

Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 12(1): 322–332 (2022) ISSN 2229-2225

www.creamjournal.org

Article Doi 10.5943/cream/12/1/19

Morphology and muti-gene phylogenetic analyses reveal *Dothiorella* chiangmaiensis sp. nov. (*Botryosphaeriaceae*, *Botryosphaeriales*) from Thailand

Rathnayaka AR^{1,2,3}, Chethana KWT^{1,2*}, Pasouvang P^{1,2} and Phillips AJL⁴

¹School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
²Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
³Department of Plant Medicine, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
⁴Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal

Rathnayaka AR, Chethana KWT, Pasouvang P, Phillips AJL 2022 – Morphology and muti-gene phylogenetic analysis reveals *Dothiorella chiangmaiensis* sp. nov. (*Botryosphaeriaceae*, *Botryosphaeriales*) from Thailand. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 12(1), 322–332, Doi 10.5943/cream/12/1/19

Abstract

Dothiorella species occur on a wide range of plants as endophytes, saprobes and pathogens. This genus is characterized by pigmented, 1-septate ascospores, and conidia that become brown and 1-septate while still attached to the conidiogenous cells. In the current study, we introduce a novel saprobic species, *Dothiorella chiangmaiensis*, from dead branches of *Tamarindus indica* (*Fabaceae*) in Thailand. This novel taxon was recognized based on morphological examinations coupled with phylogenetic analyses. Multigene phylogenetic analyses were performed by maximum likelihood and Bayesian inference analyses of an ITS, *tef*1 and *tub2* sequence alignment. Conidia of *D. chiangmaiensis* are dark brown, 1-septate and guttulate. The novel taxon is described and illustrated. This study contributes to expanding the taxonomic framework for *Dothiorella* by introducing a new species.

Keywords - 1-new species - Dothideomycetes - morphology - phylogeny

Introduction

Dothiorella was introduced by Saccardo (1880) with *D. pyrenophora* as the type species. Crous & Palm (1999) studied the holotype of *D. pyrenophora* and synonymized *Dothiorella* with *Diplodia*. However, based on morphology and molecular data, Phillips et al. (2005) reinstated *Dothiorella* to accommodate species with conidia that become brown and 1-septate while still attached to the conidiogenous cells and thus differ from *Diplodia* species, which have hyaline conidia that become pigmented and septate only sometime after release from the pycnidia (Abdollahzadeh et al. 2014, Dissanayake et al. 2016). *Dothiorella* and *Spencermartinsia* were earlier considered to be two separate genera in *Botryosphaeriaceae* (Phillips et al. 2008, 2013). Yang et al. (2017) synonymized *Spencermartinsia* under *Dothiorella*, and Hongsanan et al. (2020) and Wijayawardene et al. (2020) accepted this.

The sexual morph of *Dothiorella* species is characterized by erumpent or superficial ascomata, bitunicate, fissitunicate asci with pigmented, 1-septate ascospores (Phillips et al. 2013). The asexual morph of *Dothiorella* has immersed, erumpent conidiomata. Paraphyses have not been

reported. Conidiogenous cells are holoblastic and hyaline (Phillips et al. 2013). Conidia become brown and 1-septate while still attached to the conidiogenous cells (Phillips et al. 2005, Dissanayake et al. 2016, Hongsanan et al. 2020).

Dothiorella species have worldwide distribution and occur on a wide range of hosts (Jayawardena et al. 2019). The genus includes endophytic, saprobic, and plant pathogenic species associated with canker, die-back and fruit rots (Liu et al. 2012, Phillips et al. 2013, Dissanayake et al. 2016, Jayawardena et al. 2019). Dothiorella species are known to have weak pathogenicity on ecologically and economically important plants (Úrbez-Torres & Gubler 2009, Úrbez-Torres et al. 2012). For example, Dothiorella americana, D. iberica and D. viticola are weakly virulence on grapevines (Úrbez-Torres & Gubler 2009, Úrbez -Torres et al. 2012). Dothiorella species were introduced mainly on their host association (Abdollahzadeh et al. 2014), which resulted in more than 350 species names listed in MycoBank and 395 species (Wu et al. 2021, Wijayawardene et al. 2022). Due to the cosmopolitan distribution of Dothiorella species in different hosts, additional taxonomic and ecological studies are needed.

