual display terminals” (ISO 9241), states

that

“Usability of a product is the extent to which the product can be used by specific users to

achieve specific goals with effectiveness, efficiency, and satisfaction in a specific context

of use.”

4



Note that the characterisation of usability by “effectiveness”, “efficiency” and “satisfaction” is not a

breakdown to measurable criteria, but only a first step towards reaching such criteria [36, p. 6]. The

same is true for ISO 9241 (Part 10) [30, 35], and for other general guidelines and design principles as

well. These standards give no advice how to achieve trustworthy criteria which will fit into the needs

of a specific software evaluation task. For a concrete evaluation project, there needs to be a proper

operationalisation of the general guidelines and standards, which takes into account the context in

which the system will be applied. The context of use is defined in ISO 9241 (Part 11) in terms of the

user, the task, the equipment, and the environment. Following this description of the components of

the context of use, every evaluation has to take into account the following restrictions:

A. The characteristics of a product’s users such as experience, age, gender or other more specific

features.

B. The types of activity or tasks that the user will perform.

C. The environment of the study itself, ranging from controlled laboratory conditions to largely

unstructured field studies.

D. The nature of the evaluation object, which can be a paper prototype, a software mock-up, a

partially functional prototype or an accomplished system.

Even expert based evaluation should consider all of these four contextual restrictions in order to

achieve a valid evaluation result.

In principle, there are (at least) four approaches for the derivation of criteria:

1. The successive division of principles into a hierarchy using specialisation, until the leaves can

be measured by a set of known procedures (Top down I).

2. The successive division of principles into a hierarchy using specialisation, until the leaves can-

not be subdivided any more. This level will then be operationalised by a tailored technique (Top

down II).

3. A classification of known and/or commonly applied methods, and their mapping to criteria, or,

alternatively, an empirical assignment of items to criteria (Bottom up).

5



4. A direct operationalisation of principles, which takes into consideration the measurable de-

mands and the qualities of the object under study.

An advantage of the first strategy is that it is based on known and tried methods. However, known

methods will be applicable only to part of the actual problem, namely the final level; therefore, the

problem arises that the results may be misinterpreted due to a divergence artifact [18].

The second strategy has the advantage that it intends to measure everything that the evaluation re-

quires. Its disadvantage are the huge amount of labour required for the construction of tailored instru-

ments, and that the results usually cannot be compared to the findings of other studies.

The third strategy is expensive as well, including the risk that only some of the basic principles are

well covered, while others are not.

The fourth strategy offers not only an operationalisation, but additionally attempts a more precise for-

mulation of the criteria and the underlying principles as well. Its disadvantage is its cost; furthermore,

empirical studies following this procedure offer results which are, in most cases, too general and not

sufficiently specific for a concrete application [30].

Tyldesley [85] argues that “objective measurements” such as the time required for learning a system

are preferred measurements, and should be used as criteria for software evaluation. Although objec-

tivity and reliability of such measures are generally accepted, there are doubts about their validity:

“. . . the so-called objective measurements of performance, for example the number of

problems completed within a fixed time span, are widely applied; they are, however,

rarely valid as criteria, since the underlying causal relationships are not sufficiently in-

vestigated or stated” (translated from [30]).

The derivation of “subjective” criteria such as acceptable levels of human cost in terms of tiredness,

discomfort, frustration and personal effort, or even an operational definition of attitude, is much harder,

and Whitefield et al. [90] come to the pessimistic conclusion that there is at present no support for the

specification and operationalisation of such criteria

The bottom up approach offered by Strategy 3 above can be a starting point for criteria derivation: At

the beginning one collects “standard” operationalisations with known validity and reliability. From

6



this collection, the designer can choose those instruments which can be subsumed as a set of criteria

for the principles under study. At least for the “subjective” criteria, an operationalisation via a well

analysed questionnaire or a survey instrument may be a successful way to cope with the problem.

There seems to be no problem for operationalisation on the principles ofHeuristic Evaluationpro-

posed by Nielsen [64] and comparable techniques. These are performed by auditors who evaluate

the system given a set of general design principles. In this case, the concretisation will be done by

the auditor in interaction with the system; therefore, the burden of proper operationalisation is put

on the auditor. Such methods demand well educated and well trained evaluators, and it is no wonder

that specialists who are usability andtask experts perform better with this techniques then usability

experts who are not task experts [65].

4 Evaluation techniques

Evaluation techniques are activities of evaluators which can be precisely defined in behavioural and

organisational terms. It is important not to confuse “Evaluation techniques” with “Evaluation models”,

which usually constitute a combination of evaluation techniques.

We classify evaluation techniques into two categories, thedescriptive evaluation techniquesand the

predictive evaluation techniques, both of which should be present in every evaluation:

Descriptive evaluation techniquesare used to describe the status and the actual problems of the

software in an objective, reliable and valid way. These techniques are user based and can be

subdivided into several approaches:

Behaviour based evaluation techniquesrecord user behaviour while working with a system

which “produces” some kind of data. These procedures include observational techniques

and “thinking-aloud” protocols.

Opinion based evaluation methodsaim to elicit the user’s (subjective) opinions. Examples

are interviews, surveys and questionnaires.

7



Usability Testing stems from classical experimental design studies. Nowadays, Usability Test-

ing (as a technical term) is understood to be a combination of behaviour and opinion based

measures with some amount of experimental control, usually chosen by an expert.

Observe that all descriptive evaluation techniques require some kind of prototype and at least

one user. Note furthermore that the data gathered by a descriptive technique need some further

interpretation by one or more experts in order to result in recommendations for future software

development.

The predictive evaluation techniqueshave as their main aim to make recommendations for future

software development and the prevention of usability errors. These techniques are expert – or

at least expertise – based, such as Walktrough or inspection techniques. Even though the expert

is the driving power in these methods, users may also participate in some instances.

Note that predictive evaluation techniques must rely on “data”. In many predictive evaluation

techniques, such “data” are produced by experts who simulate “real” users. The criteriaobjec-

tivity andreliability, which are at the basis of descriptive techniques, are hard to apply in this

setting. Because validity must be the major aim of evaluation procedures, there are attempts

to prove thevalidity of predictive evaluation techniques directly, e.g. by comparing “hits” and

“false alarm” rates of the problems detected by a predictive technique [66].

At the end of the Section we shall briefly discuss evaluation techniques which can be used either for

predictive or descriptive evaluation (e.g. formal Usability Testing methods) and those which do not fit

into the predictive/descriptive classification, such as the “interpretative evaluation techniques” [88].

4.1 Behaviour based evaluation techniques

Behaviour based techniques rely on some form of observation in order to detect usability problems.

Since the user is confronted with a prototype of the system, these techniques can only be applied in

the later stages of system development.

As a first indicator of the expense of the technique, we offer the ratio “analysis time” (= time to process

the data – usually – by experts after data elicitation) to “time of users’ interaction with the system” (=

8



time to elicit the data, which will be analysed).

4.1.1 Observational techniques

User observation as a method of software evaluation takes place directly or indirectly by a trained

observer [30], and it can produce quantitative as well as qualitative data [33, p. 306]. The techniques

try to avoid subjectivity as much as possible by standardising procedures and documentation, as well

as by training the observer. They are applied, for example, if the user’s behaviour is of interest,

especially when the user cannot tell how well (or badly) (s)he behaves using a prototype [64, p. 207].

It turns out that direct observation is not a well suited technique [73, p. 617], mainly, because the

observer cannot deal with the amount of information which has to processed. Therefore, indirect

techniques using video recording of the user’s behaviour are commonly used. In human-factor labo-

ratories, several parallel video loggings (hands, screen, face, whole body), together with log-files, are

synchronised and used by the observers; an example is the VANNA system of Harrison [31].

Observational techniques show a ratio of 5:1 of analysis time to recording time [73, p. 620]. This ratio

does not seem to be reduced by using automated procedures. The main reason is that computerised

systems offer more information to the observer, which works against the effect of the rationalisation.

4.1.2 Thinking-aloud protocols

The method of thinking-aloud provides the evaluator with information about cognitions and emotions

of a user while (s)he performs a task or solves a problem; examples can be found in [8, 42, 54, 64].

The user is instructed to articulate what (s)he is thinks and what (s)he feels while working with the

prototype. The utterances are recorded either using paper and pencil [61, 62] or with more modern

techniques using audio or video recording [42, 54]. In connection with synchronised log-file record-

ings, the evaluator has the chance to interpret the user’s reaction based on contextual information

[42]. Nielsen [62, p. 72] expresses the opinion that a large amount of overhead is unnecessary, and

that simple paper-pencil recordings suffice to elicit the relevant contextual information.

