
 

Molecular analyses of the interaction between 

Arabidopsis thaliana and the endophytic fungus 

Piriformospora indica 
 

 
 
 

 
Thesis 

 
 

in order to receive the academic degree doctor rerum naturalium (Dr.rer.nat.) 
 
 
 

submitted to the 
 

Rat der Biologisch-Pharmazeutischen Fakultät 
 

Friedrich Schiller University Jena 
 

 
 

by 

Bationa Shahollari 

 

Jena, Mai 2006 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referees:  
 
1. Prof. Dr. Jutta Ludwig-Müller  
2. PD. Dr. Thomas Pfannschmidt 
3. Prof. Dr. Ralf Oelmüller 
  
 
Date of the Rigorosum: 14.06.06 

Date of the public defence: 26.06.06 



                                                                                   Table of Contents        
 
 

 
Table of Contents………………………………………………………1 

 
Manuscript Overview…………………………………………………..2 

 
        1. Introduction…………………………………………………………..9 
 
        2. Manuscripts 
 

        2.1 Manuscript I…………………………………………………….22  
 

2.2 Manuscript II……………………………………………………36 
 
2.3 Manuscript III…………………………………………………...44 
 
2.4 Manuscript IV…………………………………………………...59 
 
2.5 Manuscript V……………………………………………………96 
 
2.6 Manuscript VI………………………………………………….112 
 
2.7 Manuscript VII…………………………………………………127 
 

3. Discussion ………………………………………………………….135 
 
4. Summary……………………………………………………………147 
 
5. Zusammenfassung………………………………………………….149 
 
6. Literature Cited……………………………………………………..151 
 
7. Appendix 
 

7.1 List of publications……………………………………………..162 
 
7.2 List of presentations……………………………………………163 
 
7.3 Acknowledgment………………………………………………165 
 
7.4 Curriculum Vitae……………………………………………....166 

 
7.5 Ehrenwörtliche Erklärung zur Anfertigung der Dissertation….168 

 

 1



Manuscript Overview 
 

 
Manuscript I 

 
 

 
Association of Piriformospora indica with Arabidopsis thaliana roots 

represents a novel system to study beneficial plant–microbe interactions 

and involves early plant protein modifications in the endoplasmic reticulum 

and at the plasma membrane 

 
Tatjana Peškan-Berghöfer, Bationa Shahollari, Pham Huong Giong, Solveig Hehl, Christine 

Markert, Verena Blanke, Gerhard Kost, Ajit Varma and Ralf Oelmüller 

 

Physiologia Plantarum (2004) 122:4, 465-477 
 
 
 
 
 
This manuscript describes, for the first time, the newly established system to study the 

beneficial interaction between P. indica, an endophytic fungus of the Sebacinaceae 

family, and A. thaliana. 

 

Dr. Tatjana Peškan-Berghöfer and Prof. Ralf Oelüller planned the experiments. Most of 

the experiments were performed by Dr. Tatjana Peškan-Berghöfer. Fluorescence 

measurements were performed by Verena Blanke in the Department of Professor 

Gerhard Kost. Christine Markert helped us with the mass spectrometry. Pham Huong 

Giong introduced us into the techniques required for the experiments on soil. 

I repeated all experiments performed by Dr. Tatjana Peškan-Berghöfer. In addition, I 

extracted the spots from the two-dimensional gels and identified the proteins by mass 

spectrometry. The quantification of the data was performed by myself. I also performed 

the cultivation of plants and inoculation with fungus, and all experiments on soil. 
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Manuscript II 

 
 
 
Receptor kinases with leucine-rich repeats are enriched in Triton X-100 

insoluble plasma membrane microdomains from plants 

 
Bationa Shahollari, Tatjana Peskan-Berghöfer and Ralf Oelmüller 
 
Physiologia Plantarum (2004) 122: 397-403 
 
 
 
 
 
This manuscript describes the protein pattern of Triton X-100 insoluble plasma 

membrane microdomains. The protein composition is enriched in signalling 

components: receptor kinases with leucine-rich repeats, 10 other kinases, the ß subunit 

of heterotrimeric G-proteins and five small GTP-binding proteins. Thus, specific 

signalling components are highly enriched in plant plasma membrane microdomains 

while others are excluded. 

 

I isolated plasma membrane microdomains from A. thaliana and mustard cotyledons, 

separated the protein in one and two dimensional gels and determined the protein 

composition of the plasma membrane microdomains by mass spectrometry. The 

experiments in this manuscript were designed by me, Dr. Tatjana Peskan-Berghöfer and 

Prof. Ralf Oelmüller and performed by myself.     

 

 

 
 
 
 
 
 
 
 
 

 

 3



Manuscript Overview 
 

 
Manuscript III 

 
 
 
Expression of a receptor kinase in Arabidopsis roots is stimulated by the 

basidiomycete Piriformospora indica and the protein accumulates in Triton 

X-100 insoluble plasma membrane microdomains 

 
Bationa Shahollari, Ajit Varma, Ralf Oelmuller. 

 

J Plant Physiol. (2005) 162(8):945-58.  
 

 

 

 

 

Manuscript III describes the accumulation of the mRNA for a receptor kinase in A. 

thaliana roots, which were co-cultivated with P. indica. This represents one of the 

earliest events of a plant root in response to a fungus. During the recognition period of 

both organisms, the mRNA for a receptor kinase with leucine-rich repeats (LRR1) is 

transiently upregulated. The kinase is located in Triton X-100-insoluble plasma 

membrane microdomains. P. indica promotes growth of A. thaliana, and this promotion 

was accompanied by a massive transfer of phosphate from the media to the aerial parts 

of the seedlings. 

 

All experiments, with the exception of the phosphate uptake experiment, were designed 

by me and Prof. Oelmüller and performed by myself. The phosphate uptake studies 

were performed in the laboratory of Professor Ajit Varma. 
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Manuscript IV 

 
 
 

A leucine rich repeat protein is required for growth promotion and 

enhanced seed production mediated by the endophytic fungus 

Piriformospora indica in Arabidopsis thaliana 
 

Bationa Shahollari, Ajit Varma, Ralf Oelmüller 

 

(revised version, submitted to The Plant Journal). 

 

 

 

 

 
Manuscript IV describes A. thaliana mutants which fail to respond to the P. indica.  An 

ethylmethane sulfonate (EMS) and the corresponding insertion line are impaired in a 

leucine-rich repeat protein (LRR2) and are blind to P. indica.  

Inactivation of the A. thaliana single-copy gene DMI1, which codes for an ion carrier 

required for mycorrihiza formation in Legumes, does not affect the beneficial 

interaction between the two symbiotic partners.  

 

All experiments were designed by me and Prof. Oelmüller and performed by me . The 

original EMS mutant was isolated by Prof. Ajit Varma. Also the Fluorescence 

measurements are done by Prof. Ajit Varma. 
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Manuscript V 

 
 
 
MATH domain proteins represent a novel protein family in Arabidopsis 

thaliana, and at least one member is modified in roots during the course of 

a plant–microbe interaction 

 
Ralf Oelmüller, Tatjana Peškan-Berghöfer, Bationa Shahollari, Artan Trebicka, Irena Sherameti, 

Ajit Varma 

 

Physiologia Plantarum (2005) 124:152-166 

 

 

 

A MATH [meprin and TRAF (tumour necrosis factor receptor-associated factor) 

homology] domain-containing protein in the plasma membrane of A. thaliana roots 

becomes transiently modified in response to P. indica. Since nothing is known about 

MATH proteins in plants, we analysed the fifty nine genes present in the A. thaliana 

genome.  
 

The experiment described here and the design of the manuscript was planned by me and 

Prof. Oelmüller. I performed the isolation of microsomes, the separation of proteins by 

two-dimensional gel electrophoresis and analysed the proteins by mass spectrometry. 

Dr. Artan Trebicka and Dr. Irena Sherameti isolated the chloroplasts and plastid RNA. I 

generated the phylogenetic tree for the MATH proteins, with some help from Dr. Artan 

Trebicka. 

 

The modification of the MATH protein in A. thaliana roots in response to P. indica was 

originally discovered by Dr. Peskan-Berghöfer. I continued with the analysis of the 

MATH proteins in P. indica insensitive mutants, by running two-dimensional gels from 

plasma membrane microsomes from roots. I analysed the proteins by mass 

spectrometry. I also participated in the analysis of the gene family in A. thaliana. 
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Manuscript VI 

 
 
 
Molecular analyses of the interaction between Arabidopsis roots and the 

growth-promoting fungus Piriformspora indica 

 
Ralf Oelmüller, Bationa Shahollari, Tatjana Peškan-Berghöfer, Artan Trebicka, Pham Huong 

Giong, Irena Sherameti, Menno Oudhoff, Yonne Venus, Lothar Altschmied, Ajit Varma. 

 

Endocytobiosis Cell Res. (2004) 15 (2), 504-517. 
 
 

 

 

 

This review proposes a working hypothesis for early phases of the recognition between 

P. indica and A. thaliana. A MATH protein with homology to metalloproteases is 

transiently modified in the plasma membrane of the roots during the recognition period 

of both organisms. Furthermore, the mRNA for two receptor kinases are transiently 

upregulated. Biochemical studies uncovered that the receptor kinases co-purify with a 

small GTP-binding protein. Inactivation of one of the receptor kinases strongly retards 

the interaction between both organisms. Finally, recognition of both organisms appear 

to depend on a lipid-signalling pathway, since inactivation of AGC2-1, a protein kinase 

activated by the 3´-phosphoinositide-dependent kinase PDK1, completely abolishes the 

growth promoting effect induced by P. indica.  
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Manuscript VII 

 
 
 
The endophytic fungus Piriformospora indica stimulates the expression of 

nitrate reductase and the starch-degrading enzyme glucan-water dikinase in 

tobacco and Arabidopsis roots through a homeodomain transcription factor 

that binds to a conserved motif in their promoters 

 
Irena Sherameti, Bationa Shahollari, Yvonne Venus, Lothar Altschmied, Ajit Varma, Ralf 

Oelmüller 

 

          J. Biol. Chem. (2005) 280(28):26241-26247.  
 

 

 

 

 

The growth-promoting effect initiated by P. indica is accompanied by a co-regulated 

stimulation of enzymes involved in nitrate and starch metabolisms. P. indica stimulates 

nitrogen accumulation and the expression of the genes for nitrate reductase and the 

starch-degrading enzyme glucanwater dikinase (SEX1) in tobacco roots. P. indica also 

stimulates the expression of the uidA gene under the control of the A. thaliana nitrate 

reductase (Nia2) promoter in transgenic tobacco seedlings. These responses are 

mediated by a homeodomain transcription factor. 

 

I generated the homeodomain transcription factor knock out line in A. thaliana and 

analysed the mutant in details. Yvonne Venus performed the root staining and Dr. 

Lothar Altschmied performed the microarray analysis. 

 

 
 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Shahollari+B%22%5BAuthor%5D


Introduction 
 
 

1. Introduction 
 

Piriformospora indica, a growth-promoting fungus of the Sebacinaceae family 

 

In nature, most plants live in symbiotic association with soil fungi (Smith and Read 

1997; Harrison 1999; Kistner and Parniske 2002; Strack et al. 2003; Parniske 2004). 

Plants perform photosynthesis and deliver photoassimilates to the fungi, while the 

fungi provide inorganic nutrients to the plants due to better access of the hyphae to soil 

minerals (Smith and Read 1997; Harrison 1999; Kistner and Parniske 2002; Strack et 

al. 2003; Jia et al. 2004; Karandashov et al. 2004; Sherameti et al. 2005). The 

cooperation of plant roots and the mycelium of fungi thus leads to an optimized usage 

of nutrient resources. The interaction between the two symbiotic organisms, called 

mycorrhiza, is poorly understood at the molecular level. Only recently, substantial 

progress has been made with the help of mutants (cf. below). 

 

 Concerning the interaction with plants, fungi can be divided into three groups: 

Parasitic, saprophytic and symbiotic or mycorrhizal fungi. Parasitic fungi live at the 

expense of a host. Many parasitic species are only able to infect diseased or weakened 

host plants. Saprophytic fungi are able to digest and thus recycle dead organic material. 

Most of them are also capable of decomposing lignin and cellulose. Mycorrhizal fungi 

form beneficial interactions with plants. This association is usually considered to be 

mutualistic due to the highly beneficial relationships between the two partners, where 

the fungal partner belongs to the Basidiomycetes, Ascomycetes or Zygomycetes. They 

form association with most vascular plants (Harley and Smith 1983; Brundrett 1991; 

Kendrick 1992). At least seven different types of mycorrhizal associations have been 

described so far. They include different taxonomic groups of fungi and host plants with 

distinct morphology patterns: ectomycorrhiza, orchid mycorrhiza, ectendomycorrhiza, 

arbutoid mycorrhiza, monotropoid mycorrhiza, ericoid mycorrhiza, vesicular-

arbuscular mycorrhiza and the special mycorrhiza formed with the Australian lily 

Thysanotus. 
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Arbuscular mycorrhiza fungi from the order Glomales of the Zygomycota are the most 

widespread and probably most ancient symbionts in the world. Glomales are found in 

many ecosystems and interact with many different plant species (cf. Schüssler and 

Kluge 2001). However, it is generally assumed that fungi do not form any beneficial 

interactions with the model plant Arabidopsis thaliana, whereas the Basidiomycete 

Piriformospora indica fungus (Fig. 1), is able to colonise A. thaliana roots. P. indica is 

an endophytic fungus of the Sebacinaceae family, and the interaction is different in 

many aspects from mycorrhizal interactions. Although endophytic interactions 

between plants and fungi have already been described in the 19th century, endophytic 

microorganisms received considerable attention only during the last 20 years, when 

their capacity to protect their hosts against insects, pathogens or herbivores was 

recognized. Beside an increased nutrient accommodation, endophytic fungi also confer 

other important properties to plants, such as resistance to stress, alteration in 

physiological properties, production of phytohormones as well as the production of 

compounds of biotechnological interest.  

The aim in the present investigations was to use the genetically well characterized 

model plant A. thaliana to study its interaction with P. indica at the molecular level.  

 

 

 

 

 

 

 

 

 

 
Figure 1. P. i dica grown in liquid Käfers medium (left) and on agar with Käfers medium (right).  

 

P. indica pro

2004; Shahol

molecular ana

one of the sy

molecular lev
n

motes growth and seed production of A. thaliana plants (Peskan et al. 

lari et al. 2005). This interaction is comparable to mycorrhiza. The 

lysis of mycorrhizal interactions is often difficult to study, because either 

mbiotic partners or both of them are not well characterized at the 
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presence of plant roots. If A. thaliana can be used as interaction partner, the 

availability of genetic tools provides enormous advantages over the natural host plants 

of this fungus. P. indica was isolated from the rhizosphere of desert plants in 

Rajasthan, India and possesses a wide spectrum of host plants. All arbuscular 

mycorrhiza plants so far tested showed positive response to P. indica. Additionally, 

this fungus has been shown to act as a growth promoting symbiont of terrestrial 

orchids (Blechert et al. 1999) and non-mycorrhizal plants, such as A. thaliana (L.) 

Heynh. (Brassicaceae) or Spinacia oleracea L. (Pham et al. 2004; Kaldorf et al. 2005). 

P. indica forms chlamydospores containing 8 to 25 nuclei (Verma et al. 1998). Stages 

of a sexual life cycle have not been observed. Analysis of the taxonomic position by 

molecular methods based on 18S rRNA sequences and by electron microscopy suggest 

that P. indica is related to the Hymenomycetes of the Basidiomycota (Varma et al. 

1999). P. indica belongs to the Sebacinaceae family (Fig. 2).  

Originally, it was believed that members of the Sebacinaceae family form exclusively 

saprophytic or parasitic interactions with plant roots. However, more recently, also a 

broad diversity of beneficial associations of various members of the 

heterobasidiomycetous Sebacinaceae fungi have been observed (Varma et al. 1999; 

Sahay and Varma 1999; Selosse et al. 2002; Glen et al. 2002; Urban et al. 2003; Weiss 

et al. 2004; Peškan-Berghöfer et al. 2004; Shahollari et al. 2005; Kaldorf et al. 2005; 

Barazani et al. 2005; Waller et al. 2005; Sherameti et al. 2005). Since most of the 

more basal taxa of Basidiomycetes consist of predominantly mycoparasitic and 

phytoparasitic fungi, it appears that Sebacinaceae is the most basal group of 

Basidiomycetes which contains mycorrhiza-forming taxa. Mycorrhizal taxa of 

Sebacinaceae include mycobionts of ectomycorrhizas, orchid mycorrhizas, ericoid 

mycorrhizas, and jungermannioid mycorrhizas. Such a wide spectrum of mycorrhizal 

types in one fungal family is unique (Weiss et al. 2004).  
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Figure 2. The phylogenetic position of P. indica. The phylogenetic position of P. indica in the 
Sebacinaceae family within the Basidiomycetes is suggested from molecular phylogenetic analyses 
based on nuclear rDNA. From Weiss et al. (2004). 
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Most studies with root endophytes were carried out with plants of alpine and subalpine 

regions (Read and Haselwandter 1981; Stoyke and Currah 1990; O'Dell and Trappe 

1992). In several cases, a positive influence on plant growth has been shown (cf. 

Haselwandter and Read 1982; Sneh et al. 1986; Dewan and Sivasithamparan 1988; 

Mucciarelli et al. 1995; Gasoni and Stegman de Gurfinkel 1997; Varma 1999). P. 

indica forms inter- and intracellular hyphae in the root cortex, often differentiating into 

dense hyphal coils and chlamydospores (Varma et al. 2001). As in typical mycorrhizal 

symbioses, hyphae never traverse the endodermis (cf. Fig. 3). In contrast to arbuscular 

mycorrhizal fungi, P. indica can be easily cultivated in axenic culture where it 

produces chlamydospores (Peskan et al. 2004; Pham et al. 2004; Shahollari et al. 

2004). The fungus is able to interact with the roots of various plants species including 

trees, agri- and horticultural and medicinal plants, mono- and dicots and mosses 

(Varma et al. 1999, 2001; Kumari et al. 2003; Shahollari et al. 2004; Peškan-

Berghöfer et al. 2004; Sherameti et al. 2005; Waller et al. 2005). Upon successful 

establishment of the interaction in the roots, P. indica reprograms barley to salt stress 

tolerance, resistance to diseases and causes higher yield of seeds (Waller et al. 2005). 

Hence, it provides a promising model organism for the investigations of beneficial 

plant-microbe interaction and enables the identification of compounds, which may 

improve plant growth, productivity and fertility. The observation that growth and 

development of A. thaliana is stimulated by P. indica, and that the presence of the 

fungus has a strong impact on the number of siliques and seeds per plant is consistent 

with the interaction patterns observed for other plant species.  

 

 

 

 

 

 

 

 

 
A B C 

 
Figure 3. P. indica colonises
thaliana not colonized by P.
(C), under fluorescent light m
 A. thaliana roots. P. indica hy
 indica (B), P. indica chlamyd
icroscopy. From Peskan-Bergh
phae in A. thaliana ro
ospores within the roo
öfer,  (unpublished). 
ot tip (A), roots of A. 
t cells of A. thaliana 
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Leucine-rich repeat containing proteins and lipid rafts in plants play important 

roles in early recognition events 

 

In the present project two leucine-rich repeat (LRR) containing proteins were 

identified in A. thaliana, which might be involved in early recognition events between 

the two symbiotic partners. One of them (LRR2) is crucial for the establishment of this 

beneficial interaction. Silencing of the gene encoding LRR2 abolishes the response of 

the plants to P. indica. This could be confirmed by two independent mutations, an 

EMS (ethylmethane sulfonate) mutant and a T-DNA knock out line, respectively (Tab. 

1). The other LRR protein (LRR1) is an atypical receptor kinase, and the mRNA for 

this protein is transiently upregulated during the recognition period of both organisms. 

Biochemical analysis allowed me to identify these two LRR proteins in Triton X-100-

insoluble plasma membrane microdomains. I will first describe here the LRR proteins 

and then the lipid rafts. 

 

 

                 

 
 
Table 1. Mutant used for this work are T-DNA lines or EMS mutant. At5g1659 and At1g13230                                
are two genes involved in P. indica and A. thaliana interaction, encoding LRR1 and LRR2 protein, 
respectively. 
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LRR proteins 

 

The majority of plant proteins with extracellular LRR motifs belong to the LRR-

receptor kinase (RK) family. Transmembranal RKs are implicated in all aspects of 

plant biology from early embryogenesis to disease resistance. They mediate signal 

transduction pathways leading to cell proliferation, growth and differentiation. Plant 

RKs comprise a monophyletic group related to animal RKs (Torii 2004). Only a small 

number of RK ligands (both endogenous and exogenous) have been identified in plants 

so far. This is probably attributed to three facts. First, differences in the biochemistry 

of extracellular matrices in animals and plants lead to differences in extracellular 

domains of the RK, and probably also in their ligands. Second, technical problems 

associated with plant extracellular matrix make direct physical identification of ligands 

difficult. And third, probable genetic redundancy between genes that encode at least 

some endogenous ligands (Vanoosthuyse et al. 2001; Cock and Cormick 2001) makes 

genetic identification difficult (Kim et al. 2005). 

Plant receptor kinase genes constitute the largest family of plant kinases, with more 

than 600 members in A. thaliana (Shiu et al. 2004). They are classified into several 

groups based on the structure of the extracellular domains. RKs containing an 

extracellular LRR motif comprise by far the largest subfamily of plant receptor 

kinases, with approximately 222 members in the A. thaliana genome (Shiu and 

Bleecker 2001). The RK signature motifs include a N-terminal signal peptide, an 

extracellular LRR domain, a single membrane-spanning region and a cytoplasmic 

protein kinase domain (Torii 2004; cf. Fig. 4). Their overall structure suggests a role of 

the extracellular domain in the perception of an extracellular ligand and signal 

transduction through the intracellular kinase domain (Yoshida and Parniske 2005). 
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Figure 4. Schematic representation of RK. RK signature motifs include an N-terminal signal peptide, 
an extracellular LRR domain, a single membrane-spanning region, and a cytoplasmic protein kinase 
domain (Torii 2004). PM: Plasma membrane. 
 

 

LRR-RKs play fundamental roles in development, steroid hormone response, stress 

response, desease resistance, symbiosis and pathogen recognition (Jones and Jones 

1997; Torii 2000; Torii and Clark 2000; Bioshop and Koncz 2002; Kistner and 

Parniske 2002; Gomez-Gomez and Boller 2002). Almost all plant LRR-RKs analyzed 

to date possess serine/threonine kinase activities (cf. below). The phenotypes 

associated with mutations in various LRR-RKs show that they play roles in diverse 

processes during growth and development (Diévart and Clark 2004). 

 For the entry of both mycorrhizal fungi and nodule-forming bacteria into root 

epidermal or cortical cells, are at least seven components required: a receptor kinase 

(Endré et al. 2002; Stracke et al. 2002), a calmodulin-dependent protein kinase (Levy 

et al. 2004), the two plastid localized proteins CASTOR and POLLUX (Imaizumi-

Anraku et al. 2005) and a predicted ion channel (DMI; does not make infection; Ané et 

al. 2004). Based on our results, a receptor kinase, seems to be also required for the A. 

thaliana/P. indica symbiosis (cf. below).  
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Microdomains or lipid rafts 

 

Plant plasma membrane microdomains are highly enriched in signalling compounds 

such as receptor kinases, monomeric and heterotrimeric G proteins and signalling 

kinases (Shahollari et al. 2004). A large number of signalling molecules are 

concentrated within these rafts which have been proposed to function as signalling 

centres capable of facilitating efficient and specific signal transduction (Peskan et al. 

2000; cf. below). 

Lipids and proteins in plasma membrane are often organized into domains or rafts 

enriched in sphingolipid and cholesterol. Sphingolipid microdomains float in the 

phospholipid bilayer, leading to the term 'lipid rafts". Cholesterol preferentially 

partitions into the liquid-ordered phase rather than the liquid-disordered phospholipid 

bilayer and is essential for the maintenance of the two phases. It seems that the main 

forces enabling the formation of rafts are lipid–lipid interactions. Sphingolipids are 

able to associate with each other through interactions between their carbohydrate heads 

and their long, predominantly saturated, lipid hydrocarbon chains, while cholesterol 

molecules are supposed to serve as spacers to fill voids between sphingolipids (Simons 

and Ikonen 1997). It was also suggested that the molecular composition of lipid rafts 

further differs from the remainder of the plasma membrane by hosting a specific subset 

of integral and membrane-associated proteins including glycosylphosphatidylinositol 

(GPI)-anchored polypeptides, while excluding others (Fig. 5). 
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Figure 5. Schematic representation of presumed lipid raft organization. According to the lipid raft 
hypothesis, rafts are plasma membrane (PM) patches characterized by a particular molecular 
composition. They are supposed to be enriched in saturated phospholipids, sterols, and sphingolipids 
and assumed to harbor a subset of membrane-associated polypeptides, including GPI-anchored proteins, 
peripheral and integral PM proteins. Modified from Riyaz et al. (2005). 
 