This study introduces a new species of *Dothiorella* from Thailand. Morphological illustration of the novel taxon is provided, together with the phylogenetic placement based on maximum likelihood (ML) and Bayesian inference (BI) analyses of a combined ITS, *tef*1 and *tub2* sequence alignment.

Materials & Methods

Specimen collections, morphological studies and isolations

Dead branches of *Tamarindus indica* were collected from a forested area at the Mushroom Research Centre (MRC), Chiang Mai, Thailand on 10 September 2020. Specimens were brought to the laboratory in zip-lock bags, and samples were examined following the methods described in Senanayake et al. (2020). Morphological observations were made using a LEICA EZ4 stereomicroscope (Leica Microsystems Company, Germany), AXIOSKOP 2 PLUS compound microscope (Carl Zeiss Microscopy Company, Germany) and photographed with a Canon 550D digital camera fitted to the microscope. All measurements were made with ZEN2 (blue edition) software. The photoplate was prepared with Adobe Photoshop CS3 Extended version 10.0. Measurements were made with the Tarosoft (R) Image Frame Work program, and images used for figures were processed with Adobe Photoshop CS3 Extended version 10.0 software (Adobe Systems, USA).

Single spore isolations were carried out following the method described in Senanayake et al. (2020). Germinated conidia were transferred to potato dextrose agar (PDA) plates and incubated at 25°C. Pure cultures were obtained by subculturing, and culture characters were recorded after one week. The holotype material was deposited in the Mae Fah Luang University Herbarium (MFLU), and the living culture was deposited at the Culture Collection of Mae Fah Luang University (MFLUCC). Faces of fungi number and Index Fungorum number were obtained as in Jayasiri et al. (2015) and Index Fungorum (2022), respectively. The details were added to the Greater Mekong Subregion webpage (Chaiwan et al. 2021).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from fresh mycelium (50–100 mg) using a DNA rapid Extraction Kit (Aidlab Biotechnologies Co., Ltd., China) by following the manufacturer's instructions. Extracted DNA was stored at 4°C and -20°C for short and long-term storage respectively. The internal transcribed spacers region (ITS) and partial translation elongation factor 1- α gene (*tef*1) were amplified by polymerase chain reactions (PCR) as described in Rathnayaka et al. (2021). PCR reactions were carried out in a final volume of 25 µl, which contained 12.5 µl of 2× Easy Taq PCR SuperMix (TransGen Biotech, Beijing, China), 1 µl of each forward and reverse primers, 2 µl of genomic DNA and 8.5 µl of sterilized, deionized water. PCR products were

visualized on 1% agarose electrophoresis gel and sequenced at Guangzhou Tianyi Science and Technology Co., Ltd. (Guangzhou, China). Newly generated nucleotide sequences were deposited in GenBank (Table 1).

Phylogenetic analyses

The quality of the sequences was assessed by checking their chromatograms with BioEdit v 7.0.9.0 (Hall 1999). Newly generated sequences were initially subjected to BLASTn searches at NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi), and relevant literature was consulted to select sequences for inclusion in the phylogenetic analyses (Rathnayaka et al. 2022). Sequences generated from this study and isolates retrieved from GenBank are shown in Table 1. Each locus (ITS, *tef1* and *tub2*) was aligned individually with MAFFT 6.864b (Katoh et al. 2019) and trimmed using trimAl v1.2 software (Capella-Gutiérrez et al. 2009). Single-gene and multi-gene aligned datasets were analysed separately by maximum likelihood (ML) and Bayesian inference (BI). MrModeltest v. 2.2 (Nylander 2004) under the AIC (Akaike Information Criterion) implemented in PAUP v. 4.0b10 was used to find the best fit models for BI and ML analyses. The GTR+G model was selected as the best model for both ML and BI analyses for all gene regions.

