

Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 13(1): 68–78 (2023) ISSN 2229-2225

www.creamjournal.org

Article Doi 10.5943/cream/13/1/5

Distoseptispora dipterocarpi sp. nov. (*Distoseptisporaceae*), a lignicolous fungus on decaying wood of *Dipterocarpus* in Thailand

Afshari $N^{1,2}$, Gomes de Farias AR², Bhunjun CS^{2,3}, Phukhamsakda C^{2,3}, Hyde KD^{2,3} and Lumyong S^{1,4,5*}

¹Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
 ²Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
 ³School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
 ⁴Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
 ⁵Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand

Afshari N, Gomes de Farias AR, Bhunjun CS, Phukhamsakda C, Lumyong S, Hyde KD 2023 – *Distoseptispora dipterocarpi* sp. nov. (*Distoseptisporaceae*), a lignicolous fungus on decaying wood of Dipterocarpus in Thailand. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 13(1), 68–78, Doi 10.5943/cream/13/1/5

Abstract

Distoseptispora (Distoseptisporaceae, Distoseptisporales) is considered lignicolous saprobes. Different taxa have been identified from diverse substrates and hosts in terrestrial and freshwater habitats. During a taxonomic study on woody litter, micro-fungi from dead wood specimens of Dipeterocarpus sp. in Chiang Rai, Thailand, a sporidesmium-like taxon was collected. Morphological features, such as large, cylindrical or obclavate conidia with 10–72 distosepta, and branched, septated conidiophores, and multi-gene phylogenetic analyses of the combined large subunit ribosomal rRNA (LSU), internal transcribed spacer (ITS) regions, translation elongation factor 1-alpha (*tef1-a*), and RNA polymerase II subunit (*rpb2*) gene, identified Distoseptispora dipterocarpi as a new species.

Keywords – Fungal taxonomy – hyphomycete – molecular phylogeny – new taxa – *Sordariomycetes*

Introduction

Dipterocarpaceae species are distributed in most Southeast Asia tropical rain forests (Brearley et al. 2017), contributing to the global carbon balance, biodiversity, species richness, and species abundance (Ghazoul 2016). Woody litter is a substantial component in many terrestrial and aquatic ecosystems, contributing significantly to detritus biomass and ecosystem biodiversity (Harmon et al. 1986, Zimmer 2019). Fungi are one of the main decomposing organisms of dead wood or living trees worldwide (Nordén et al. 2004).

Among the prevalent woody litter saprobes in terrestrial and freshwater ecosystems, dematiaceous sporidesmium-like hyphomycetes are dominant (Yang et al. 2021). *Distoseptisporaceae (Sordariomycetes)* was reported by Su et al. (2016) as a monotypic family with *Distoseptispora* as the type genus and *D. fluminicola* McKenzie, H.Y. Su, Z.L. Luo & K.D. Hyde as type species. In the last few years, thxere has been a remarkable increment in the number of new *Distoseptispora* species, with 33 species outlined by Wijayawardene et al. (2022) and 59

listed in the Mycobank database (Robert et al. 2013, accessed on 15 February 2023) and Species fungorum (2023), of which most are saprobes in freshwater and terrestrial environment (Luo et al. 2018, 2019, Ma et al. 2022, Phukhamsakda et al. 2020, Su et al. 2016, Sun et al. 2020, Yang et al. 2018, 2021, Zhai et al. 2022, Zhang et al. 2022).

During a survey on the diversity of woody litter microfungi in a dipterocarp forest in Chiang Rai Province, Thailand, a specimen with sporidesmium-like structures was found. Morphological characterisation and multilocus phylogenetic analysis of large subunit ribosomal rRNA (LSU), internal transcribed spacer (ITS), translation elongation factor 1-alpha (*tef1-a*), and RNA polymerase II subunit (*rpb2*) sequences revealed *Distoseptispora dipterocarpi* as a novel taxon. The isolate represents the first report of *Distoseptispora* on *Dipterocarpus* from Thailand.

Materials & Methods

Sample collection, fungal isolation, and microscopic characterisation

Dead wood of *Dipterocarpus* sp. was collected in Chiang Rai Province, Thailand, in September 2021 and taken to the laboratory. The sample was examined using a Leica EZ4 stereo microscope, and the fruiting structures were placed by a needle on a drop of sterilised water on a slide. The micro-morphological features were examined and photographed using a Nikon ECLIPSE Ni compound microscope (Nikon, Japan) with a Canon 600 D digital camera (Nikon, Japan). Tarosoft (R) Image Frame Work program (Version 0.9.7) was used to measure specimen structures, and photo plates were prepared using Adobe Photoshop CS6 Extended version 10.0 software (Adobe Systems, United States). Single conidia isolation was used to obtain pure cultures on DifcoTM potato dextrose agar (PDA) (39 g.L⁻¹), following the spore suspension method described in (Senanayake et al. 2020). The plates were incubated at 25 ± 1 °C in the dark for four weeks.