 

In eukaryotes, lipids fulfil numerous roles: they form indispensable hydrophobic 

barriers for cellular compartments, functions as energy store, signalling molecules, 

defence compounds and they are also employed for post-translational protein 

modification. In plants, lipids additionally represent essential components of cutins and 

waxes that protect the plant against the various environmental factor (Riyaz et al. 

2005). Furthermore, a range of biochemical, immunological and biophysical methods 

provide evidence for the existence of plasma membrane microdomains. These 

sphingolipid/cholesterol-rich liposomes were found to be insoluble in mild nonionic 

detergents such as Triton X-100 at 4°C (Fig. 6).  Such detergent-insoluble low density 

membrane fractions are thought to reflect the in vivo composition of lipid 

microdomains (Brown and Rose 1992; Schroeder et al. 1994; Simons and Ikonen 

1997; Brown and London 1998). 
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Figure 6. Freeze-fracture electron microscopy. A: Tobacco plasma membrane vesicles,                      
B: Low-density plasma membrane subfractions after Triton X-100 solubilization. From Peskan et al. 
(2000). 
 
 

A MATH protein in the plasma membrane of A. thaliana roots is transiently 

modified in response to P. indica. 

 

The interaction between A. thaliana and P. indica is also accompanied by the 

modification of a plasma membrane protein called MATH [Meprin and TRAF (tumor 

necrosis receptor associated factor) Homology] domain-containing protein (Peskan-

Berghöfer et al. 2004). This modification is considered to be independent of other 

responses of A. thaliana to P. indica, because it is a transient and posttranscriptional 

modification at the plasma membrane of roots. This modification was used as one of 

the markers to monitor the interaction between wild-type and mutants of A. thaliana to 

P. indica in my studies. In general MATH proteins are involved in nodule formation in 

Medicago and protein degradation in the A. thaliana cytosol. They exhibit sequence 

similarities to meprins, extracellular peptidases which cleave (signal) peptides, and to 

TRAFs, intracellular proteins which interact with receptor kinases at the plasma 

membrane. Fifty nine genes for MATH proteins are present in the A. thaliana genome. 

Members of this protein family are predicted to be found in the endoplasmatic 
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reticulum–plasma membrane–extracellular space continuum, in the nucleus–cytosol 

compartment and in organelles. It has been shown that the MATH protein is modified 

even before visible physical contact between both organisms (Oelmüller et al. 2005). 

Furthermore, this modification is no longer detectable in an A. thaliana mutant which 

does not respond to P. indica. Comparable with the results obtained for the mRNA of 

the receptor kinase LRR1, the modification of the MATH protein is only transiently 

and no longer detectable once the interaction between both organisms has been 

established (Oelmüller et al. 2005). This implies that a functional link exists between 

the recognition of the fungus and the modification of the protein in the plasma 

membrane. 

 

A homeodomain transcription factor is a downstream target for P. indica in A. 

thaliana. 

 

Often, nitrogen is the limiting factor for plant growth and development. It is recruited 

by plants either as nitrate or ammonium, or, for a few species, by nitrogen fixation 

with the help of rhizobia (Esseling and Emons 2004; Gage 2004). Mycorrhizal fungi 

also play an important role in delivering either nitrate or ammonium to the root cells. It 

is assumed that mycorrhizal fungi recruit preferentially ammonium rather than nitrate 

from the soil, and that amino acids represent the major compounds transfering nitrogen 

to the host plant (Boukcim and Plassard 2003; Guescini et al. 2003). By analysing the 

interaction of P. indica with tobacco plants we found that the fungus promotes growth 

of tobacco seedlings and is accompanied by an enormous requisition of nitrogen from 

the environment. In contrast to mycorrhizal associations, P. indica stimulates nitrogen 

accumulation and the expression of the genes encoding nitrate reductase (Nia2) and the 

starch-degrading enzyme glucan water dikinase (SEX1) in roots. A homeodomain 

transcription factor responds to the fungus and binds to promoter regions of the P. 

indica responsive Nia2, SEX1 and 2-nitropropane dioxygenase genes (Sherameti et al. 

2005). The mRNA for this transcription factor is upregulated by P. indica as well. 

These results suggest that the expression of P. indica-responsive target genes may be 

controlled by common regulatory elements and trans-factors. The absence of the 

response of the homeodomain transcription factor was used as a marker to characterize 

P. indica-insensitive mutants. 
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In the present project the following questions were addressed: 

 

1. What are the molecular mechanisms underlying the early recognition processes of 

interaction between A. thaliana and P. indica?  

 

2. Which genes are responsible for the recognition of the two symbiotic partners?  

 

3. Which is the protein composition of Triton X-100 insoluble plasma membrane 

vesicles of A. thaliana? 
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Piriformospora indica, an endophytic fungus of the Sebacina-
ceae family, colonizes the roots of a wide variety of plant

species and promotes their growth, in a manner similar to

arbuscular mycorrhizal fungi. The results of the present

study demonstrate that the fungus interacts also with the
non-mycorrhizal host Arabidopsis thaliana and promotes its

growth. The interaction is detectable by the appearance of a

strong autofluorescence in the roots, followed by the coloniza-

tion of root cells by fungal hyphae and the generation of
chlamydospores. Promotion of root growth was detectable

even before noticeable root colonization. Membrane-asso-

ciated proteins from control roots and roots after cultivation
with P. indica were separated by two-dimensional gel-electro-

phoresis and identified by electrospray ionization mass spec-
trometry and tandem mass spectrometry. Differences were

found in the expression of glucosidase II, beta-glucosidase

PYK10, two glutathione-S-transferases and several so-far

uncharacterized proteins. Based on conserved domains present
in the latter proteins their possible roles in plant–microbe

interaction are predicted. Taken together, the present results

suggest that the interaction of Arabidopsis thaliana with

P. indica is a powerful model system to study beneficial
plant–microbe interaction at the molecular level. Furthermore,

the successful accommodation of the fungus in the root cells is

preceded by protein modifications in the endoplasmatic reti-
culum as well as at the plasma membrane of the host.

Introduction

Plants are involved in mutualistic or parasitic interac-
tions with a variety of micro-organisms, which has a
strong impact on ecosystems, agriculture and forestry
(cf. Smith and Read 1997, Harrison 1999, Parniske
2000, Strack et al. 2003). Most of the studies on bene-
ficial plant–microbe interactions have been focused on
the symbiosis of plants with rhizobia and arbuscular
mycorrhizal fungi. Whereas rhizobial interactions have
a narrow range of host plant species, arbuscular mycor-
rhizal symbioses are widely spread and involve the
majority of higher plants in ecosystems throughout the

world (cf. Smith and Read 1997). The benefits in mycor-
rhizal associations arise from the nutrient transport
between the plant roots and fungal hyphae. The carbon
source is transported from the plant to the fungus,
whereas fungal hyphae serve as a fine link between the
roots and the rhizosphere and improve the supply of the
plant with inorganic nutrients (Harrison 1999 and ref.
therein; cf. Harrison et al. 2002, Bucking and Heyser
2003, Karandashov et al. 2004).

Although the importance of arbuscular mycorrhizal asso-
ciations was recognized a long time ago, the knowledge
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about the mechanisms leading to the establishment and
functioning of this symbiosis is still limited (cf. Limpens
and Bisseling 2003, Breuninger and Requena 2004, Marx
2004, Parniske 2004). Three components of a plant signal-
ling network, a receptor-like kinase (Endré et al. 2002,
Stracke et al. 2002), a predicted ion-channel (Ané et al.
2004) and a calmodulin-dependent protein kinase (Levy
et al. 2004) have been identified. Besides the complexity of
the interaction between the plant and fungal partners, add-
itional obstacles reside in the application of molecular tech-
niques. Arabidopsis thaliana, a common model to study
plant development at the molecular level, is not among the
hosts of mycorrhizal fungi. On the other side, arbuscular
mycorrhizal fungi, which colonize the roots of 80% of
vascular plants, including the majority of crop plants, are
obligate biotrophs and cannot be cultured without hosts
(Newman and Reddel 1987). Piriformospora indica is a
recently isolated root-interacting fungus, related to the
Hymenomycetes of the Basidiomycota (Varma et al.
1999). In contrast to arbuscular mycorrhizal fungi, it can
be easily cultivated in axenic culture where it produces
spores (Pham et al. 2004). The fungus is able to associate
with the roots of various plant species in a manner similar
to arbuscular mycorrhizal fungi and promotes plant
growth (Varma et al. 1999, 2001, Pham et al. 2003, Singh
et al. 2003, Shahollari et al. 2004). Hence, it provides a
promising model organism for the investigations of bene-
ficial plant–microbe interaction and enables the identifica-
tion of compounds, which may improve plant growth and
productivity.

Genetic factors from the plant are necessary for the
interaction of plants with micro-organisms (Marsh and
Schultze 2001, Kistner and Parniske 2002, Mellersh and
Heath 2003). Depending on the interaction partners,
they determine whether the micro-organism will be
rejected or accommodated by the plant host (Parniske
2000, Gadkar et al. 2001). For instance, a receptor-like
kinase has been identified which is absolutely necessary
for the formation of nodules in response to rhizobactria
and which supports the infection of roots with arbuscu-
lar mycorrhizal fungi (Endré et al. 2002, Stracke et al.
2002). We challenged P. indica and the conventional non-
mycorrhizal host A. thaliana in axenic culture and
observed that the fungus colonized the roots and pro-
moted growth. We used this system to elucidate pro-
cesses which occur early during the recognition process
prior to the establishment of this interaction.

Materials and methods

Growth conditions of plant and fungus

Wild-type Arabidopsis thaliana (ecotype Columbia) seeds
were surface sterilized and placed on Petri dishes con-
taining MS nutrient medium (Murashige and Skoog
1962). After cold treatment at 4�C for 48 h, plates were
incubated for 7 days at 22�C under continuous illumina-
tion (100 mmolm�2 s�1). Piriformospora indica was cul-
tured as described previously (Varma et al. 1998) on

Aspergillus minimal medium modified by Pham et al.
(2004). For solid medium 1% (w/v) agar was included.

Co-cultivation experiments and estimation of plant growth

Nine-day-old A. thaliana seedlings were transferred to
nylon discs (mesh size 70 mm) placed on top of a
modified MMN culture medium (MMN medium with
a 1/10 of nitrogen and phosphorus and no carbohy-
drate; Marx 1969), in 90 mm Petri dishes. One seedling
was used per Petri dish. After 24 h, fungal plugs of
approximately 5 mm in diameter were placed at a dis-
tance of 3 cm from the roots. Plates were incubated at
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Fig. 1. Interaction ofArabidopsiswithP. indica. (A) 4- and 8-week-oldArabidopsis plants grown in the absence (–) or presence (1) ofP. indica. B–F,
10 days after inoculation, panels G–I, 31 days after inoculation. (B) Mycelium covering the surface of the root, stained with cotton blue;
bar¼ 100mm. (C) Hypha penetrating a root hair, stained with cotton blue; bar¼ 10mm. (D) Mycelium covering the root surface and growing inside
a root hair, stained with aniline blue (epifluorescence); bar¼ 20mm. (E, F)Hypha penetrating into a rhizodermis cell (arrow), the fungus forms a very
narrow penetration neck, stained with cotton blue; bar¼ 10mm. (G)Arabidopsis root embedded in historesin,P. indica has formed chlamydospores;
stained with OsO4; bar¼ 100mm. (H) Same root as in (E) at higher magnification, chlamydospores were formed on the surface and in the cortex of
the root; bar¼ 50mm. (I) Tangential section of an Arabidopsis root; mycelium and chlamydospores were formed inside and outside the cells of the
cortex; stained with OsO4 and toluidin blue; bar¼ 10mm. (J, K) Growth of P. indica on modified aspergillus medium incubated at 28�C for 7 days.
Incubation was conducted in dark. A typical rhythmic growth is seen. For broth medium agar was not included and grown under constant shaking
condition (150 r.p.m., GFL 3.19). Typical pear-shaped spores appeared after 10days. (L, M) Auto-fluorescence in the fungal chlamydospore (L) and
the developing root hairs (M) as a result of co-culture with P. indica. Emission spectra are given for the section indicated in the figure.
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22�C under continuous illumination from the side
(max. 80 mmol m�2 s�1).

Roots of control plants and of inoculated plants were
stained with cotton-blue before examination under a light
microscope (Zeiss Axioplan model MC 100: Carl-Zeiss
Jena GmbH, Jena, Germany). Dry weight of the shoots
was determined after incubation of the tissue at 105�C for
16h. Photosynthesis parameters were determined as
described previously (Pfannschmidt et al. 2001).

Experiments on soil

For the experimens on soil, Arabidopsis seedlings were
germinated on MS medium before transfer to sterile soil.
The soil was mixed carefully with the fungus (1%, w/v).
The fungal mycelium was obtained from liquid cultures
after removal of the medium and washed with an excess
of distilled water. Cultivation occurred in multi-trays
with Aracon tubes in a temperature-controlled growth
chamber at 22�C under continuous illumination (max.
80 mmolm�2 s�1) and long-day conditions.

The roots of A. thaliana inoculated with P. indica were
collected after 10 and 31 days. The root fragments were
cleared in KOH (Vierheilig et al. 1998). The cleared root
fragments were stained with cotton blue (Vierheilig et al.
1998, Sime et al. 2002) and analysed with the help of a
Zeiss Axiophot (bright field) or were stained with aniline
blue (Hood and Shew 1996) and analysed with epi-
fluorescence. For the preparation of sections, the roots
were fixed with glutaraldehyde for 2min, post-fixed in
OsO4 in the dark for 1 h and embedded in Historesin
according to the instructions of the manufacturer
(Leica Microsystems, Nussloch, Germany). Sections
were taken with a Ultramicrotome OmU2 (Reichert,
Vienna, Austria) and stained with toluidine blue (0,5%
w/v in aqua dest.).

Fluorescence measurements

Auto-fluorescence in the spores and the developing
root hairs as a result of co-culture with P. indica (Fig. 1)
were detected with the confocal microscope Meta-450
(Carl-Zeiss).

Protein extraction

Arabidopsis thaliana roots were ground with mortar and
pestle on ice in homogenization buffer containing 50mM
Tris-HCl, pH7.4; 330mM sucrose; 3mM EDTA and
10mM 1,4-dithiothreitol. The homogenate was filtered
through four layers of cheesecloth and centrifuged at
10000g for 15min. The supernatant was centrifuged at
50000g for 1h to pellet the microsomes. The pellet was
re-suspended in a buffer containing 50mM Tris-HCl,
pH7.4 and 1M NaCl, incubated on ice for 30min and
centrifugedasbefore.Pelletedmembraneswere re-suspended
in 50mM Tris-HCl, pH7.4; 3mM EDTA and 1mM
1,4-dithiothreitol and kept at �80�C until protein analysis.

Two-dimensional gel electrophoresis

Membrane proteins were solubilized with 1% Triton
X-100 and precipitated with methanol/chloroform
according to Wessel and Flügge 1983). Two-dimensional
protein separation and silver-staining of the gels were
performed according to Hippler et al. (2001). Staining
of the gels was performed with colloidal Coomassie stain
Roti-Blue (Roth, Karlsruhe, Germany) according to the
manufacturer’s instructions. Quantification of signals
was performed using the Image Master VDS system
(Amersham-Pharmacia, Freiburg, Germany). A protein
dilution standard was used to confirm that the values
were in the linear range.

Mass spectrometry

In-gel trypsin digestion of excised protein spots and elu-
tion of the peptides from the gel matrix was performed
according to Hippler et al. (2001). Peptide analysis by
coupling liquid chromatography with electrospray ion-
ization mass spectrometry (ESI-MS) and tandem mass
spectrometry (MS-MS) has been described previously
(Stauber et al. 2003).

Protein identification

The measured MS-MS spectra were matched with the
amino-acid sequences of tryptic peptides from the A. thali-
ana database in FASTA format. Cys modification by
carbamidomethylation (157Da) was taken into account
and known contaminants were filtered out. Raw MS-MS
data were analysed by the Finnigan Sequest/Turbo
Sequest software (revision 3.0; ThermoQuest, San Jose,
CA). The parameters for the analysis by the Sequest
algorithm were set according to Stauber et al. (2003).
The similarity between the measured MS-MS spectrum
and the theoretical MS-MS spectrum, reported as the
cross-correlation factor (Xcorr) was equal or above 1.5,
2.5 and 3.5 for singly, doubly or triply charged precursor
ions, respectively. In order to identify corresponding loci,
identified protein sequences were subjected to BLAST

search at NCBI (http://www.ncbi.nlm.nih.gov/) and
FASTA searches by using the AGI protein database at
TAIR (http://www.arabidopsis.org/). Identification of
conserved domains and signal peptides was performed
by using SMART (Schultz et al. 1998) and SIGNALP (Nielsen
et al. 1997), respectively.

Results

Interaction of P. indica with Arabidopsis

We first characterized the interaction of P. indica with
Arabidopsis thaliana seedlings. For all experiments
described, we used the Columbia ecotype. Although
other ecotypes of A. thaliana tested also responded to
P. indica treatments, the response pattern differed,
mainly in the time course of the establishment of the
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interaction. A growth-promoting effect could be
observed during the whole life time of the plant: When
Arabidopsis seedlings were inoculated with the fungus
and transferred to soil, the rosette leaves were slightly
larger and bolding occurred earlier. Consequently, the
plants grew faster, contained more leaves and started to
flower earlier (Fig. 1A). The overall habitus of the plants
looks bigger and stronger when co-cultivated with
P. indica (Fig. 1A). We observed a higher seed yield per
plant, however, seed ripening occurred earlier in compar-
ison with uninoculated plants. Moreover, physiological
experiments with Arabidopsis seedlings kept on MS med-
ium in Petri dishes revealed that they appear to be more
resistant to stressors in the presence of P. indica. We
optimized conditions in which Arabidopsis seedlings
co-cultivated with P. indica tolerate elevated cadmium
concentrations (200 mm in MS medium) which normally
lead to death. We could also demonstrate that recruit-
ment of iron is substantially enhanced in the presence of
the fungus (Oelmüller et al., unpublished data).

Additional experiments were performed to identify
fungal components which mediate the growth-promoting
effect. Under the physiological conditions relevant for
these studies we could not detect a growth-promoting
effect with heat-treated P. indica or extracts from the
fungus, either heat-treated or untreated. However,
growth promotion was observed in the presence of a
large excess of heat-inactivated fungal mycelium.

Figure 1B demonstrates that after 10 days of co-cultiv-
ation of both organisms in soil, the mycelium covers the
surface of the roots. The hyphae also penetrate the root
hair (Fig. 1C) and form a net both around the root cells
and inside a root hair (Fig. 1D). The hyphae also pene-
trate into a rhizodermis cell and the fungus forms a very
narrow penetration neck (Fig. 1E and F). Ultimately,
this results in the formation of many chlamydospores
(Fig. 1G–I; pictures taken after 31 days of co-cultivation
in soil). Piriformospora indica also form spores on plates
(Fig. 1J) and in liquid cultures (Fig. 1K). Finally, the
outer layer of the spore generates an intensive autofluor-
escence, which disappears after germination (Fig. 1L).
This autofluorescence appears again after the co-cultiva-
tion of P. indica with Arabidopsis root hair. Since the
fluorescence is not detectable in control root hairs, estab-
lishment of a successful interaction between both organ-
isms can be monitored by the fungus-derived
autofluorescence (Fig. 1M).

Analysis of the growth-promoting effect of P. indica on

A. thaliana roots

Nine-day-old A. thaliana plantlets were transferred to
MMN1/10 medium and inoculated with P. indica. The
fungal inoculum was placed more than 3 cm away from
the roots to avoid initial physical contact. MMN1/10
medium was chosen since it contains low concentrations
of phosphate and nitrate and no carbon source – condi-
tions known to promote the interaction between plants
and symbiotic fungi. The fungus grew slowly on the

co-cultivation medium and produced only a few spores.
We could not observe any difference in root growth
within the first 2 days of co-cultivation. After 3 days,
stimulation of root growth became visible, whereas after
7 days, intensive and uniform root proliferation in form
of extended and branched lateral roots was detectable for
all inoculated plants (Fig. 2A and C). At this time, an
approximately 1 cm wide ring of fine fungal mycelium
had been built. Interestingly, the growing mycelium ring
did not yet physically contact the root surface and micro-
scopic inspections confirmed that the roots were depleted
of hyphae. Nevertheless, an increase in root fresh weight
was measurable already after 5 days of co-cultivation
with the fungus (Fig. 2D, cf. also Shahollari et al.
2004). We also inoculated plants with the ectomycobiont
Pisolithus tinctorius, since it was shown that hypaphorine,
a major indolic compound from this fungus has an
impact on Arabidopsis root growth (Reboutier et al.

Fig. 2. Arabidopsis thaliana root development after 9 days of
co-culture with P. indica. Nine-day-old A. thaliana plantlets were
transferred to MMN1/10 medium and cultivated without fungi (A),
or were inoculated with P. tinctorius (B) or P. indica (C). The arrows
show the location of the inoculum. The fresh weights (FW) of the
roots were determined after 2 or 5 days of co-cultivation and
represent the mean of four independent experiments with 64 plants
each. Bar represents 3 cm for (A–C). (D). Differences in FW after 5
days were significant according to Student’s t-test.
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2002). However, plants inoculated with P. tinctorius did
not differ from the uninoculated control plants (Fig. 2B).

Inoculation of Arabidopsis roots with P. indica was
accompanied by changes in the morphology of the root
hairs, which were visible even before the root prolifera-
tion became obvious (Fig. 3). The root hairs of inocu-
lated plants grew longer and were thinner in comparison
with those of the controls. After 2 weeks of co-cultivation
the fungal hyphae surrounded the root surface and grew
inside the root hairs (Fig. 3, inset). Accommodation of
the fungus inside the root cells did not harm the plants
and no damage could be detected even after longer
co-cultivation (cf. Fig. 1). The chlorophyll content was
comparable in leaves of inoculated and control plants.
Furthermore, the chlorophyll fluorescence parameters
confirmed that the fungus did not exert a negative
impact on photosynthesis (Fig. 4A). After 8 days of
co-cultivation a significant increase in shoot dry weight
as a result of the interaction with P. indica was detectable
(Fig. 4B). The observation that the interaction of these
organisms exhibit features similar to those observed for
arbuscular mycorrhizal fungi further support the idea
that it might be a suitable model system to study plant–
microbe interaction at a molecular level.

Differences in root protein pattern as a result of interaction

with the fungus

We analysed changes in the protein pattern of roots
during early phases of the interaction between the organ-
isms. Therefore, we utilized a protein preparation which
gave the most differences in the protein pattern in our
hands. We found that further fractionation of this pre-
paration into purer fractions caused substantial losses of
many proteins which responded to the fungal infection.

Our protein preparation was enriched in membrane-
bound and membrane–associated proteins and proteins
from the cell surface. Plants were cultivated with and
without the fungus for 5 days. At this time point, no
physical interaction between the organisms was detect-
able and we never observed any hyphae growing on or
inside the roots. Furthermore, the root growth started to

Fig. 3. Root hairs of A. thaliana
after co-cultivation with or
without P. indica for 7days. The
roots of control (A) and
inoculated (B) plants were
stained with cotton-blue and
examined under the light
microscope (Zeiss Axioplan
model MC 100). A magnified
view of an infested root hair is
shown in the inset. Bars¼ 20mm.

Fig. 4. Shoot growth as a result of interaction with P. indica. (A)
Chlorophyll a fluorescence was measured on plantlets cultivated for
two weeks on MMN1/10 medium with or without the fungus. The
fluorescence parameter Fv/Fm reflects the efficiency of photosynthesis
at photosystem II. (B) Increase in shoot dry weight for control and
inoculated plants. The shoots of six plantlets were pooled for one
measurement and the weights of three independent samples were
estimated for each time period. After 6 days of co-cultivation, the
differences were significant according to the Student’s t-test.
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be significantly different between the inoculated and the
control plants, which also reflected reproducible differ-
ences in the patterns of our protein preparations. During
this pre-contact phase, the communication between both
organisms should occur through the medium.

