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Adaptation is evolution in response to natural selection. Hence, an adaptation

is expected to originate simultaneously with the acquisition of a particular

selective environment. Here we test whether long legs evolve in oil-collecting

Rediviva bees when they come under selection by long-spurred, oil-secreting

flowers. To quantify the selective environment, we drew a large network

of the interactions between Rediviva species and oil-secreting plant species.

The selective environment of each bee species was summarized as the

average spur length of the interacting plant species weighted by interaction

frequency. Using phylogenetically independent contrasts, we calculated diver-

gence in selective environment and evolutionary divergence in leg length

between sister species (and sister clades) of Rediviva. We found that change

in the selective environment explained 80% of evolutionary change in leg

length, with change in body size contributing an additional 6% of uniquely

explained variance. The result is one of four proposed steps in testing for

plant–pollinator coevolution.
1. Introduction
Long-legged Rediviva bees are among the most unusual insects. They live in the

temperate parts of Southern Africa, where they use their elongated front legs to

extract oil from long-spurred flowers [1,2] (figure 1). An unusual trait, such as

long legs, invites the hypothesis of adaptation—the idea that the trait was pro-

duced by a particular selective environment, in this case long-spurred flowers.

The adaptation hypothesis makes two key predictions: (i) that the trait is more

advantageous than its antecedent in a particular selective environment, and

(ii) that the trait evolved in that selective environment [3]. In other words, a

trait is an adaptation if it serves a purpose and originated for that purpose.

The first prediction concerns utility: is it an advantage to have longer legs?

There can be little doubt that Rediviva use their long legs to great advantage

(figure 1c), but a more formal test of utility requires measuring performance

relative to shorter-legged individuals (or species) in the same selective environ-

ment. Selection on leg length has not been studied in bees, but selection has

been studied in another pollinator, a long-proboscid fly, which also interacts

with long-tubed flowers [4]. This study found that individuals with longer

appendages obtained more reward from long-tubed flowers, and the same

mechanism is likely to favour longer legs in Rediviva.

The second prediction, which is the focus of this paper, concerns genesis.

Did the trait originate simultaneously with the acquisition of a particular
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(c)

Figure 1. (a) Diascia whiteheadii with an open flower and several buds. The twin spurs contain oil. (b) Rediviva longimanus females have disproportionately long
legs with dense hairs on the tarsi. (c) R. longimanus uses its long front legs to collect oil from the equally long spurs of D. whiteheadii. Cederberg, Greater Cape
Floristic Region, South Africa. Scale bars, 1 cm. Photos by Anton Pauw.
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selective environment? Using a phylogenetic tree for a group of

organisms, change in traits and environments can be inferred

by contrasting the descendants of a common ancestor [5].

The method simply requires calculating the difference in trait

value and selective environment value between sister species

pairs. The same procedure can be followed for sister clades,

each of which is represented by the average value of the species

it contains. A phylogeny of N species will produce N 2 1 con-

trasts, and these can be used to test whether the amount of

divergence in traits is correlated with the amount of divergence

in selective environments. A positive association would be

consistent with the idea that the trait originated as a result of

the hypothesized selective environment [6].

Here we use this method to test for a significant association

between evolutionary change in leg length in Rediviva and

change in the hypothesized selective environment imposed

by long-spurred flowers. To quantify the selective environ-

ment, we drew a network of the interactions between

Rediviva species and oil-secreting plant species. We weighted

the interactions by frequency, i.e. the number of bees captured

per host plant species. The selective environment for each bee

species was the weighted average spur length of its host

plant species. To quantify evolutionary change in leg length

and selective environment, we calculated the difference in leg

length and the difference in average floral spur length for

sister species and clades of Rediviva, and correlated these

contrasts. We expected a positive linear relationship.

Because the traits of a species are correlated, adaptation in

one trait causes necessary changes in other traits, which may

falsely be identified as adaptations [7]. Thus, when testing for

adaptation, analyses should be conducted using multiple

traits simultaneously. Here we include body size with leg

length in correlations with the selective environment.
2. Material and methods
(a) Study species
Rediviva (Melittidae) contains 26 species of solitary bees [8–10].