The ML analyses were carried out with RAxML-HPC2 on XSEDE (v. 8.2.10) (Stamatakis 2014) in the CIPRES Science Gateway (Miller et al. 2010) using the GTR+G substitution model. The nonparametric bootstrap iterations were run for 1,000 replications. The BI analyses were conducted with MrBayes v. 3.2.6 (Ronquist et al. 2012). The Markov Chain Monte Carlo (MCMC) algorithm of six chains was initiated for 1,000,000 generations. The trees were sampled at every 100th generation resulting in 10,000 trees. The first 10% of trees were discarded as the burn-in phase, while the remaining 9,000 trees were used to calculate the posterior probabilities (PP) in the majority rule consensus tree. FigTree v1.4.0 program (Rambaut 2012) was used to visualise trees, which were then edited with Microsoft PowerPoint (2010).

Species	Strain no.		GenBank accession no.		
-		ITS	tef1	tub2	
Dothiorella acacicola	CPC 26349	NR_145255	KX228376	N/A	
D. acericola	KUMCC 18-0137	MK359449	MK361182	N/A	
D. albiziae	MFLUCC 22-0057	ON751762	ON799588	ON799590	
D. alpina	CGMCC 3.18001	KX499645	KX499651	N/A	
D. brevicollis	CMW 36463	NR_111703	JQ239390	JQ239371	
D. capri-amiss	CBS:121763	EU101323	EU101368	KX464850	
D. casuarini	CBS 120688	DQ846773	DQ875331	N/A	
D. chiangmaiensis	MFLUCC 22-0106	OP598812	OP614928	N/A	
D. chiangmaiensis	MFLU 22-0161	OP598811	OP614929	N/A	
D. citricola	ICMP16828	EU673323	EU673290	EU673145	
D. diospyricola	CBS 145972	MT587398	MT592110	MT592581	
D. dulcispinae	CMW:36460	JQ239400	JQ239387	JQ239373	
D. dulcispinae	CMW 25407	EU101300	MT592120	KX464862	
D. iranica	IRAN1587C	KC898231	KC898214	N/A	
D. lampangensis	MFLUCC 18-0232	MK347758	MK340869	MK412874	
D. longicollis	CBS 122068	EU144054	EU144069	N/A	
D. magnoliae	CFCC 51563	KY111247	KY213686	N/A	
D. mangifericola	CBS 121760	EU101290	EU101335	KX464877	
D. mangifericola	IRAN1584C	KC898221	KC898204	N/A	
D. moneti	MUCC505	EF591920	EF591971	EF591954	
D. obovata	MFLUCC 22-0058	ON751763	ON799589	ON799591	
D. ostryae	JZB3150026	MN533805	MN537429	N/A	
D. plurivora	IRAN1557C	KC898225	KC898208	N/A	
D. pretoriensis	CMW 36480	JQ239405	JQ239392	JQ239376	

Table 1 Taxa used in the phylogenetic analysis and their GenBank accession numbers. Newly generated sequences are in blue and ex-type strains are in bold.

Species	Strain no.	GenBank accession no.		
		ITS	tef1	tub2
D. prunicola	CAP187	EU673313	EU673280	EU673100
D. rhamni	CBS 140852	KT240287	MT592111	MT592582
D. santali	MUCC 509	EF591924	EF591975	EF591958
D. sarmentorum	CBS 128309	HQ288218	MT592106	MT592577
D. sarmentorum	MFLUCC 17-0242	KY797637	N/A	MT592585
D. sarmentorum	CBS 115041	AY573202	AY573222	EU673096
D. sarmentorum	MFLUCC 17-0951	MG828897	MG829267	MT592592
D. sarmentorum	CBS 392.80	KX464133	KX464626	KX464897
D. sarmentorum	IRAN1579C	KC898234	KC898217	N/A
D. sarmentorum	IRAN1583C	KC898236	KC898219	N/A
D. sarmentorum	MFLUCC 13-0498	KJ742379	KJ742382	N/A
D. sarmentorum	CBS 725.79	KX464130	KX464622	KX464888
D. sarmentorum	IMI 63581b	AY573212	AY573235	MT592612
D. striata	ICMP 16819	EU673320	EU673287	EU673142
D. striata	DAR80992	KJ573643	KJ573640	N/A
D. tectonae	MFLUCC12-0382	KM396899	KM409637	KM510357
D. thailandica	MFLUCC 11-0438	NR_111794	JX646861	JX646844
D. thripsita	BRIP 51876	KJ573642	KJ573639	KJ577550
D. uruguayensis	CBS 124908	NR_156208	N/A	KX464886
D. vinea-gemmae	B116-3	KJ573644	KJ573641	KJ577552
D. viticola	WA10NO01	HM009376	HM800511	HM800519
D. viticola	WA10NO02	HM009377	HM800512	HM800520
D. yunnana	CGMCC 3.18000	KX499644	KX499650	N/A
Neofusicoccum luteum	CBS 562.92	KX464170	KX464690	KX464968
N. luteum	CMW 41365	NR_147360	KP860702	KP860779

Table 1 Continued.