When protein of our preparation were analysed by
two-dimensional gel electrophoresis, an average of 150–
200 protein spots could be visualized after staining of the
gels with Coomassie blue (Fig. 5). Although almost all
results discussed here are based on spots which are easily
detectable on Coomassie-stained gels, subsequent silver
staining uncovered more details and allowed a more
accurate analysis of weakly expressed proteins, as
shown in Fig. 6. Differentially expressed proteins were
excised from the gels and analysed by mass spectrometry,
after digestion with trypsin. The most prominent pro-
teins which responded to the fungal co-cultivation, are
summarized in Table 1.

To confirm that the changes observed for the protein
spots presented in Table 1 are caused by the fungus, we

compared these spots with those in their environment on
the two-dimensional gels. Figure 7 demonstrates that the
‘responsive’ protein spots are always surrounded by
spots which do not respond at all to the fungal treat-
ment. We consider these spots as controls. The amounts
of several other protein spots on the gels also differ
although to a lesser extent. The reason for this is not
clear. This might be caused by the fungus, by the normal
variation of the biological material or by the extraction
procedure. However, the comparative quantitative ana-
lysis of the protein patterns of the gels suggests that the
proteins presented in Table 1 are the most likely candi-
dates for a specific response to the fungus.

For six proteins (p1/2, p57a, p57b, p202, p203/204 and
p231; Table 1) signal peptides for the vesicular pathway
were predicted. One protein (p83; Table 1) appears to be
located in mitochondria, whereas the subcellular local-
ization of the residual four (p24c, p26/7, p42b, p73) is
unclear. Although the proteins without a predicted signal
peptide do not possess transmembrane domains, it can-
not be excluded that they are attached to membranes via
interaction with other proteins (cf. below).

One of the identified proteins is the a-subunit of glu-
cosidase II (p231, RSW3, Table 1). Although a biological
function for this enzyme has been partially elucidated
(Burn et al. 2002), nothing is known about its possible
role in plant–microbe interaction (cf. Discussion). The
biological functions of the residual polypeptides can only
be predicted from conserved domains and expression
patterns. We also report, for the first time, their putative
involvement in plant–microbe interactions and/or regu-
lation of root growth.

Furthermore, several spots which are up-regulated
after fungal infection, are located in close vicinity to
others (p1/2, p26/27, p203/204). The analysis uncovered

Fig. 5. Protein patterns of
A. thaliana roots after 5 days
of cultivation with and without
P. indica. After separation of
the proteins by 2D-PAGE,
the gels were stained with
Coomassie blue. Protein spot
labels are placed to the right of
the corresponding spots, except
when spots are marked by
arrows. Thick arrows indicate
spots on the control gel which
are missing on the gel with
protein extracts from
A. thaliana co-cultivated with
P. indica.

Fig. 6. Regions from silver-stained two-dimensional (2D) gels
showing modifications of a protein containing MATH-domains
(p203, p204). After separation of the proteins by 2D-polyacrylamide
gel electrophoresis, the gels were stained with silver.
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that the newly appearing spots are modified forms of
proteins which are already present in the absence of the
fungus. Thus protein modifications in addition to de
novo protein synthesis appear to be crucial for early
events in the establishment of plant–microbe interac-
tions.

Among them, the most abundant protein spot (p2,
Fig. 5) corresponded to the b-glucosidase PYK10. This
protein was found to be a major constituent of ER
bodies in A. thaliana (Matsushima et al. 2003) and

exhibits a hypocotyl- and root-specific expression pattern
(Nitz et al. 2001). Inoculated roots contain an additional
protein spot located above this b-glucosidase spot (p1,
Fig. 5). MS-MS-analysis showed that both spots originate
from the same protein. Both forms differ in their electro-
phoretic mobility in the second dimension, since they focus at
the same pH (Fig. 5). This is consistent with observations by
Matsushima et al. (2003) who showed that the electrophore-
tic mobility of PYK10 on gels can be modified by N-linked
oligosaccharides.

Table 1. Proteins related to plant–fungus interaction, identified by mass spectrometry. aThe peptides obtained by database searching, used for
the protein identification. bTotal number of different peptides identified for a matched protein, with the Xcorr values above 1.5, 2.5 and 3.5 for
singly, doubly, or triply charged precursor ions, respectively. cCalculated pI and molecular weight (MW) in kDa. dSignal peptide, predicted by
SIGNALP.

Spot Accession pI/MW of S d

ID Sequence a N b Database match number (gi) matched protein c (Locus)

p1 SGYEAYLVTHNLLISHAEAVEAYR 9 Glycosyl hydrolase 1363489 6.45/59.7 1
IGIAHSPAWFEAHDLADSQDGASIDR family 1,
PLTAALNVYSR PYK10, PSR3.1 (At3g09260)

p2 GVSQAGVQFYHDLIDELIK 7 Glycosyl hydrolase 1363489 6.45/59.7 1
EYADFVFQEYGGK family 1,
WMQDSLITWESK PYK10, PSR3.1 (At3g09260)

p24c FANFSIESEVPK 3 glutathione S-transferase, 18411929 5.80/25.6 –
VTEFVSELR GST8
NPILPSDPYLR (At1g78380)

p26 LEAVLDVYEAQULSK 2 Putative glutathione 15224582 5.49/42.2 –
IPVLVDGDYK S-transferase, ERD13

(At2g30870)

p27 LAEVLDVYEAQLSK 3 Putative glutathione 15224582 5.49/24.2 –
QPEYLAIQPFGK S-transferase, ERD13
IPVLVDGDYK (At2g30870)

p42b KVYVGQAQDGISAVK 7 Putative lectin, similar to 15228198 5.46/32.1 –
IFGSDGSVITMLR myrosinase-binding proteins
QTSPPFGLEAGTVFELK gi:1711296 and gi: 1883005 (At3g16420)

p57a PLSLESQTIEFVK 8 Aminoacylase, putative, 30691729 5.93/47.7 1
LYDNSAMENLLK similar to aminoacylase-1
SVYLSFVPDEEIGGHDGAEK (At4g38220)

p57b FAEINNAYEVLSDEEKR 2 Expressed protein, contains 15228802 5.93/39.1 1
SYYDVLQVPK DnaJ-chaperone domain

(At3g62600)

p73 ALAGQTNESFFTANADALSSR 13 Methionine synthase-related 14532772 6.09/84.6 –
ALGVETVPVLVGPVSYLLLSK

(At3g03780)

p83d FTQANSEVSALLGR 5 H1-transporting ATPsynthase, 18415911 6.18/59.7 –
VLNTGAPITVPVGR beta chain, mitochondria
TIAMDGTEGLVR (At5g08690)

p202 NNPNADASTQQAFVTSVTNK 5 Lipase/Acylhydrolase with GDSL- 4587542 6.11/47.7 1
LKNDISLLYSSGASK motif family, similar to myrosinase- 18404748
AANWNDDFVKK associated protein gi: 1769969 (At1g54010)

p203a NSYLSEVFSIGGR 7 Expressed protein, 18402593 6.16/43.4 1
SWNIQINPSGLGTGEGK contains MATH domain
TMWGFSQVLPIDTFK (At3g20370)

p203b SWNIQINPSGLGTGEGK 4 Expressed protein, 18402593 6.16/43.4 1
YFTIQDTDVWK contains MATH domain

(At3g20370)

p204a FYIFNK 5 Expressed protein, 18402593 6.16/43.4 1
ALNQLNLSNIER contains MATH domain
KYFTIQDTDVWK (At3g20370)

p204b SELFSVTENFLNPR 7 Expressed protein, 18402593 6.16/43.4 1
MESFNTLLK contains MATH domain
FYIFNK (At3g20370)

p231 WNYKDEEDVAQVDSK 7 Alpha-subunit of 15237538 5.86/104.2 1
MDAPEESIPAFQK glucosidase II, RSW3
FQVPDVVVSEFEEK (At5g63840)
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The protein spots p26 and p27 were both identified as
a putative glutathione-S-transferase (ERD13, Table 1).
The two proteins differ in both, pI and relative mobility,
suggesting the existence of complex modifications, prob-
ably on p27 (Fig. 5). Although both polypeptide forms
are present in roots, only p27 became more apparent
after co-cultivation with the fungus.

The most intriguing modification was observed for the
protein spots 203 and 204 (Fig. 6). The intensity of the
protein spots 203a and 204a were similar under both
cultivation conditions, whereas the spots p203b and
p204b appeared only after interaction with the fungus.
MS-MS-analysis of the four spots 203a, 203b, 204a and
204b under both conditions showed that they derived
from the same, so far uncharacterized Arabidopsis pro-
tein (Table 1, cf. Discussion). It seems that two native
forms of the protein with slightly different pIs occur in
roots (a and b). Both native forms are composed of the
high and low mobility polypeptides, which become
apparent after separation in the second dimension
(c,p203a,b and c,p204a,b; Fig. 6). The polypeptides
p203b and p204b seem to be specific for the interaction
with the fungus.

Discussion

Co-cultivation of A. thaliana with P. indica promotes
plant growth. The effects of the fungus on root
proliferation and the morphology of the root hairs are
particularly striking. Growth promotion occurred before
the fungal hyphae grew around or inside the roots.
Therefore, this effect must be initiated by early signalling
events from the fungus. Promotion of plant growth
before the establishment of symbiosis is unusual for
many arbuscular mycorrhiza systems, since plants
respond to the fungus only after the symbiosis is estab-
lished, as a result of a better supply with nutrients
(Harrison 1999). Promotion of plant growth before the
establishment of symbiosis was reported previously for
the interaction between Quercus robur and the ectomy-
corrhizal fungus Piloderma croceum (Herrmann et al.
1998, 2004, Krüger et al. 2004). Although the nature of
A. thaliana/P. indica interaction is necessarily different
from an ectomycorrhizal symbiosis on trees, the early
mechanism of recognition between the organisms and
the signals released from P. indica or from an ectomycor-
rhizal fungus might be similar. It appears that the
changes on the roots provoked by the micro-organism
ensure successful accommodation of the fungus and pre-
vent its rejection from the plant.

Promotion of root growth after cultivation with the fun-
gus correlates with the up-regulation of the glucosidase II a
subunit, which belongs to the family of glycosyl hydrolases.
The A. thaliana mutant rsw3 with a lesion in the glucosidase
II a subunit gene has radially swollen, short roots and is
deficient in cellulose, the major structural polysaccharide of
higher plant cell walls. RSW3 possesses a predicted N-term-
inal signal peptide for the ER, but lacks ER-retention sig-
nals at its C-terminus, consistent with the features of the

mammalian glucosidase II a subunit. In mammals, glucosi-
dase II is resident in ER, where it contributes to the
processing of N-linked glycans on newly synthesized glyco-
proteins. The holoenzyme is kept in the ER by an ER-
retention signal of the b subunit (Trombetta et al. 1996)
and associated with membranes due to its interaction with
other transmembrane proteins (Arendt and Ostergaard
1997). The mechanism by which the putative ER-enzyme
regulates plant development and synthesis of the cell wall is
still intriguing. However, the identification of this protein in
our studies is consistent with the idea that cell wall synthesis
is stimulated during early phases of the recognition between
Arabidopsis roots and P. indica. The shortened root system
in mutants deficient in the glucosidase II a subunit is con-
sistent with the observation of an expansion of the root
system upon co-cultivation with the fungus when the pro-
tein is up-regulated. However, up- or down-regulation of
cell wall synthesis cannot explain all growth defects in the
mutant and all stimulatory effects observed after fungal
co-cultivation. The enzyme appears also to be involved in
regulating plant development (Burn et al. 2002). Glucosi-
dase II also plays a crucial role in the N-glycosylation/
quality control pathway (Taylor et al. 2000). In concert
with glucosidase I, the enzyme catalyses the fist steps in
N-linked glycan trimming and processing which occur in
the ER. The role of glycans in the early secretory pathway is
related to protein folding, quality control and protein
sorting (reviewed in Helenius and Aebi 2001). Removal
of terminal glucosyl residues from improperly folded
proteins enables binding of chaperones and other proteins
that control protein folding. Arabidopsis thaliana mutants
lacking glucosidase I are lethal, whereas those lacking
glucosidase II exhibit growth defects, suggesting that the
ER quality-control mechanism is crucial for the synthesis
of the glycoproteins involved in plant growth processes
(Boisson et al. 2001, Vitale 2001). Up-regulation of gluco-
sidase II upon cultivation with the fungus indicates that
the fungus modulates plant growth at the level of protein
processing and folding in ER. This is further supported
by the identification of another up-regulated protein
with a DnaJ chaperone domain (p57b, Table 1). The pre-
dicted N-terminal signal peptide suggests that the latter
protein is also directed into the ER. DnaJ is a chaperone
associated with the Hsp70 heat-shock system, involved in
protein folding and renaturation after stress (Caplan et al.
1993).

Another glycosyl hydrolase (p1/2) that emerged as a
result of the interaction with the fungus was identified as
a modified form of the b-glucosidase PYK 10, the most
abundant protein in roots. The function of PYK 10
appears to be related to ER-bodies (Matsushima et al.
2003). These ER-derived structures are present in the
epidermal cells of healthy A. thaliana seedlings and in
roots of mature plants. In rosette leaves, which are nor-
mally depleted of these structures, the formation of ER-
bodies can be induced by stress, wounding or methyl
jasmonate (Matsushima et al. 2002). Hayashi et al.
2001) described ER-bodies as a part of a proteinase-
sorting system that is involved in processes leading to
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cell death under stress conditions. The modification on
PYK 10 after co-cultivation with the fungus might
change the protein function and/or subcellular localiza-
tion. This suggests that the fungus utilizes PYK 10 to
cope with stress responses in the plant.

One of the identified proteins (p202, Table 1) exhibits
sequence similarities to a myrosinase-associated protein
(gi:1769969) from Brassica napus (identity: 61.8%). The
protein contains a lipase/acylhydrolase domain with a
GDSL motif and a predicted signal peptide for sorting via
the vesicular pathway, but its physiological function or
expression patterns are unknown. The protein identified as
a putative lectin (p42b, Table 1) also exhibits similarities to
myrosinase-binding proteins. Myrosinase hydrolyses thio-

glucoside bonds in glucosinolates that results in the produc-
tion of compounds involved in defense reactions against
micro-organisms and insects (Bones and Rossiter 1996 and
ref. therein). Although myrosinase enzymes have been con-
sidered as defence-related enzymes in Brassicaceae, the role
of glucosinolates seems to exceed defense responses. It has
been hypothesized that the indole glucosinolate pool may
act as a sink for the production of indole acetic acid and
therefore regulates plant growth processes (Bones and Ros-
siter 1996). Zeng et al. (2003) showed that degraded com-
pounds of indole glucosinolates may play a role in growth
stimulation of ectomycorrhizal fungi. Moreover, the func-
tion of myrosinase-associated proteins is unknown at pre-
sent, except that certain myrosinase-binding proteins were
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found to be important for complex formation of myrosinase
isoenzymes in Brassica napus (Eriksson et al. 2002).

Furthermore, the identification of methionine synthase
as an up-regulated protein upon co-cultivation with
P. indica indicates that the methyl cycle, leading to the
synthesis of methionine and S-adenosyl-methionine is influ-
enced by the fungus. Methionine synthase catalyses the last
step in methionine synthesis by transferring the methyl
group to homocysteine. Methionine is the immediate pre-
cursor of S-adenosyl-methionine, the major methyl-group
donor in transmethylation reactions. S-adenosyl-methio-
nine plays a crucial role in the biosynthesis of polyamines
and ethylene, components implicated to be involved in
plant–microbe interactions (Ravanel et al. 1998).

Two proteins with homology to glutathione-S-trans-
ferases were identified (p26/27 and p24c, cf. Table 1).
ERD13 (p26/27, cf. Table 1) is up-regulated and possibly
modified in response to the fungus and belongs to a class
of dehydration-inducible genes in A. thaliana (Kiyosue
et al. 1993). GST8 (p24, cf. Table 1) was found to be
up-regulated at transcriptional level in response to dehy-
dration, oxidative stress and high levels of auxin or
cytokinin (Bianchi et al. 2002). Glutathione-S-trans-
ferases participate in detoxification of reactive electro-
phylic compounds and have been often associated with
plant–microbe interactions (Mauch and Dudler 1993,
Strittmatter et al. 1996, Bestel-Corre et al. 2002, Wulf
et al. 2003). Production of reactive oxygen species occurs

Fig. 7. Regions from
Coomassie (A–C)- and silver
(D)-stained gels with protein
extracts from Arabidopsis
seedlings grown in the absence
(–) or presence (1) of P. indica.
Left: protein gels, right:
quantification of protein spots.
The designations of the spots on
the gels refer to those in Figs. 5
and 6 and Table 1. The
amounts of the protein spots are
given in relative values and can
only be compared within a
panel. One representative gel is
shown in the left panels, the
quantified data in the right
panels are average values based
on the analyses of three
independent experiments and gel
sets. Not all spots on the gels are
quantified. *, spots relevant for
this study.
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during growth and defence processes (Kawano 2003). It
is likely that the production of reactive oxygen species
increase after co-cultivation with the fungus, either as a
result of intensified growth, or as a response to fungal
elicitors, or as both.

The spots 203 and 204 correspond to a protein of
unknown function that contains two MATH domains.
Upon cultivation with the fungus the protein is up-regu-
lated and modified, which results in two additional pro-
tein forms. Four potential N-glycosylation sites for the
MATH domain-containing protein are predicted, which
might account for the different electrophoretic mobilities
on gels, however, the precise nature of the protein mod-
ifications could not be identified yet. MATH-domains are
common for meprins (mammalian tissue-specific metallo-
proteases) and TRAFs (tumour necrosis factor receptor-
associated factors). TRAF proteins interact with tumour
necrosis factor receptors and promote cell survival by the
activation of downstream protein-kinases and transcrip-
tion factors (Chung et al. 2002 and references therein). In
plants, a tumour necrosis factor-like receptor kinase was
shown to be involved in maize epidermal differentiation,
but it is not known whether it interacts with MATH
domain-containing proteins (Becraft et al. 1996). More
than 50 genes for MATH-domain proteins are present in
the Arabidopsis genome (Oelmüller, unpublished) and for
almost all of them, knock-out lines are available. Unfor-
tunately, the MATH-domain protein identified in this
study does not belong to this group.

For the majority of the proteins identified in this screen,
an involvement in plant–microbe interactions has not
been described before. For many of them, a connection
to any physiological function is new. We showed that
P. indica stimulate growth of the plant, possibly by influ-
encing N-linked glycosylation in ER, and has an impact
on plant stress response by modulating b-glucosidase
PYK10 and/or by up-regulation of glutathione-S-trans-
ferases. The interaction of P. indica with A. thaliana roots
provides an ideal tool to study the molecular events by
which the fungus recognizes the host, colonizes the roots
and ultimately stimulates plant growth.
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Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C,
Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA,
Long SR, Denarie J, Cook DR (2004) Medicago truncatula
DMI1 required for bacterial and fungal symbioses in legumes.
Science 303: 1364–1367

Arendt CW, Ostergaard HL (1997) Identification of the CD45-
associated 116-kDa and 80-kDa proteins as the a- and b-
subunits of a-glucosidase II. J Biol Chem 272: 13117–13125

Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: a
TNFR-like receptor kinase involved in maize epidermal differ-
entiation. Science 273: 1406–1409

Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick J-F,
van Tuinen D, Remacle J, Gianinazzi-Pearson V, Gianinazzi S

(2002) Proteome analysis and identification of symbiosis-related
proteins from Medicago truncatula Gaertn. by two-dimensional
electrophoresis and mass spectrometry. Electrophoresis 23: 122–137

Bianchi MW, Roux C, Vartanian N (2002) Drought regulation of
GST8, encoding the Arabidopsis homologue of ParC/Nt107 glu-
tathione transferase/peroxidase. Physiol Plant 11: 96–105

Boisson M, Gomord VV, Audran C, Berger N, Dubreucq B, Granier F,
Lerouge P, Faye L, Caboche M, Lepiniec L (2001) Arabidopsis
glucosidase I mutants reveal a critical role of N-glycan trimming
in seed development. EMBO J 20: 1010–1019

Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate sys-
tem, its organisation and biochemistry. Physiol Plant 97: 194–
208

Breuninger M, Requena N (2004) Recognition events in AM sym-
biosis: analysis of fungal gene expression at the early appressor-
ium stage. Fungal Genet Biol 41: 794–804

Bucking H, Heyser W (2003) Uptake and transfer of nutrients in
ectomycorrhizal associations: interactions between photosynth-
esis and phosphate nutrition. Mycorrhiza 13: 59–68

Burn JE, Hurley UA, Birch RJ, Arioli T, Cork A, Williamson RE
(2002) The cellulose-deficient Arabidopsis mutant rsw3 is defec-
tive in a gene encoding a putative glucosidase II, an enzyme
processing N-glycans during ER quality control. Plant J 32:
949–960

Caplan AJ, Cyr DM, Douglas MG (1993) Eukaryotic homologues
of Escherichia coli dnaJ: a diverse protein family that functions
with hsp70 stress proteins. Mol Biol Cell 4: 555–563

Chung JY, Park YC, Ye H, Wu H (2002) All TRAFs are not
created equal: common and distinct molecular mechanisms of
TRAF-mediated signal transduction. J Cell Sci 115: 679–688
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In mammals, signalling components at the cell surface are

clustered in Triton X-100 insoluble plasma membrane micro-
domains. We isolated plasma membrane microdomains from

Arabidopsis and mustard cotyledons and determined their pro-

tein composition by mass spectrometry. Although the protein

composition of the plant vesicles differ from the composition of

the animal vesicles, they are also enriched in signalling com-

ponents. We identified at least seven receptor kinases with
leucine-rich repeats, 10 other kinases, the b subunit of hetero-

trimeric G-proteins and five small GTP-binding proteins. Thus,

specific signalling components are highly enriched in plant

plasma membrane microdomains while others are excluded.

Introduction

Cells communicate with their environment through
signals which are perceived at the plasma membrane. In
animals, plasma membranes contain lipid rafts, namely
membrane subdomains with a unique protein and lipid
composition (cf. Simons and Toomre 2000; Galbiati et al.
2001; Munro 2003). A large number of signalling mol-
ecules are concentrated within these rafts which have
been proposed to function as signalling centres capable
of facilitating efficient and specific signal transduction.
Components for different signalling pathways appear to
be compartmentalized within these microdomains which,
depending on the isolation conditions and physiological
parameters, are connected to downstream events.
Although cell signalling in plant cells should be similar,
little is known about the structure, lipid and protein
composition of comparable microdomains from plant
plasma membranes (cf. Peskan et al. 2000). We isolated
plasma membrane microdomains from the cotyledons of
Arabidopsis and mustard seedlings and determined their
protein composition by mass spectrometry. Although the
protein composition differs from that of mammals, the
plant microdomains are highly enriched in signalling

compounds such as receptor kinases, small and hetero-
trimeric G proteins and signalling kinases.

Materials and methods

Growth conditions

Wild-type Arabidopsis thaliana (ecotype Columbia) seeds
were surface sterilized and placed on Petri dishes con-
taining MS nutrient medium (Murashige and Skoog
1962). After cold treatment at 4�C for 48 h, plates were
incubated for 21 days at 22�C under continuous illu-
mination (100 mmol m�2 s�1). Sinapsis alba seedlings
were grown on vermiculite in temperature-controlled
growth chambers at 20�C for 7 days.