Herbarium material was deposited in the Mae Fah Luang University Fungarium (MFLU), Chiang Rai, Thailand, and ex-type pure living cultures in the Mae Fah Luang University Culture Collection (MFLUCC). Faces of fungi numbers (FoF) (Jayasiri et al. 2015) and Index Fungorum numbers (http://www.indexfungorum.org) were acquired.

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from the fresh fungal mycelium using the Forensic DNA Kit– D3591-01 (OMEGA Bio-Tek Inc) following the manufacturer's protocol. Polymerase chain reaction (PCR) amplifications were performed using the primers and conditions demonstrated in Table 1, in a total volume of 50 μ l (25 μ l of 10 × PCR Master Mix, 1 μ l of 10 picomolar forward and reverse primers, 2 μ l DNA template, and 21 μ l ddH₂O). PCR amplification products were surveyed on agarose gel (1%) and sequenced by Biogenomed Co., Ltd (South Korea).

Alignments and phylogenetic analysis

Consensus sequences were assembled using SeqMan software version 7.1.0 (DNASTAR Inc., WI). The sequences of 59 *Distoseptispora* species and two *Aquapteridospora* species (Crous et al. 2019, Hyde et al. 2019, Luo et al. 2018, Ma et al. 2022, Monkai et al. 2020, Phukhamsakda et al. 2020, Su et al. 2016, Sun et al. 2020, Yang et al. 2018, 2021, Zhai et al. 2022, Zhang et al. 2022) were obtained from NCBI GenBank database (Sayers et al. 2019) (Table 2). The dataset of the LSU, ITS, *tef1-a* and *rpb2* were aligned using MAFFT v.7 online web server (http://mafft.cbrc.jp/alignment/server/index.html (Katoh et al. 2019), and the alignments were trimmed using trimAl v 1.2 under the *gappyout* (*-gt 0.5*) (Capella-Gutierrez et al. 2009).

Maximum likelihood (ML) analysis was carried out with RAxML-HPC2 on XSEDE (8.2.12) using a GTR-GAMMA model of evolution (Stamatakis 2014) and 1,000 non-parametric bootstrap replicates. Bayesian Inference (BI) analysis was performed in MrBayes (version) on XSEDE in CIPRES Science Gateway (Miller et al. 2015), using the GTR+I+G nucleotide substitutions models for each dataset, selected according to the Akaike Information Criterion (AIC) implemented in jModelTest (2.1.6) (Darriba et al. 2012) in the CIPRES Science Gateway web portal (Miller et al.

2010). Four Markov chains for 20,000,000 generations with trees were sampled every 1,000th generation for calculating the Bayesian Posterior Probabilities (BYPP). The first 25% of the trees, representing the burn-in phase, were excluded, and the remaining trees were applied for calculating posterior probabilities of recovered branches (Larget & Simon 1999). The resulting trees were visualised in FigTree v. 1.4.0 (Rambaut 2012), and the layout was created in Inkspace 1.2. The obtained sequences were deposited in GenBank (Table 2).

Locus	Primer	PCR protocol	Reference
	(Forward and Reverse)	-	
ITS	ITS5/ ITS4	94 °C: 3 min, (94 °C: 30 s,	White et al. (1990)
		55 °C: 50 s,	
		72 °C :1 min) \times 35 cycles	
		72 °C: 10 min	
		4 °C on hold	
LSU	LR0R/ LR5	95 °C: 3 min, (95 °C: 30 s,	Vilgalys & Hester (1990),
		55 °C: 50 s, 72 °C: 30 s) × 35	Rehner et al. (1994)
		cycles	
		72 °C: 10 min	
		4 °C on hold	
rpb2	fRPB2–5F/ fRPB2–7cR	95 °C: 5 min, (95 °C: 15 s,	Liu et al. (1999)
-		56 °C: 50 s, 72 °C: 2 min) ×	
		37 cycles	
		72 °C: 10 min	
		4 °C on hold	

Table 1 Primers and PCR protocols.

Genealogical concordance phylogenetic species recognition analysis

A pairwise homoplasy index (PHI) test was carried out in Split Tree version 4.18.2 (Huson & Bryant 2006) to assess the recombination level within phylogenetically related species using single and multilocus genes (LSU, ITS, *tef1-a*, and *rpb2*), including gaps. The results were demonstrated by constructing a split diagram using the splits decomposition and LogDet transformation possibility.

Table 2 GenBank accession numbers used in the phylogenetic analyses.