N/A - Sequences not available

Results

Phylogenetic analyses

The combined ITS, *tef*1 and *tub2* dataset included 47 ingroup taxa with two isolates of *Neofusicoccum luteum* (CBS 562.92 and CMW 41365) as the outgroup. The final alignment consisted of 1201 characters, including gaps (ITS = 477, *tef*1 = 294, *tub2* = 430). Both ML and BI analyses resulted in trees with similar topology. The best-scoring RAxML tree with a final likelihood value of -6138.3611 is presented in Fig. 1. The matrix of the combined dataset included 460 distinct alignment patterns with 18.98% undetermined characters or gaps. Estimated base frequencies were obtained as follows: A = 0.20636, C = 0.30773, G = 0.249379, T = 0.236531; substitution rates AC = 1.508092, AG = 3.080246, AT = 1.452568, CG = 1.161038, CT = 5.884853, GT = 1.0; gamma distribution shape parameter α = 0.201084. The average standard deviation of split frequencies was 0.009 after 1,000,000 generations of runs. According to the phylogenetic analyses, our new strains, MFLUCC 22-0106 and MFLU 22-0161 formed a separate clade within *Dothiorella* with 70% ML, 0.93 pp.

Taxonomy

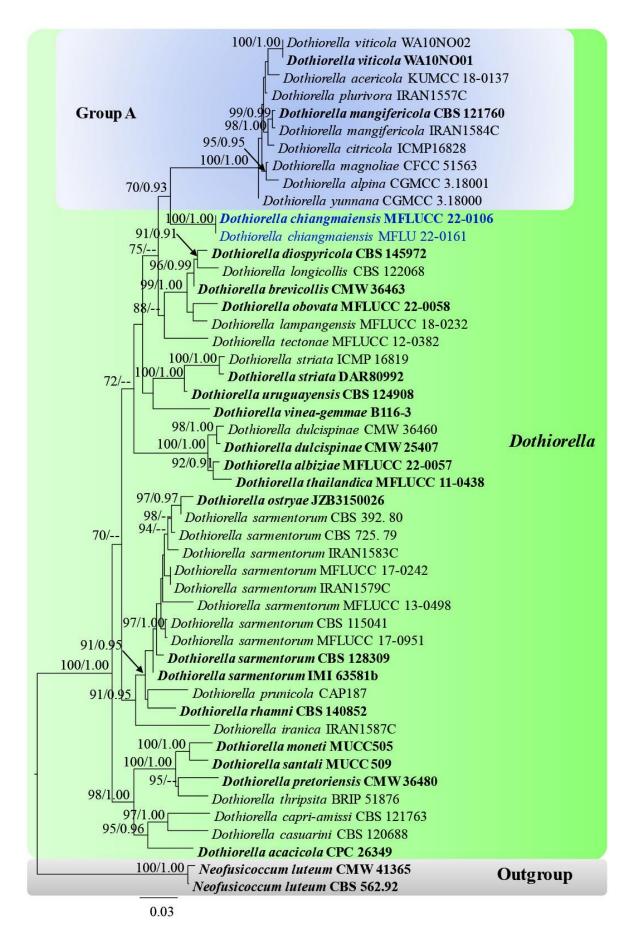

Dothiorella chiangmaiensis Rathnayaka & K.D. Hyde, sp. nov.

Fig. 2

Index Fungorum number: IF558398; Facesoffungi number: FoF 12894

Etymology – The epithet *chiangmaiensis* refers to Chiang Mai Province, where the fungus was collected.

Holotype - MFLU 22-0161

Fig. 1 – Phylogenetic tree generated from ML analysis based of the combined ITS, *tef*1 and *tub2* sequence dataset. The tree was rooted to *Neofusicoccum luteum* (CMW 4165 and CBS 562.26). Tree topology is similar to that in the previous study done by Rathnayaka et al. (2022). Bootstrap

support values for $ML \ge 70$ % and Bayesian posterior probabilities (PP) ≥ 0.9 are noted at the nodes. Strain numbers are noted after the species names. Strains isolated in this study are represented as blue and type strains are in bold.