In all species, the females have a dense piles of plumose hairs

on their front tarsi with which they collect floral oil. The oil is

mixed with pollen to form a ball of food for the larvae [11],

and the walls of the underground nest cells are also slicked

with oil. A well supported phylogenetic hypothesis was availa-

ble for 19 of the species [12] (electronic supplementary

material, figure S1). This phylogeny, and earlier work [13],

shows that Redivivoides, with seven species, is embedded

within Rediviva, but lacks oil-collecting hairs [14]. We excluded

them because their selective environment (non-oil-secreting

flowers) is qualitatively different from that of Rediviva.

Rediviva bees collect oil from plants in the Scrophulariaceae,

Orchidaceae, Stilbaceae and Iridaceae [15–18]. The alpha taxon-

omy of the largest genus, Diascia (ca 70 spp., Scrophulariaceae), is

unresolved but temporary names for new species have been pub-

lished along with brief descriptions, and associated specimens

are housed in the Compton Herbarium [19,20]. We followed

this taxonomy, along with additional sources [21].
(b) Traits
Measurements of leg length and body length were taken from the

literature [8,9,16,22–24]. Additional measurements were made

for Rediviva steineri using established methods [22]. Sample

sizes ranged from eight to 59 individuals, except for the poorly

known R. steineri (n ¼ 2). Leg length was the mean leg length

per species. For the highly variable Rediviva neliana, measure-

ments were taken from the population with the longest legs

(Mountain Zebra National Park). To visualize divergence in leg

length between sister species we arranged the Rediviva species

along an axis of increasing leg length and linked them with

http://rspb.royalsocietypublishing.org/
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lines representing phylogeny (R function ‘phenogram’; package

‘phytools’; R statistical environment) [25,26].
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Figure 2. A diagram of leg length evolution in Rediviva shows that the bees
with the longest legs are each closely related to short-legged sister species.
Lines represent relatedness and the position of species along the y-axis rep-
resent foreleg length (mm). Ancestral states are maximum-likelihood
estimations with considerable uncertainty and are not used in any tests.
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(c) Selective environment
To quantify the environment within which Rediviva front legs

evolved, we documented the network of interactions between

oil-secreting plants and female Rediviva. The data were derived

mainly from the collection of the South African Museum, in par-

ticular those made by Vin Whitehead and Kim Steiner (3758

Rediviva specimens, mainly captured on Diascia). These were sup-

plemented with data from the literature (31 specimens) [23,27],

and our collections (240 specimens, including many captured

on orchids). Collectors followed a plant-centred, representative

sampling scheme [28] (V Whitehead 2002, personal communi-

cation): oil-secreting plant species were targeted for observation

and Rediviva were captured on the focal plant species with

insect nets until diversity levelled off. All plant species were

observed at a minimum of three sites, in a minimum of 3 years.

The data were entered into an interaction matrix with Redi-
viva species as rows and plant species as columns. The cells

were populated with interaction frequency, i.e. the number of

individual bees captured on a particular plant species. To visual-

ize the web of interactions, the data were plotted as a bipartite

network in which Rediviva species were linked to plant species

by lines of varying thickness, which represent interaction

frequency (R function ‘plotweb’; package ‘bipartite’) [29].

Spur length data were obtained from the literature

[19–23,30–34]. For species with twin spurs (or sacs) into which

the bee inserts only its front legs, spur length was the depth of

these structures. For pouched species that accommodate the

entire body of the bee, and for species with exposed elaiophores,

spur length was zero. The selective environment for each bee

species was the average spur length of the interacting plant

species weighted by interaction frequency. To visualize the selec-

tive environment and its relation to bee traits, we plotted the

location of all 4029 interactions in relation to axes of spur

length and leg length (R function ‘sunflowerplot’).
(d) Quantifying evolutionary change in traits and
environment

To quantify evolutionary change in leg length, selective environ-

ment and body size, we calculated phylogenetically independent

contrasts (R function ‘pic’; package ‘ape’) [35]. Contrasts for

sister species were calculated simply by subtraction, and may be

negative or positive. To calculate contrasts between internal

nodes, average trait values were first calculated at each node, pro-

ceeding down from the tips. Contrasts were then calculated as the

differences between the average trait values of sister clades. Note

that trait values at internal nodes are clade averages, not recon-

structed ancestral traits [36]. Contrasts infer evolutionary change

by moving across the terminals of the tree. Alternative methods

of testing adaptation infer change by moving from ancestor to des-

cendant (e.g. [37]). We use contrasts in preference to these methods

because, if adaptation is rapid relative to the rate of speciation, it

will not be possible to reliably estimate ancestral traits or environ-

ments [38, p. 84]. The contrasts method has the added advantage

that it is robust to phylogenetic uncertainty [39].