Isolation of Triton X-100 insoluble plasma membrane

microdomains

One hundred grams of cotyledons from Arabidopsis or
mustard seedlings were used to isolate microsomes. The
cotyledons were homogenized in a Warring Blender

PHYSIOLOGIA PLANTARUM 122: 397–403. 2004 doi: 10.1111/j.1399-3054.2004.00414.x
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(seven times for 5 s) in a buffer containing 50mM Tris/
HCl pH7.4, 330mM sucrose, 3mM EDTA, 1mM
1,4-dithiothreitol and 4% (w/v) polyvinylpolypyrroli-
done. The homogenate was filtered through four layers
of cheesecloth and centrifuged for 20 min at 10 000 g.
The supernatant was then centrifuged at 50 000 g for 60
min in order to pellet the microsomes. Plasma mem-
branes were prepared from microsomes by two-phase
partitioning with 6.4% (w/w) dextrane T-500 and 6.4%
(w/w) polyethylene glycol (average molecular weight
3350) as described by Peskan et al. (2000), Larsson et al.
(1987) and Briskin et al. (1987). The plasma membranes
were re-suspended in a buffer containing 50mM Tris/
HCl pH7,4; 3mM EDTA and 1mM 1,4-dithiothreitol.
After treatment with 1% (v/v) Triton X-100 at 4�C for 30
min, membranes were mixed with 60% (w/w) sucrose to
the final concentration of 48% (w/w), placed at the
bottom of a centrifuge tube and overlaid with a con-
tinuous sucrose gradient (15–45%, w/w). Gradients
were centrifuged at 250 000 g for 20 h in a swinging
bucket rotor (SW 40; Beckman, Palo Alto, CA).

Alternatively, membranes were sonicated seven times for
10 s (Sonoplus HD70 with tip SH70; Bandelin Electronic,
Berlin, Germany; power 20 W) without addition of Triton
X-100 and purified on a continuous sucrose gradient. All
fractions (microsomes, plasma membranes, vesicles from
Triton X-100 and sonicated plasma membranes) from
both organisms were routinely used for the identification
of their protein patterns by mass spectrometry.

For one-dimensional gel electrophoresis, the buffer
system of Schägger and von Jagow (1987) was used.
Coomassie-staining of the gels was performed with
colloidal Coomassie stain Roti-Blue (Roth, Karlsruhe,
Germany) according to the manufacturer’s instructions.

Mass spectrometry

Proteins extracted from membrane fractions were further
purified by two rounds of methanol precipitation before
digestion with trypsin. In-gel trypsin digestion of excised
protein spots and elution of the peptides from the gel
matrix was performed according to Sherameti et al.
(2004). Peptide analysis by coupling liquid chromato-
graphy with electrospray ionization mass spectrometry
(ESI-MS) and tandem mass spectrometry (MS-MS) has
been described previously (Stauber et al. 2003).

Protein identification

The measured MS-MS spectra were matched with the
amino-acid sequences of tryptic peptides from the
A. thaliana database in FASTA format. Cys modification
by carbamidomethylation (1 57Da) was taken into
account and known contaminants were filtered out.
Raw MS-MS data were analysed by using the Finnigan
Sequest/Turbo Sequest software (revision 3.0; Thermo-
Quest, San Jose, CA). The parameters for the analysis by
the Sequest algorithm were set according to (Stauber
et al. 2003). The similarity between the measured MS-

MS spectrum and the theoretical MS-MS spectrum,
reported as the cross-correlation factor (Xcorr) was
above 2.95 and 3.85 for doubly or triply charged
precursor ions, respectively. In order to identify correspond-
ing loci, identified protein sequences were subjected to
BLAST search at NCBI (http://www.ncbi.nlm.nih.gov/)
and FASTA searches by using the AGI protein database
at TAIR (http://www.arabidopsis.org/).

Western analysis was performed as described (Peskan
et al. 2000).

Results

Following standard protocols established for mam-
malian cells, we purified microsomal fractions from
Arabidopsis and mustard cotyledons. They were then
further used to isolate purified plasma membranes. The
membranes were either sonicated or treated with Triton
X-100 to obtain plasma membrane microdomains
(Fig. 1; Peskan et al. 2000). As described previously for
tobacco (Peskan et al. 2000), the protein patterns of
plasma membrane microdomains from both organisms
obtained after sonication or after Triton X-100 treatment
were identical on Coomassie-stained gels (cf. Figs. 1 and
2). This is not surprising since vesicles from both
preparations exhibits an identical mobility during

Fig. 1. Protein pattern of microsomes (lane 1), plasma membranes
(lane 2) and Triton-X-100-insoluble plasma membrane vesicles
(lane 3) from Arabidopsis cotyledons. Ten mg of protein was loaded
per lane.
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sucrose gradient centrifugations (cf. Peskan et al. 2000).
We isolated the bands from theArabidopsis preparation and
identified the proteins by mass spectrometry (Figs. 1 and 2
and Table 1). In addition to plasma membrane ATPases
and aquaporins/membrane-intrinsic proteins (MIPs), seven
different receptor kinases can be identified in the region
. 60 kDa (At1g13230, At2g26730, At3g02880; At3g17840,
At5g16590, At3g08680, At3g14350). The microdomains
contain several small GTP-binding proteins (e.g. a Ras-
like protein, Rab1c, Rab2, SAR1), several kinases, Ca21-
binding proteins involved in signalling processes, a Sec14
homolog, phospholipase D d, a pectinesterase, remorin, an
unknown protein and several proteins which have not yet
been characterized (cf. Table 1 and Discussion).

Silver-staining of the gel shown in Fig. 2 uncovered
additional bands which were not detectable on the

Coomassie-stained gels (data not shown). We have pre-
viously demonstrated that plasma membrane micro-
domains from tobacco leaves contain the b subunit of
heterotrimeric G proteins (Gb) (Peskan et al. 2000). Wes-
tern analysis confirmed that Gb is also present in the
Arabidopsis preparations although we have not identified
Gb by mass spectrometry (Fig. 3). This demonstrates that
additional proteins are present in our Triton X-100 inso-
luble plasma membrane preparations.

Discussion

Low density Triton X-100 insoluble plasma membrane
microdomains are well characterized in animals and
yeast; however, little is known about their role and pro-
tein composition in plants. In animals, they contain
resident integral membrane proteins such as caveolin,
stomatin, and flotillin, extracellular proteins with glyco-
phosphatidylinositol anchors and cytoplasmic proteins
modified by myristoylation/palmitoylation (Simons and
Toomre 2000, Nebl et al. 2002, Munro 2003). These
microdomains are less than 50 mm in diameter and can
recruit different signalling components depending on
their cellular signalling functions and receptor activation.
We isolated Triton X-100 insoluble vesicles from plants,
namely from the cotyledons of Arabidopsis and mustard
seedlings, using two well-established protocols for
animal cells (Larsson et al. 1987, Peskan et al. 2000).
The protein patterns of both preparations were identical.
There was also no difference in the protein composition
of micodomains from the two Brassicaceae Arabidopsis
and mustard. We found that the number of proteins in
these vesicles, which can be detected on Coomassie-
stained gels, is very similar to that from animals.
However, they contain many proteins which are not
present in or not characteristic for mammalian micro-
domains. The plasma membrane ATPase, aquaporins
and membrane-intrinsic proteins are major constituents
of the plant vesicles and normally not detected in animal
microdomains. We also found that receptor kinases with
leucine-rich repeats are highly enriched in these vesicles.
This suggests that they either interact with each other or
are organized in similar plasma membrane environments
or share similar biochemical purification features. Six of
these receptor kinases appear to be integral membrane
proteins, whereas one protein (At1g13230) exhibits
unusual features. Its apparent molecular weight on the
denaturing SDS gel differs from the calculated size and
the protein does not contain a predicted transmembrane
segment. Thus, this receptor kinase might be located at
the inner plasma membrane site. We also find typical
plasma membrane proteins such as phospholipase D d
or a cAMP-dependent kinase, several, so far uncharac-
terized protein kinases, Ca21- and small GTP-binding
proteins, heterotrimeric G-protein subunits and putative
downstream signalling compounds (cf. CBL- interacting
kinase 8 and 9; a 14-3-3 protein). Protein/protein inter-
action studies between these proteins and the analyses of

Fig. 2. Protein composition of Triton X-100 insoluble plasma
membrane vesicles from Arabidopsis leaves. Numbers refer to the
proteins in Table 1. Identical protein patterns were obtained from
Arabidopis plasma membrane preparations obtained after
sonication (Peskan et al. 2000) and mustard plasma membrane
preparation treated with Triton X-100 or obtained after sonication.
The protein bands were identified by mass spectrometry. The
correlation factors (Xcorr) for doubly (triply) charged precursor ions
were . 2.95 (3.85). Only those peptides are given in the list which
were identified in at least three independent Triton X-100 insoluble
plasma membrane microdomain preparations from Arabidopsis.
Thirty-five mg of protein was loaded on the gel.
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Table 1. Proteins identified in Triton X-100 insoluble plasma membrane microdomains from Arabidopsis cotyledons. Numbers refer to the
protein bands in Fig. 1. The identified loci and peptides are given. For details, see Materials and methods and legend to Fig. 1. The cross-
correlation factor (Xcorr) was above 2.95 and 3.85 for doubly or triply charged precursor ions, respectively.

No. Protein Gene no. Peptides

Predicted integral membrane proteins
1 Plasma membrane ATPase At1g17260 KADIGIAVADATDAAR

ADGFAGVFPEHK
At1g80660 WSEQEAAILVPGDIISIK

QGELEAVVIATGVHTFFGK
EAQWAQAQR
MITGDQLAIGK

At2g18960 IPIEEVFQQLK
WSEQEAAILVP GDIVSIK
VDQSALTGESLPVTK
AAHLVDST NQVGHFQ
GVEKDQVLLFAAMASRVEN QDAIDAAMVG MLADPK
EVHFLPFNPVDKRTALTYIDSDGNWHR
VSKGAPEQILDLANARPDLR
ESPGGPWEFVGLLPLFDPPR
LGMGTNMYPSAALLGTDKDSNIASIP VEELIEK
KADIGIAVADATDAAR
GASDIVLTEPGLSVIISAVLTSR
AWASLFDNR
ELSEIAEQAK
HIVGMTGDGVNDAPALK

At2g24520 IDQSSLTGESIPVTK
IENQDAIDAAIVGMLADPK
ADGFAGVFPEHK
KADIGIAVVDATDAAR
GASDIVLTEPGLSVIISAVLTSR

At2g07560 KADIGIAVDDATDAAR
At4g30190 TALTYIDGSGNWHR

ESPGAPWEFVGLLPLFDPPR
LGMGTNMYPSSALLGTHK
KADIGIAVADATDAAR

At3g47950 WGEQDAAILVPGDIISIK
KADIGIAVADATDAAR
LENQDAIDAAIVGMLADPK

At5g62670 ETVDLENVPIEEVFESLR
ESAGGPWQFMGLMPLFDPPR
KADIGIAVADATDAAR
THFNELSQMAEEAK
EVHFLPFNPTDK
SLAVAYQEVPEGTK

2 Kinase At3g59420 NSNIISSSLVDCWGYNMTR
ARVFTYEELEK
GSFSCVYK
VTIAVQAAR

3 Receptor kinase (S-Locus) At4g21380 SPLVAELLDNGNFVLR
ARK3 ENNTDDLELPLMEFEEVAMATNNFSNANK

IIGSSIGVSVLLLLSFIIFFLWK
6 Kinase At1g16760 GTRNGSVAIAIDK

YSVQEIEEGTANFAESR
HKTANTPALPK

7 ERD4 protein At1g30360 QVDSIEYYTELINESVAK
EAWYPGDLSYATR

9 LRR-RK-1 At3g17840 LNLAENEFSGEISSGFK
GLDYLHSQDPLSSHGNVK
VSDFGLAQLVSASSTTPNR
SSNILLTNSHDAR

10 LRR-RK-2 At5g16590 LATLYLQDNQLTGPIPEIK
SPLNWETR
GSLSALLHGNK

11 LRR-RK-3 At2g26730 QALLTFLQQIPHENR
LPGTGLVGQIPSGSLGR
SLYLQHNEFSGEFPTSFTQLNNLIR
LLVFDFMPTGSLSALLHGSR
AVLEEGTTVVVK

12 LRR-RK-4 At3g02880 FNSLSGPIPSDFSNLVLLR
ASFEHGLVVAVK
GSLSAILHGNK
TPLNWETR
SPTHQQLNEEGVDLPR
AISYLHSR
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Table 1. Continued.

No. Protein Gene no. Peptides

13 Pectinesterase At4g12420 LDEGLLLHWNGIQQR
DQIGSFFYFPSLHFQR
ASGGFGSFVVNPR
DLGMPDGVL
VSNVGISTSLNFR
TENLDSWYLGQETYVR

14 LRR-RK-5 At1g13230 PELFELKHLRSLSFFNCFISPMVIAK
15 LRR-RK-6 At3g08680 AEEFGSGVQEAEK

TTGHEEVVDLPK
LPGSGLYGPLPEK

16 LRR-RK-7 At3g14350 YLNLAHNQLK
SFDDDDSTMRK
IAHLDHENVTK

25 cAMP-dependent kinase At2g20040 NGLKWEAISNR
FTICGNADYLAPEIVQGK
LLEVDENLR

26 Aquaporin, intrinsic protein At4g35100 DYVDP PPAPLLDMGELKSWSFYR
TPYNTLGGG ANTVADGYSK
SFGAAVIYNNEK

27 Intrinsic proteins, aquaporins At1g01620 VGANKFPER
(PIP 1C) GSGLGAEIIGTFVLVYTVFSATDAK

SLGAAIIYNK
At2g45960 QP IGTSAQSDKDYKEPPPAPLF EPGELASWSFWR
(PIP 1B) QYQALGGGANTIAHGYTK

GSGLGAEIIGTFVLVYTVFSATDAK
SLGAAIIFNK

At2g16850 SFGAAVIYNNEK
At2g39010 SFGAAVIYNNQK
At3g53420 DVEAVPGEGFQTRDYQDPPPAPFIDGAELK
(PIP 2A) AFQSSYYTR
At4g23400 DYKEPPPAPFFEPGELK

GFQPGLYQTNGGGANVVAHGYTK
Predicted peripheral proteins
4/5 EF hand protein At1g05150 AVSLLGAGETEEAK

DNDVPVSYSGSGGPTK
TYDDGAGDVDR
EEAFDGHMAIGR

At2g32450 ILSVLDDSGSGR
VELHDAVSHLK

8 Phospholipase D d At4g35790 VITSDPYVTVVVPQATLAR
ILHDLDTVFK
HSSVICVLSPR

17 Calcium-dependent kinase At4g04720 VIAESLSEEEIK
GGEAPDKPIDSAVLSR

18 Calnexin-like protein At5g07340 SEGHDDYGLLVSEK
WSSPLIDNPAYK
GNLLSAEDFEPPLIPSK

19 Kinase At4g35230 AATNNFSSDNIVSESGEK
LLVAEFMPNDTLAK
VLFDEDGDPR
VTPESVTYSFGTVLLDLLSGK
DDEGTNELSFQEWTQQMK
LNMNTDAADMLNEAAQLEEK

20a CBL-interacting protein kinase 8 At4g24400 FAQNTETGESVAMK
PANVVLSSMEVVSQSMGFK
IYIILEYITGGELFDK

20b CBL-interacting protein kinase 9 At1g01140 LKEDEARRYFQQLINAVDYCHSR
ILEPNPITR
PENLIL DANGVLK

21 Ankyrin kinase IV At1g14000 NVLLVNSSADHLK
RTPLHVASLHGWIDVVK
CDWEIEPAELDFSNAAMIGK
KLRHPNIVQFLGAVTER
YMAPEVFKHR

22 Kinase At1g63500 LLVAEFMPNETLAK
VALHIAQALEYCTGK

23 Kinase At3g01490 GIYDGQDVAVK
SLDEQLQR
SLSDGEDNVNNTR
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knock-out line will help to elucidate the function of these
proteins in signalling processes across the plasma
membrane. It is also interesting that the microdomains
contain several protein involved in stress responses
(At1g30360, At5g62740). Further transduction of acti-
vating signals depends on the presence of proteins asso-
ciated at the inner site of the plasma membrane. Our list
of proteins provides several candidates. The list contains
also proteins involved in protein trafficking through the
secretory pathway (e.g. Sar1, Rab1c and Rab2). Since

the organization of a plant cell with its huge vacuole
differs substantially from that of animal cells, membrane
trafficking between the ER and the plasma membrane
might be different.

Recently, Wienkoop and Saalbach (2003) analysed the
proteom of the plasma membrane-derived peribacteroid
membrane from Lotus japonicus root nodules. Many of
the proteins identified in our microdomains are also
present in their peribacteroid membrane system. In par-
ticular, both membrane preparations contain ATPases,
aquaporins, GTP-binding proteins, proteins involved in
signalling processes, receptor kinases, 14-3-3 proteins
and pathogen-related proteins. Wienkoop and Saalbach
(2003) also found proteins which are expected to be
localized in other plant endomembranes, comparable
with the results reported here. Likewise, Marmagne et al.
(2004) analysed the proteom of soluble and insoluble
plasma membrane fractions from suspension-cultured
Arabidopsis cells and found several transporter proteins,
receptors, GTP-binding proteins, proteins involved in
various trafficking processes as well as stress-related
proteins. Taken together, the high degree of overlap of

Table 1. Continued.

No. Protein Gene no. Peptides

24 Hypersensitive-induced proteins At5g62740 AMNEINAAAR
(band 7 family proteins) LLLDDVFEQK

AVEEELEK
SSAVFIPHGPGAVR
YLSGLGIAR

At3g01290 VLNPGLQFVPWVIGDYVAGTLTLR
TKDNVFVTVVASIQYR
AYVFDVIR
LNLDDVFEQK
DSVLGFAGNVPGTSAK
DVLDMVMMTQYFDMR
SSAVFIPHGPGAVSDVAAQIR

At1g69840 ALAESAQDAFYK
LDLDSTFEQK
NQIQAYVFDVIR
AMNEINAASR
DVMDMVLVTQYFDTLK
RAEGEAESK

28 14-3-3 protein At5g10450 QAFEEAIAELDTLGEESYK
AAQDIAAADMAPTHPIR
NLLSVAYK

29 GTP-binding proteins (ras-rel.) At3g09910 ILLIGDSGVGK
At4g18430 AQLWDTAGQER

STIGVEFATR
DHTDANVVIMLVGNK

At1g56330 LQLWDTAGQER
ELNVMFIETSAK

At1g02130 LQIWDTAGQER
30 Rab1c At4g17530 FADDSYLDSYISTIGVDFK

TITSSYYRGAHGIIVTYDVTDLESFNNVK
31 Remorins At2g45820 VDVESPAVLAPAK

ISDVHAWENSK
EPTPAPVEVADEK
DVILADLEK

At3g48940 RGEDVLKAEEMAAK
32 Rab2-like GTP-binding protein At4g17170 TAQNVEEAF

FQPVHDLTIGVEFGAR
33 SAR1B-homolog At1g56330 VDAVVYLVDAYDKER

ILFLGLDNAGK
34 SAR1A-homolog At1g02620 VDALVYLVDAYDGER

ELDALLSDESLATVPFLILGNK

Fig. 3. Western analyses with protein extracts from Trition X-100
insoluble plasma membrane preparations from Arabidopsis leaves
with an antibody against the b subunit of heterotrimeric G proteins
(Peskan et al. 2000). Lane 1: microsomal fraction, lane 2, plasma
membrane preparation, lane 3, Triton X-100 vesicles.
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the identified proteins in these membrane preparations
provides a solid basis for future studies.
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Piriformospora indica, an endophytic fungus of the Sebacinaceae family, colonises the
roots of a wide variety of plant species and promotes their growth, in a manner similar
to mycorrhizal fungi. We demonstrate that the fungus also interacts with the non-
mycorrhizal host Arabidopsis thaliana. Promotion of root growth was detectable even
before noticeable root colonization, and was accompanied by a massive transfer of
phosphate from the media to the aerial parts of the seedlings. During the recognition
period of both organisms, the message for a receptor kinase with leucine-rich repeats
is transiently upregulated. The kinase is located in Triton X-100-insoluble plasma
membrane microdomains. Thus, this is one of the earliest events of a plant root in
response to a fungus reported to date.
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of land plants (cf. Heckman et al., 2001). Many
plant genes and proteins which have been
identified to respond to fungi are involved in
later phases of the interactions (cf. Harrison
1999; Voiblet et al., 2001; Bestel-Corre et al.,
2002, Wulf et al., 2003, Krüger et al., 2004).
Only recently, Endré et al. (2002) and Stracke
et al. (2002) have shown that a receptor kinase is
required for both bacterial and fungal reco-
gnition in legume roots. The exact role of the
identified kinase in mycorrhizal symbiosis is not
clear. However, it appears that it defines an
ancient signalling pathway that evolved in the
context of arbuscular mycorrhiza, and has been
recruited subsequently for endosymbiosis with
bacteria (Parniske, 2000; Kistner and Parniske,
2002). Ané et al. (2004) identified a protein
with similarities to a ligand-gated cation channel
domain of archaea, which is required for bacterial
and fungal symbioses in legumes. Since this
protein is highly conserved in angiosperms and
ancestral to land plants, it may be involved in
establishing mycorrhizal associations. Furthermore,
a putative Ca2+ and calmodulin-dependent
protein kinase may be involved in transducing
bacterial and fungal signals to downstream events
(Levy et al., 2004).

To further elucidate these mechanisms and to
identify genes and proteins which are involved in
early steps of plant/fungus recognition, we
studied the interactions between Arabidopsis roots
and the basidiomycete Piriformospora indica. The
fungus interacts with many plant species, mimics
an arbuscular mycorrhiza and promotes plant
growth and development (Varma et al., 1999,
2001; Peškan-Berghöfer et al., 2004). A stimulatory
effect of the fungus on plant growth and
development can be detected before physical
contact between the organisms is established. We
have shown recently that a modification of a
MATH protein in the plasma membrane of
Arabidopsis roots belongs to one of the earliest
events which can be monitored in response to the
fungus (Peškan-Berghöfer et al., 2004). Here, we
demonstrate that the message for a receptor
kinase is also upregulated during early phases of
co-cultivation. Both responses are transient and
disappear as soon as a stable interaction between
both organisms is established. This implies that
they are connected to early steps in the recognition
between Arabidopsis roots and P. indica. Further-
more, biochemical studies have demonstrated that
the receptor kinase is located in Triton X-100
insoluble plasma membrane microdomains, to-
gether with other receptor kinases and signalling
components.
Materials and methods

Growth conditions of plants and fungus

Wild type Arabidopsis thaliana (ecotype Colum-
bia) seeds were surface sterilized and placed on
Petri dishes containing MS nutrient medium (Mur-
ashige and Skoog, 1962). After cold treatment at
4 1C for 48 h, plates were incubated for 7 days at
22 1C under continuous illumination
(100 mmolm�2 s�1). Piriformospora indica was cul-
tured as described previously (Varma et al., 1999).
Co-cultivation experiments and estimation
of plant growth, uptake of phosphate

Seven day-old Arabidopsis thaliana seedlings
were transferred to nylon disks (mesh size 70 mm)
placed on top of a modified MMN culture medium
(MMN medium with a 1/10 of nitrogen and
phosphorus and no carbohydrate (Marx 1969), in
90mm Petri dishes. After 24 h, fungal plugs of 5mm
in diameter were placed at a distance of 3 cm from
the roots. Plates were incubated at 22 1C under
continuous illumination from the side (max.
80 mmolm�2 s�1). Fresh weight of the shoots and
roots was determined at the time point indicated in
Fig. 1.

For phosphate uptake studies, the nylon net with
the Arabidopsis seedlings in the presence or
absence of Piriformospora indica, was transferred
to a fresh Petri dish with agar medium containing
1.5� 107 counts per minute (cpm) 32P-labelled
orthophosphate (without HCl, Amersham, Frei-
burg). The radioactivity was determined by liquid
scintillation counting. Ten cotyledons were har-
vested with a candlewick cutter and homogenized
in 1ml 100mM Tris/HCl pH 7.0, and aliquots of
trichloro acetic acid-precipitable material were
used to determine the radioactivity in the cotyle-
dons. The results presented here are based on eight
independent experiments.
Array analysis

A dot blot filter with 96 putative cDNAs for signal
transduction components from Arabidopsis thaliana
was used for hybridization. The cDNAs were
obtained either from stock centers, amplified from
RT-PCR, or from an Arabidopsis cDNA library. The
filter contained genes for the following proteins:

G protein-coupled receptor: At1g48270;
G protein a subunit: At2g26300;
G protein b subunit: At4g34460.
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Figure 1. Piriformospora indica stimulates the fresh
weight of Arabidopsis shoots (top) and roots (bottom). At
day 0, 7-day-old Arabidopsis seedlings were transferred
to new media and the fresh weight was determined in the
presence and absence of the fungus.K, with fungus and
J, control (without fungus). Based on eight independent
experiments, bars represent SEs.
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Receptor protein kinases (with LRR motifs):
At1g49100; At1g51820; At1g07550; At1g51910;
At2g19230; At2g28990; At3g46330; At4g20790;
At2g02780; At3g46370; At3g46410; At4g22130;
At5g41180; At5g65710; At5g16590; At3g17840,
At2g26730; At3g02880.