Fig. 2 – *Dothiorella chiangmaiensis* on dead branches of *Tamarindus indica* (MFLU 22-0161). a, b Conidiomata on host surface. c Vertical section through a conidioma. d Ostiole. e Peridium of conidioma. f–h Conidia attached to conidiogenous cells. i–k Conidia. 1 Germinated conidium. m, n Colony on PDA (m upper, n lower). Scale bars: a =1 mm, b =100 μ m, c =200 μ m, d =50 μ m, e, i–l = 20 μ m, f–h = 10 μ m.

Saprobic on dead branches of *Tamarindus indica*. Sexual morph: Undetermined. Asexual morph: Coelomycetous. *Conidiomata* 445–500 µm high × 460–500 µm diam. ($\bar{x} = 485 \times 475$ µm, n = 10), pycnidial, solitary, formed in uniloculate stromata, immersed, becoming erumpent at maturity, globose to sub globose, ostiolate. *Ostiole* 50–85 µm diam., central, papillate. *Conidiomata wall* 33–83 µm diam., composed of two layers, outer layer composed of thick-walled, dark brown to brown cells of *textura angularis*, inner layer composed of thin-walled, pale brown to hyaline cells of *textura angularis*. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* 6–12 µm × 5–9 µm ($\bar{x} = 9.5 \times 7$ µm, n = 20), holoblastic, lining the pycnidial cavity, hyaline, cylindrical, discrete, determinate, smooth-walled. *Conidia* 30–40 µm ×12–17 µm ($\bar{x} = 36 \times 15$ µm, n = 20, 1/w = 2.4), ellipsoid, straight or slightly curved, rounded at both ends, initially hyaline and aseptate becoming dark brown and 1-septate often while attached to conidiogenous cell, slightly constricted at the septum, guttulate.

Culture characteristics – Conidia germinating on PDA within 24 h. Germ tubes produced at one side of the conidia. Colonies on PDA reaching 1.5-2.5 cm diam. after 6 days at 25° C, colonies circular in shape, medium dense, flat or effuse, slightly raised, fluffy to fairly fluffy, aerial, black to grey colour in the upper side and black colour in the lower side.

Material examined – Thailand, Chiang Mai, Mushroom Research Centre (MRC), on dead branches of *Tamarindus indica* (*Fabaceae*), 10 September 2020, Pahoua Pasouvang (MFLU 22-0161, holotype), ex-type living culture MFLUCC 22-0106.

Note – *Dothiorella chiangmaiensis* fits within the generic concept of *Dothiorella* in having 1-septate conidia that become brown while attached to the conidiogenous cells (Phillips et al. 2005, Dissanayake et al. 2016). In the multi-gene phylogeny (ITS, *tef1* and *tub2*), the novel taxon formed a distant lineage basal to *Dothiorella* species in group A, i.e., *Dothiorella acericola*, *D. alpina*, *D. citricola*, *D. magnoliae*, *D. mangifericola*, *D. plurivora*, *D. viticola and D. yunnana* with 70% ML and 0.93 BYPP support (Fig. 1). Detailed morphological comparison and base pair differences between species in group A and *D. chiangmaiensis* are provided in Tables 2, 3, respectively.

Among the *D. chiangmaiensis* and group A species, only *D. chiangmaiensis* has guttulate conidia. Compared to other species in group A, our novel taxon has the highest L/W ratio (2.4) (Table 2). Therefore, our novel taxon is distinguished from species in group A by having the largest conidia with guttules. Based on distinct morphology and phylogenetic evidence, we introduce *D. chiangmaiensis* as a new species in *Dothiorella*.