If traits diverge gradually over time, contrasts involving longer

periods of time will be larger and will have greater weight in stat-

istical analyses. Thus, contrasts generally need to be transformed

to take into account differences in divergence time [40]. To test

whether transformation is necessary, we regressed the absolute

values of the contrasts against the square root of the sum of their

branch lengths. A positive correlation would indicate the need

for transformation.
(e) Correlation analysis
To test whether evolutionary change in leg length is associated

with change in selective environment and change in body size,

we used multiple linear regression with contrast in spur length

and body size as simultaneous predictors of evolutionary

change in leg length (R function ‘lm’). The intercept was set to

zero because contrasts are expected to be centred around zero

due to the arbitrary direction of subtraction during their calcu-

lation [40]. After the analysis we tested whether the residuals

were normally distributed (R function: ‘shapiro.test’). Addition-

ally, we calculated the partitioning of variance between the

two predictor variables using their contribution to the total

sum of squares, and plotted the model in three dimensions

(R function ‘plotPlane’; package ‘rockchalk’). Then, we repeated

the analysis using a reduced dataset form which contrasts at

internal nodes were excluded (i.e. only contrasts between the

seven sister species pairs were included). These contrasts had

stronger phylogenetic support and were not affected by the

exclusion of Redivivoides (electronic supplementary material,

figure S1).
3. Results
(a) Traits
Average leg length in Rediviva varied from 6.9 to 23.4 mm,

whereas body size ranged from 9 to 16.8 mm (electronic

supplementary material, table S1). When we arranged the

species along an axis of leg length and connected them

using the branches of the phylogeny, the tree became tangled,

as multiple lineages crossed over into the same area of

morphospace (figure 2). Sister taxa often differed radically

in leg length. In particular, the three species with the longest

legs were each most closely related to an allopatric, short-legged

http://rspb.royalsocietypublishing.org/
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Figure 3. The selective environment in which Rediviva leg length evolves is
represented as a bipartite network of 4029 interactions among female bees and
oil-secreting host plants. Line thickness represents the number of bee specimens
captured per plant species. Bees were collected throughout South Africa.
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Figure 4. The trait – environment relationship between Rediviva foreleg
length and the spur length of the host plants shows frequent mismatching.
Points represent 4029 interactions. Multiple points are plotted as ‘sunflowers’
with multiple ‘petals’. (Online version in colour.)
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Figure 5. Evolutionary change in leg length in Rediviva is associated with
change in the selective environment imposed by long-spurred flowers. Evol-
utionary change in body size explains additional variation in leg length
evolution. The points represent 18 phylogenetically independent contrasts
between Rediviva sister species, or sister clades (electronic supplementary
material, figure S4). The linear model prediction (table 1) is represented
as a plane, which is linked to the data points by vertical lines. (Online version
in colour.)
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species. Body length shows a somewhat more conserved

pattern of evolution (electronic supplementary material,

figure S2).
(b) Selective environment
Twenty-six Rediviva species had 4029 interactions with 96

species of oil-secreting plants. The selective environment of

each bee species consisted of between one and 24 (median ¼

6.5) oil-secreting plant species (figure 3; electronic supplemen-

tary material, figure S3). The average floral spur length of these

species varied from 0 to 25 mm (electronic supplementary

http://rspb.royalsocietypublishing.org/


Table 1. Multiple linear regression estimates for the relationship between Rediviva leg length evolution, body size evolution and change in the selective
environment imposed by the spurs of the host plants. Measurements are mm. Multiple R-squared ¼ 0.8634, adjusted R-squared ¼ 0.8463, p , 0.0001, d.f. ¼ 16
(figure 5).

estimated slope s.e. t-value p sum of squares (% variance explained)

environment change 0.4662 0.0603 7.731 ,0.0001 334.98 (80%)

body evolution 0.6391 0.2321 2.754 0.0141 27.18 (6%)
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material, table S2), and was frequently mismatched with the

leg length of the Rediviva species that was captured on it.