MLO homologs: At1g61560; At4g24250;
At5g65970; At2g17480.

Small GTP-binding proteins: At4g18800;
At1g06400; At4g17170; At1g49300; At5g45130;
At5g10260; At4g35950; At5g45970; At1g02440;
At5g67560.

Phosphatidyl-inositol-3-kinase: At1g60490.
MATH-domain-containing proteins: At3g20360;

At5g26280;At3g28220; At3g20380; At3g20370;
At2g04170; At4g09770; At5g26290; At5g26300;
At5g26320.

DMI1 protein homolog: At5g49960.
Response regulator genes: At4g16110;

At1g59940; At1g10470; At1g19050; At2g41310;
At1g67710; At2g25180; At2g40670.

Sensor histidine kinases: At2g40940; At1g27320;
At1g66340; At2g17820.

Histidine phosphotransfer protein: At1g03430;
At5g39340.

Calmodulin: At5g37780; At1g66410.
Calcineurin B-like calcium sensor proteins:

At1g64480; At5g47100.
CBL-interacting serine-threonine protein kinases:

At5g45810; At5g57630; At4g14580; At5g07070.
Calmodulin-binding proteins: At2g15760;

At2g26530.
Immunophilin/FKBP-type peptidyl-prolyl cis–-

trans isomerase family protein: At4g19830.
Phospholipase D d: At4g35790.
14-3-3-proteins: At1g35160; At1g22300;

At5g65430; At1g78220.
MAP kinase pathway: At4g36450; At3g45640;

At5g66850; At4g08480; At5g55090; At1g01560;
At1g10210; At2g18170; At4g01370; At2g43790;
At4g11330.

Disease resistance locus: At3g04220.
Band 7 protein: At1g69840.
Other proteins: At1g04560; At4g14480;

At3g15220; AT3g18590; AT5g17520; AT4g28050.
Insertions from plasmids were amplified with

vector-specific primers. Gene-specific primers were
used to amplify fragments from RT-PCRs. The
primers were designed such that the DNA fragments
contained the entire coding region with four
nucleotides upstream of the ATG codon, and three
nucleotides downstream of the stop codon. A cDNA
library from Arabidopsis roots was constructed by
using the SMARTTM cDNA Library Construction Kit
(Biosciences, Palo Alto). The genes were amplified
from the library by using the ExpandTM High Fidelity
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PCR System (Roche, Mannheim, Germany) with one
library-specific (50 l TriplEx2) and one gene-specific
primer. The identities of the DNA fragments were
confirmed by sequence analyses. A molar excess
(4100-fold) of the amplified fragments was spotted
onto a nylon membrane (Hybond N, Amersham
Biosciences, Freiburg, Germany) and hybridized
under high stringency conditions with the radio-
actively labelled cDNA probes from control roots and
roots co-cultivated with Piriformospora indica (Sam-
brook et al., 1989). The 32P-cDNA probes (106 cpm/
ml) were prepared from 1mg of total RNA from the
control or inoculated roots with Superscript II
reverse transcriptase (Invitrogen, Karlsruhe, Ger-
many). After hybridization and washing of the
membranes, they were exposed to HyperfilmTM

ECLTM (Amersham Biosciences, Freiburg, Germany).
The intensities of the hybridization signals were
quantified with the ImageQuant Software (Amer-
sham Biosciences, Freiburg, Germany). The inten-
sities of the hybridization signals from control roots
were set as 1.0, and the signal from the inoculated
material expressed relative to it.

RNA was isolated with an RNA isolation kit
(RNeasy, Qiagen, Hilden, Germany). For Northern
analysis total RNA (15 mg) was separated on 1.2%
(w/v) agarose gels containing formaldehyde, and
transferred to a positively charged nylon mem-
brane (Roche, Mannheim, Germany). Blots were
probed with in vitro transcribed antisense RNAs of
the cloned genes. For RT-PCR, two primer pairs
were simultaneously used for the reaction in order
to confirm the specificity of the results. The
following primers were used: At5g16590: TTCGGAT-
CAATCTCGCCCAG and CCTTGTACGAAGATCCGAAC,
At3g17840: GATTCTCCGGTGAGATTCCG and ACTTC-
CACAGCTTTCACTGC; At2g26730: GGTGGTCCGTTAA
AGCCTTG and CAATCTAACGGAGTTCGCCC; At3g028
80: TCTGCCGACCCGGTTGGTTAC and CCTTTCCCAA-
GAACCTCAGC.
Isolation of microsomes, plasma membranes
and Triton X-100 insoluble plasma membrane
microdomains from Arabidopsis roots; two-
dimensional gel electrophoresis

Root material from Arabidopsis seedlings was
used to isolate microsomes. Roots were homoge-
nized in a Warring Blender (11 times for 5 s) in a
buffer containing 50mM Tris/HCl pH 7.4, 330mM
sucrose, 3mM EDTA, 1mM 1,4-dithiothreitol and 5%
(w/v) polyvinylpolypyrrolidone. The homogenate
was filtered through four layers of cheesecloth and
centrifuged for 20min at 10,000g. The supernatant
was then centrifuged at 50,000g for 60min in order
to pellet the microsomes. The pellet was resus-
pended in a buffer containing 50mM Tris-HCl, pH
7.4 and 1M NaCl, incubated on ice for 30min and
centrifuged as before. Pelleted membranes were
resuspended in 50mM Tris-HCl, pH 7.4; 3mM EDTA
and 1mM 1,4-dithiothreitol and kept at �80 1C until
protein analysis (see below) or isolation of plasma
membranes.

Plasmamembranes were prepared frommicrosomes
as described previously for green material (Peškan et
al., 2000; Larsson et al., 1987), washed with an excess
of a buffer containing 50mM Tris/HCl pH 7.4; 100mM
NaCl, 3mM EDTA and 1mM 1,4-dithiothreitol and
resuspended in 50mM Tris/HCl pH 7.4; 3mM EDTA and
1mM 1,4-dithiothreitol. For the two-dimensional gel
electrophoreses shown in Fig. 4, protein extracts from
10g of Arabidopsis roots cultivated with or without P.
indica for 3 days were used.

For the isolation of plasma membrane micro-
domains (Fig. 5), 100 g of Arabidopsis roots without
the fungus was used and the washing step for the
plasma membrane with 50mM Tris/HCl pH 7.4;
100mM NaCl, 3mM EDTA and 1mM 1,4-dithiothrei-
tol was omitted.

After treatment with 1% (v/v) Triton X-100 at 4 1C
for 30min, membranes were mixed with 60% (w/w)
sucrose to the final concentration of 48% (w/w),
placed at the bottom of a centrifuge tube and
overlaid with a continuous sucrose gradient
(15–45%, w/w). Gradients were centrifuged at
250,000g for 20 h in a swinging bucket rotor (SW
40, Beckman, Palo Alto, USA).

Alternatively, membranes were sonicated seven
times for 10 s (Sonoplus HD70 with tip SH70,
Bandelin electronic, Berlin, Germany; power
20W) without addition of Triton X-100 and purified
on a continuous sucrose gradient. All fractions
(microsomes, plasma membranes, vesicles from
Triton X-100 and sonicated plasma membranes)
were routinely used for the identification of their
protein patterns by mass spectrometry (cf. below).

Two-dimensional gel electrophoresis was per-
formed as described in Sherameti et al. (2004).

For the second dimension, the buffer system of
Schägger and von Jagow (1987) was used. Coomas-
sie-staining of the gels was performed with colloidal
Coomassie stain Roti-Blue (Roth, Karlsruhe, Ger-
many) according to the manufacturer’s instructions,
and silver-staining according to standard protocols.
Mass spectrometry and identification of
proteins

Proteins extracted from membrane fractions
were further purified by two rounds of methanol
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precipitations before digestion with trypsin. In-gel
trypsin digestion of excised protein spots, elution
of the peptides from the gel matrix, peptide
analysis by coupling liquid chromatography with
electrospray ionization mass spectrometry (ESI-
MS), and tandem mass spectrometry (MS-MS) were
performed as previously described (Sherameti et
al., 2004).

The measured MS-MS spectra were matched with
the amino-acid sequences of tryptic peptides from
the Arabidopsis thaliana database in FASTA format.
Cys modification by carbamidomethylation (+57 Da)
was taken into account, and known contaminants
were filtered out. Raw MS-MS data were analysed
by the Finnigan Sequest/Turbo Sequest software
(revision 3.0; ThermoQuest, San Jose, USA). The
parameters for the analysis by the Sequest algo-
rithm were set according to Stauber et al. (2003).
The similarity between the measured MS-MS spec-
trum and the theoretical MS-MS spectrum, reported
as the cross-correlation factor (Xcorr), was above
2.95 and 3.85 for doubly or triply charged precursor
ions, respectively; these values are presented in
Table 1. In order to identify corresponding loci,
identified protein sequences were subjected to
BLAST search at NCBI (http://www.ncbi.nlm.nih.
gov/) and FASTA searches by using the AGI protein
database at TAIR (http://www.arabidopsis.org/).
Results

Figure 1 demonstrates that co-cultivation of
Arabidopsis seedlings with P. indica caused an
increase in fresh weight of the roots and shoots.
The growth-promoting effect was first visible for
the roots before physical contact between the
hyphae and the root surface could be detected by
light microscopy. Under the conditions used for
these studies, the increase in root fresh weight was
mainly caused by a stimulation of lateral root
growth, while growth of the primary root was not
affected by the fungus, or even slightly reduced
when compared to the controls (data not shown).
Stimulation of growth was accompanied by a
massive uptake of phosphate from the agar plate,
as determined by the accumulation of radiolabel in
the cotyledons. After 6 days of co-cultivation, the
radioactivity in the aerial parts of seedlings co-
cultivated with P. indica had more than doubled
(16,200 cpm vs. 41,500 cpm) (Fig. 2A). We also
tested short-term uptake of phosphate into control
seedlings and seedlings co-cultivated with P. indica,
and found that the uptake was stimulated more
than three-fold within 6 h by the fungus, although
there was no measurable increase in the fresh
weight of the aerial parts of the seedlings.
Furthermore, comparison of Figs. 1 and 2 also
demonstrates that the increase in phosphate
uptake cannot be explained by differences in the
fresh weights for roots. Taken together, these
results suggest that P. indica stimulates Arabidopsis
growth in a fashion similar to that described for
mycorrhizal symbioses (cf. Smith and Read, 2001).

After 3 days of co-cultivation, control roots and
roots from co-cultivated material were harvested
for RNA extraction and hybridization to arrays with
putative cDNAs for signalling components from
Arabidopsis (cf. Materials and methods). In three
independent experiments, only two from 96 mes-
sages were significantly upregulated in material co-
cultivated with P. indica. The most prominent
response was observed for a gene which codes for
a receptor kinase with leucine-rich repeat (LRR)
motifs (At5g16590). The second cDNA which re-
sponded to the fungus codes for a second, so far
uncharacterized, receptor kinase (data not shown).
For the other genes on the array filter, no more
than a 10% increase in the mRNA level could be
detected. Therefore, we consider them as controls
(data not shown, however three genes (At3g17840,
At2g26730 and At3g02880) were used as control in
the Northern experiments shown in Fig. 3). North-
ern analyses and RT-PCRs confirmed that the
message for At5g16590 responds to the fungus
(Fig. 3A and B). Under our culture conditions, the
message level increased approximately two days
after the co-cultivation of Arabidopsis roots with P.
indica. The strongest, approximately 2.8-fold sti-
mulation was observed 3 days after co-cultivation.
On day 5, the level had dropped again to that seen
in control plants (Fig. 3). Three control mRNAs for
other plasma membrane-localized receptor kinases
with LRR sequences (At3g17840, At2g26730,
At3g02880) did not respond to P. indica. Further-
more, the stimulatory effect on the responsive
mRNA appears to be specific for P. indica, since no
stimulation could be observed when the infection
was performed with P. croceum (Fig. 3C). This is
consistent with the observation that the latter
fungus does not cause promotion of root growth in
Arabidopsis (Peškan-Berghöfer et al., 2004). Thus,
the stimulatory effect of the fungus on At5g16590
expression is one of the earliest events that occurs
during the recognition of roots and fungi. To our
knowledge, this is the first report that a receptor
kinase increases transiently during early phases of
plant/microbe interactions.

Mass spectrometry uncovered that At5g16590,
together with at least six other LRR receptor
kinases, is present in microsomal fractions from

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.arabidopsis.org/
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Table 1. Proteins identified in microsomes, plasma membrane preparations, and the top fraction, as well as the Triton X-100 insoluble plasma membrane microdomain
fraction of the sucrose gradient used to fractionate plasma membranes after Triton X-100 treatments or sonication

No. Protein Gene no. Peptides Xcorr Microsome Pl. memb. Top of
grad.

Microdomain

1 Plasma membrane
ATPase

At2g18960 IPIEEVFQQLK 5.22 + + +

WSEQEAAILVP GDIVSIK 4.93 + +
VDQSALTGESLPVTK 4.33 + +
AAHLVDST NQVGHFQ 5.17 +
GVEKDQVLLFAAMASRVEN 3.92 + +
QDAIDAAMVG MLADPK 3.44 +
EVHFLPFNPVDKRTALTYIDSDGNWHR 5.01 + + +
VSKGAPEQILDLANARPDLR 4.44 + +
ESPGGPWEFVGLLPLFDPPR 5.19 + + + +
LGMGTNMYPSAALLGTDKDSNIASIP 4.41 +
VEELIEK 3.77 + + +
KADIGIAVADATDAAR 4.32 + + +
GASDIVLTEPGLSVIISAVLTSR 3.59 + +
AWASLFDNR 4.09 + + +
ELSEIAEQAK 5.08 +
HIVGMTGDGVNDAPALK 4.44 + + +

2 Phospholipase D d At4g35790 VITSDPYVTVVVPQATLAR 3.93 + + +
ILHDLDTVFK 4.54 + + +
HSSVICVLSPR 4.33 + + +

3 LRR-RK-1 At3g17840 LNLAENEFSGEISSGFK 3.45 + +
GLDYLHSQDPLSSHGNVK 4.44 + + +
VSDFGLAQLVSASSTTPNR 4.21 + + +
SSNILLTNSHDAR 4.03 + +

4 LRR-RK-2 At5g16590 LATLYLQDNQLTGPIPEIK 3.39 + + +
SPLNWETR 4.02 + + +
GSLSALLHGNK 4.53 + + +

5 LRR-RK-3 At2g26730 QALLTFLQQIPHENR 5.02 + +
LPGTGLVGQIPSGSLGR 3.99 + +
SLYLQHNEFSGEFPTSFTQLNNLIR 3.78 + + +
LLVFDFMPTGSLSALLHGSR 3.69 + +
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AVLEEGTTVVVK 4.36 + +

6 LRR-RK-4 At3g02880 FNSLSGPIPSDFSNLVLLR 4.18 + +
ASFEHGLVVAVK 4.02 + +
GSLSAILHGNK 3.97 + + +
TPLNWETR 3.88 + +
SPTHQQLNEEGVDLPR 3.91 + +
AISYLHSR 3.19 + +

7 Pectinesterase At4g12420 LDEGLLLHWNGIQQR 5.22 + +
DQIGSFFYFPSLHFQR 5.01 + +
ASGGFGSFVVNPR 4.56 + +
DLGMPDGVL 4.62 +
VSNVGISTSLNFR 4.90 +
TENLDSWYLGQETYVR 3.78 +

8 Intrinsic proteins,
aquaporins

At2g45960 (PIP
A1B)

QP IGTSAQSDKDYKEPPPAPLF EPGELASWSFWR 5.03 + + +

QYQALGGGANTIAHGYTK 5.31 + + +
GSGLGAEIIGTFVLVYTVFSATDAK 5.11 + + +
SLGAAIIFNK 5.02 + + +

4.43 + + +

9 GTP-binding
proteins (ras-rel.)

At3g09910 ILLIGDSGVGK

At4g18430 AQLWDTAGQER 5.11 + + +
STIGVEFATR 3.29 + +
DHTDANVVIMLVGNK 4.53 + + +

At1g56330 LQLWDTAGQER 4.37 + + +
ELNVMFIETSAK 4.03 + +

At1g02130 LQIWDTAGQER 3.74 + + +
3.86 + +

10 18.3 kDa protein
of photosystem II

YNEAVYSSA 3.78 +
ADAFEYADQVLE 3.92 +

11 Disease resistance
locus

At3g04220 QSIHETGQRQFLVDATDIR 4.90 + + +
LQLQQRFLSQITNQENVQIPHLGVAQERL 4.61 + + +
NLEWLDLTCS 3.56 + + +

12 LRR-RK At3g51740 KLSLHNNVIAGSVTRSLGYLK 4.54 + +
KTVSAGVAGTASAGGE 4.21 + + +

13 MATH protein At3g20370 SWNIQINPSGLGTGEGK 5.12 +
NSYLSEVFSIGGR 4.04 + +
TMWGFSQVLPIDTFK 4.16 + + +
FYIFNK 4.33 +
KYFTIQDTDVWK 3.43 + + +
YFTIQDTDVWK 3.54 + +
MESFNTLLK 3.02 + +

14 ATPase,
mitochondrial

At5g08690 TIAMDGTEGLVR 3.87 +
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Table 1. (continued )

No. Protein Gene no. Peptides Xcorr Microsome Pl. memb. Top of
grad.

Microdomain

VLNTGAPITVPVGR 4.32 +
FTQANSEVSALLGR 3.97 +

15 band 7 proteins At1g69840 LDLDSTFEQK 4.22 +
AMNEINAASR 4.20 + + +
DVMDMVLVTQYFDTLK 3.55 + + +
RAEGEAESK 3.59 + + +

16 CBL-interactging
protein kinase 9

At1g01140 PENLILDANGVLK 4.04 + + +
ILEPNPITR 3.97 + + +

17 Protein kinase At3g25250 PPYIPAPDDGGDKGTDVNTK 3.22 + +
PPYIPAPDDGGDK 3.54 +
PDNVMIQENGHLMLIDFDLSTNLAPR 3.91 +

Membranes were isolated from Arabidopsis roots, proteins precipitated as described, digested with trypsin and directly used for mass spectrometry. A few identified loci and peptides, which
characterize the plasma membrane microdomain purification process, are given. For more information about the protein, see text or information in the Database under the given accession
numbers. For experimental details, cf. Materials and methods. LRR-RK, leucine-rich repeat receptor kinase. At5g16590, relevant for this study, is given in bold. +indicates the presence of the
peptide in the fraction.
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Figure 2. Uptake of 32P-phosphate from the media into
the cotyledons of Arabidopsis seedlings. (A) From day 0
on, Arabidopsis seedlings were co-cultivated with P.
indica and simultaneously transferred to 32P-phosphate-
containing media (K). After 2, 4 and 6 days, the
cotyledons were harvested for determination of radio-
activity. (J), control, Arabidopsis seedlings without
fungus. (B) Four days after co-cultivation with (K) or
without (J) P. indica, 32P-phosphate was added and the
uptake of radioactivity into the cotyledons was mon-
itored over a period of 6 h. (J), control, Arabidopsis
seedlings without fungus. Based on 8 independent
experiments, bars represent SEs.

Figure 3. Expression analyses of LRR receptor kinase
genes. Arabidopsis seedlings were co-cultivated with P.
indica and RNA extracted from the roots at the time
points indicated. (A) Northern analyses with LRR receptor
kinase-specific probes. (B) Quantitative RT-PCR. (C)
Northern analyses for At5g16590 with RNA from control
roots (lane 1) and roots which were co-cultivated with P.
indica (lane 2) or P. croceum (lane 3) for 3 days.

A receptor Kinase is stimultated by Piriformospora indica 953
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Arabidopsis roots (Table 1, no. 4). These micro-
somes were then used to purify plasma membranes.

Figure 4 shows two-dimensional gels with plasma
membrane proteins from Arabidopsis roots culti-
vated without or with P. indica. The same LRR
receptor kinases, including At5g16590, could also
be detected in these preparations. Individual spots
for LRR-receptor kinases (including At5g16590)
could not be identified on the gels. However, the
six LRR receptor kinases are located in the gel
regions marked by the squares, as determined by
in-gel trypsin digestion of the excised gel region,
elution of the peptides from the gel matrix and
peptide analyses (Fig. 4).

Comparison of the plasma membranes from
control roots with roots co-cultivated with P. indica
for 3 days did not reveal significant differences.
However, three protein spots are repeatedly
detectable in membrane preparations isolated
Figure 4. Protein patterns of washed plasma membrane
preparations of A. thaliana roots after 3 days of
cultivation with and without P. indica. After separation
of the proteins by two-dimensional gel electrophoresis,
the gels were stained with silver. The boxed region was
used for protein extraction and MS/MS analysis. 1, 2 and 3
represent protein spots which appear after co-cultivation
with P. indica.
after 3 days of co-cultivation: two of them could
not be identified by our means, and thus, might not
be encoded by the Arabidopsis genome. Spot 1
represents the protein kinase At3g25250 (Fig. 4).
This kinase exhibits strong sequence similarities to
members of the AGC protein kinase family (cf.
Bogre et al., 2003 and discussion).

Plasma membrane microdomains are well char-
acterized in mammalian systems, and are highly
enriched in signalling components (cf. Discussion).
Therefore, 10 times more root material (100 g) was
used to purify plasma membrane microdomains
from plasma membrane preparations in order to
identify minor polypeptides on two-dimensional
gels (cf. below). The plasma membrane prepara-
tions were then either sonicated or treated with
Triton X-100 to obtain plasma membrane micro-
domains (Peškan et al., 2000). At5g16590 was
clearly detectable in microdomain preparations
obtained with both protocols.

Table 1 shows the distribution of several proteins
during the purification of Arabidopsis plasma mem-
brane microdomains. These proteins, identified by
mass spectrometry, were chosen because they
represent specific membranes and because they
were identified by more than one peptide and with
high correlation factors (Xcorr, cf. Material and
methods). The 18.3 kDa protein (no. 10) from the
plastids and the mitochondrial ATP synthase subunit
(no. 14) are major contaminations of the microsomal
fractions. Although the 18.3 kDa protein is supposed
to be a component of photosystem II, we found it as
a major component in our microsome preparations
from roots. However, both polypeptides are no
longer detectable in the plasma membrane prepara-
tions. The plasma membrane microdomains con-
tained several receptor kinases, including Atg16590
(nos. 3–6). Characteristic for these microdomains
are also the plasma membrane ATPase (no. 1), the
pectinesterase (no. 7), aquaporins (no. 8), several
ras-related small GTP-binding proteins (no. 9),
phospholipase D d (no. 2), several band 7 proteins
related to a hypersensitive response (no. 15) and the
CBL-interacting kinase 9 (no. 16) (Shahollari et al.,
2004). In contrast, microdomains do not contain a
recently identified MATH protein associated with
plasma membranes (no. 13), which also responds to
P. indica (Peškan-Berghöfer et al., 2004), and two
other receptor kinases. One appears to be involved
in disease resistance (no. 11), and the other belongs
to the class of LRR proteins (compare no. 12 with
nos. 3–6). The latter three proteins are present in
microsomal and plasma membrane preparations, but
remained on top of the sucrose gradient during the
microdomain isolation procedure (Table 1, top of
gradient).
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Figure 5. Protein composition of Triton X-100 insoluble plasma membrane vesicles from Arabidopsis roots. Identical
protein patterns were obtained from Arabidopis plasma membrane microdomains obtained after sonication of plasma
membranes. The protein bands were identified by mass spectrometry. The correlation factors (Xcorr) for doubly (triply)
charged precursor ions are given in Table 1. The accession number of the proteins of the identified fragments are also
given in Table 1. Four LRR-receptor kinases (At5g16590, At3g17840, At2g26730, At3g02880) were identified in the
indicated region. The white arrow points to At5g16590. The proteins are stained with Comassie.