Taxon		Gene bank	c accession nur	nber	
	Strain Code	LSU	ITS	tef1-a	rpb2
Distoseptispora	HKUCC 10820	DQ408561	_	_	DQ435092
adscendens					
D. amniculi	MFLUCC 17-2129	MZ868761	MZ868770	_	MZ892982
D. appendiculata	MFLUCC 18-0259	MN163023	MN163009	MN174866	_
D. aqualignicola	KUNCC 21-10729	ON400845	OK341186	OP413480	OP413474
D. aquamyces	KUNCC 21-10732	OK341199	OK341187	OP413482	OP413476
D. aquatica	MFLUCC 15-0374	KU376268	MF077552		_
D. aquatica	MFLUCC 16-0904	MK849794	MK828649	MN194053	_
D. aquatica	MFLUCC 18-0646	MK849793	MK828648	MN194052	_
D. aquatica	S-965	MK849792	MK828647	MN194051	MN124537
D. aquisubtropica	GZCC 22-0075	ON527941	ON527933	ON533677	ON533685
D. atroviridis	GZCC 20-0511	MZ868763	MZ868772	MZ892978	MZ892984
D. atroviridis	GZCC 19-0531	MZ227223	MW133915	_	_
D. bambusae	MFLUCC 20-0091	NG074430	NR170068	MT232880	MT232881
D. bambusae	MFLU 17–1653	MT232717	MT232712	_	MT232882
D. bangkokensis	MFLUCC 18-0262	MZ518206	MZ518205	_	_
D. cangshanensis	MFLUCC 16-0970	MG979761	MG979754	MG988419	_
D. caricis	CPC: 36498	MN567632	NR166325	_	MN556805

Table 2 Continued.

Taxon		Gene bank	accession nur	nber	
	Strain Code	LSU	ITS	tef1-a	rpb2
D. caricis	CPC: 36442	_	MN562125	_	MN556806
D. chinensis	GZCC 21-0665	MZ474867	MZ474871	MZ501609	_
D. clematidis	MFLUCC 17–2145	MT214617	MT310661	_	MT394721
D. clematidis	KUN-HKAS:112708	MW879523	MW723056	_	_
D. crassispora	KUMCC 21-10726	OK341196	OK310698	OP413479	OP413473
D. curvularia	KUMCC 21-10725	OK341195	OK310697	OP413478	OP413472
D. cylindricospora	KUN–	OK513523	OK491122	OK524220	_
2 1	HKAS:115796				
D. dehongensis	KUMCC 18-0090	MK079662	MK085061	MK087659	_
D. dipterocarpi	MFLUCC	OP600052	OP600053	_	OP595140
	22-0104 *				
D. effuse	GZCC 19-0532	MZ227224	MW133916	_	_
D. euseptata	MFLUCC 20-0154	MW081544	MW081539	_	MW151860
D.euseptata	MFLU 20-0568	MW081545	MW081540	MW084994	MW084996
D. fasciculata	KUMCC 19-0081	NG075417	NR172452	MW396656	_
D. fluminicola	MFLUCC 15-0417	KU376270	MF077553	_	_
D. fusiformis	GZCC 20–0512	MZ868764	MZ868773	MZ892979	MZ892985
D. guizhouensis	GZCC 21–0666	MZ474869	MZ474868	MZ501610	MZ501611
D. guttulate	MFLUCC 16–0183	MF077554	MF077543	MF135651	_
D. hyaline	MFLUCC 17–2128	MZ868760	MZ868769	MZ892976	MZ892981
D. hydei	MFLUCC 20–0115	MT742830	MT734661	_	MT767128
D. lancangjiangensis	DLUCC 1864	MW879522	MW723055	_	_
D. leonensis	HKUCC 10822	DQ408566	1111120000	_	DQ435089
D. lignicola	MFLUCC 18–0198	MK849797		_	-
D. longispora	HFJAU 0705	MH555357	MH555359	_	_
D. martini	CGMCC 3.18651	KX033566	KU999975	_	_
D. meilingensis	JAUCC 4728	OK562397	OK562391	OK562409	_
D. multiseptata	MFLUCC 15–0609	KX710140	KX710145	MF135659	_
D. neorostrata	MFLUCC 18–0376	MN163017	MN163008	_	_
D. nonrostrata	KUNCC 21–10730	OK341198	OK310699	OP413481	OP413475
D. obclavate	MFLUCC 18–0329	MN163010	MN163012	_	_
D. obpyriformis	MFLUCC 17–1694	MG979764	_	MG988422	MG988415
D. obpyriformis	DLUCC 0867	MG979765	MG979757	MG988423	MG988416
D. pachyconidia	KUMCC 21–10724	OK341194	OK310696	OP413477	OP413471
D. palmarum	MFLUCC 18–1446	MK079663	MK085062	MK087660	MK087670
D. palmarum	MFLU 18–0588	NG067856	NR165897	_	_
D. phangngaensis	MFLUCC 16–0857	_	NR166230	MF135653	_
D. rayongensis	MFLUCC 18–0415	NG073624	NR171938	MH463253	_
D. rayongensis	MFLU 18–1045	MH457137	MH457172	_	MH463255
D. rostrata	MFLUCC 16–0969	MG979766	MG979758	MG988424	MG988417
D. rostrata	DLUCC 0885	MG979767	MG979759	MG988425	_
D. rostrata	MFLU 18–0479	NG064513	NR157552	110,00.20	_
D. saprophytica	MFLUCC 18–1238	NG075419	NR172454	_ MW396651	MW504069
D. septate	GZCC 22–0078	ON527947	ON527939	ON533683	ON533690
D. songkhlaensis	MFLUCC 18–1234	MW287755	MW286482	MW396642	_
D. submersa	MFLUCC 16–0946	MG979768	MG979760	MG988426	MG988418
D. suoluoensis	MFLUCC 17–0224	NG068552	NR168764	MF135654	_
D. suotuoensis D. tectonae	MFLUCC 12–0291	KX751713	KX751711	KX751710	KX751708
D. tectonigena	MFLUCC 12–0291 MFLUCC 12–0292	KX751713	NR154018	_	KX751708
D. thailandica	MFLUCC 12-0272 MFLUCC 16-0270	MH260292	MH275060		-
D. thysanolaenae	KUN-HKAS:	MW879524	MW723057	MW729783	_
D. mysunomenue	112710	1111079324	111 11 123031	11111/2/103	
D. thysanolaenae	KUMCC 18–0182	MK064091	MK045851	MK086031	_
D. tropica	GZCC 22–0076	ON527943	ON527935	ON533679	 ON533687
D. tropica D. verrucosa	GZCC 22–0070 GZCC 20–0434	MZ868762	MZ868771	MZ892977	MZ892983
D. VEITULOSU	JLUU 20-0434	1012.0007.02	1/1/000//1	1112072711	1112072703