A slightly different approach are thepre-eventandpost-eventthinking-aloud procedures, in which the

9



user thinks aloud before a task has started, or after a task has been completed. The post-event tech-

nique is useful, if the tasks require careful concentration. Their protocols are based on the comments

evoked by thinking-aloud, while the user observes the video recorded interaction with the system.

Post-event protocols were criticised because the user might produce rationalise her/his own actions.

Some researchers, however, point out that the more rational style of post-event protocols provides the

evaluator with useful context information which event protocols cannot deliver [58]. The empirical

comparison of post-event protocols with event protocols shows that the information provided by post-

event protocols are of higher quality, although the amount of information is reduced in comparison to

event protocols [3, 69].

The procedure of analysing thinking-aloud protocols has not much changed since the seminal paper

by Lewis [54] in 1982: The protocols are scanned, and those episodes are extracted which describe

the users’ problems and their complaints. The episodes are listed and coded by a user number and

an episode number. Afterwards, the episodes are matched with one “feature” of the system. These

“features” define the grouping criteria for the episodes. The design aspect of the “feature” and the

frequency information provide further help for the interpretation of the results.

By using thinking-aloud techniques, the evaluator obtains information about the whole user interface.

This type of evaluation is oriented towards the investigation of the user’s problem- and decision be-

haviour while working with the system [30, p 99]. The procedures to transform the lingual information

into evaluation criteria is only weakly standardised, which may be problematic.

The expense of the method varies: In our experience, the concurrent event technique requires a user

time factor near 1:1, and an evaluator time factor of about 3:1 for a trained evaluator. The video based

post-event technique needs more time with a user time factor of at least 3:1, and an evaluator time

factor of at least 5:1.

4.1.3 Video confrontation

In the area of Human-Computer Interaction, the video confrontation technique has been in use since

the mid-eighties [25, 29]. It is based on the post-event thinking-aloud technique, but differs in the way

how the video recordings of the user-system interaction are analysed: The evaluator picks out inter-

10



esting recorded episodes, and interviews the user about these. The interview is guided by pragmatic

or theoretical goals, such as finding usability problems or examining the relationship between user

errors and emotional reactions. The questions concern cognition, emotions, or problems which have

occurred during the use of the system [29]. The main result of the process is the interview protocol.

Since the frame for the analysis is set by the evaluator before performing the interview, the questions

are concentrated on the salient points, and the protocol is much easier to analyse than a thinking-aloud

protocol. Furthermore, the interview questions can be standardised, and thus they can lead to an oper-

ationalisation of evaluation criteria, which establish a direct relation to the evaluation goals. It is also

possible not only to arrive at a list of problems, but also to obtain an indication of the reasons for these

problems. Other sources of information such as other recorded sequences and log-files may also help

the evaluator to interpret the outcome of the procedure [26].

The video confrontation technique is rather costly: A rough estimation of the user time ratio is 5:1,

and of the evaluator time ratio is 7:1.

4.2 Opinion based evaluation methods

Oral or written interview techniques are commonly used to evaluate the user’s opinion about software

systems. The difference between oral interview techniques and questionnaire based techniques lies

mainly in the effort for setup, evaluating the data, and the standardisation of the procedure. The

development of an interview is more economic than for questionnaires, whereas carrying out and

evaluating a questionnaire procedure can be done with less effort and costs. Standardisation and

accuracy are also better for questionnaires.

The advantage of an interview in comparison with the observational methods of Section 4.1.1 is that an

interview helps to obtain an insight into the user’s opinion of the system which cannot be gathered by

observation alone [64, p. 209ff]. Furthermore, these techniques are not as expensive as observational

techniques.

Oral interviews are held in a flexible manner after the user had come into contact with the system, and

in a more structured way, if the user was faced with unforeseen aspects [52, 64].

11



Another aspect are “critical incidents” [33, 52, 64] – e.g. examples of worst case situations created by

experts –, which can be used to evoke oral responses.

Because there is no standardisation of oral interviews as a software evaluation technique, we shall not

discuss the various approaches in more detail. As an introduction, we invite the reader to consult the

checklist of Nielsen et al. [67, reprinted in [73]].

Interviews and questionnaires are primarily used in the specification- , design-, or re-engineering

phase, or as a means of system comparison (summative approach), where different techniques have

different focal points. In the sequel, we shall discuss three types of questionnaire in more detail: The

Questionnaire for User Interface Satisfaction(QUIS) [81, p. 482ff], theSoftware Usability Measure-

ment Inventory(SUMI) [53], and theIsoMetrics questionnaire[16].

4.2.1 QUIS: Questionnaire for User Interface Satisfaction

The “Questionnaire for User Interface Satisfaction” (QUIS) aims to provide a measure of overall

satisfaction; additionally it evaluates some aspects of the user interface based on user opinions. The

original version [QUIS 5.0, 11]) consists of the five scales

• “Overall User Reactions” with attributes such as

– terrible / wonderful,

– frustrating / satisfying,

– dull / stimulating,

– inadequate power / adequate power

– rigid / flexible.

• “Screen”, which evaluates the display appearance.

• “Terminology and System Information”, which evaluates the distinctiveness of terminology and

message display.

• “Learning”, which evaluates the suitability of the system for learning.

12



• “System Capabilities”, which evaluates the efficiency and related aspects of the system in terms

of speed and reliability.

The current version of QUIS is enhanced by the scales “Technical Manuals and On-line Help”, “On-

line Tutorials”, “Multimedia”, “Teleconferencing” and “Software Installation” [82]. A short (47

Items) and a long version (126 Items) of QUIS are available. The short version should be used, if

there are only few time resources, or if motivational problems of the user can be anticipated. In the

long version there are more concrete questions explaining and complementing the “leading items”

(which constitute the short version) of each scale. At the beginning, there are questions about the

properties of the system under study (in terms of the user’s opinions) and the characteristics of the

user.

The scaling of the items ranges from 1 to 9, and an additional “no answer” option. The endpoints of

the scales are anchored by pairs of adjectives (e.g. difficult / easy). User comments about the system

can be expressed at the end of each scale.

Reliability and validity of QUIS(5.0) have been investigated by Chin et al. [11]. They could show that

its overall reliability is good, but no separate reliability measures for the five sub-scales were reported.

Validity was shown in terms of differentiation of “like” and “dislike” for a software product, and the

results of QUIS can be used to differentiate command line systems and menu driven applications.

The predicted dimensionality of QUIS(5.0) is questionable, and there should be more analysis for

construct validity as well, since “... no attempt to establish any construct or predictive validity was

done”. [11, p. 218] For the new version of QUIS, psychometric results are not (yet) available.

4.2.2 SUMI: The Software Usability Measurement Inventory

SUMI ([49], [53]) was developed primarily as a summative instrument which measures a user’s per-

ception of the usability of a software. SUMI consists of 50 items, which are assigned to five scales.

Additionally a “Global” scale was constructed consisting of those 25 items which show a high cor-

relation with an overall usability factor. The “Global” scale was constructed to present the perceived

quality of the software as one index.

13



The answer format for the items consists of “agree”, “don’t agree" and “disagree”. In a SUMI evalu-

ation, the recommended number of users is 10 to 12. The headings of the scales are:

• Global (25 items)

• Efficiency (10 items)

• Affect (10 items)

• Helpfulness (10 items)

• Control (10 items)

• Learnability (10 items)

The efficiency scale evaluates how well the software supports the user while working on the tasks. The

affect scale measures the user’s general emotional reaction to the software. Helpfulness is intended

to measure the degree to which the software is self-explanatory, and also the suitability of the help

system. The control scale is used to measure the degree of the user’s feeling that (s)he controls the

software. Finally, learnability measures time and effort for learning the handling of the software (or

parts of it) from the user’s point of view.

For formative evaluation, SUMI was supplemented by the “Item Consensual Analysis” (ICA), which

enables the evaluator to locate usability problems more precisely than with the analysis of the scales

profiles. ICA needs a “Standardisation Database" which consists of expected pattern of responses for

any SUMI item. A comparison of expected and observed frequencies for the items (using a Chi2 test)

shows which item signals a demand for change.

A second variant of the ICA should be used, if a more detailed problem analysis is required. In this

case, the first step consists of a sample of at least 12 users who are confronted with the standard SUMI.

Based on the ICA analysis of the user data, an interview script is constructed, and interviews are held

to obtain explanations for the discrepancies of expected and observed frequencies.