A receptor Kinase is stimultated by Piriformospora indica 955
To test whether the receptor kinase At5g16590
could be identified as an individual protein in
plasma membrane microdomains, we separated the
protein extracts on two-dimensional gels and
identified several protein spots by mass spectro-
metry (Fig. 5). As expected, major constituents of
these vesicles were the ATPase, aquaporins, and
several band 7 proteins, i.e. hypersensitive-in-
duced proteins. At5g16590, together with other
receptor kinases, is located in the very same region
on the gel, and had already been identified on gels
with protein extracts from plasma membrane
preparations (cf. Figs. 4 and 5). The arrowhead in
the LRR box demonstrates that At5g16590 can now
be identified as an individual protein spot (Fig. 5).
Discussion

Figures 1 and 2 demonstrate that growth and
development of Arabidopsis seedlings is substan-
tially promoted by the endophytic fungus P. indica.
Promotion of root and shoot growth on agar plates
was accompanied by a substantial uptake of
minerals, including phosphorus, into the aereal
parts of the fungus (cf. Fig. 2; Smith and Read,
2001). Although the exact nature of the growth-
promoting effect of the fungus on Arabidopsis
seedlings is not yet clear, it provides an excellent
model system to study plant/microbe interaction.
We are interested in early recognition events,
preferentially events which occur before physical
contact between the two organisms is detectable.
To identify genes and proteins which are involved in
this scenario, we performed a series of experiments
and identified several components which are among
the earliest to respond to the presence of the
fungus. Recently, we demonstrated that a plasma
membrane-associated MATH protein is transiently
modified in response to the fungus (Peškan-Ber-
ghöfer et al., 2004). MATH proteins belong to a new
class of plant proteins (cf. Conserved Domain
Database cd 00121.2, MATH at www.ncbi.nlm.nih.-
gov) which may contain members with extracellular
metalloprotease activities (cf. Sunnerhagen et al.,
2002). Up-regulation of the receptor kinase de-
scribed here occurs within the same time period of
co-cultivation of both organisms. Analysis of knock-
out lines will allow us to define the role of these
proteins in greater detail. In addition, the presence
of the receptor kinase in Triton X-100 insoluble
plasma membrane microdomains provides us with a
subset of plasma membrane proteins or proteins
associated with the plasma membrane, which may
directly interact with the identified kinase.

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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Receptor kinases with LRR motifs are commonly
used as sensors for signals from the outside of the
cell (cf. Shiu and Bleecker, 2001, 2003; Diévart and
Clark, 2004). Characterization of LRR proteins
based on the composition of their domain struc-
tures (Torii, 2004) revealed that they represent one
of the largest groups of receptor kinases, with 216
members in Arabidopsis (Arabidopsis Genome In-
itiative, 2000). LRR proteins are involved in plant/
microbe interactions, pathogen resistance (Kistner
and Parniske, 2002; Diévart and Clark, 2004; Song
et al., 1995; van der Biezen et al., 2002; Kevei et
al., 2002; Scheer and Ryan, 2002; Grant et al.,
2003), flagelin sensing (Gomez-Gomez and Boller,
2000), meristem proliferation (Clark et al., 1997),
abscission (Jinn et al., 2000) and regulation of
organ size (Torii et al., 1996). A LRR-type receptor
kinase, which is required for both fungal and
bacterial recognition, has been identified (Endre
et al., 2002, Stracke et al., 2002). The protein
At5g16590 identified in this study exhibits sequence
similarities to a LRR protein which is upregulated in
response to salicylic acid (Ohtake et al., 2000), to
an atypic receptor kinase with a defective kinase
domain (Llompart et al., 2003), to several LRR
proteins reported to be involved in pollen-tube
development (Muschietti et al., 1998; Kim et al.,
2002), to the peptide hormone phytosulfokine
(Matsubayashi et al., 2002) and the brasssinolide
receptor kinase BRI1 (Li and Chory, 1997, cf. Bishop
and Koncz, 2002). Up-regulation of the At5g16590
message appears to be specific for the growth
promoting fungus P. indica, and is not observed for
other fungi, or for the other LRR protein messages
tested (Fig. 3). Finally, the stimulatory effect is
transient and detectable before a physical contact
between fungal hyphae and Arabidopsis roots can
be detected, suggesting that this protein might be
involved in early recognition events (Fig. 3).
Analysis of knock-out lines is crucial for the under-
standing of the protein function in plant/microbe
interaction, however at present, no knock-out line
with an insertion in an exon of At5g16590 is
available to us.

Little is known about downstream events of LRR
protein signalling in plants. In the Clavata signalling
pathway, CLV1, a LRR-receptor kinase, and CLV2, a
LRR receptor-like protein, form a heterodimer and
bind a rho GTPase-related protein at the cytoplas-
mic site of the plasma membrane (Trotochaud et
al., 1999). BRI1, the brassinolide receptor kinase,
might bind to Bin2, an Arabidopsis ortholog of the
human glycogen synthase kinase b and the Droso-
phila SHAGGY protein kinase (Li and Nam, 2002).
Activation of the Drosophila TOLL receptor leads to
phosphorylation and recruitment of the adaptor
protein TUBE and activation of the PELLE kinase
(Morisato and Anderson, 1995). At5g16590 is loca-
lized in Triton X-100 insoluble plasma membrane
microdomains (cf. Anderson, 1998; Simons and
Toomre, 2000; Munro, 2003; Galbiati et al., 2001),
together with other LRR proteins and potential
candidates for downstream signalling events. These
are potential candidates for protein/protein inter-
actions to initiate downstream signalling events.

Interestingly, although our plasma membrane
preparations were washed with a buffer containing
100mM NaCl, which removes most of the peripheral
proteins, we identified a protein kinase of the AGC
protein family which is upregulated in response to
P. indica (Fig. 4). The Arabidopsis AGC kinases
contain sequence motifs for the docking of a
protein kinase called PDK1, which becomes acti-
vated by 3-phosphoinositide. Thus, PDK1 could
couple lipid signals to the activation of downstream
protein kinases of the so-called AGC kinase family.
Lipid-derived signals are central to regulating a
multitude of cellular processes in plants, including
growth (cf. Bogre et al., 2003 for detailed
information). Since specific members of the AGC
kinases appear to be involved in key growth
signalling pathways, they might be good candidates
for P. indica induced root (hair) elongation. The
fact that this protein is present in our plasma
membrane preparation indicates that it becomes
recruited to the membrane in response to signals
from P. indica.
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Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax
C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe
BA, Long SR, Denarie J, Cook DR. Medicago truncatula
DMI1 required for bacterial and fungal symbioses in
legumes. Science 2004;303:1364–7.

Arabidopsis Genome Initiative. Analysis of the genome
sequence of the flowering plant Arabidopsis thaliana.
Nature 2000;408:796–815.

Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M,
Dierick J- F, van Tuinen D, Remacle J, Gianinazzi-



ARTICLE IN PRESS

A receptor Kinase is stimultated by Piriformospora indica 957
Pearson V, Gianinazzi S. Proteome analysis and
identification of symbiosis-related proteins from Med-
icago truncatula Gaertn. by two-dimensional electro-
phoresis and mass spectrometry. Electrophoresis
2002;23:122–37.

Bishop GJ, Koncz C. Brassinosteroids and plant steroid
hormone signaling. Plant Cell 2002:97–110.

Bogre L, Okresz L, Henriques R, Anthony RG.
Growth signalling pathways in Arabidopsis and
the AGC protein kinases. Trends Plant Sci 2003;8:
424–31.

Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1
gene encodes a putative receptor kinase that controls
shoot and floral meristem size in Arabidopsis. Cell
1997;89:575–87.
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Abstract 

P. indica, a basidiomycete of the Sebacinaceae family, promotes growth, development and 

seed production of a variety of plant species including Arabidopsis thaliana. Arabidopsis 

plants colonized with the fungus produce approximately 22% more seeds than uncontrolled 

plants. Inactivation of the Arabidopsis single-copy gene DMI1, which codes for an ion 

carrier required for mycorrihiza formation in Legumes, does not affect the beneficial 

interaction between the two symbiotic partners. Based on cellular and molecular responses 

which are initiated during the establishment of the interaction between P. indica and 

Arabidopsis roots, we have isolated mutants which fail to respond to the fungus. An 

ethylmethane sulfonate mutant (and a corresponding insertion line) is impaired in a leucine-

rich repeat protein (At1g13230) with striking similarities to Cf from tomato. The protein 

contains a putative endoplasmatic reticulum (ER) retension signal, but is also found in Triton 

X-100 insoluble plasma membrane microdomains, suggesting that it is present in the 

ER/plasma membrane continuum in Arabidopsis roots. The microdomains contain also a 

leucine-rich repeat domain-containing atypical receptor kinase (At5g16590), the message of 

which is transiently upregulated in Arabidopsis roots in response to P. indica. This response 

is not detectable in the At1g13230 mutants and the protein is not detectable in the At1g13230 

mutant microdomains. Thus, Atg13230 (and presumably also At5g16590) appear to be 

involved in P. indica-induced growth promotion and enhanced seed production in 

Arabidopsis thaliana.  

 

Introduction 

The majority of land plants lives in mycorrhizal symbioses with fungi (Smith and Read, 

1997; Harrison, 1999, 2005; Kistner and Parniske, 2002; Strack et al., 2003; Parniske, 2004, 

Hause and Fester, 2005, Oldroyd et al., 2005), in which the plant delivers photoassimilates 
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to the fungus, and the fungus promotes access of the roots to nutrients in the soil (cf. Jia et 

al., 2004; Karandashov et al., 2004; Karandashov and Bucher, 2005; Sherameti et al., 2005). 

Mycorrhizal interactions also enhance plant resistance to various toxins and pathogens 

(Marx, 1969; Smith and Read, 1997; Harrier and Watson, 2004). Although the importance of 

mycorrhiza for agri- and horticulture has been recognized long time ago, its application is 

limited by the lack of knowledge about the molecular basis of the interaction between the 

two symbiotic partners. In legumes, at least seven components including receptor kinases 

(Endré et al., 2002; Stracke et al., 2002) , a predicted ion channel (Ané et al., 2004), a 

calmodulin-dependent protein kinase (Levy et al., 2004) and the two plastid localized 

proteins CASTOR and POLLUX (Imaizumi-Anraku et al., 2005) are required for the entry 

of both mycorrhizal fungi and nodule-forming bacteria into root epidermal or cortical cells 

(Kistner and Parniske, 2002; cf. also Kistner et al., 2005). Thus, it is believed that nitrogen 

fixing root nodule symbiosis with bacteria developed from a more ancient mycorrhizal 

symbiosis (cf. Kistner et al., 2005).  

Since symbiotic interactions between photosynthetic organisms and fungi have already been 

observed during the colonization of land (Heckman et al. 2001), beneficial interactions 

between the symbiotic partners must have been established early during evolution. We study 

an endophytic interaction between the model plant Arabidopsis and Piriformospora indica, a 

basidiomycete of the Sebacinaceae family. Reminescent to mycorrhizal interactions, 

colonization of Arabidopsis roots by the endophyte promotes nutrient uptake, confers 

resistance to toxins and pathogenic organisms and ultimately leads to growth promotion and 

enhanced seed production (Varma et al., 1998, 1999; Barazani et al., 2005; Sherameti et al., 

2005; Waller et al., 2005). However, in contrast to most mycorrhiza fungi, P. indica is a 

cultivable fungus and can grow on synthetic or complex media without hosts (Varma et al., 

2001; Peškan-Berghöfer et al., 2004). The fungus can colonize the roots of many plant 
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species including trees, agri- and horticultural and medicinal plants, mono- and dicots and 

mosses (Varma et al., 2001, Sherameti et al., 2005, Peškan-Berghöfer et al., 2004, Waller et 

al., 2005). The apparent lack of species specificity suggests that this beneficial symbiosis 

might be based on general recognition and signalling processes.  

P. indica belongs to the Sebacinaceae, an ancient Basidiomycete family. Originally, it was 

believed that members of the Sebacinaceae family form exclusively saprophytic or parasitic 

interactions with plant roots. However, more recently, also a broad diversity of beneficial 

associations of variouis members of the heterobasidiomycetous Sebacinaceae fungi have 

been observed (Varma et al., 1999, Sahay and Varma, 1999; Selosse et al., 2002a and b; 

Glen et al., 2002; Urban et al., 2003, Weiss et al., 2004, Peškan-Berghöfer et al., 2004, 

Shahollari et al., 2005, Kaldorf et al., 2005; Barazani et al., 2005, Waller et al., 2005; 

Sherameti et al., 2005). Since most of the more basal taxa of basidiomycetes consist of 

predominantly mycoparasitic and phytoparasitic fungi, it appears that Sebacinaceae is the 

most basal group of Basidiomycetes which contains mycorrhiza-forming taxa. Mycorrhizal 

taxa of Sebacinaceae include mycobionts of ectomycorrhizas, orchid mycorrhizas, ericoid 

mycorrhizas, and jungermannioid mycorrhizas. Such a wide spectrum of mycorrhizal types 

in one fungal family is unique (Weiss et al., 2004).  

Here we describe an Arabidopsis mutant with a lesion in a leucine-rich repeat protein which 

does not recognize the presence of P. indica. We present evidence that the expressiona and 

location of a second leucine-rich repeat containing protein, a plasma membrane localized 

atypical receptor kinase responds to the fungus in Arabidopsis roots. Finally, we demonstrate 

that the Arabidopsis DMI1 protein, a membrane-spanning ion channel-like protein (Ané et 

al., 2004; Imaizumi-Anraku et al., 2005), which is required for the establishment of a 

symbiosis with bacterial and fungi partners in legumes, is not required for the interaction 

between Arabidopsis and P. indica. 
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Results 

P. indica colonizes the roots of Arabidopsis plants and promotes its growth and development 

(Peškan-Berghöfer et al., 2004; Shahollari et al., 2004, 2005; Sherameti et al., 2005). Under 

our growth conditions in Petri dishes on MS medium, we observe a 21.3±0.4% increase in 

fresh weight after 14 days of co-cultivation. If seedlings with colonized roots are transferred 

to soil, seed production is enhanced by 22±1.5% (n= 50 plants) compared to the uncolonized 

controls. This prompted us to screen for mutants, which do not respond to the fungus. One of 

the mutant, called Piriformospora indica-insensitve (Pi)-2, is described here. 

In wild-type Arabidopsis seedlings, root colonization by P. indica can be monitored by a 

strong autofluorescene in the root cells (Peškan-Berghöfer et al., 2004). This fluorescence 

originates presumably from the fungal hyphae growing in and around the plant root, because 

the fluorescence can also be detected in germinating fungal spores which were cultivated 

without a host (Peškan-Berghöfer et al., 2004). In colonized wild-type Arabidopsis roots, 

mycelia are not only spread on the surface of the aerial parts, but also invaded the cortical 

tissues. Hyphae and spores can be found inter- and intracellularly. The autofluorescence in 

the roots of Pi-2 is comparable to that in the wild-type. We also observe normal root 

colonisation and spore formation in Pi-2 roots. Thus, the absence of the growth response is 

not caused by the inability of the fungus to colonize the plant roots. 

The root morphology of Pi-2 did not differ from the wild-type. Also the root fresh weight, 

the ratio between lateral and main roots, as well as the number of the root hair were 

comparable to the control (data not shown). However, we did not observe any growth 

promotion in response to P indica (Fig. 1). When colonized Pi-2 seedlings were transfered to 

soil, they grow like uncolonized control plants. Also the seed production was not stimulated 
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by the fungus and comparable to the amount produced by the uncolonized control (data not 

shown). This indicates that Pi-2 might be blind to stimulatory signals from P. indica. 

 

In order to identify Arabidopsis genes which respond early to P. indica, we performed 

substractive hybridizations with root RNAs from seedlings, which were either co-cultivated 

or not co-cultivated with P. indica for 2 to 5 days. Several transcripts were further analysed 

by RT-PCR. Recognition of both organisms is accompanied by the up-regulation of the 

messages for the receptor kinase At5g16590 (Shahollari et al., 2005), the homeodomain 

transcription factor At2g35940, the 2-nitropropane dioxygenase (NPDO; At5g64250), the 

glucan-water dikinase (SEX1; At1g10760) and for nitrate reductase (Nia2; At1g37130) in the 

roots (Sherameti et al., 2005). The message levels for all these proteins are not stimulated by 

P. indica in Pi-2 and a knock-out line with an insertion in the same gene (Fig. 2, and cf. 

below).  Figure 2 (bottom) also shows a kinetic for the message of the receptor kinase 

At5g16590, which is transiently upregulated after the co-cultivation with P. indica in wild-

type seedlings. This response is not detectable in Pi-2, the corresponding knock-out line (cf. 

below) and another P. indica insensitive mutant, called Pi-1 (Oelmüller et al., 2005). 

 

Colonization of Arabidopsis roots with P. indica is accompanied by the modification of a 

MATH protein, which is located in the plasma membrane from roots (Peškan-Berghöfer et 

al., 2004). We have previously shown that Pi-1 does not show this posttranslational 

modification (Oelmüller et al., 2005). The nature of this modification is unknown at present. 

This modification is also not detectable in P. indica-colonized Pi-2 roots (Fig. 3).  Taken 

together, multiple P. indica induced responses are not induced in Pi-2. The mutated gene 

was mapped on chromosome 1 using SSLP and CAPS markers (cf. Experimental 

Procedures). 
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The inability of P. indica to modify the MATH protein in the plasma membrane preparations 

from roots prompted us to analyse these membranes in greater details. The receptor kinase 

At5g16590, for which the message is upregulated in response to P. indica (Fig. 2) is a 

dominant component of Triton-X-100 insoluble plasma membrane microdomains from 

Arabidopsis (Shahollari et al., 2004). We prepared low density Triton X-100-insoluble 

plasma membrane microdomains (Peškan et al., 2000, Shahollari et al., 2004) from Pi-2 and 

analysed the protein composition by mass spectrometry. While the microdomain vesicles 

from wild-type seedlings contain 7 dominant leucine-rich repeat proteins (Table 1, 

Shahollari et al., 2004), two of them are not detectable in the mutant. The message for one of 

these LRR proteins, At5g16590, was upregulated in wild-type roots during the first few days 

of co-cultivation with P. indica and this response was not observed for Pi-2 (Fig. 2). The 

other protein, At1g13230, is encoded by a gene located on chromosome 1 and codes for a 

small LRR-contain protein with striking sequence similarities to parts of Cf-2 from tomato. 

The RT-PCR product for At1g13230 from the Pi-2 mutant was longer than expected. 

Sequence analysis demonstrated that the only intron was not spliced out because of a G to A 

conversion at the only exon/intron junction in the gene (CAG/GGT to CAA/GGT). We also 

isolated a full-length cDNA from wild-type roots which contained the predicted nucleotide 

sequence. After amplification of the corresponding genomic region of At1g13230 from Pi-2 

we confirmed the G to A conversion in the mutant genome (Fig. 4). Comparable G to A 

conversions have often been observed at intron/exon junctions and result in unspliced 

messages (cf. Stöckel and Oelmüller, 2004).  

 

To confirm that the mutation in At1g13230 is responsible for the observed phenotype, we 

analysed an independent knock-out line SALK_079723 (cf. Experimental Procedures). No 
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At1g13230 transcripts could be detected in the homozygote seedlings (Fig. 5). The seedlings 

did not grow taller and the plants did not produce more seeds when co-cultivated with P. 

indica (data not shown). Furthermore, the transcript levels for the above tested genes were 

identical those found in the EMS mutant line grown under the same conditions (Fig. 2). We 

also could not detect the modified MATH protein in the microsomal preparations from roots 

(Fig. 3). This suggests that P. indica-mediated growth promotion and enhanced seed 

production in Arabidopsis is dependent on At1g13230. 

 

Βesides At1g13230, also At5g16590 was missing in the microdomains of Pi-2. Sequence 

analysis revealed that the gene for the latter leucine-rich repeat protein was not altered in Pi-

2 (data not shown). Fig. 2 demonstrates that the At5g16590 transcript level, which is 

transiently upregulated in Arabidopsis roots in response to P. indica (Shahollari et al., 2004) 

remains unaltered in Pi-2. These results suggest that At5g16590 is involved in early 

recognition processes of the two symbiotic partners. At5g16590 is a plasma-membrane 

localized atypical receptor kinase (cf. Llompart et al., 2003). To gain insight into the role of 

At5g16590 for this symbiotic interaction, we analysed the SALK_053366 line with an 

insertion in the promoter region. However, homozygote knock-out lines contained 

At5g16590 transcripts and responded to P. indica (data not shown).  Biochemical studies 

demonstrated that longer incubation of the isolated microdomains with Triton X-100 at 4°C 

(60 min instead of 30 min during the incubation procedure) released only At1g13230, while 

the other six LRR proteins including At5g16590 remained in the microdomains (Tab. 1). 

This suggests that At1g13230 is only loosely associated with the microdomains. Subsequent 

treatment of the microdomains with saponine released also At5g16590 (Tab. 1). The looser 

association of At1g13230 with the membranes is consistent with the observation that this 

protein lacks a predictable transmembrane domain, while At5g16590 appears to be an 
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integral plasmamembrane protein. At1g13230 might be associated with either the 

endoplasmatic reticulum or the plasma membrane or both in the roots (cf. Discussion). The 

presence of a KKxx motif (Thomas et al., 1998) suggests that the processed At1g13230 is 

retrieved to the endoplasmatic reticulum (cf. Discussion). Taken together, we can detect two 

LRR proteins in Triton X-100 insoluble plasma membrane microdomains, which are related 

to an interaction between the two symbiotic partners.  

 

DMI1 is not required for P. indica mediated growth promotion in Arabidopsis. 

DMI1 (does not make infections), a highly conserved protein from angiosperms with 

similarities to ligand-gated cation channels is required for bacterial and fungal symbioses in 

legumes (Ané et al., 2004). DMI1 is a candidate for mediating early ion fluxes across the 

plasma membrane, although its location is not clear at present (cf. Hogg et al., 2005). 

At5g49960 encodes the closest Arabidopsis homolog of the Medicago truncatula gene DMI1 

(Ané et al., 2004). We analysed a knock out line for this gene (SALK_066135). No 

At5g49960 transcripts can be detected in the roots of the homozygote lines, consistant with 

the observation that the insertion is located in an exon region (data not shown). However, the 

response to P. indica was normal (Fig. 6). Since At5g49960 is a single-copy gene in 

Arabidopsis and expressed in roots (data not shown, cf. also Ané et al., 2004), it appears that 

this channel protein is not required for the interaction of Arabidopsis with P. indica. 

 

Discussion 

We study the interaction between Arabidopsis thaliana and the primitive basidiomycete P. 

indica to identify genes and processes, which promote plant growth and seed production. P. 

indica belongs to the Sebacinaceae family with members which form pathogenic, 

saprophytic and mycorrhizal interactions with plants (Weiss et al., 2004). Since P. indica 
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interacts with many plant species (Varma et al., 1999, Waller et al., 2005, Peškan-Berghöfer 

et al., 2004), the mechanism of interaction between the roots and the fungus might be 

conserved and of ancient phylogenetic origin. Basic mechanisms for mycorrhizal 

interactions have been established when plants first came to land (Heckman et al., 2001). In 

Legumes, mycorrhiza formation by fungi and nodule formation by nitrogen-fixing bacteria 

require common signalling components, because the entry mechanism of both organisms 

into the root cell is similar (Kistner and Parniske 2002; Parniske, 2004; Udvardi et al., 2005; 

Harrison, 2005, Geurts et al., 2005). One of the crucial components that are required for both 

interactions in legumes is DMI1 (Ané et al., 2004). Since inactivation of the DMI1 homolog 

in Arabidopsis, a single copy gene expressed preferentially in roots, does not eliminate the 

interaction with P. indica, the recognition and probably also the entry mechanism of the 

fungus into the Arabidopsis root cell appears to differ from the entry of fungi and bacteria 

into Legumes root cells. This raises the question whether Legume mycorrhiza utilize genetic 

programs, which differ from those in primitive plant-fungi interactions. 

 

We identified a leucine-rich repeat protein, At1g13230, which is required for P. indica-

mediated growth promotion in Arabidopsis. None of the normally observed responses of 

Arabdiopsis to P. indica were detectable in Pi-2, a mutant defective in At1g13230. This 

includes the growth response and the enhanced production of seeds. Thus, At1g13230 

appears to be a crucial target protein for P. indica in Arabidopsis. 

At1g13230 can be purified with Arabidopsis Triton X-100 insoluble plasma membrane 

microdomains (Shahollari et al., 2004). The protein lacks a predictable transmembrane 

segment and can easily be removed from the microdomains by longer detergent treatments. 

Thus, At1g13230 appears to be a soluble protein which is loosely attached to the membrane. 