Table 2 Continued.

Taxon	Gene bank accession number				
	Strain Code	LSU	ITS	tef1-α	rpb2
D. wuzhishanensis	GZCC 22-0077	ON527946	ON527938	ON533682	_
D. xishuangbannaensis	KUMCC 17-0290	MH260293	MH275061	MH412768	MH412754
D. yongxiuensis	JAUCC 4725	OK562394	OK562388	OK562406	_
D. yongxiuensis	JAUCC 4726	OK562395	OK562389	OK562407	_
D. yunjushanensis	JAUCC 4723	OK562398	OK562392	OK562411	_
D. yunjushanensis	JAUCC 4724	OK562399	OK562393	OK562410	_
D. yunnansis	MFLUCC 20-0153	MW081546	MW081541	MW081541	MW151861
Aquapteridospora	MFLUCC 17-2371	NG075413	NR172447	_	_
aquatica					
A. fusiformis	MFLU 18-1601	MK849798	MK828652	MN194056	—

Ex-type strains are denoted in bold; "_" sequence is unavailable; the current study sequence is indicated with an asterisk (*) after the collection number.

Abbreviations: CGMCC: China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CPC: Collection of P.W. Crous; DLUCC: Dali University Culture Collection, Yunnan, GZCC: Guizhou Culture Collection China; HFJAU: Herbarium of Fungi, Jiangxi Agricultural University; HKUCC: The University of Hong Kong Culture Collection, Hong Kong, China; JAUCC: Jiangxi Agricultural University Culture Collection; KUMCC: Kunming Institute of Botany Culture Collection; KUN HKAS: Kunming Institute of Botany Academia Sinica, Yunnan, China; MFLU: the herbarium of Mae Fah Luang University, Chiang Rai, Thailand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand.

Results

Phylogenetic analysis

Partial nucleotide sequences of the LSU, ITS, *tef1-a*, and *rpb2* were used to assess the phylogenetic relationships of 78 strains, representing 59 *Distoseptispora* species and the outgroup taxa *Aquapteridospora aquatica* (MFLUCC 17–2371) and *A. fusiformis* (MFLU18–1601) (Table 2). The final alignment comprised 2,800 bases (ITS: 1–556; LSU: 557–1,420; *rpb2*: 1,421–2,469; *tef1-a*: 2,470–3,376), including gaps. The matrix had distinct alignment patterns with 34.03% of gaps and the estimated base frequencies of A = 0.239923, C = 0.263467, G = 0.282718, T = 0.213892; substitution rates AC = 1.314262, AG = 3.320157, AT = 1.294707, CG = 0.931325, CT = 7.086725, and GT = 1.000000. The RAxML and Bayesian analyses resulted in trees with congruent topology. The RAxML tree with the best score had the final value of the ML optimisation likelihood: -31779.501476 (Fig 1). The newly obtained isolate clustered sister of *Distoseptispora fasciculata* (KUMCC 19–0081) and *D. wuzhishanensis* (GZCC 22–0077), with 83% ML and 0.98 BYPP support.