The sub-scales of SUMI show reliabilities which range from satisfactory to good. Validation studies

of SUMI have shown that the questionnaire has the capability to distinguish software of different

14



ergonomic quality [49, 53]. The usefulness of SUMI in consultancy-based studies as well as in case

studies has been exemplified in [49, 53].

4.2.3 IsoMetrics

The IsoMetrics usability inventory provides a user-oriented, summative as well as formative approach

to software evaluation on the basis of ISO 9241 (Part 10) [16]. There are two versions of IsoMetrics,

both based on the same items: IsoMetricsS (short) supports summative evaluation of software systems,

whereas IsoMetricsL (long) is best suited for formative evaluation purposes.

The current version of IsoMetrics comprises 75 items operationalising the seven design principles of

ISO 9241 (Part 10). The statement of each item is assessed on a five point rating scale starting from 1

("predominantly disagree") to 5 ("predominantly agree"). A further category ("no opinion") is offered

to reduce arbitrary answers. IsoMetricsL consists of the same items as IsoMetricsS and uses the same

rating procedure. Additionally, each user is asked to give a second rating, based upon the request

“Please rate the importance of the above item in terms of supporting your general impres-

sion of the software.”

This rating ranges from 1 (“unimportant”) to 5 (“important”), and a further “no opinion” category

may also be selected. In this way, each item is supplied with a weighting index. To evoke information

about malfunctions and weak points of the system under study, the question

“Can you give a concrete example where you can (not) agree with the above statement?”

is posed. This gives users the opportunity to report problems with the software, which they attribute

to the actual usability item.

The IsoMetrics design provides information that can be used within an iterative software development.

In summary, these are

• Scores of the usability dimension to measure the progress of development.

• Concrete information about malfunctions and their user-perceived attributes.

15



• Mean weight of any user-perceived attribute, given a class of system malfunctions.

IsoMetrics has proved its practicability in several software development projects. Its reliability was

examined in two studies for five software systems, and could be justified for each of the seven design

principles. In order to validate the IsoMetrics inventory, the scale means of the five different software

systems analysed in the reliability studies were compared. It could be shown that programs with

different ergonomic qualities were discriminated in the corresponding scales [16].

Given ten evaluating users, IsoMetricsL evokes approximately one hundred remarks (The validity of

this procedure has been reported elsewhere [93]). These are prioritised by their rated importance and

their frequency. The content analysis of the remarks results in the identification of weak points of

the evaluated software, and provides the input to a usability review. In such a review, users, software

engineers and human-factor specialists develop remedies for the system’s weak points and discuss its

(re)design. This procedure has been highly accepted by developers as well as the users. A version of

IsoMetrics which is applicable in group settings is discussed in [17].

Another summative evaluation method based on ISO 9241 (Part 10) has been adopted as a formative

instrument in a system called “Qualitative Software Screening” [4, 74].

4.3 Usability Testing

Usability Testing is a name for a systematic and – more or less rigid – experimentally based gathering

of information about a product or a prototype using user representatives. [34, 79]. A rough classifica-

tion by Rubin [79, p. 22] can be used to characterise different approaches to Usability Testing:

• “Formal tests conducted as true experiments". This approach is characterised by the use of

classical experimental designs for testing hypotheses and for deriving causal dependencies [see

also 78].

• The second class of usability tests, described to be “a less formal one, employs an iterative cycle

of tests intended to expose usability deficiencies, and gradually shape or mold the product in

question”.

16



Whereas both approaches differ in their proximity to classical experimental designs in terms of the

accuracy of the description of the independent factors, the problem of defining dependent variables –

the measurables – is common to both approaches. The dependent variables are chosen pragmatically

according to the evaluation goals. Techniques described above, including

• Questionnaires and interviews,

• Observational methods,

• Think aloud technique,

• Video-confrontation,

are used to measure the impact of differences in system design, or different versions of a prototype

on the usability of the product. Additionally, so called measurement criteria [85] are used. These are

task specific measures such as “time to complete a task” or “percentage of tasks completed”, which

can be easily applied, if tasks are accurately described. The thinking- aloud technique is “perhaps the

most common technique for qualitative data generation . . ." [33, p. 306]; indeed, many other authors

emphasise the use of thinking-aloud methods in usability testing [19, 42, 48, 54, 64, 79, 94].

Whereas Nielsen [64, p. 165] advocates

“User testing with real users is the most fundamental usability method and is in some

sense irreplaceable, since it provides direct information about how people use computers

and what their exact problems are with the concrete interface being tested”,

the approach has been criticised because of its expense and its low cost-benefit relation [44]. As a

possible remedy, inspection based methods are being discussed as an alternative evaluation approach

[66]. These are predominantly used to uncover general usability problems in the interface, and consist

of a combination of predictive techniques, described more fully below, such as heuristic evaluation,

Walkthrough, or group discussions with other quality assurance tools like standard inspection or fea-

ture inspection [66, 86].

17



Virzi [86] calls usability inspection a “non-empirical” method, and points out that this method has

the typical weaknesses of a purely predictive technique, because it relies mainly on the ability of the

inspectors to predict problems of users with the software.

Because Usability Testing requires a large amount of expertise to

• Set up the experimental design,

• Choose the suitable tasks for comparison,

• Select the users and the number of users,

• Define the measurables properly,

it is perhaps best suited for usability engineers. It is certainly not a suitable technique for untrained

evaluators.

4.4 Predictive Evaluation Techniques

Because predictive evaluation techniques aim to achieve results which can be used in practice, these

methods are related to problem solving techniques which are used for the same reasons in other

contexts such as requirements analysis.

Whereas observational and opinion based methods require a (more or less) sophisticated prototype,

the predictive evaluations do not need a built system, because empirical methods are replaced by

a theory or the contribution of experts. Consequently, user involvement is not as dominant as in

the empirical evaluation techniques. Nevertheless, user participation could be more prominent in

predictive techniques, because user representatives have the opportunity to influence the development

process actively, whereas in descriptive techniques the user plays a more passive role.

4.4.1 Usability Walkthroughs

There are different variants of Walkthrough methods in Human-Computer Interaction [1, 2, 48, 55,

79]. Object of a Walkthrough is either the system design, a paper prototype [e.g. 48, p. 698], a built

prototype [e.g. 79], or a completed system.

18



The main feature is a set of instructions to check step by step the artifact under development. For each

step, the participants note problems with the task or screen design – in case of a paper prototype –,

or with the user interface of a built prototype. After the data collection, problems are discussed and

improvements of the system are proposed. The task sequence of a Walkthrough must be fixed, since

otherwise the simulation is not meaningful for evaluation purposes.

Walkthrough methods for software evaluation are often performed in a group [1, 2, 48], mainly, be-

cause group Walkthrough has proved to be more effective than comparable individual Walkthroughs

[73, p. 706]. The participants of a group Walkthrough come from different areas, for example, repre-

sentatives of the expected user population, product developers and human-factor specialists. Because

of the heterogeneous composition of the group, one also speaks of “Pluralistic Walkthrough” [2].

Walkthroughs are well suited to detect those usability problems which are caused by a discrepancy

of system behaviour and a user’s habits or expectations [89, p. 107]. Furthermore, they are an aid to

ascertain whether the user interface is perceived to be adequate. Examples for such Walkthroughs are

checking the wordings in the user interface, the distinction of buttons, commands or menus, or the

analysis of small task sequences.

As a general method, Walkthroughs are limited because of their cost. A whole user interface cannot

be evaluated by Walkthroughs with a reasonable cost-benefit relation, and therefore, only selected

features are usually taken into consideration. A further limitation is the fact that explorative behaviour

can only be simulated in a limited way; therefore, unexpected errors or misfits cannot be detected by

usability Walkthroughs [2]. Another problem is the fact that the success of a Walkthrough, if applied

as a group technique, depends on the combination and the psychological fit of the group members [48,

p. 698f].

A prominent example is theCognitive Walkthrough(CW). It is a method for evaluating user interfaces

by analysing the mental processes required of a user [55, p. 717ff]. Its scope is the ease of learning,

in particular, of learning by exploration, and it can be carried out by individual experts or by a group

of peers. Details for a peer group evaluation can be found in [89, p. 106].

The CW is guided by four questions, which the evaluator should answer at every task step:

• Will the user try try to achieve the right effect?

19



• Will the user notice whether the correct action is available?

• Will the user associate the correct action with the effect to be achieved?

• If the correct action is performed, will the user see that progress is being made

towards a solution of the task?