Nevertheless, an overall trait-environment correlation was

evident (figure 4; electronic supplementary material, figure S4).

(c) Quantifying evolutionary change in traits and
environment

Eighteen contrasts were calculated for each of the three vari-

ables (electronic supplementary material, figure S5). The three

largest contrasts in leg length (12.7, 9.5 and 5.6 mm) occurred

in very recently diverged sister species pairs. It was not necess-

ary to transform the contrasts because they did not increase in

magnitude with time since divergence. The regression of the

absolute value of contrasts against the square root of the sum

of their branch lengths was not significant and in two cases

had a negative slope (leg R2 ¼ 0.10, p ¼ 0.11, slope ¼ 21.00;

body R2 ¼ 0.02, p ¼ 0.27, slope ¼ 0.30; spur R2 ¼ 0.10,

p ¼ 0.11, slope ¼ 21.82). Untransformed contrasts have

the benefit of a clear meaning, which can be expressed

in the original units of measurement (mm).

(d) Correlation analysis
Evolutionary change in leg length was linearly related to evol-

ution of body size and to change in the selective environment

imposed by host plants (figure 5). Together these two variables

accounted for 86% of the variance in leg length evolution.

When change in the selective environment was added first,

this alone explained 80% of the variance in leg evolution,

with body size evolution contributing an additional 6% of

uniquely explained variance. When body size evolution was

added first, it explained 51% of the variance in leg evolution,

with change in the selective environment contributing an

additional 35%. The model overall was highly significant

(table 1), and the residuals were normally distributed

(Shapiro–Wilk statistic¼ 0.96, p ¼ 0.67). When the analysis

was repeated with a reduced dataset form which contrasts at

internal nodes were excluded, change in the selective environ-

ment explained 96% of the variance in leg evolution, with body

size evolution contributing an additional 0.08% of uniquely

explained variance (electronic supplementary material,

figure S6 and table S3).
4. Discussion
The unusually long legs of Rediviva bees have originated in

the selective environment imposed by long-spurred flowers

and thus fulfil one of the two requirements of adaptation. It

remains to be shown that natural selection is the driving

force [3]. In contrast with the large number of studies that

focus on floral adaptation, this study is among a small

number that test pollinator adaptation [4,41–43].
It seems paradoxical that some Rediviva species should

evolve long legs when they visit plant species with both

long and short spurs. This may occur if long legs are necess-

ary for foraging on long-spurred flowers, but do not hinder

foraging on short-spurred flowers [44]; or, if visits to short-

spurred flowers are less frequent [45]. Our analysis supports

the latter scenario by showing that leg length evolution corre-

lates with change in floral spur length when spur length is

weighted by interaction frequency.

This study complements microevolutionary studies of the

match between traits and environments in Rediviva. Steiner

and Whitehead [22,32] found that intraspecific variation in

two Rediviva species was correlated with variation in the

spur length of their host plants, and to a lesser extend with

body size variation. In a third species, which collects oil

only from plants that lack spurs, intraspecific variation in

leg length was strongly correlated with body size. In the

macroevolutionary analysis presented here, body size

variation explained a small percentage of the remaining vari-

ation in leg length after variation in floral spur length had

been accounted for (figure 5 and table 1).

The selective environment considered here consists of the

traits of interacting species and this opens the interesting

possibility that the environment may not only be the agent,

but also the target of selection, leading to a race [46]. If co-

evolution is co-adaptation [47], we propose that testing for

pairwise coevolution is a four-step process. The first two

steps would be to test for selection. Each trait must be

shown to provide the selective environment that favours

the other [4,48–50]. The third and fourth steps are to test

for evolutionary change in each of the traits in response to

change in the selective environment imposed by the interact-

ing trait. Here we meet one of the latter requirements by

demonstrating evolutionary change in leg length in response

to change in floral spur length. A complementary study could

use a Diascia phylogeny, and methods similar to those used

here, to test whether evolutionary change in spur length

occurs in response to change in the selective environment

imposed by long-legged bees.
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