The predicted signal sequence suggests that At1g13230 is sorted via the secretory pathway. 
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Based on the KKxx endoplasmatic reticulum retardation sequence in the C terminal part of 

the protein, At1g13230 might remain in the endoplasmatic reticulum. Since we detect this 

protein in our Triton X-100 insoluble plasma membrane microdomains, this fraction is either 

contaminated with membranes from the endoplasmatic reticulum, or both membrane systems 

form a continuum, which cannot be separated from root extracts with our means. Although 

significantly shorter, At1g13230 exhibits striking similarities to Cf-2/4/5/9s, tomato 

transmembrane proteins which confer resistance to Cladosporium fulvum (Dixon et al., 

1996; de Wit et al., 1999, 2002; Rivas and Thomas, 2005). Comparison of the tomato Cf 

proteins with At1g13230 makes it unlikely that At1g13230 is the primary target site for 

fungal elicitors (cf. Rivas and Thomas, 2005; Rooney et al., 2005). In particular, the C and 

N-terminal domains present in Cf2 proteins are not found in At1g13230, suggesting that the 

protein alone cannot receive signals directly and transfer them to downstream components. 

Thus, the conserved LRR domain in At1g13230 might be crucial for its function, 

presumably by establishing and/ or controlling protein/protein interactions required for the 

beneficial interaction between the two symbiotic organisms. 

A putative disease resistance protein from rice (XP_549876) appears to be the closest 

homolog of At1g13230 in another plant species. The leucine-rich repeat sequence of 

At1g13230 exhibits also striking simililarities to TOO MANY MOUTHS, a transmembrane 

leucine-rich repeat receptor kinase. The protein appears to function in a position-dependent 

signaling pathway that controls the plane of patterning divisions as well as the balance 

between stem cell renewal and differentiation in stomatal and epidermal development (cf. 

Nadeau and Sack, 2002, 2003; Shpak et al., 2005).  Similar to At1g13230, TOO MANY 

MOUTHS also lacks a recognizable intracellular domain for downstream signalling. Thus 

both components might require interaction partners with co-receptor kinase activities. 
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Triton X-100 insoluble plasma membrane microdomains contain at least 7 LRR-containing 

proteins, and only two of them, At1g13230 and At5g16590, are released from these domains 

by detergent treatments. The message for At5g16590 is transiently upregulated in response to 

P. indica (Shahollari et al., 2005). We also observed that At1g16590 is not detectable in 

microdoamins isolated from Pi-2. Although the reason is unclear at present and requires 

further investigations, this observation provides additional evidence that At1g16590 is 

involved in the interaction. At5g16590 appears to be an atypical receptor kinase, which 

transduces signals by phosphorylation-independent mechanisms (Kroiher et al., 2001). 

Although the intracellular domains of atypical receptor kinases such as At5g16590 contain 

conserved Ser/Thr kinase domains, some of the highly conserved amino acids within these 

domains are altered. For instance, an aspartic acid in the subdomain IVb which is assumed to 

be part of the kinase-active site (Knighton et al., 1993) is replaced by an asparagines 

(position 468) and the phenylalanine and glycine within the DFG activation loop are 

replaced by a tyrosine and a cysteine (positions 487 and 488) in At5g16590. The crucial role 

of the phenylalanine reside in the DFG triplet has been demonstrate for H-Ryk (Katso et 

al.,1999). Identical or similar amino acid substitutions leading to the loss of 

autophosphorylation in vitro have also been observed for MARK, a maize atypical receptor 

kinase (Llompart et al., 2003). The intracellular domain of MARK interacts with the 

regulatory domain of MIK, a germinal center kinase-like kinase, and strongly induces MIK 

kinase activity. Llompart et al. (2003) proposed that MIK could represent a novel component 

for signalling through atypical receptor kinases in plants. Interestingly, an atypical receptor 

kinase of the LysM type is also involved in legume perception or rhizobial signals (Madson 

et al., 2003).  
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Experimental procedures  

Growth conditions of plant and fungus 

Wild type Arabidopsis thaliana seeds (ecotype Columbia), EMS mutant seeds (Lehle, San 

Diego, USA) and seeds from the homozygote T-DNA insertion lines were surface sterilized 

and placed on Petri dishes containing MS nutrient medium (Murashige and Skoog, 1962). 

After cold treatment at 4°C for 48 h, plates were incubated for 7 days at 22°C under 

continuous illumination (100µmol m-2 sec-1). P. indica was cultured as described previously 

(Verma et al., 1998; Peškan-Berghöfer et al., 2004) on aspergillus minimal medium. For 

solid medium 1% (w/v) agar was included. 

 

Co-cultivation experiments and estimation of plant growth 

Nine day-old A. thaliana seedlings were transferred to nylon disks (mesh size 70 µm) placed 

on top of a modified PMN culture medium ((5 mM KNO3, 2 mM MgSO4, 2 mM Ca(NO3)2, 

0.01 µM FeSO4, 70 µM H3BO3, 14 µM MnCl2, 0.5 µM CuSO4, 1 µM ZnSO4, 0,2 µM 

Na2MoO4, 0.01 µM CoCl2, 10.5 g l-1 agar, pH 5.6), in 90 mm Petri dishes. One seedling was 

used per Petri dish. After 24 h, fungal plugs of approximately 5 mm in diameter were placed 

at a distance of 3 cm from the roots. Plates were incubated at 22°C under continuous 

illumination from the side (max. 80 µmol m-2 sec-1). 

Fresh weights were determined directly after removal of the seedlings from the Petri dishes. 

 

Experiments on soil 

For the experiments on soil, Arabidopsis seedlings were germinated on MS medium before 

transfer to sterile soil. Co-cultivation with the fungus was initiated on the Petri dishes as 

described above. For experiments with the fungus, the soil was mixed carefully with the 

fungus (1%, w/v). The fungal mycelium was obtained from liquid cultures after removal of 
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the medium and washed with an excess of distilled water. Before transfer to soil, the roots 

were examined under the microscope to ensure that hyphae and spores have been developed 

within the roots. Cultivation occurred in multi-trays with Aracon tubes in a temperature-

controlled growth chamber at 22°C under long-day conditions (light intensity: max. 80 µmol 

m-2 sec-1). The size of the plants was monitored between 4 and 8 weeks.  

For the mutant screen, the heights of EMS mutant plants grown in the presence of P. indica 

were compared to those of control plants (- P. indica; + P. indica). Seeds were collected 

from those EMS mutated plants grown in the presence of P. indica which were comparable 

in height to control plants grown in the absence of P. indica. The absence of the response to 

P. indica was confirmed in the next two generations. The physiological results for Pi-2 

presented here were obtained from the M3 and M4 generations.  

Seed production (g seeds/plant) was monitored by collecting seeds from individual plants 

grown under the standardized conditions in Aracon tubes as described above. 

 

Staining of fungal hyphae and spores 

Roots from seedlings which were co-cultivated with P. indica were transferred to 10% KOH 

and boiled for 10 min. After washing with water for 1 min, the roots were put into a 0,01% 

acid fuchsin-lactic acid solution and boiled again for 10 min. Excess dye was removed with 

water prior to microscopy. 

  

Fluorescence measurements 

Auto-fluorescence in the developing root hairs as a result of co-culture with P. indica were 

detected with the LSM 510 META microscope (Carl-Zeiss Jena GmbH). Relative values 

(550 nm) were obtained for the emission spectra (cf. Peškan-Berghöfer et al., 2004). 
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Isolation of Triton X-100 insoluble plasma membrane microdomains 

100 g of Arabidopsis seedlings were used to isolate microsomes. The material was 

homogenized in a Warring Blender (seven times for 5 sec) in a buffer containing 50 mM 

Tris/HCl pH 7.4, 330 mM sucrose, 3 mM EDTA, 1 mM 1,4-dithiothreitol and 5% (w/v) 

polyvinylpolypyrrolidone. The homogenate was filtered through four layers of cheesecloth 

and centrifuged for 20 min at 10.000 x g. The supernatant was then centrifuged at 50.000 x g 

for 60 min in order to pellet the microsomes. Plasma membranes were prepared from 

microsomes by two-phase partitioning with 6.4% (w/w) dextrane T-500 and 6.4% (w/w) 

polyethylene glycol (average molecular weight 3350) (Larsson et al., 1987; Briskin et al., 

1987; Peškan et al., 2000). The plasma membranes were resuspended in a buffer containing 

50 mM Tris/HCl pH 7,4; 3 mM EDTA and 1 mM 1,4-dithiothreitol. After treatment with 1% 

(v/v) Triton X-100 at 4°C for 30 (or 60) min, membranes were mixed with 60% (w/w) 

sucrose to the final concentration of 48% (w/w), placed at the bottom of a centrifuge tube 

and overlayed with a continuous sucrose gradient (15-45%, w/w). Gradients were 

centrifuged at 250.000 x g for 20 h in a swinging bucket rotor (SW 40, Beckman, Palo Alto, 

USA). 

Alternatively, membranes were sonicated seven times for 10 s (Sonoplus HD70 with tip 

SH70, Bandelin electronic, Berlin, Germany; power 20W) without addition of Triton X-100 

and purified on a continuous sucrose gradient. All fractions (microsomes, plasma 

membranes, vesicles from Triton X-100 and sonicated plasma membranes) were routinously 

used for the identification of their protein patterns by mass spectrometry. 

For saponine treatment, microdomains were washed with 0,3 % saponine, dissolved in 1 x 

PBS buffer for 30 min at 4°C. The solubilized proteins were separated from the 

microdomains by centrifugation (15 min;10, 000 x g). The protein composition of the pellet 

and of the supernatant was checked by mass spectrometry.  
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Mass spectrometry 

Aliquots of the eluted protein fractions were used for mass spectrometry. Trypsin digestion 

of protein mixtures was performed according to Sherameti et al. (2004). Peptide analysis by 

coupling liquid chromatography with electrospray ionization mass spectrometry (ESI-MS) 

and tandem mass spectrometry (MS-MS) was described previously (Stauber et al., 2003; 

Sherameti et al., 2004; Shahollari et al., 2004). Experimental details and identified peptides 

are given in Shahollari et al. (2004). For the identification of the MATH protein from gels, 

cf. Peškan-Berghöfer et al. (2004) and Oelmüller et al. (2005). 

 

Protein identification 

The measured MS-MS spectra were matched with the amino-acid sequences of tryptic 

peptides from the A. thaliana database in FASTA format. Cys modification by 

carbamidomethylation (+57 Da) was taken into account and known contaminants were 

filtered out. Raw MS-MS data were analysed by the Finnigan Sequest/Turbo Sequest 

software (revision 3.0; ThermoQuest, San Jose, USA). The parameters for the analysis by 

the Sequest algorithm were set according to Stauber et al. (2003). The similarity between the 

measured MS-MS spectrum and the theoretical MS-MS spectrum, reported as the cross-

correlation factor (Xcorr) was equal or above 1.5, 2.5 and 3.5 for singly, doubly or triply 

charged precursor ions, respectively. In order to identify corresponding loci, identified 

protein sequences were subjected to BLAST search at NCBI (http://www.ncbi.nlm.nih.gov/) 

and FASTA searches by using the AGI protein database at TAIR 

(http://www.arabidopsis.org/). Identification of conserved domains and signal peptides was 

performed by using SMART (Schultz et al., 1998). 
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RNA analysis 

RNA was isolated with an RNA isolation kit (RNeasy, Qiagen, Hilden, Germany). For 

quantitative RT-PCR, RNA from Arabidopsis roots grown in the absence or presence of P. 

indica was used with gene-specific (cf. below) and several control primer pairs (Sambrook et 

al.,1989). Two primer pairs were simultaneously used for the reaction in order to confirm the 

specificity of the results. RT-PCR was performed by reverse transcription of 5 :g of total 

RNA with gene-specific reverse primers. First strand synthesis was performed with a kit 

(#K1631) from MBI Fermentas (St. Leon-Roth, Germany). After 20 PCR cycles, the 

products were analysed on 1.5% agarose gels, stained with ethidium bromide and visualized 

bands were quantified with the Image Master Video System (Amersham Pharmacia Biotech, 

Uppsala, Sweden). The following primer pairs were used:  

At5g16590: “gtgatcggctgtttcgtcttg“ and „ggacaaaggacctggtgaagc”; At1g13230: 

“gaaaagctattgattcccaacgacc” or “cgtgaagccttgtactctgcgattc” and “gccctaaactcaaatccgtgaca”. 

For Northern analysis, gene-specific primers were designed to amplify four DNA fragments 

from our cDNA library (Sherameti et al., 2004): Nia2 (At1g37130), SEX1 (At1g10760), and 

the genes for the homeodomain transcription factor (At2g35940) and for 2-nitropropane 

dioxygenase (At5g64250). The primers were designed such that they amplify the entire 

coding region including 4 nucleotides up- and downstream of the genes. Northern analyses 

were preformed with purified PCR products. 

Suppression substractive hybridisation was performed by using the SMART PCR cDNA 

Synthesis Kit and the Clontech RCR-Select cDNA Substraction Kit (BD Biosciences, Palo 

Alto, CA) according to the manufacturer´s instructions. RNA was isolated from roots two, 

three, four and five days after the co-cultivation with P. indica, and from control roots. 

Several genes were further analysed by quantitative RT-PCR. For experimental details, cf. 

Krüger et al. (2004). 
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Miscellenous 

DNA extraction and sequence analysis was performed according to standard protocols 

(Stöckel and Oelmüller, 2004). For cloning of PCR products, the PCR cloning kit from 

Quiagen was used.  

To assign the mutant Pi-2 locus to one of the Arabidopsis chromosomes, a segregating F2 

progeny was generated by crosses of male pollen donor plants to homozygote lines of Pi-2. 

Restriction fragment length polymorphism analyses of the F2 plants were performed with the 

pARMS set (Schäffner, 1996). 
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Figure legends 

 

Figure 1: 

Wild-type (Col) and Pi-2 seedlings, which were grown in the absence (-) or presence (+) of 

P. indica for 8 days. Representative for 16 independent experiments.  

 

Figure 2: 

Northern analysis with RNA from roots of Arabidopsis seedlings which were grown in the 

absence (lanes 1, 3, 5) or presence (lanes 2, 4, 6) of P. indica. (Top panel): Northern 

analysis with root RNA after 8 days of co-cultivation. Lanes 1 and 2, wild-type; lanes 3 and 

4, Pi-2, and lanes 5 and 6, the knock-out line SALK_079723. 25 µg total root RNA was 

loaded per lane, the actin probe is used as control. (Bottom panel): Time course for the 

message of the atypical receptor kinase At5g16590. Root RNA from wild-type (WT) and Pi-

2 seedlings as well as seedlings from the knock-out line SALK_079723 was extracted 2-12 

days after the onset of co-cultivation. The Pi-1 seedlings (Oelmüller et al., 2004) were used 

as control. 25 µg total root RNA was loaded per lane. 

 

Figure 3: 

A MATH protein is modified in response to P. indica in plasma membrane preparations 

from Arabidopsis roots and this modification is not detectable in Pi-2 and the knock-out line 

SALK_079723. A section from a two-dimensional gel with protein spots from root 

microsomes shows various modifications of a MATH protein (cf. Peškan-Berghöfer et al., 

2004). The upper panel shows the situation in wild-type protein extracts after co-cultivation 

with P. indica for 3 days, the middle (lower) panels show the corresponding spots from Pi-2 

(and the SALK_079723 line) protein extracts. The spots were identified by mass 
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spectrometry, all of them correspond to the protein At3g20370. For experimental details and 

the regulation of the MATH protein in response to P. indica, cf. Peškan-Berghöfer et al. 

(2004) and Oelmüller et al. (2005). 

 

Figure 4: 

Sequencing gel showing the intron/exon junction of At1g13230 in the EMS mutant Pi-2 (Pi-

2) and the wild-type Columbia (Col). Note the G>A transition in the mutant at the 

intron/exon junction. 

 

Figure 5: 

Analysis of the At1g13230 knock out line. The At1g13230 message is not detectable in the 

SALK_079723 line. PCR was performed with reverse transcribed wild-type RNA (lane 1), 

wild-type DNA (lane 2)  and reverse transcribed mutant RNA (lane 3). 

 

Figure 6: 

The SALK_066135 line with an insertion in the Arabidopsis DMI1 homolog shows normal 

response to P. indica. (A) and (B): wild-type seedlings; (C) and (D): the SALK_066135 line. 

Seedlings shown in (A) and (C) were co-cultivated with P. indica for 6 days. 
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Figure 2 (top panel) 
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Figure 2 (bottom panel) 
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Table 1: 
At1g13230 and At5g16590 are components of the Triton X-100 insoluble plasma membrane 
microdomain fraction from wild-type Arabidopsis seedlings. List shows major components 
of this fraction. Longer incubation of the microdomains with Triton X-100 (60 min instead 
of 30 min during the isolation procedure) releases At1g13230. Subsequent treatment with 
saponine releases also At5g16590. Both components are below detectability in 
microdomains isolated from Pi-2 seedlings. For experimental details, gels and minor 
components, cf. Shahollari et al. (2004). 
 
Plasma membrane ATPases  At2g18960, At1g17260, At2g24520, At3g47950, At5g62670 

ERD4 protein    At1g30360 

Pectinesterase     At4g12420 

cAMP-dependent kinase  At2g20040 

Aquaporin, intrinsic protein  At4g35100 

Phospholipase D   At4g35790 

Calcium-dependent kinase  At4g04720 

Ankyrin kinase    At1g14000 

Calnexin-like protein   At5g07340 

Band 7 proteins    At5g62740 

CBL-interacting kinases  At4g24400, At1g01140 

Remorin    At2g45820 

LRR-protein-1     At3g17840  

LRR-protein 2    At5g16590  

LRR-protein 3    At2g26730  

LRR-protein 4    At3g02880 

LRR-protein 5    At1g13230  

LRR-protein 6    At3g08680  

LRR-protein 7    At3g14350 
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The basidiomycete Piriformospora indica interacts with Arabidopsis roots
and mimics an arbuscular mycorrhiza. A MATH [meprin and TRAF (tumour
necrosis factor receptor-associated factor) homology] domain-containing
(MATH) protein at the plasma membrane of Arabidopsis roots is one of the
first components to respond to the presence of this fungus. MATH proteins
are involved in nodule formation in Medicago and protein degradation in the
Arabidopsis cytosol. They exhibit sequence similarities to meprins, extracel-
lular peptidases which cleave (signal) peptides, and to TRAFs, intracellular
proteins which interact with receptor kinases at the plasma membrane. Fifty-
nine genes for MATH proteins are present in the Arabidopsis genome.
Members of this protein family are predicted to be found in the ER–plasma
membrane–extracellular space continuum, in the nucleus–cytosol compart-
ment and in organelles. In this article, we describe this novel class of plant
genes. We also use MS-MS analyses to identify the subcellular localization of
individual members of the MATH protein family in Arabidopsis thaliana.

Introduction

The majority of land plants live in mycorrhizal interac-
tion with fungi, a symbiosis which has a strong impact
on ecosystems, agriculture, flori-horticulture and for-
estry (Sanders 2003, Bidartondo et al. 2004, Koide and
Mosse 2004, Pennisi 2004). The benefits of mycorrhizal
associations arise from the nutrient transport between
the plant roots and fungal hyphae. The carbon source is

transported from the plant to the fungus, whereas fungal
hyphae serve as a fine link between the roots and the
rhizosphere and improve the supply of the plant with
inorganic nutrients (Harrison 1999, Rausch and Bucher
2002, Bucking and Heyser 2003, Herrmann et al. 2004,
Koide and Mosse 2004). Although the importance of
mycorrhizal associations has been recognized for a
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long time, knowledge about the mechanisms leading to
the establishment and functioning of this symbiosis is
still limited. Substantial progress has been made in
recent years, when it became apparent that bacterial
(rhizobial) and fungal (mycorrhizal) interactions with
plant roots share common signalling components
(Marx 2004, Parniske 2004). During the establishment
of the arbuscular mycorrhizal interaction, fungal hyphae
grow throughout root epidermal, exodermal and corti-
cal cell layers to reach the inner cortex where the
arbuscles develop. Three essential components of a
plant signalling network, a receptor-like kinase (Endré
et al. 2002, Stracke et al. 2002), a predicted ion channel
(Ané et al. 2004) and a calmodulin-dependent protein
kinase (Levy et al. 2004), have been identified.
Furthermore, two plastid-localized proteins, named
CASTOR and POLLUX, are indispensable for microbial
admission into plant cells and act upstream of intracel-
lular calcium spiking, one of the earliest plant responses
to symbiotic stimulation (Imaizumi-Anraku et al. 2005).
Finally, evidence of a diffusible fungal signalling factor
that triggers gene activation in the root has recently
been obtained (Marx 2004, Parniske 2004; and refer-
ences cited therein).

One obstacle in the molecular analysis of beneficial
plant–microbe interactions is the lack of genomic
information for most plant species which form either
bacterial or fungal symbioses. Arabidopsis thaliana, a
common model for studying plant development at the
molecular level, is not a host of mycorrhizal fungi or
rhizobial bacteria. Moreover, arbuscular mycorrhizal
fungi, which colonize the roots of 80% of vascular
plants, including the majority of crop plants, are obli-
gate biotrophs and cannot be cultured without hosts
(Newman and Reddel 1987, Varma et al. 1999).
Piriformospora indica is a recently isolated root-

interacting fungus, related to the Hymenomycetes of
the Basidiomycota (Verma et al. 1998). In contrast
with arbuscular mycorrhizal fungi, it can be easily
cultivated in axenic culture where it produces chlamy-
dospores (Oelmüller et al. 2004, Peškan-Berghöfer et al.
2004, Pham et al. 2004, Shahollari et al. 2004a). The
fungus is able to associate with the roots of various plant
species in a manner similar to mycorrhiza and promotes
plant growth (Varma et al. 1999, 2001, Singh et al. 2002,
2003, Kumari et al. 2003, Oelmüller et al. 2004, Peškan-
Berghöfer et al. 2004, Pham et al. 2004, Shahollari et al.
2004a). A comprehensive molecular phylogenetic ana-
lysis using the nuclear gene for the ribosomal large
subunit shed light on the ecology and evolution of the
group of Sebacinaceous fungi whose striking biodiver-
sity and ecological importance has only recently been
recognized (Weiß and Oberwinkler 2001, Glen et al.

2002, Kottke et al. 2003). Hence, it provides a promis-
ing model organism for the investigation of beneficial
plant–microbe interactions, and enables the identifica-
tion of compounds which may improve plant growth,
productivity and maintain soil fertility.

To elucidate these mechanisms and to identify the
genes and proteins involved in early recognition pro-
cesses, we co-cultivated Arabidopsis seedlings with the
fungus and analysed changes in the roots within the first
few days after the onset of the experiments. RNA and
protein patterns were analysed before physical contact
of both organisms, and a growth-promoting effect of the
fungus on Arabidopsis seedlings was observed (Peškan-
Berghöfer et al. 2004, Shahollari et al. 2004a). One of
the earliest genes to respond to the fungus encodes a
plasma membrane-bound receptor kinase (Shahollari
et al. 2004a). The message for this kinase is transiently
upregulated during the recognition period of both
organisms and downregulated again once the interac-
tion has been established (Shahollari et al. 2004a).
Furthermore, the receptor kinase is located in Triton
X-100-insoluble plasma membrane microdomains,
together with other signalling components (Shahollari
et al. 2004b). One of the earliest plasma membrane
proteins to respond to the fungus is a MATH [meprin
and TRAF (tumour necrosis factor (TNF) receptor-
associated factor) homology] domain-containing (MATH)
protein (Peškan-Berghöfer et al. 2004). Here, we
demonstrate that this protein becomes modified before
physical contact between both organisms is visible.
Furthermore, this modification is no longer detectable
in an Arabidopsis mutant which does not respond to
P. indica. Comparable with the results obtained for the
message of the receptor kinase, the modification of the
MATH protein is only transient and no longer detectable
once the interaction between both organisms has been
established. This implies that a functional link exists
between the recognition of the fungus and the modifica-
tion of the protein in the plasma membrane. As nothing
is known about MATH proteins in plants, we analysed
this novel protein family in greater detail.

Materials and methods

Growth conditions of plant and fungus

Wild-type A. thaliana (ecotype Columbia) seeds were
surface sterilized and placed on Petri dishes containing
Murashige and Skoog (MS) nutrient medium (Murashige
and Skoog 1962). After cold treatment at 4�C for 48 h,
plates were incubated for 7 days at 22�C under contin-
uous illumination (100 mmol m�2 s�1). P. indica was
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cultured on a modified aspergillus minimal medium
(Verma et al. 1998, Pham et al. 2004). For solid med-
ium, 1% (w/v) agar was included.