Input to a CW session consists of a detailed design description of the interface such as a paper mock-up

or a working prototype. Additional input may be a task scenario, the precise description of prospective

users, the context of system use, and a correct sequence of actions that a user should successfully

perform to complete the designated task. Additionally, there must be a mapping of the task steps

to corresponding “interface states”. The evaluator simulates the task steps according to the limited

possibilities of the intended users, and judges whether the system offers suitable tools for each step of

the task sequence. In particular it is noted whether all necessary information is presented in a complete

and appropriate manner; the evaluator will record other usability problems as well.

For each action within the task sequence a “success story” is constructed, which contains the reason(s)

why a user will or will not perform the action. If a difficulty is identified, a reason is assigned, for

example, that a required menu item does not seem related to the user’s goal. Problems and their causes

are recorded. Finally, the analyst reports alternatives to the proposed design. In this way, the method

utilises factors which influence mental processes such as a user’s background knowledge.

The advantage of the CW is that it can be applied in early stages of the development, and that not only

usability weaknesses of the system are reported, but other problems as well.

One of the restrictions of the CW is the fact that the simulated sequence of actions has to be correct.

This requirement puts a high demand on the qualification of the analyst, because (s)he has be familiar

with the tasks and the environment in which the tasks will be carried out. However, whether a user

will perform according to the “correct” way cannot be checked beforehand. Therefore, the analyst

should have a profound knowledge of human factors, and should be aware of the intended user profile;

furthermore, the analyst should be familiar with at least the basics of system development.

It has also been criticised that the focus of analysis of the CW sacrifices other important usability

information such as overall consistency [86, p. 707].

20



4.4.2 Inspection by experts and heuristic reviews

Usability inspection by experts can be subdivided into free, structured, or model based variants. These

are used for the generation of problem lists, and form the basis for system optimisation [64]. The

usability inspection is carried out by a human-factor specialist, who is not directly involved in the

development of the system. If there are several inspections of the same subject, they will be done

independently of each other. Object of the evaluation can be the whole user interface or some of its

components [30, p. 100]. The technique can be used at an early stage of the life cycle in which paper

prototypes will be used.

In case of a free expert inspection, the evaluator checks the software system using only a few general

guidelines. Structured expert inspection – like standard inspection or consistency inspection – is based

on detailed criteria or standards, and uses checklists as a tool. Model based inspection commences

with a model of the user interface, and includes a defined evaluation procedure [30, p. 101].

Heuristic Evaluation (HE) is a special adaptation of a free expert evaluation [65]. Unlike the expensive

and detailed expert evaluation by standard or consistency inspections, the HE uses the following

usability heuristics:

• Provide a simple and natural dialogue,

• Speak the user’s language,

• Minimise user memory load,

• Be consistent,

• Provide feedback,

• Provide clearly marked exits,

• Provide shortcuts,

• Provide informative error messages,

• Prevent errors.

The heuristics are general principles which guide the evaluator through the inspection process. A

number of evaluators inspect the user interface in individual sessions. Nielsen [65, p. 26] recommends

21



a number of three to five evaluators, because in his studies using HE, a larger number of evaluators

will not result in additional relevant information. The degree of standardisation is not very high, and

“In principle, the evaluators decide on their own how they want to proceed with evaluating

the interface”. [65, p. 29]

HE is normally carried out by a double inspection of the user interface: In the first round, the evalu-

ator obtains a feeling for the system and its potential. The second inspection allows the evaluator to

concentrate on those elements of the interface which are relevant for evaluation purposes. The evalu-

ator steps through the interface design and checks the dialog elements on the basis of the heuristics.

Results of the HE are either fixed in a protocol by the evaluator, or the evaluator reports the findings

to an observer while checking the system.

An HE session should not last longer than 2 hours. If the evaluation of a larger or complicated

system requires more time, it is necessary to split the HE into several sessions, which will fit the time

restriction.

Inspection methods share a problem with the Cognitive Walkthrough: The evaluators must be user

andtask experts. A further disadvantage of the method is that

. . . it sometimes identifies usability problems without providing direct suggestions for

how to solve them. The method is biased by the current mindset of the evaluators and

normally does not generate breakthroughs in the evaluated design” [68, p. 255].

Although HE is part of the so called “discount usability engineering methods” [61, 72], there are

more pessimistic results as well: The main argument for the “discount” – that there is a need for only

a few experts to achieve acceptable results – has been questioned by a comparative study of Gediga

& Hamborg [15]. The authors show that the number of required experts depends on several variables,

including the task, the layout of the evaluation, the quality of the evaluator, and the definition of a

“usability problem”.

22



4.4.3 Group discussion

The object of the evaluation using group discussion is the complete user interface of the system,

and different criteria can be used for the evaluation. Perhaps the most interesting aspect of group

discussion is the possibility to use it as a creativity technique to generate evaluation criteria as a first

step of the evaluation. Group discussion is quite flexible in its orientation: It may be user -, task - or

organisation - oriented [30, p. 101]. The application of the technique tends to be more efficient in the

early stages of development.

Group discussion among user representatives and/or system designers is not a stand alone technique,

and it must be supported by other means. In the “Group Design Reviews” [86], several users discuss

the user interface. The discussion has to be moderated by a human-factor expert; other experts such

as designers, training experts, marketing experts etc should complete the group if it seems necessary.

A combination with a Walktrough is straightforward [2] and more effective than a Walkthrough on its

own [73, p. 706].

4.5 Other Techniques

Although we have listed quite a number of techniques, there are more variants and combinations

which had been used in the past 2 decades.

A very interesting different point of view is taken by theinterpretative evaluation techniques[88],

which have moved away from the evaluator-controlled forms of evaluation to more informal tech-

niques derived from anthropology and sociology. The techniquescontextual inquiry[91], co-operative

evaluation[58], andparticipative evaluation[24] advocate a more holistic treatment of evaluation.

Up to now, no comparative study includes these techniques, but we are confident that at least the idea

of the interpretative evaluation techniques will find its way into the HCI laboratories.

Modelling approachesaim at a formal description or prediction of the human-computer interaction.

Their historic root is a model of an abstract human processor which sets the frame for a task descrip-

tion, given a more or less abstract system in a concrete environment [5]. The concept has resulted

in a number of developments such as the GOMS and NGOMSL approach [51], the task knowledge

23



structure (TKS) and the knowledge analysis of tasks (KAT) [41], the task action grammars (TAG)

[71], the external tasks – internal task mapping (ETIT) [59], and the yoked state space (YSS) [70].

All these models share some characteristics: They offer convincing results, e.g. the comparison of as-

pects of the PC-DOS and the Macintosh interface using NGOMSL by Kieras [50], and they are used

for comparatively small scaled applications. Even though their advocates have asserted for the past

decade that the models will be more applicable, if computer speed and memory are sufficient to fit the

requirements of the models, there are some reservations concerning the validity of such methods for

larger applications. It was noted that the human processor model does not take into consideration the

huge individual differences among human subjects, as well as results from the large body of results

in reaction time research [27]. Finally, it was shown that known results on learning or chunking pro-

cesses is only considered if they fit smoothly into the proposed model. Because the human processor

is therefore, at best, a rough approximation of human behaviour, one can conclude that the results

may well be acceptable for small scaled examples, but will run into problems if the model is applied

to more demanding systems.

4.6 Comparison of software evaluation techniques

There is a plethora of studies which deal with the comparison of evaluation techniques in terms of

effectivity, efficency or utility [12, 13, 15, 28, 32, 39, 40, 43, 83, 87]. It is also investigated whether

the information gathered by different methods are the same or not. Frequently, some of the “cheaper”

predictive methods such as Heuristic Evaluation or Walkthroughs are benchmarked with a usability

test method.

The results reported in the literature lead to the conclusion that empirical comparison of software

evaluation techniques is a minefield. First of all, researchers are faced with the usual problems en-

countered in empirical comparisons, such as finding adequate and representative testing subjects,

objects and situations, and a suitable methodology for analysing the results. Secondly, as Gray &

Salzman [23] point out, up to now, no study fulfils the rigorous standards of experimental design. In

benchmark studies, confounding variables may intervene (e.g. different testing situations, different

time of contact, different number of subjects performing the methods . . . ), and therefore, it may not

24



be appropriate to interpret the results in terms of difference of methods alone. Carroll [7, p. 309]

comments

“In their focus on conventional experiments, Gray and Salzman underestimate the impor-

tance and the distinctiveness of rare evaluation events” .