Species	Conidia				References	
-	Size (µm)	Average (µm)	Ratio (L/W)			
Dothiorella acericola	17-22(-23) × 7-10(-13)	20.8×9.2	2.2	dark brown, slightly constricted at the septum, smooth-walled	Phookamsak et al. (2019)	
D. alpina	22–25(–28) × 10–12 (–13)	24.4×11.1	2.19	brown to dark brown, not constricted at the septum, smooth-walled	Hyde et al. (2020)	
D. chiangmaiensis	30-40×12-17	36 × 15	2.4	dark brown, slightly constricted at the septum, guttulate	This study	
D. citricola	(23.7–)24 – 27(– 28) × (9.5 –)10 –12(–14.1)	$25.8 \pm 1.1 \times 12.2 \pm 1.3$	2.1 ± 0.2	brown, occasionally slightly constricted at the septum, externally smooth, internally finely verruculose	Abdollahzadeh et al. (2014)	

Table 2 Synopsis of morphological characters of asexual morphs among the Dothiorella chiangmaiensis and species in group A.

Table 2 Conti	inued.
---------------	--------

Species	Conidia				References
-	Size (µm)	Average (µm)	Ratio (L/W)	_	
D. magnoliae	(16.00-) 20.63-22.50 $(-31.35) \times (8.14-)$ 10.87-12.03(-15.55)	21.56 × 11.45	1.88	brown, always deeply constricted at the septum, externally smooth, internally finely verruculose	You et al. (2017)
D. mangifericola	(14.4–)17–22(–22.5) × (6.3–)8–10(–11)	$19\pm1.6\times9\pm0.9$	2.1 ± 0.2	brown, occasionally slightly constricted at the septum, externally smooth, internally finely verruculose	Abdollahzadeh et al. (2014)
D. plurivora	(18–)20–25(–27) × (8.9–)10–13(–14.4)	$22.5 \pm 1.7 \times 11 \pm 1.1$	2.1 ± 0.2	brown, occasionally slightly constricted at the septum, externally smooth, internally finely verruculose	Abdollahzadeh et al. (2014)
D. viticola	(16–)20.2–20.6(–26) × (7–)9.2– 9.4(–12)	$\begin{array}{c} 20.4 \pm 0.1 \times 9.3 \pm \\ 0.1 \end{array}$	2.2 ± 0.02	brown, occasionally slightly constricted at the septum, externally smooth, internally finely verruculose	Luque et al. (2005)
D. yunnana	(18.4–)19.6–21(–22.2) × (8.1–)8.6–9.2(–9.6)	$\begin{array}{c} 20.3 \pm 1.5 \times 8.9 \pm \\ 0.9 \end{array}$	2.3 ± 0.2	brown, occasionally slightly constricted at the septum, externally smooth	Zhang et al. (2016)

Table 3 Base pair comparison of *Dothiorella chiangmaiensis* (MFLUCC 22-0106) and species in group A (without gaps).

Species	Strain no.	ITS	tef1
Dothiorella acericola	KUMCC 18-0137	2.5% (12/472 bp)	20.1% (34/169 bp)
D. alpina	CGMCC 3.18001	3.4% (15/447 bp)	18.7% (40/213 bp)
D. citricola	ICMP16828	2.3% (11/472 bp)	17.7% (37/208 bp)
D. magnoliae	CFCC 51563	2.8% (12/436 bp)	17.6% (37/210 bp)
D. mangifericola	CBS 121760	2.5% (12/472 bp)	22.4% (40/178 bp)
D. plurivora	IRAN1557C	2.5% (12/472 bp)	18.4% (39/211 bp)
D. viticola	WA10NO01	2.5% (12/472 bp)	20.2% (39/193 bp)
D. yunnana	CGMCC 3.1800	2.6% (12/460 bp)	17.6% (37/210 bp)

Discussion

In this study, we introduced a new species in *Dothiorella*, *Dothiorella chiangmaiensis* with most of the criteria for establishing new species in *Dothideomycetes* fulfilled (Chethana et al. 2021, Jayawardena et al. 2021, Pem et al. 2021). The novel taxon described here occurred as a saprobe and was collected from a terrestrial habitat in Thailand in September 2020.

Thailand is a tropical country with a rich fungal diversity (Rathnayaka & Jayawardena 2019). As shown in Table 4, very few Dothiorella species have been recorded and except for D. dulcispinae (synonym: D. oblonga), another five Dothiorella species were introduced as new from Thailand. Based on previous studies, all these Dothiorella species were recorded as saprobes (Table 4).