Taxonomy

Distoseptispora dipterocarpi N. Afshari, K.D. Hyde & S. Lumyong, sp. nov.

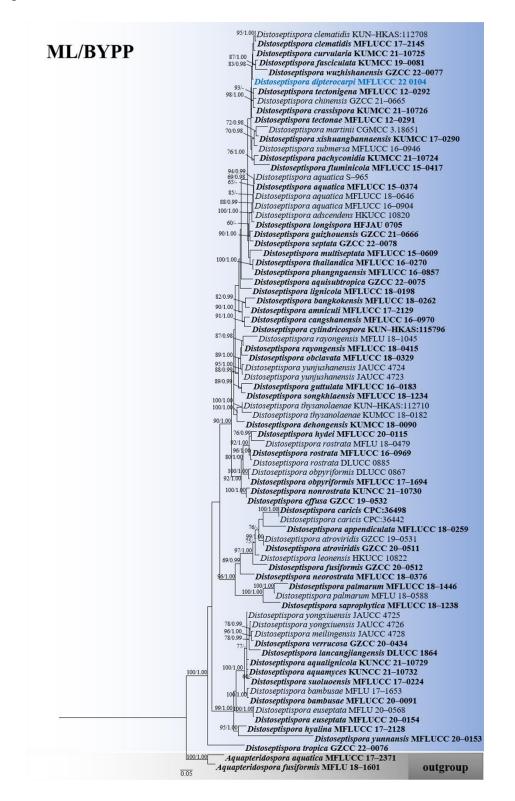
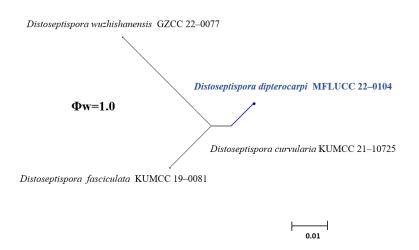

Index Fungorum number: IF558392; Facesoffungi number: FoF 13099

Fig. 3

Etymology – the epithet refers to the host genus, *Dipterocarpus*. Holotype – MFLU 22–0151


Saprobic on woody litter of Dipterocarpus sp. Sexual morph: Undetermined. Asexual morph: *Hyphomycetous. Colonies* on the substratum are superficial, effuse, gregarious, hairy, erect, dark brown to black. *Mycelium* superficial on host substrate, composed of septa, branched, dark brown, thick-walled hyphae. *Conidiophores* 14–72 × 5–7 μ m ($\bar{x} = 32.5 \times 6 \mu$ m, n = 20), macronematous, mononematous, erect, straight or slightly flexuous, 1–7-septate, unbranched, single or in groups, brown, thick-walled, robust at the base. *Conidiogenous cells* 4–13.5 × 4–6.5 μ m ($\bar{x} = 8 \times 5 \mu$ m,

n = 20), monoblastic, terminal, determinate, cylindrical, brown. *Conidia* 31.5–350 × 6.5–12 µm ($\bar{x} = 146 \times 9 \mu m$, n = 20), solitary, cylindrical or obclavate, elongated, straight or slightly curved, truncate at the base, rounded at the apex, 10–72-distoseptate, smooth, olivaceous when young, brown tinge when mature, mostly lighter towards the apex, thick-walled, and scars or pigmented disjunction present in the attachment site.

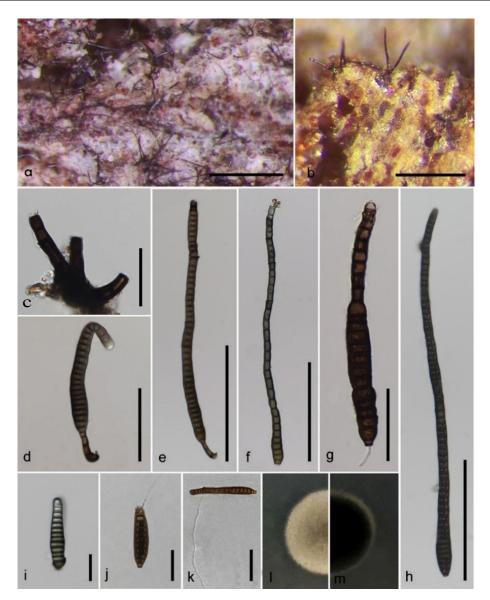
Fig. 1 – Maximum likelihood tree generated from combined ITS, LSU, *rpb2*, and *tef1-a* sequence data. Bootstrap support values $\geq 60\%$ and Bayesian posterior probabilities ≥ 0.95 are demonstrated at the branches. The tree is rooted with *Aquapteridospora aquatic* (MFLUCC 17–2371) and

A. fusiformis (MFLU 18–1601). The new taxon (MFLUCC 22–0104) is indicated in bold and blue. Type species are in bold.

Fig. 2 – The splits diagram from the pairwise homoplasy index (PHI) test created from the combined ITS, LSU, *rpb2*, and *tef1-a* sequence data of closely related taxa. The PHI test (Φ w) < 0.05 indicates significant recombination within the dataset. The novel taxon is in blue.