The main argument in favour of comparison is that if one perceives the confounding variables as

specific properties of the methods, comparison is a valuable evaluation of techniques, which may

help practitioners to choose the “best” method for evaluating software. However, this pragmatic view

puts heavy restrictions on the empirical studies, because a valid benchmarking is only feasible if the

methods are applied exactly as they will be used in practice. Gray & Salzman [23] have shown that

some studies do not fulfil these restrictions.

The situation is complicated, because the definition of some methods is not very precise. If, for

example, “the” technique of Usability Testing is compared with other methods, it is often not clear

what is really meant. One can argue that there is no Usability Testing method as such, since the

technique has shown high variability and evolution over the past two decades. The same holds – to

some extent – for other techniques as well. Two classical studies shall demonstrate the problem:

• Jeffries et al. [39] compare Heuristic Evaluation with Software Guidelines, Cognitive Walk-

through and Usability Testing. They showed that Heuristic Evaluation is more effective and

efficient than Usability Testing (Rank 2) and the other two techniques in terms of detection of

severe problems and of costs.

• Karat et al. [43] compare a variant of Heuristic Evaluation, Walkthroughs and Usability Testing.

They show, to the contrary, that most of the problems are detected by Usability Testing in shorter

time than by the other methods.

Taken together, the results of both studies (and of other cited studies as well) are inconclusive. Re-

viewing empirical comparison studies, Karat [45, p. 233] summarises

“Usability evaluation methods act as different types of filters of user interaction with a

computer system.”,

25



which well describes the state of knowledge about evaluation technique benchmarking. Nevertheless,

some lessons can be learned:

• Heuristic Evaluation offers at least satisfactory results. A combination of Heuristic Evaluation

with a thinking-aloud technique seems to be a very effective strategy [39].

• Usability Testing procedures – and other descriptive techniques as well – often result in more

information than predictive techniques. The findings show that predictive techniques – like

Heuristic Evaluation – concentrate on severe problems only, whereas problems discovered by

a descriptive technique address more specific – and sometimes “cosmetic” – aspects of the

software.

• Usability Testing often needs more effort and equipment than comparable predictive techniques.

• Predictive evaluation techniques can be applied earlier in the life cycle than Usability Testing

procedures.

• The goal of evaluation needs to be taken into account:

– If the evaluation goal is summative (“which one is better” or “how good”), the behavioural

evaluation procedures applied in Usability Testing are the methods of choice.

– Neither Usability Testing nor pure expert based techniques support participatory design

[60]. To achieve this, collaborative Walkthroughs or other group discussion techniques

which include user representatives are necessary, because in these techniques the user has

the chance to be an active part of system development.

The decision which evaluation technique(s) should be used has to be based on the concrete demands of

the software development schedule, human-factor considerations, and cost benefits issues Karat [48,

p. 699]. The results of the above mentioned comparison studies can only constitute a limited basis

for such a decision. A systematic investigation of the “Return of Investment” [46, 56] of usability

activities in the software life-cycle is still missing:

“The relative cost-effectiveness of usability testing and inspection methods, based on

return of investment in implemented changes, is not clearly established at this time" [45].

26



5 Evaluation models

In contrast to software evaluation techniques, which were presented in the preceeding section, soft-

ware evaluation modelsdetermine the frame of the evaluation, which consists of

• Choosing techniques appropriate for the life cycle, and

• Setting the focus with respect to the objects under study and the measurement criteria.

Evaluation models may provide a standardised treatment of establishing (potentially) successful pro-

cedures in the practice of evaluation, and are a necessary tool for a comparing different types of

software evaluation. Any descriptive evaluation procedure must be combined with some kind of pre-

dictive technique to result in an applicable evaluation model; furthermore, some preparatory steps

are necessary. For example, the evaluation model, which consists of the IsoMetricL questionnaire

as a basic technique, standardises the preparatory steps “choosing the tasks” and “choosing the user

group(s)”; it also standardises the preparation of the report by an expert, and the structure of a “us-

ability review”, which consists of a standardised result presentation and a Walkthrough technique

[17].

There are three classes of evaluation models:

Method driven models : These models offer a frame for software evaluation based on a collection

of techniques. The models are only applicable if the evaluation procedures fits perfectly the

problems encountered by the user and the system developers.

Criteria driven models : More or less abstract criteria are defined and refined; the evaluation in

these models aims at a measurement of the criteria.

Usability Engineering : These are evaluation models which are driven by the needs of a specific life

cycle model.

5.1 Method driven evaluation models

The centre of method driven evaluation models consists of the arrangement of evaluation techniques,

amended by the regulation of preparatory and subsequent tasks. A method driven evaluation model

27



can be perceived as a complex evaluation technique as well. An example is EVADIS II [75, 76],

which is well tested for office automatisation software. The EVADIS II model combines interviews,

simplified task analysis, and expert judgement in the following steps:

1. Installation and exploration of the software.

2. Analysis and relevance weightings of the tasks, construction of test tasks.

3. Analysis of the user characteristics. Selection of relevant ergonomic test items.

4. Evaluation of the software, based on the results of the first three steps.

5. Interpretation of the results and composing a test report.

The first three preparatory steps can be handled in parallel; they result in testing tasks and a list of

ranked ergonomic evaluation criteria, mainly based on the principles of ISO 9241 (Part 10). The ranks

of the criteria are deduced from the user profile, and they determine the test items which are chosen

from an item database. In step four, the testing tasks are evaluated by an expert who steps through

the tasks, and answers the questions formulated in the ergonomic items. The recorded answers form

the basis for the test report. Every step of EVADIS II is supported by a large amount of supporting

material such as databases and guidelines, which allows a domain expert with only a small amount of

knowledge of software evaluation to form a well-founded opinion on the topic.

5.2 Criteria driven evaluation models

Criteria driven evaluation models start with assumptions about the structure of the design process in

which criteria are defined, and give advice how to derive measurables form the criteria. Because these

models focus on criteria and measurables, there is no close connection to a design model. Standards

such as ISO 9241 or ISO/IEC 9126 can constitute a basis for a criteria driven evaluation model. As

an example, we discuss the “Evaluation Process Model” ISO/IEC 9126 (1991) [38, 92], which is the

basis for many software quality assurance procedures. The standard ISO/IEC 9126 aims at a product

evaluation from a software quality point of view. It defines a specific process model and some general

quality characteristics, for example,

28



• Functionality,

• Reliability,

• Usability,

• Efficiency,

• Maintainability,

• Portability.

Although “Usability” appears as a criterion, ISO/IEC 9126 does not aim at the ergonomic quality of

the software:

“Usability defined in this International Standard as a specific set of attributes of software

product differs from the definition from an ergonomic point of view, where other char-

acteristics such as efficiency and effectiveness are also seen as constituents of usability.”

[38, p. 3]

After the relevant quality characteristics and their weightings have been selected, the evaluation pro-

cess is performed in three steps.

1. Fixing the requirements: The requirements are derived from the application context of the sys-

tem. The quality characteristics are formulated concretely in terms of observables, which oper-

ationalise the criteria and meet the requirements.

2. Preparation of the evaluation: This step comprises the operationalisation of the criteria into

metrics and composite measurables.

3. The evaluation step: The evaluation of the product or a part of the product is performed in the

basis of the derived requirements and chosen metrics.

Because ISO/IEC 9126 offers a general framework for software evaluation within the context of soft-

ware quality assurance, we present the tasks accompanying the three steps of evaluation in more detail

in Figure 1.

29



Figure 1: The ISO/IEC 9126 evaluation model

5.3 Usability Engineering

Usability Engineeringis concerned with the systematic integration of methods and techniques of

building usable software in the system development process. It can be characterised as a process

which covers the definition and the measure of product usability in general [94, p. 654]. Usability

Engineering models coordinate the “Usability Engineering activities", and do not replace traditional

models of the software engineering process. The evaluation of software is a prominent part of any

Usability Engineering model [6, 57, 64, 94].

The models are committed to the approach of the User-Centred Design [47], which is based on the

assumption of an iterative system design with user participation [6, 60]. In this process, the user is

regarded not as a producer of usability data, but should be directly and actively involved in the design

process:

30



“I strongly recommend that all team members carry out life-cycle tasks jointly, so that

they develop a shared understanding of the requirements and design issues. In addition, it

can be extremely effective to have users participate in many Usability Engineering tasks,

not just as objects of study or sources of information, but as active participants.” [57, p.

22]

Usability Engineering requires a software engineering model, which allows revisions and feedback

loops. These models include the prototyping approaches, iterative system design and user involvement

[19, 57, 64, 94].