This study has expanded the taxonomic framework of *Dothiorella* in Thailand by revealing another new species. Therefore, this finding contributes to the basic knowledge of the fungal diversity in Thailand. However, further investigations are needed to discover the hidden diversity of Dothiorella species with different life modes and hosts in Thailand.

Table 4 Dothiorella	species recorded	from Thailand.
---------------------	------------------	----------------

Host	Life mode	References
dry pod of Albizia lebbeck	Saprobic	Rathnayaka et al. (2022)
Chromolaena odorata	Saprobic	Mapook et al. (2020)
	-	-
Pavonia odorata	Saprobic	Rathnayaka et al. (2022)
Tectona grandis	Saprobic	Doilom et al. (2015)
Bamboo culm	Saprobic	Liu et al. (2012)
fallen fruit pericarp of Rutaceae	Saprobic	Jayasiri et al. (2019)
	dry pod of Albizia lebbeck Chromolaena odorata Pavonia odorata Tectona grandis Bamboo culm	dry pod of Albizia lebbeck Chromolaena odorataSaprobicPavonia odorataSaprobicPavonia odorataSaprobicTectona grandis Bamboo culmSaprobic

^cHolotype

Acknowledgements

Achala Rathnayaka offers her profound gratitude to the Thesis or Dissertation Writing Grant, reference no Oh 7702(6)/125, The Center of Excellence in Fungal Research (CEFR) scholarship, Thailand Science Research and Innovation (TSRI) grant 'Macrofungi diversity research from the Lancang-Mekong Watershed and Surrounding areas' (grant no. DBG6280009) and Mae Fah Luang University for the financial support and acknowledge Dr. Shaun Pennycook and S.N. Wijesinghe for their valuable suggestions. Alan JL Phillips acknowledges the support from UIDB/04046/2020 and UIDP/04046/2020 Centre grants from FCT, Portugal (to BioISI).

References

- Abdollahzadeh J, Javadi A, Zare R, Phillips AJL. 2014 A phylogenetic study of Dothiorella and Spencermartinsia species associated with woody plants in Iran, New Zealand, Portugal and Spain. Persoonia 32, 1–12.
- Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009 trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15), 1972–1973.
- Chaiwan N, Gomdola D, Wang S, Monkai J et al. 2021 https://gmsmicrofungi.org: an online database providing updated information of microfungi in the Greater Mekong Subregion. Mycosphere 12(1), 1409–1422.
- Chethana KW, Manawasinghe IS, Hurdeal VG, Bhunjun CS et al. 2021 What are fungal species and how to delineate them? Fungal Diversity 109 (1), 1–25.
- Crous PW, Palm ME. 1999 Reassessment of the anamorph genera Botryodiplodia, Dothiorella and Fusicoccum Sydowia 51, 167–175.
- Dissanayake AJ, Camporesi E, Hyde KD, Phillips AJL et al. 2016 Dothiorella species associated with woody hosts in Italy. Mycosphere 7(1): 51–63.
- Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S et al. 2017 Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Diversity 82(1), 107–182.