Culture characteristics – Colonies on PDA, circular, reaching 10 mm diam. at 7 days at 25 °C. Cultures from above hazel, dense mycelium, circular, surface smooth, dry, fluffy, undulate at the edge; reverse black at the center, radiating black outwardly.

Material examined – Thailand, Chiang Rai Province, on woody litter of *Dipterocarpus* sp. 27 September 2021, N. Afshari, S6NAD2 (MFLU 22–0151, holotype), ex-type living culture MFLUCC 22–0104.


Notes – In the phylogenetic tree, Distoseptispora dipterocarpi clusters as a sister taxon to D. fasciculata and D. wuzhishanensis with high support (GZCC 22–0077), with 83% ML/0.98 BYPP support. Distoseptispora dipterocarpi (MFLUCC 22-0104) shares several morphological characters with the phylogenetically related species D. fasciculata and D. clematidis, in terms of the shape and color of conidia. However, it can be distinguished from these two species by its wider range of conidial length (D. fasciculata: 46–200 µm; D. clematidis: 120-210 μm; D. dipterocarpi: 31.5-350 µm), and conidial septation, up to 72-distoseptate and having more conidiophore septa (up to 7) (Table 3), while conidia of D. fasciculata and D. clematidis have up to 40 and 35 septa, respectively (Phukhamsakda et al. 2020, Dong et al. 2021). Distoseptispora dipterocarpi and D. clematidis were both isolated from terrestrial environments. However, D. fasciculata was isolated from freshwater. A pairwise homoplasy index based on the combined gene of LSU, ITS, *rpb2*, and *tef1-\alpha* sequence data of closely related taxa indicated no significant recombination ($\Phi w = 1.0$) (Fig. 2). Distoseptispora dipterocarpi is thus reported as a novel species based on morphological characters and high phylogenetic support.

Isolate no.	Conidia	Conidiophore	Substrate	References
D. dipterocarpi	31.5–350 × 6.5–12 μm	$14-72 \times 5-7 \ \mu m$	Dead wood of	This study
(MFLUCC 22-	10-72-distoseptate	(1–7) septate	Dipterocarpus sp.	
0104)				
D. clematidis	$120-210 \times 12-20 \ \mu m$	$22-40 \times 4-10 \ \mu m$	Dried branches of	Phukhamsakda
(MFLUCC 17–	28–35-distoseptate	(3–5) septate	Clematis	et al. (2020)
2145)	-	-	sikkimensis	

Table 3 Comparison of conidial and conidiophores dimensions of *Distoseptispora clematidis*, *D. curvularia*, *D. fasciculata*, *D. wuzhishanensis*, and our isolate (*D. dipterocarpi*).

Table 3	Continued.
I GOIC C	commaca.

Isolate no.	Conidia	Conidiophore	Substrate	References
D. curvularia	(60–)100 × 200(–314)	11–28 µm	Submerged wood	Zhang et al.
(KUMCC 21-	μm	_	in freshwater	(2022)
10725)				
D. fasciculata	$46-200 \times 10-16.5 \ \mu m$	$12-16 \times 5-6 \ \mu m$	Submerged wood	Dong et al.
(KUMCC 19–	10–40-distoseptate	(0–1) septate	in freshwater	(2021)
0081)	*			
D. wuzhishanensis	76–143 × 11–17 μm	16–56 × 5–7 μm	Submerged wood	Ma et al. (2022)
(GZCC 22-0077)	•	(1–4) septate	in freshwater	

Fig. 3 – *Distoseptispora dipterocarpi.* a, b Colonies on *Dipterocarpus* sp. woody litter. c conidiophores. d, e conidiophores with conidia. f-j Conidia. k Germinating conidium. l, m Colony on PDA (front, reverse). Scale bars: a, b, $e-h = 100 \mu m$, $k = 50 \mu m$, c, d, i, j = 20 μm .