Models of Usability Engineering are usually subdivided in three phases [19, 22, 57, 64]:

Phase 1: Analysis and specification.The first step – the “Gearing-Up Phase” – starts with prepara-

tory activities, such as choosing general principles for the design, for example, relevant stan-

dards, development models and tools. The next step – the “Initial Design Phase" or “Require-

ments Analysis” – is concerned with the characterisation of users and the setup of user profiles;

additionally, task and work flow have to be analysed. The obtained information is used to plan

the activities of the “Work Re-engineering” and for the design of the user interface. As a result

of this process, usability specifications are developed, which consist of goals for user-oriented

design and behaviour-oriented measurables of these goals. The outcome of this phase is sum-

marised in a product style guide [57].

Phase 2: Iterative development.The results of the preceding phase are used to design the organisa-

tional and work flow part of the system. Conceptual models are developed which can be used to

produce paper and pencil or prototype mock-ups. Using an iterative design, the prototypes are

evaluated and changed continuously. This helps to identify and remove major usability bugs.

If the conceptual model shows satisfactory results, the screen design is developed, using screen

design standards, and evaluation of the screen design takes place with the aid of a prototype. As

above, the results are summarised in a product style guide.

Phase 3: System Installation.The final phase is concerned with “system installation” and “user

training”. Furthermore, the acceptance of the system has to be assured, and system support

31



and maintenance must be organised. Software evaluation procedures in the application phase

have to be planned in order to obtain feedback about the usability of system. This information

can be used for the design of new releases.

The standard ISO/DIS 13407 [37] is closely connected to the Usability Engineering approach. It

describes three different usability activities in system design

1. Analysis and specification of the context of usage and the needs of the users and organisational

needs.

2. The system design.

3. The evaluation of the system design using user-oriented criteria.

Similar to the Usability Engineering approach, ISO/DIS 13407 uses the principles

• Prototyping, iterative design, direct user participation, iterative evaluation, quality enhancement

of the system

in all phases of the design process.

In case that the evaluation cannot be performed by users, ISO/DIS 13407 recommends evaluation by

experts, but it is advocated that a user based evaluation is done at a later step of system development.

The evaluation-(re)design cycle is repeated until the goals of the user-centred design are fulfilled. The

product can be evaluated to ascertain whether it fulfils the user-oriented requirements and/or whether

it is in accordance with other international standards such as ISO 9241 [10].

5.4 A problem: The integration of software evaluation models and software design

models

It is pointed out in ISO/DIS 13407 that “user-oriented activities” have to be integrated into the system

development process, and the standard gives some advice how this can be done. This is an urgent

need, because in classical approaches, the combination of system design with software evaluation

32



models in general and the Usability Engineering models in particular seems to be more an art than

a science. Although some case studies show that an effective combination of both model types can

be achieved [20, 21, 63], Mayhew [57, p. 4] points out that “... Gould and Lewis did not specify

exactly how these global usability strategies could be integrated into an overall software development

life-cycle ...”, and recommends her own approach as an alternative. She admits, however, that

“. . . the exact overlapping of the two types of tasks is not completely clear. The most

appropriate relationship between them is probably not absolute, but is most likely de-

pendent on various project-specific factors and on the particular software development

methodology with which the life-cycle is integrated . . . For example, traditional systems

analysis and Contextual Task Analysis are highly related tasks, but they are not the same

thing and require very different kinds of expertise. Exactly how to integrate them to avoid

duplication of effort and yet produce the intended and necessary outputs of both is a topic

for future work.” [57, p. 17]

To date, there are only loose connections of activities of Usability Engineering and the object-oriented

design methodology. These are concentrated in the requirements analysis and in the design / testing /

development cycle. The generation of an object-oriented “Requirement model” can be supported by

user profiles, which can be obtained by task and work-flow analysis. “Work Re-engineering Tasks”

correspond to the construction of an “Analysis Model” in object-oriented design. The design and

programming of the user interface in the object-oriented model (the “Design Model”) can be supported

by conceptual models [57, p. 30].

6 Future Tasks

There are many evaluations techniques and few evaluation models which can be applied in practice.

Although much has been achieved, there is a dire need to devote more effort to developing applica-

ble models for practical use, in particular, if non-experts evaluate software as in smaller companies.

EVADIS is an instance of such a model, as it combines several evaluation techniques to a coherent

evaluation model in the domain of office automation.

33



At present, the differences in effectiveness, efficency and the cost-benefit relation of software eval-

uation techniques and models are not satisfactory. Due to the huge number of techniques and their

variants, the labour of comparing these techniques – and models using them – would be tremendous.

An empirical stock-taking of frequently used models should be done to form a basis for future com-

parison studies. These should not only consider effectiveness, efficency and return of investment, but

other effects on the software as well, such as time efficency, suitability for learning, or user satisfaction

[44].

For a number of techniques there is a need to investigated where they will fit into a software devel-

opment cycle. The rule of thumb “early→ predictive & late→ descriptive” should be replaced by

a more differentiated rule system. Because most findings demonstrate that the techniques produce a

large amount of overlapping results, the effect of combining evaluation techniques needs to be eval-

uated as well. Inspecting the evaluation models, we see that there should be a higher integration of

models as well. In particular, the goals and techniques of Requirements Analysis overlap with the

goals and techniques of software evaluation in such a way that a unified approach would save time

and money.

Most software evaluation technique we have presented aim at the operationalisation of “Usability”

of the software. The investigation how “Usability” can be described in theoretical terms is still on-

going. “Usability” is a combination of – at least – two different kinds of constructs: The “ease of

use” and the “enjoyment to use”. Whereas older studies and methods had a closer look at the “ease

of use” component, the “enjoyment to use” has been the focus of newer studies (at least since SUN

and SAP proclaimed that even office software should be enjoyable). There is some evidence that both

components vary independently, which implies that there is also a need for an independent measure

of both aspects.

Even though much effort and research are still necessary to develop more efficient software evaluation

procedures, we hope that the paper has demonstrated that there is not only a large body of techniques,

but also that these techniques are applicable and valuable in the development of software systems.

34



References

[1] Bias, R. (1991). Walkthroughs: Efficient collaborative testing.IEEE Software, 8, 94–95.

[2] Bias, R. (1994). The pluralistic walkthrough: Coordinated empathies. In J. Nielsen & R. Mack

(Eds.),Usability Inspection Methods, 63–76, New York. Wiley.

[3] Bowers, V. A. & Snyder, H. L. (1990). Concurrent vs retrospective verbal protocol for comparing

window usability. InProceedings of the Human Factors Society 34th Annual Meeting of the

Human Factors Society, 1270–1274.

[4] Burmester, M., Görner, C., Vossen, P. H., Zolleis, T. M. & Zouboulides, V. (1997). Qual-

itatives software screening. In M. Burmester, C. Görner, W. Hacker, M. Kärcher, P. Kurtz,

U. Lieser, W. Risch, R. Wieland-Eckelmann & H. Wilde (Eds.),Das SANUS-Handbuch. Bild-

schirmarbeit EU-konform, 2–33, Dortmund. Schriftenreihe der Bundesanstalt für Arbeitsschutz

und Arbeitsmedizin, FB 760, Teil II, 2.

[5] Card, S., Moran, T. P. & Newell, A. (1983). The Psychology of Human-Computer Interaction.

Hillsdale: Lawrence Erlbaum.

[6] Carroll, J. M. (1997). Human-Computer Interaction: Psychology as a science of design.Inter-

national Journal of Human-Computer Studies, 46, 501–522.

[7] Carroll, J. M. (1998). Review validity, causal analysis, and rare evaluation events.Human-

Computer Interaction, 13, 308–310.

[8] Carroll, J. M. & Mack, R. (1984). Learning to use a word processor: By doing, by thinking

and by knowing. In J. Thomas & M. Schneider (Eds.),Human Factors in Computing Systems,

13–52, Norwood. Ablex.

[9] Carroll, J. M. & Rosson, M. B. (1985). Usability specifications as a tool in iterative development.

In H. R. Hartson (Ed.),Advances in Human-Computer Interaction, 1–28, Norwood. Ablex.

[10] Çakir, A. & Dzida, W. (1997). International ergonomic HCI standards. In M. Helander, T. Lan-

dauer & P. Prabhu (Eds.),Handbook of Human-Computer Interaction. Second Edition, 407–420,

Amsterdam. Elsevier.