- Hall TA. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
- Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN et al. 2020 Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. Fungal Diversity 105(1), 17–318.
- Hyde KD, de Silva NI, Jeewon R, Bhat DJ et al. 2020 AJOM new records and collections of fungi: 1–100. Asian Journal of Mycology 3(1), 22–294.
- Index Fungorum 2022 Index Fungorum. Available from: http://www.indexfungorum.org/names/Names.asp (Accessed on August 8,2022)
- Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J et al. 2015 The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74, 3–18.
- Jayasiri SC, Hyde KD, Jones EBG, McKenzie EHC et al. 2019 Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10, 1–186.
- Jayawardena RS, Hyde KD, McKenzie EH, Jeewon R et al. 2019 One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75 (2019). Fungal Diversity, 1–84.
- Jayawardena RS, Hyde KD, de Farias ARG, Bhunjun CS et al. 2021 What is a species in fungal plant pathogens?. Fungal Diversity 109(1), 239–266.
- Katoh K, Rozewicki J, Yamada KD. 2019 MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics 20, 1160–1166.
- Liu JK, Phookamsak R, Doilom M, Wikee S et al. 2012 Towards a natural classification of *Botryosphaeriales*. Fungal Divers 57, 149–210.
- Luque J, Martos S, Phillips AJ. 2005 *Botryosphaeria viticola* sp. nov. on grapevines: a new species with a *Dothiorella* anamorph. Mycologia 97(5), 1111–1121.
- Mapook A, Hyde KD, McKenzie EH, Jones EB et al. 2020 Taxonomic and phylogenetic contributions to fungi associated with the invasive weed *Chromolaena odorata* (Siam weed). Fungal Diversity 101(1), 1–175.
- Miller MA, Pfeiffer W, Schwartz T. 2010 Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010. Doi 10.1109/GCE.2010.5676129
- Nylander JAA 2004 MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, 2–4.
- Pem D, Jeewon R, Chethana KWT, Hongsanan S et al. 2021 Species concepts of Dothideomycetes: classification, phylogenetic inconsistencies and taxonomic standardization. Fungal Diversity 109 (1), 283–319.
- Phillips A, Alves A, Correia A, Luque J. 2005 Two new species of *Botryosphaeria* with brown, 1- septate ascospores and *Dothiorella* anamorphs. Mycologia 97, 513–529.
- Phillips AJL, Alves A, Pennycook SR, Johnston PR et al. 2008 Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the *Botryosphaeriaceae*. Persoonia 21, 29–55.
- Phillips AJL, Alves A, Abdollahzadeh J, Slippers B et al. 2013 The *Botryosphaeriaceae*: genera and species known from culture. Studies in Mycology 76, 51–167.

- Phookamsak R, Hyde KD, Jeewon R, Bhat DJ et al. 2019 Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity (2019) 95, 1–273.
- Rambaut A. 2012 Fig.Tree. Tree Fig. Drawing Tool, v. 1.4.0. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (Accessed on July 10, 2022).
- Rathnayaka AR, Chethana KWT, Phillips AJL, Jones EBG. 2022 Two new species of *Botryosphaeriaceae (Botryosphaeriales)* and new host/geographical records. Phytotaxa 564 (1), 008–038.
- Rathnayaka AR, Chethana KWT, Phillips AJ, Liu JK et al 2021 First report of *Botryosphaeriaceae* species on *Camellia sinensis* from Taiwan with a global checklist of *Botryosphaeriaceae* species on this host. Chiang Mai Journal of Sciences 48(5), 1199–1223.
- Rathnayaka AR, Jayawardena RS. 2019 Checklist of order *Capnodiales* in Thailand. Plant Pathology & Quarantine 9, 166–184.
- Ronquist F, Teslenko M, Van Der Mark P, Ayres DL et al. 2012 Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
- Saccardo PA 1880 Conspectus genera fungorum Italiae inferiorum nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium systemate sporologico dispositorum. Michelia 2, 1–38.
- Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS et al. 2020 Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754.
- Stamatakis A. 2014 RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. Doi 10.1093/bioinformatics/btu033
- Úrbez-Torres JR, Gubler WD. 2009 Pathogenicity of *Botryosphaeriaceae* species isolated from grapevine cankers in California. Plant Disease 93, 584–592.
- Úrbez -Torres JR, Peduto F, Striegler RK, Urrea-Romero KE et al. 2012 Characterization of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fungal diversity 52(1), 169–189.
- Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L et al. 2020 Outline of Fungi and fungus-like taxa. Mycosphere 11(1), 1060–1456.
- Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M et al. 2022 Outline of Fungi and fungus-like taxa 2021. Mycosphere 13, 53–453.
- Wu N, Dissanayake AJ, Manawasinghe IS, Rathnayaka AR et al. 2021 https://botryosphaeriales.org/, an up-to-date classification and account of taxa of Botryosphaeriales. Database 2021, 1–9.
- Yang T, Groenewald JZ, Cheewangkoon R, Jami F et al. 2017 Families, genera, and species of *Botryosphaeriales*. Fungal Biology 121, 322–346.
- You CJ, Liu X, Li LX, Tsui CKM et al. 2017 *Dothiorella magnoliae*, a new species associated with dieback of *Magnolia grandiflora* from China. Mycosphere 8(2), 1031–1041.
- Zhang M, He W, Wu JR, Zhang Y 2016 Two new species of *Spencermartinsia* (*Botryosphaeriaceae*, *Botryosphaeriales*) from China. Mycosphere 7(7), 942–949.