Discussion

Distoseptisporaceae was raised to the order Distoseptisporales based on morphological and molecular phylogenetic evidence of concatenated LSU, SSU, *rpb2*, and *tef1-a* sequence data (Luo et al. 2019). Distoseptispora was introduced to accommodate D. aquatica and D. fluminicola based on morphology and phylogenetic analysis. This monophyletic genus differs from other

sporidesmium-like taxa, such as *Sporidesmium aquaticum (Sporidesmiaceae)*, *Morrisiella indica (Sordariomycetidae)*, and *Sporidesmina malabarica (Xylariomycetidae)*, by its phylogenetic placement and distinguishable morphological features (Su et al. 2016). Although *Distoseptispora, Ellisembia*, and *Sporidesmium* share similar morphological characteristics, it is challenging to recognise some *Distoseptispora* species by morphological signatures alone. Still, it is possible to distinguish them by molecular data (Hyde et al. 2016, Tibpromma et al. 2018, Yang et al. 2021). The asexual morph of *Distoseptispora* is critical to distinguish species based on the size, shape, colour, and the number of septate of the conidia (Su et al. 2016, Luo et al. 2018, Yang et al. 2021, Hyde et al. 2019). Therefore, species boundary delimitation should follow the polyphasic approaches (Chethana et al. 2021, Maharachchikumbura et al. 2021, Manawasinghe et al. 2021, Jayawardena et al. 2021). Based on that, we introduce *D. dipterocarpi* as a new taxon.

Most *Distoseptispora* species were collected from submerged wood in freshwater ecosystems (Su et al. 2016, Dong et al. 2021, Yang et al. 2018, 2021, Phukhamsakda et al. 2022, Zhang et al. 2022), but some have been isolated from the terrestrial environment (Monkai et al. 2020, Phukhamsakda et al. 2020, Sun et al. 2020, Zhai et al. 2022); therefore, they are unlikely to have a particular habitat preference. Besides, species in this genus have been reported only in China and Thailand, where fungal surveys in different habitats are continuous. This may be due to the lack of geographical sampling or specificity (Phukhamsakda et al. 2022). Besides, *Distoseptispora* species are not host-specific and have been isolated from a variety of plants, including *Carex* sp., *Clematis sikkimensis, Pandanus* sp., *Tectona grandis* and *Bambuseae* (Hyde et al. 2016, Tibpromma et al. 2018, Crous et al. 2019, Phukhamsakda et al. 2020, Sun et al. 2020).

In this study, *D. dipterocarpi* was found on decaying wood of *Dipterocarpus* sp. from terrestrial habitat in Chiang Rai, Thailand. Since *Distoseptispora* species are mostly isolated from freshwater in Thailand and China, different hosts and geographical regions need to be surveyed to reveal this genus diversity and contribute to increasing the fungal species number curve.

Acknowledgements

The authors would like to thank Chiang Mai University for providing the President fund for Naghmeh Afshari and partial support for Saisamorn Lumyong. Naghmeh Afshari also thanks Mae Fah Luang University for the research collaboration. Dr. Shaun Pennycook is thanked for checking and suggesting Latin names of the new taxa. Kevin D. Hyde and Chitrabhanu S. Bhunjun would like to thank the National Research Council of Thailand (NRCT) grant "Total fungal diversity in a given forest area with implications towards species numbers, chemical diversity and biotechnology" (grant no. N42A650547).

Conflicts of Interest – The authors declare no conflict of interest.

References

- Brearley FQ, Banin LF, Saner P. 2017 The ecology of the Asian dipterocarps. Plant Ecology & Diversity 9(5–6), 429–436.
- Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009 trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.
- Chethana KW, Manawasinghe IS, Hurdeal VG, Bhunjun CS et al. 2021 What are fungal species and how to delineate them?. Fungal Diversity 109(1),1–25.
- Crous PW, Wingfield MJ, Lombard L, Roets F et al. 2019 Fungal planet description sheets: 951– 1041. Persoonia: Molecular Phylogeny and Evolution of Fungi 43, 223–425.
- Darriba D, Taboada GL, Doallo R, Posada D. 2012 jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772–772.
- Dong W, Hyde KD, Jeewon R, Doilom M et al. 2021 Towards a natural classification of annulatascaceae-like taxa II: introducing five new genera and eighteen new species from freshwater. Mycosphere 12, 1–88.

Ghazoul J. 2016 – Dipterocarp Biology, Ecology, and Conservation. Oxford University Press.