35



[11] Chin, J. P., Diehl, V. A. & Norman, K. L. (1988). Development of an instrument measuring user

satisfaction of the human-computer interface. InProceedings of SIGCHI ‘88, 213–218, New

York. ACM/SIGCHI.

[12] Desurvire, H., Lawrence, D. & Atwood, M. E. (1991). Empiricism versus judgement: Compar-

ing user interface evaluation methods.ACM SIGCHI Bulletin, 23, 58–59.

[13] Desurvire, H. W., Kondziela, J. M. & E.Atwood, M. (1992). What is gained and lost when

using evaluation methods other than empirical testing. InProceedings of HCI ‘92, People and

Computers VII, 89–102, Cambridge. Cambridge University Press.

[14] Dzida, W. (1994). Qualitätssicherung durch software-ergonomische Normen. In E. Eberleh,

H. Oberquelle & R. Oppermann (Eds.),Einführung in die Software-Ergonomie, 373–406, Berlin.

de Gruyter.

[15] Gediga, G. & Hamborg, K.-C. (1997). Heuristische Evaluation und IsoMetrics: Ein Vergleich.

In R. Liskowsky, B. Velichkovsky & W. Wünschmann (Eds.),Software-Ergonomie ‘97, 145–

155, Stuttgart. Teuber.

[16] Gediga, G., Hamborg, K.-C. & Düntsch, I. (1999). The IsoMetrics usability inventory: An

operationalisation of ISO 9241-10.Behaviour and Information Technology, 18, 151–164.

[17] Gediga, G., Hamborg, K.-C. & Willumeit, H. (1997). The IsoMetrics manual (Ver-

sion 1.15). Osnabrück: Universität Onabrück: Fachbereich Psychologie. http://www.eval-

institut.de/isometrics/.

[18] Gigerenzer, G. (1981). Messung und Modellbildung in der Psychologie. Basel: Birkhäuser.

[19] Gould, J. D. (1988). How to design usable systems. In M. Helander (Ed.),Handbook of Human

Computer Interaction. First Edition, 757–789, Amsterdam. Elsevier.

[20] Gould, J. D., Boies, S. J., Levy, S., Richards, J. T. & Schoonard, J. (1987). The 1984 olympic

message system: A test of behavioral principles of system design.Communications of the ACM,

30, 758–769.

36



[21] Gould, J. D., Boies, S. J. & Lewis, C. (1991). Making usable, useful, productivity enhancing

computer applications.Communications of the ACM, 34, 74–85.

[22] Gould, J. D., Boies, S. J. & Ukelson, J. (1997). How to design usable systems. In M. Helander,

T. Landauer & P. Prabhu (Eds.),Handbook of Human-Computer Interaction. Second Edition,

705–715, Amsterdam. Elsevier.

[23] Gray, W. D. & Salzman, M. C. (1998). Damaged merchandise? a review of experiments that

compare usability evaluation methods.Human-Computer Interaction, 13, 203–261.

[24] Greenbaum, J. & Kyng, M. (1991). Design at work: Cooperative design of computer systems.

Hillsdale, NJ: Lawrence Erlbaum.

[25] Greif, S. (1991a). Organizational issues and task analysis. In B. Shackel & S. Richardson (Eds.),

Human factors for informatics usability, 247–266, Cambridge. Cambridge University Press.

[26] Greif, S. (1991b). The role of german work psychology in the design of artifacts. In J. M.

Carroll (Ed.),Designing Interaction. Psychology at the Human-Computer Interface, 203–226,

Cambridge. Cambridge University Press.

[27] Greif, S. & Gediga, G. (1987). A critique and empirical investigation of the “one-best-way-

models” in Human-Computer Interaction. In M. Frese, E. Ulich & W. Dzida (Eds.),Psycholog-

ical Issues of Human Computer Interaction in the Work Place, 357–377, Amsterdam. Elsevier.

[28] Hamborg, K.-C., Gediga, G., Döhl, M., Janssen, P. & Ollermann, F. (1999). Softwareevaluation

in Gruppen oder Einzelevaluation: Sehen zwei Augen mehr als vier? In U. Arend & K. Pitschke

(Eds.),Software-Ergonomie ’99: Design von Informationswelten, 97–109, Stuttgart. Teubner.

[29] Hamborg, K.-C. & Greif, S. (1999). Heterarchische Aufgabenanalyse. In H. Dunckel (Ed.),

Handbuch psychologischer Arbeitsanalyseverfahren, 147–177, Zürich. vdf.

[30] Hampe-Neteler, W. (1994). Software-ergonomische Bewertung zwischen Arbeitsgestaltung und

Software-Entwicklung. Frankfurt: Lang.

[31] Harrison, B. L. (1991). Video annotation and multimedia interfaces: From theory to practice. In

Proceedings of the Human Factor Society 35th Annual Meeting, 319–322.

37



[32] Henderson, R. D., Smith, M. C., Podd, J. & Varela-Alvarez, H. (1995). A comparison of the four

prominent user-based methods for evaluating the usability of computer software.Ergonomics,

38, 2030–2044.

[33] Hix, D. & Hartson, H. R. (1993). Developing user interfaces: Ensuring usability through product

and process. New York: Wiley.

[34] Holleran, P. A. (1991). A methodological note on pitfalls in usability testing.Behaviour and

Information Technology, 10, 345–357.

[35] ISO (1996). EN ISO 9241-10. Ergonomic requirements for office work with visual display

terminals (VDT’s). Part 10.

[36] ISO (1997a). EN ISO 9241-11. Ergonomic requirements for office work with visual display

terminals (VDT’s). Part 11.

[37] ISO (1997b). ISO 13407. Human centered design processes for interactive displays.

[38] ISO/IEC (1991). ISO/IEC 9126. Information technology - Software product evaluation - Quality

characteristics and guidance for their use.

[39] Jeffries, R., Miller, J. R., C.Wharton & Uyeda, K. M. (1991). User interface evaluation in the

real world: A comparison of four techniques. InProceedings ACM CHI ‘91 Conference on

Human Factors in Computing Systems, 119–124, New York. ACM.

[40] Jeffries, R. J. & Desurvire, H. W. (1992). Usability testing vs heuristic evaluation: Was there a

contest?ACM SIGCHI Bulletin, 4, 39–41.

[41] Johnson, P. (1992). Human-Computer Interaction: Psychology, Task Analysis and Software-

Engineering. Maidenhead: McGraw-Hill.

[42] Jørgensen, A. H. (1989). Using the thinking-aloud method in system development. In G. Sal-

vendy & M. J. Smith (Eds.),Desingning and Using Human-Computer Interfaces and Knowledge

Based Systems, 743–750, Amsterdam. Elsevier.

38



[43] Karat, C., Campbell, R. L. & Fiegel, T. (1992). Comparison of empirical testing and walkthrough

methods in user interface evaluation. In P. Bauersfield, J. Bennet & G. Lynch (Eds.),Proceedings

ACM CHI ‘92 Conference, 397–404, New York. ACM.

[44] Karat, C.-M. (1993). Cost-benefit and business case analysis of usability engineering. In S. Ash-

lund, K. Mullet, A. Henderson, E. Hollnagel & T. White (Eds.),Bridges between two worlds,

INTERCHI ‘93. Tutorial Notes 23, Reading MA. Addison-Wesley.

[45] Karat, C.-M. (1994). A comparison of user interface evaluation methods. In J. Nielsen & R. L.

Mack (Eds.),Usability Inspection Methods, 203–233, New York. Wiley.

[46] Karat, C.-M. (1997a). Cost-justifying usability engineering in the software life cycle. In M. He-

lander, T. K. Landauer & P. Prabhu (Eds.),Handbook of Human-Computer Interaction. Second

Edition, 767–777, Amsterdam. Elsevier.

[47] Karat, J. (1997b). Evolving the scope of user-centered design.Communications of the ACM, 40,

33–38.

[48] Karat, J. (1997c). User-centered software evaluation methodologies. In M. Helander, T. K.

Landauer & P. Prabhu (Eds.),Handbook of Human-Computer Interaction. Second Edition, 689–

704, Amsterdam. Elsevier.

[49] Kierakowski, J. (2000). The Use of Questionnaire Methods for Usability Assessment.

http://www.ucc.ie/hfrg/questionnaires/sumi/sumipapp.html.

[50] Kieras, D. (1993). Bridges between worlds. In S. Ashlund, K. Mullet, A. Henderson, E. Holl-

nagel & T. White (Eds.),INTER CHI‘93. Tutorial Notes 5, Reading, MA. Addison-Wesley.

[51] Kieras, D. (1997). A guide to GOMS model usability evaluation using NGOMSL. In M. He-

lander, T. Landauer & P. Prabhu (Eds.),Handbook of Human-Computer Interaction. Second

Edition, 733–766, Amsterdam. Elsevier.

[52] Kirakowski, J. & Corbett, M. (1990). Effective Methodology for the Study of HCI. Amsterdam:

North Holland.

39



[53] Kirakowski, J. & Corbett, M. (1993). SUMI: The software usability measurement inventory.

British Journal of Educational Technology, 24, 210–212.

[54] Lewis, C. (1982). Using the “thinking aloud” method in cognitive interface design. New York:

IBM Research Reports RC 9265 (40713), IBM Thomas J. Watson Research Center.

[55] Lewis, C. & Wharton, C. (1997). Cognitive walkthroughs. In M. Helander, T. Landauer &

P. Prabhu (Eds.),Handbook of Human-Computer Interaction. Second Edition, 717–732, Ams-

terdam. Elsevier.

[56] Mantei, M. M. & Teorey, T. J. (1988). Cost/benefit analysis for incorporating human factors in

the software lifecycle.Communication of the ACM, 31, 428–439.

[57] Mayhew, D. (1999). The Usability Engineering Lifecycle. A Practitionert’s Handbook for User

Interface Design. San Francisco: Morgan Kaufmann.

[58] Monk, A., Wright, P., Haber, J. & Davenport, L. (1993). Improving your human-computer

interface: A practical approach. New York: Prentice-Hall.

[59] Moran, T. P. (1983). Getting into system: External task internal task mapphing analysis. In

A. Janda (Ed.),Human Factors in Computing CHI‘83 Conference Proceedings, New York. ACM

Press.

[60] Muller, M. J., Halkswanter, J. H. & Dayton, T. (1997). Participatory practices in the software

lifecycle. In M. Helander, T. Landauer & P. Prabhu (Eds.),Handbook of Human-Computer

Interaction. Second Edition, 255–313, Amsterdam. Elsevier.

[61] Nielsen, J. (1989). Usability engineering at a discount. In G. Salvendy & M. Smith (Eds.),

Designing and Using Human-Computer Interfaces and Knowledge Based Systems, 394–401,

Amsterdam. Elsevier.

[62] Nielsen, J. (1992). The usability life cycle.IEEE Computer, 25, 12–22.

[63] Nielsen, J. (1993a). Iterative user-interface design.IEEE Computer, 26, 32–41.

[64] Nielsen, J. (1993b). Usability Engineering. Boston: AP Professional.

40



[65] Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen & R. Mack (Eds.),Usability Inspection

Methods, 25–62, New York. Wiley.

[66] Nielsen, J. & Mack, R. L. (1994). Usability Inspection Methods. New York: Wiley.

[67] Nielsen, J., Mack, R. L., Bergendorff, K. H. & Grischkowsky, N. L. (1986). Integrated software

usage in the professional work environment: Evidence from questionnaires and interviews. In

M. Mantei & P. Obertson (Eds.),Human Factors in Computing Systems, CHI‘86 Conference

Proceedings, 162–167, New York. ACM Press.

[68] Nielsen, J. & Molich, R. (1990). Heuristic evaluation of user interfaces. In J. Chew & J. White-

side (Eds.),Chi‘90 Conference Proceedings, Empowering People, 249–256, New York. ACM.

[69] Ohnemus, K. R. & Biers, D. W. (1993). Retrospective vs concurrent thinking out loud in usability

testing. InProceedings of the Human Factors and Ergonomics Society 37th Annual Meeting,

1127–1131.

[70] Payne, S. J. (1987). Complex problem spaces: Modelling the knowledge needed to use inter-

active devices. In H.-J. Bullinger & B. Shackel (Eds.),Proceedings of the IFIP conference on

Human-Computer Interaction, Amsterdam. North Holland.

[71] Payne, S. J. & Green, T. R. G. (1989). Task-action grammar: The model and its development.

In D. Diaper (Ed.),Task analysis for Human-Computer Intercation, Chichester. Ellis Horwood.

[72] Potosnak, K. (1990). Big paybacks from ‘discount’ usability engineering.IEEE Software, 107–

109.

[73] Preece, J. (1999). Human-Computer Interaction. Harlow: Addison-Wesley.

[74] Prümper, J. (1993). Software-evaluation based upon ISO 9241 part 10. In T. Grechening &

M. Tescheligi (Eds.),Human-Computer Interaction. Vienna Conference, VCHCHI ‘93, Berlin.

Springer.

[75] Reiterer, H. (1994). User Interface Evaluation and Design. Research Results of the Projects Eval-

uation of Dialogue Systems (EVADIS) and User Interface Design Assistance (IDA). München:

Oldenburg.

41



[76] Reiterer, H. & Oppermann, R. (1993). Evaluation of user interfaces. EVADIS II – a comprehen-

sive evaluation approach.Behaviour and Information Technology, 12, 137–148.

[77] Roberts, T. L. & Moran, T. P. (1983). The evaluation of text editors: Methodology and empirical

results.Communications of the ACM, 26, 265–283.

[78] Robson, C. (1990). Designing and interpreting psychological experiments. In J. Preece &

L. Keller (Eds.),Human-Computer Interaction, 357–367, Hemel Hempstead. Prentice-Hall.

[79] Rubin, J. (1994). Handbook of Usability Testing. New York: Wiley.

[80] Scriven, M. (1967). The methodology of evaluation. In R. Tyler, Gagne & M. Scriven (Eds.),

Perspectives of Curiculum Evaluation, 39 – 83, Chicago. Rand McNally.

[81] Shneiderman, B. (1992). Designing the User Interface. Strategies for Effective Human-

Computer Interaction. 2nd Edition. Reading, MA: Addison-Wesley.

[82] Shneiderman, B. (1998). Designing the User Interface. Strategies for Effective Human-

Computer Interaction. 3rd Edition. Reading, MA: Addison-Wesley.

[83] Smilowitz, E. D., Darnell, M. J. & Bensson, A. E. (1994). Are we overlooking some usabil-

ity testing methods? A comparison of lab, beta, and forum tests.Behaviour and Information

Technology, 13, 183–190.

[84] Suchman, E. A. (1967). Evaluation Research: Principles and practice in public service and social

action programs. New York: Russel.

[85] Tyldesley, D. A. (1988). Employing usability engineering in the development of office products.

Computer Journal, 31, 431–436.

[86] Virzi, R. A. (1997). Usability inspection methods. In M. Helander, T. Landauer & P. Prabhu

(Eds.),Handbook of Human-Computer Interaction. Second Edition, 705–715, Amsterdam. El-

sevier.

[87] Virzi, R. A., Sorce, J. F. & Herbert, L. B. (1993). A comparison of three usability evaluation

methods: Heuristic, think aloud, and performance testing. InDesigning for diversity: Proceed-

42



ings of the Human Factors and Ergonomics Society 37th Annual Meeting 1993, 309–313, Santa

Monica. Human Factors and Ergonomics Society.

[88] Walsham, G. (1993). Interpreting Information Systems in Organisations. Chichester: Wiley.

[89] Wharton, C., Rieman, J., Lewis, C. & Polson, P. (1994). The cognitive walkthrough method: A

practitionert’s guide. In J. Nielsen & R. Mack (Eds.),Usability Inspection Methods, 105–140,

New York. Wiley.

[90] Whitefield, A., Wilson, F. & Dowell, J. (1991). A framework for human factors evaluation.

Behaviour and Information Technology, 10, 65–79.

[91] Whiteside, J., Bennett, J. & Hotzblatt, K. (1988). Usability engineering: Our experience and

evolution. In M. Helander (Ed.),Handbook of Human Computer Interaction. First Edition,

791–817, Amsterdam. Elsevier.

[92] Williges, R. C., Williges, B. H. & Elkerton, J. (1987). Software interface design. In G. Salvendy

(Ed.),Handbooks of Human Factors, 1416–1449, New York. Wiley.

[93] Willumeit, H., Gediga, G. & Hamborg, K.-C. (1996). IsometricsL: Ein Verfahren zur formativen

Evaluation von Software nach ISO 9241/10.Ergonomie & Informatik, 27, 5–12.

[94] Wixon, D. & Wilson, C. (1997). The usability engineering framework for product design and

evaluation. In M. Helander, T. Landauer & P. Prabhu (Eds.),Handbook of Human-Computer

Interaction. Second Edition, 653–688, Amsterdam. Elsevier.

43