- Harmon ME, Franklin JF, Swanson FJ, Sollins P et al. 1986 Ecology of Coarse Woody Debris in Temperate Ecosystems. Advances in Ecological Research, Academic Press 133–302.
- Huson DH, Bryant D. 2006 Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267.
- Hyde KD, Hongsanan S, Jeewon R, Bhat DJ et al. 2016 Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80, 1–270.
- Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ et al. 2019 Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96, 1–242.
- Index Fungorum. 2023 Available from: http://www.indexfungorum.org/names/Names.asp (Accessed on February 15, 2023).
- Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J et al. 2015 The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74, 3–18.
- Jayawardena RS, Hyde KD, Farias ARG, Bhunjun CS et al. 2021 What is a species in fungal plant pathogens?. Fungal Diversity 109(1), 239–266.
- Katoh K, Rozewicki J, Yamada KD. 2019 MAFFT online service: multiple sequence alignment, interactive sequence choice and visualisation. Briefings in Bioinformatics 20, 1160–1166.
- Larget B, Simon DL. 1999 Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16, 750–759.
- Liu YJ, Whelen S, Hall BD. 1999 Phylogenetic relationships among *Ascomycetes*: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16 (12), 1799–1808.
- Luo ZL, Hyde KD, Liu J, Bhat D et al. 2018 Lignicolous freshwater fungi from China II: Novel *Distoseptispora (Distoseptisporaceae)* species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. Mycosphere 9, 444–461.
- Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN et al. 2019 Freshwater *Sordariomycetes*. Fungal diversity 99, 451–660.
- Ma J, Zhang JY, Xiao XJ, Xiao YP et al. 2022 Multi-Gene Phylogenetic Analyses Revealed Five New Species and Two New Records of *Distoseptisporales* from China. Journal of Fungi 8(11), 1202.
- Maharachchikumbura SSN, Chen Y, Ariyawansa HA, Hyde KD et al. 2021 Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 109(1), 155–179.
- Manawasinghe IS, Phillips AJ, Xu J, Balasuriya A et al. 2021 Defining a species in fungal plant pathology: beyond the species level. Fungal Diversity 109(1), 267–282.
- Miller MA, Pfeiffer W, Schwartz T. 2010 Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In Proceedings of the Gateway Computing Environments Workshop (GCE) 14, 1–8.
- Miller MA, Schwartz T, Pickett BE, He S et al. 2015 A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evolutionary Bioinformatics 11, 43–48.
- Monkai J, Boonmee S, Ren GC, Wei DP et al. 2020 *Distoseptispora hydei* sp. nov.(*Distoseptisporaceae*), a novel lignicolous fungus on decaying bamboo in Thailand. Phytotaxa 459(2), 93–107.
- Nordén B, Ryberg M, Götmark F, Olausson B. 2004 Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biological conservation 117(1), 1–10.
- Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth JEB et al. 2020 Microfungi associated with *Clematis (Ranunculaceae)* with an integrated approach to delimiting species boundaries. Fungal Diversity 102, 1–203.
- Phukhamsakda C, Nilsson RH, Bhunjun CS, de Farias ARG et al. 2022 The numbers of fungi: contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Diversity 114, 327–386.

Rambaut A. 2012 – FigTree, version 1.4.2. University of Edinburgh, Edinburgh.

- Rehner SA, Samuels GJ. 1994 Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98, 625–634.
- Robert V, Vu D, Amor ABH, van de Wiele N et al. 2013 MycoBank gearing up for new horizons. IMA fungus 4(2), 371–379.
- Sayers EW, Cavanaugh M, Clark K, Ostell J et al. 2019 GenBank. Nucleic acids research 47(D1), D94–D99.
- Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS et al. 2020 Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11(1), 2678–2754.
- Species Fungorum. 2023 Species Fungorum.

http://www.speciesfungorum.org/Names/Names.asp (Accessed on February 15, 2023).

- Stamatakis A. 2014 RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
- Su H, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA et al. 2016 The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Diversity 80, 375–409.
- Sun Y, Goonasekara ID, Thambugala KM, Jayawardena RS et al. 2020 Distoseptispora bambusae sp. nov.(Distoseptisporaceae) on bamboo from China and Thailand. Biodiversity Data Journal 8, e53678
- Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ et al. 2018 Fungal diversity notes 840–928: Micro-fungi associated with *Pandanaceae*. Fungal Diversity 93, 1–160.
- Vilgalys R, Hester M. 1990 Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8), 4238– 4246.
- White TJ, Bruns T, Lee SJWT, Taylor J. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Academic Press 315–322.
- Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M et al. 2022 Outline of Fungi and fungus-like taxa 2021. Mycosphere 13(1), 53–453.
- Yang J, Maharachchikumbura SSN, Liu JK, Hyde KD et al. 2018 *Pseudostanjehughesia* aquitropica gen. et sp. nov. and *Sporidesmium* sensu lato species from freshwater habitats. Mycological Progress 17, 591–616.
- Yang J, Liu LL, Jones EBG, Li WL et al. 2021 Morphological Variety in *Distoseptispora* and Introduction of Six Novel Species. Journal of Fungi 7(11), 945.
- Zhai ZJ, Yan JQ, Li WW, Gao Y et al. 2022 Three novel species of *Distoseptispora* (*Distoseptisporaceae*) isolated from bamboo in Jiangxi Province, China. MycoKeys 88, 35–54.
- Zhang H, Zhu R, Qing Y, Yang H et al. 2022 Polyphasic Identification of *Distoseptispora* with Six New Species from Fresh Water. Journal of Fungi 8(10), 1063.
- Zimmer M. 2019 Detritus. In Encyclopedia of Ecology. Elsevier, Amsterdam 292–301.