Co-cultivation experiments and estimation of plant
growth

Nine-day-old A. thaliana seedlings were transferred
to nylon discs (mesh size, 70 mm) placed on top of a
modified Melin-Norkrans culture medium (MMN med-
ium with 1/10 of nitrogen and phosphorus and no carbo-
hydrate; Marx 1969) in 90 mm Petri dishes. One seedling
was used per Petri dish. After 24 h, fungal plugs of
approximately 5 mm in diameter were placed at a
distance of 3 cm from the roots. Plates were incubated
at 22�C under continuous illumination from the side
(maximum, 80 mmol m�2 s�1). The growth conditions
have been described in detail in Peškan-Berghöfer et al.
(2004). Between 20 and 500 plates were used to isolate
the RNA and protein fractions.

Protein extraction

Microsomes from roots

A. thaliana roots were ground with a mortar and pestle
on ice in homogenization buffer containing 50 mM Tris-
HCl, pH 7.4, 330 mM sucrose, 3 mM EDTA and 10 mM
1,4-dithiothreitol. The homogenate was filtered through
four layers of cheesecloth and centrifuged at 10 000 g for
15 min. The supernatant was centrifuged at 50 000 g for
1 h to pellet the microsomes. The pellet was resuspended
in a buffer containing 50 mM Tris-HCl, pH 7.4, and 1 M
NaCl, incubated on ice for 30 min and centrifuged as
before. Pelleted membranes were resuspended in 50 mM
Tris-HCl, pH 7.4, 3 mM EDTA and 1 mM 1,4-dithio-
threitol, and kept at �80�C until protein analysis.

Soluble root proteins

Roots were ground in 50 mM Tris-HCl, pH 7.4, 10 mM
MgCl2, 3 mM EDTA and 10 mM 1,4-dithiothreitol, and
the slurry was clarified by centrifugation (20 min,
40 000 g). The supernatant was adjusted to 50%
(NH4)2SO4 and the protein pellet was again collected
by centrifugation (20 min, 40 000 g). After resolution
and dialysis against the above-mentioned buffer, the
proteins were precipitated with ice-cold acetone (80%)
and used directly for trypsin digestion as described pre-
viously (Sherameti et al. 2004).

Nuclei

Nuclei and nuclear protein extracts were prepared from
Arabidopsis roots as described previously (Oelmüller

et al. 1993, Shahollari et al. 2004a). The material was
homogenized in a Waring Blender with extraction buf-
fer [25 mM MES, pH 6.0, 250 mM sucrose, 5 mM
EDTA, 10 mM KCl, 0.5 mM dithioerythritol, 0.5 mM
spermidine, 0.3% Triton X-100 and 0.5 mM phenyl-
methylsulphonyl fluoride (PMSF)] and the homogenate
was filtered through five layers of cheesecloth. Nuclei
were pelleted by centrifugation (650 g, 4�C, 10 min),
washed once with extraction buffer with 2 mM PMSF
and without Triton X-100, and resuspended in the same
buffer. After sonication for 5 s, the material was shaken
on ice for 12 h. After removal of the subcellular debris
(100 000 g, 4�C, 1 h), the proteins were precipitated
from the supernatant by (NH4)2SO4 (0.35 g ml�1, w/v).
The salt was removed by dialysis against 25 mM HEPES-
KOH, pH 7.8, 50 mM KCl, 14 mM mercaptoethanol,
0.1 mM EDTA and 2 mM PMSF, and the proteins were
precipitated with methanol. After resuspension in 500 ml
of 50 mM ammonium bicarbonate, they were used
directly for trypsin digestion (Sherameti et al. 2004).

Chloroplasts

Highly purified chloroplasts were isolated per Percoll gra-
dient centrifugation from the cotyledons (Stöckel and
Oelmüller 2004). Chloroplasts were washed twice with
isolation medium (0.3 M sorbitol, 5 mM MgCl2, 5 mM
EGTA, 5 mM Na2EDTA, 20 mM HEPES-KOH, pH 8, and
10 mM NaHCO3) and disrupted in breaking buffer (50 mM
HEPES-KOH, pH 8, and 10 mM MgCl2). The stromal and
membrane fractions were separated by centrifugation
(20 000 g for 20 min). The soluble proteins from the super-
natant were precipitated with trichloroacetic acid and
resuspended in 500 ml of 50 mM ammonium bicarbonate
before digestion with trypsin (Sherameti et al. 2004).

Two-dimensional gel electrophoresis

Membrane proteins were solubilized with 1% Triton X-
100 and precipitated with methanol–chloroform accord-
ing to Wessel and Flügge (1983) and Hippler et al. (2001).
In brief, 180 g of protein in 100 ml of extraction buffer
(50 mM Tris-HCl, pH 7.4, 3 mM EDTA and 10 mM 1,4-
dithiothreitol) was precipitated with methanol, dried and
resuspended in 380 ml of sample buffer [8 M urea, 2 M
thiourea, 30 mM dithioerythritol, 4% (w/v) 3-[(3-cholami-
dopropyl)-dimethylammonio] propane-sulphate (CHAPS),
20 mM Tris base, 0.5% bromophenol blue, 0.5% IPE
buffer (pH 3–10, Amersham Pharmacia, Freiburg,
Germany) and 0.05% dodecyl-b-D-maltoside]; 350 ml of
the supernatant was added to 1.75 ml of 0.5% (v/v) IPE
buffer for isoelectric focusing (Amersham Pharmacia). For
the second dimension, the gel system of Schägger and
von Jagow (1987) was used. Gels were stained with silver.
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Mass spectrometry

Silver-stained gel spots were excised and the proteins
were extracted into 500 ml of 50 mM ammonium bicar-
bonate, supplemented with 60 ng ml�1 trypsin. After
lyophilization, the pellet was resuspended in 5 ml of
water–acetonitrile–formic acid (95 : 5 : 0.1) prior to
LC-MS analysis. Peptide analyses, analyte sampling,
chromatography and acquisition of data were performed
on a liquid chromatograph (Famos-Ultimate; LC-Packings,
Sunnyvale, USA) coupled with an LCQ Deca XP ITMS,
according to the manufacturer’s instructions (Sherameti
et al. 2004). Peptide analysis by coupling liquid chroma-
tography with electrospray ionization mass spectrometry
(ESI-MS) and by tandem mass spectrometry (MS-MS) has
been described previously (Stauber et al. 2003).

Protein identification

The measured MS-MS spectra were matched with the
amino acid sequences of tryptic peptides from the
A. thaliana database in FASTA format. Cys modification
by carbamidomethylation (þ 57 Da) was taken into
account and known contaminants were filtered out.
Raw MS-MS data were analysed by the Finnigan
Sequest/Turbo Sequest software (revision 3.0;
ThermoQuest, San Jose, CA). The parameters for the
analysis by the Sequest algorithm were set according
to Stauber et al. (2003). The similarity between the
measured MS-MS spectrum and the theoretical MS-MS
spectrum, reported as the cross-correlation factor (Xcorr),
was equal or above 1.5, 2.5 and 3.5 for singly, doubly
or triply charged precursor ions, respectively. In order to
identify corresponding loci, identified protein
sequences were subjected to BLAST search at the
National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/) and FASTA searches
using the AGI protein database at the Arabidopsis
Information Resource (TAIR) (http://www.arabidopsis.org/).
Identification of conserved domains and signal peptides
was performed using SMART (Schultz et al. 1998) and
SignalP (Nielsen et al. 1997), respectively.

Data analysis

Sequence analyses were performed at http://
www.ncbi.nlm.nih.gov/. The Arabidopsis homepage
(http://www.arabidopsis.org/) was used for further
analyses. For subcellular localization of proteins, the fol-
lowing websites were consulted: http://www.psort.org/;
http://www.cbs.dtu.dk/services/ChloroP/; http://ihg.gsf.de/
ihg/mitoprot.html; http://www.cbs.dtu.dk/services/TargetP/;
and http://www.sbc.su.se/�miklos/DAS/. Multiple sequence

alignments were performed at the Institut National de la
Recherche Agronomique (INRA) (http://prodes.toulouse.
inra.fr/multalin/multalin.html). For MATH domain
sequence analyses, the following homepage was used:
http://www.ebi.ac.uk/interpro/IEntry?ac=IPR002083.
The phylogenetic tree (http://www.genebee.msu.su/
services/phtree_reduced.html) was generated with an
approximately 130-amino-acid-long segment of all
Arabidopsis MATH proteins, which exhibits the highest
degree of sequence similarities to the consensus MATH
domain sequence ‘KFTWKIKNFSQLKKEEKIYSPPFYVG-
GYKWRLKVYPNGNGNGRGNHLSLYLHVADSESLPLG-
WKRYAKFTLTVLNQKSDKRKEVIHTFSAKKSSEKNR-
GWGFPKFIPLSKLEDSSKGFLVNDTLKIEVEV’ generated
from all known MATH proteins (NCBI, Conserved
Domain Database; CD 00121.2). Phylogenetic trees
generated on the basis of conserved regions within the
130-amino-acid-long segment (either with or without
gaps) did not differ significantly from the tree shown
here. For proteins with more than one MATH domain,
the one with the highest degree of sequence similarity to
the consensus sequence was used for the analysis.

RNA analysis

RNA was isolated with an RNA isolation kit (RNeasy,
Qiagen, Hilden, Germany). For quantitative reverse
transcriptase-polymerase chain reaction (RT-PCR),
RNA from Arabidopsis roots grown in the absence or
presence of P. indica was used with gene-specific
(At3g20370) and several control primer pairs
(Shahollari et al. 2004a). Two primer pairs were simul-
taneously used for the reaction in order to confirm the
specificity of the results. RT-PCR was performed by
reverse transcription of 5 mg of total RNA with gene-
specific reverse primers. First strand synthesis was per-
formed with a kit (#K1631) from MBI Fermentas (St.
Leon-Roth, Germany). After 20 PCR cycles, the products
were analysed on 1.5% agarose gels stained with ethi-
dium bromide, and visualized bands were quantified
with the Image Master Video System (Amersham
Pharmacia Biotech, Uppsala, Sweden).

Results

A MATH protein in the plasma membrane of
Arabidopsis roots recognizes the presence of the
basidiomycete P. indica

We have previously demonstrated that a crude plasma
membrane preparation from Arabidopsis roots contains
nine polypeptides which respond very early to the pre-
sence of the basidiomycete P. indica (Peškan-Berghöfer
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et al. 2004). Of these, two spots on a two-dimensional
gel corresponded to the same MATH protein,
At3g20370. The reason for the presence of two forms
of this protein in our membrane preparation is not clear
at present; however, MATH proteins contain phospho-
rylation and glycosylation sites which are targets for
protein modifications in animals (see below). On culti-
vation with the fungus, the overall amount of the protein
was upregulated, and part of the protein appeared to be
modified, resulting in two additional protein forms with
different isoelectric mobilities on two-dimensional gels
(Fig. 1A). Modification of the MATH protein was only
transient. While two forms of At3g20370 were found in
control seedlings, two additional forms appeared 5 days
after co-cultivation of the roots with the fungus. This
also correlated with an increase in the overall amount
of the protein. After 7 days, i.e. the time point at which
the interaction between the two organisms had been
established (Shahollari et al. 2004a) and the first
growth-promoting effects were measured, a sharp
decrease in the amount of the modified form of the
protein was detected, and, after 9 days, the starting
situation was re-established (Fig. 1A). Furthermore, the

modification of the MATH protein in root membrane
extracts was not observed for the Arabidopsis mutant
P. indica-insensitive-1 (Pi-1) (Fig. 2), which was isolated
in a screen for plants which were blind to P. indica
(B. Shahollari, 2004, unpublished observations). This
mutant showed wild-type growth and development
when co-cultivated with P. indica (Fig. 2A), and did
not develop a strong autofluorescence in the root
hairs, a typical symptom observed for Arabidopsis seed-
lings interacting with the fungus (Peškan-Berghöfer et al.
2004). Thus, the modification of this MATH protein is
one of the earliest plant responses observed so far in the
establishment of a beneficial plant–microbe interaction.
The transient modification implies that the MATH pro-
tein may be involved in the recognition process rather
than the interaction itself.

Quantitative PCR with sequence-specific primers for
At3g20370 uncovered only a minor increase in the
amount of the message (Fig. 1B). It is worth noting that
the very same gene was also identified in our suppression
subtractive hybridization (SSH) studies (see below),
although the overall stimulation of the mRNA level was
only low. It is concluded that P. indica induces primarily
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Fig. 1. Regions (1.0 cm · 0.5 cm) from silver-stained two-dimensional gels showing modifications of a protein containing MATH domains

(At3g20370). (A) After separation of the proteins by two-dimensional PAGE, the gels were stained with silver. The major spots correspond to

At3g20370, as determined by mass spectrometry. 1a and 2a, protein spots also present in control extracts; 1m and 2m, modified versions appearing

in response to Piriformospora indica. Extracts were prepared 3, 5, 7 and 9 days after the onset of co-cultivation; equal protein loading was confirmed

by comparing other spots on the gel (see Peškan-Berghöfer et al. 2004 for more information). (B) Northern blot for the At3g20370 message. Twenty-

five mg of RNA extracted from Arabidopsis roots grown in the presence of P. indica for 0, 5 or 9 days were loaded per lane and hybridized to

At3g20370 and actin probes. (C) Model of the protein: extracell, extracellular region; intracell, intracellular region; MATH, MATH domain; PM, plasma

membrane.
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a modification of the MATH protein rather than the sti-
mulation of At3g20370 mRNA accumulation.

The Arabidopsis genome contains 59 genes for
MATH proteins

To understand more about MATH proteins in plants and
to integrate At3g20370 with other members of this pro-
tein family, the Arabidopsis genome was searched for
MATH genes. Fifty-nine genes code for (potential)
MATH proteins in the Arabidopsis genome (Table 1).
To our knowledge, apart from the protein identified in
our studies (Peškan-Berghöfer et al. 2004), only two
other plant MATH proteins have been mentioned in
the literature: At5g06600 is the ubiquitin-specific pro-
tease 12 (Yan et al. 2000), and a homologue of
At3g58200 in Medicago has been identified in an SSH
screen because it is induced during root nodule devel-
opment (Gamas et al. 1996). Members of this new gene
family are predicted to be located in different cellular
compartments. Computer analyses of the Arabidopsis
sequences allow the following conclusions.
(1) Several MATH proteins are predicted to be located
in the ER–Golgi–plasma membrane continuum
(Table 1). Their sorting occurs via the secretory
pathway. From them, at least seven MATH proteins,
including At3g20370, appear to be plasma membrane-
anchored extracellular proteins. Their N-terminal
regions are lipophilic and their C-terminal segments
contain two MATH domains orientated towards the
extracellular space (e.g. At1g58270, At3g20360,
At3g20370, At3g20380, At5g26280, At5g26290,
At5g26300, At5g26320; Table 1 and Fig. 1C).

(2) At least 11 MATH proteins are predicted to be
located in the cytosol (Table 1). All have a single
MATH domain at the N-terminal part of the protein. In
some cases, the MATH domains are followed by
either a UCH domain (ubiquitin carboxyl-terminal
hydrolase; At5g06600, At3g11910) or a BRC, ttk and
bab (BTB) domain [pfam00651.11, BTB; the BTB/POZ
(pox virus and zinc finger) domain mediates homomeric
dimerization and, in some instances, heteromeric dimer-
ization; At3g03740]. Thus, the UCH domain-containing
MATH proteins might be involved in protein degradation
processes. The only MATH protein from plants for which
a function has been assigned is the ubiquitin-specific
protease 12 (At5g06600) (Yan et al. 2000).
(3) For several MATH proteins, a nuclear localization is
predicted (Table 1). Whether these proteins are exclu-
sively located in the nucleus or shuttle between the
nucleus and the cytoplasm is unknown at present. All
contain an N-terminal MATH domain and their modular
structures are very similar to those of the cytoplasmic
proteins. Three proteins contain an additional second
MATH domain located in the central part of the protein
(At2g38920, At2g42470, At4g09770).
(4) MATH proteins predicted to be located in microbo-
dies/peroxisomes are dominated by their MATH
domain(s). They contain a single (At1g65050,
At1g03580, At5g52330), two (At2g32870, At2g32880,
At4g00780, At1g65370, At3g17380, At1g65150,
At2g04190, At2g15710) or more than two (At3g22080)
MATH domains.
(5) Several MATH proteins are predicted to be located in
plastids (At2g25330, At3g43700, At5g19000, At5g43560).
Of these, At2g25330 contains four MATH domains.
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P. indica. (A) Seven-week-old

Arabidopsis plants (wild-type,
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Table 1. List of MATH proteins in Arabidopsis and the predicted cellular localization. The longest predicted protein is underlined.

Genes Proteins Predicted localization

Location of

MATH domain(s) Other conserved domains

At1g03580 Q8RWZ4, Q9LR66, Q9FWZ4 Microbody, cytoplasm 13-93

At1g04300 P93826 Mitochondrium (?) 0-116

At1g31390 Q9SHE2, Q9C870 Cytoplasm 8-123

At1g31400 Q9C869 Cytoplasm 8-131

At1g58270 Q8L7C1, Q9SLV3, Q84WH6 Golgi apparatus, plasma 112-231

membrane, ER 254-373

At1g65050 Q9SS54 Microbody 27-133

At1g65150 Q9S9J5 Microbody 27-133

162-283

At1g65370 O80808, Q940M1 Microbody, cytoplasm 1-80 (?)

97-217

At1g69650 Q9C9K9, Q9FWZ3 Plastid stroma, microbody (?) 24-125

158-282

At2g01790 Q9ZUA7 Microbody, cytoplasm 8-126

At2g04170 Q9SHS6 Plasma membrane, 133-261

microbody 283-409

At2g04190 Q9SHS5 Microbody 123-252

274-400

At2g05420 Q9SHT2 Nucleus, cytoplasm 9-139

At2g15710 Q9ZQE3 Microbody 100-230

252-361

At2g25320 Q9SIR1 (No information) 75-200 Mitotic check-point protein; Smc, SbcC,

237-368 UCH, myosin-like

404-527

559-681

At2g25330 Q9SIR0 Plastid stroma (?) 50-175

204-335

359-493

524-646

At2g32870 Q8GUK0, O48778, Q84WY0 Microbody 137-244

277-407

At2g32880 8GX90, O48777 Microbody, ER (?) 32-144

178-309

At2g38920 Q8GWI0 Cytoplasm, nucleus Weak homology RING, SPX

At2g39760 O22286, Q8L977 Cytoplasm 26-158 POZ or BTB

At2g42460 Q8GXS4, Q9SLB4 Nucleus 8-129

At2g42470 Q9SLB3 Nucleus (plastid) 33-148

492-607

Myosin tail

At2g42480 Q9SLB2 Microbody, nucleus 8-131

392-508

At3g03740 Q8LGI9, Q9SRV1 Cytoplasm, plastid stroma (?) 48-180 POZ or BTB

At3g06190 Q9M8J9 Nucleus 34-166 POZ or BTB

At3g11910 Q9M134, Q9SF08, Q84WU2 Cytoplasm 55-170 UCH

At3g17380 Q9LUT3 Microbody 21-151

175-300

At3g20360 Q8W0Z1, Q9LTQ7 Outside, plasma membrane 68-201

223-352

At3g20370 Q9LTQ5 Outside, plasma membrane 68-201

223-352

At3g20380 Q9LTQ4 Outside, plasma membrane 88-219

242-363

At3g22080 Q8LF44, Q9LRJ6, Q9LRJ7 Microbody, ER 20-107

152-260

302-438

460-582
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Phylogenetic analyses of the MATH domain
regions of the Arabidopsis proteins

The MATH domains in the 59 MATH proteins exhibit the
highest degree of similarity (Table 1), and they are also
highly conserved with the proposed 130-amino-acid-
long consensus MATH motif present in the database
(NCBI, CD 00121.2, MATH). Therefore, these regions
were used for multiple sequence alignment (Fig. 3). If a
MATH protein contained more than one MATH domain,
the one with the highest degree of similarity to the

consensus sequence was used for the alignment. Fig. 3
demonstrates that the N- and C-terminal regions within
the MATH domains contain the most conserved amino
acids, while the middle parts are less conserved. Three
amino acids (red in the consensus sequence of Fig. 3) are
highly conserved in all MATH proteins from Arabidopsis
and are also present at an identical position in the pro-
posed consensus sequence for all MATH proteins present
in the databases (data not shown).

A phylogenetic tree (Fig. 4) revealed that the predicted
subcellular localization was not related to the origin of

Table 1. Continued

Genes Proteins Predicted localization

Location of

MATH domain(s) Other conserved domains

At3g27040 Q9LSD2 Microbody 9-76 (?)

96-220

At3g28220 Q9LHA6 Plasma membrane 82-216

239-359

At3g29580 Q9LJB5 Nucleus (?) 8-132

At3g43700 Q9M2B6 Plastid stroma 37-169 POZ or BTB

At3g46190 Q9LX76 Microbody, cytoplasm 34-111

162-269

At3g58200 Q9M2J6, Q8LB51 Cytoplasm 8-121

At3g58210 Q9M2J5 Nucleus 8-133

At3g58220 Q9M2J4 Cytoplasm 69-170

At3g58250 Q9M2J1 ER, plasma membrane 10-124

At3g58260 Q9M2J0 Plasma membrane 8-124

At3g58270 Q9M2I9 Cytoplasm 8-131

At3g58350 Q9M2I1 Cytoplasm 64-194

At3g58360 Q9M2I0 Cytoplasm 8-132

At3g58410 Q9M2H5, Q9M2I2 ER 29-135

At3g58440 Q9M2H2 Golgi apparatus, plasma 10-131

membrane

At4g00780 O23098, Q8VZ38, Q8LAS4 Microbody, 21-142

mitochondrium (?) 166-290

At4g01390 O04596 Microbody (?) 13-134

160-282

At4g09770 O81493, Q9SZ93 Nucleus 11-138

160-282

At4g09780 Q9SZ94 Mitochondrium/microbody 64-208

230-360

At5g06600 Q9C5K1, Q9FG10, Q9FPT1, Cytoplasm 55-178 UCH

Q9FU99

At5g19000 Q8L765 Plastid stroma 36-167 POZ or BTB

At5g21010 Q8LFW4, Q94B33 Plasma membrane, ER 30-162 POZ or BTB

At5g26280 Q93Z83, O81494, Q8LEX1 Outside, microbody 61-191

213-339

At5g26290 O81496 Outside 56-181

203-322

At5g26300 O81497 Outside 61-190

212-338

At5g26320 O81499 Outside 61-193

215-340

At5g43560 Q8RY18, Q9FIY4 Plastid stroma (?) 70-191

At5g52330 Q9FHC7 Microbody 20-141

8 Physiol. Plant. 2005



Fig. 3. Sequence

alignment of the

MATH domains of

the 59 MATH

proteins from

Arabidopsis thali-

ana. The 130-

amino-acid-long

MATH consensus

domain (see

‘Materials and

methods’) was used

to identify MATH

domains in the

Arabidopsis gen-

ome. For proteins

with more than one

MATH domain, the

one with the great-

est similarity to the

consensus sequence

was used for align-

ment. Red, identical

amino acids; blue,

conserved amino

acids. For more

information, see

‘Materials and

methods’.
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the protein (Table 1 and Fig. 4). MATH proteins pre-
dicted to be located in the cytosol were preferentially
found in the middle part of the tree, while those
predicted to be sorted via the secretory pathway were
positioned on different branches (Table 1 and Fig. 4). In
addition, polypeptides predicted to be located in plastids
were found on different branches of the tree, although
a few appeared to cluster (At3g43700 and At5g19000).
In contrast, all speckle-type POZ domain (NCBI,
pfam00651.11, BTB)-related proteins were located on a
single branch of the tree, although they were found in
different cellular compartments. The P. indica-respon-
sive At3g20370 clustered together with two other highly
homologous MATH proteins (At3g20360 and
At3g20380), and all three proteins were predicted to be
located in the plasma membrane (Fig. 4). Several pep-
tides for the P. indica-responsive protein (Fig. 2), which
were identified by mass spectrometry, matched only to
At3g20370 and not to the other two proteins (e.g.
IRQITDDLKT was not present in At3g20360, MESFNT
was not found in At3g2080 and TMWGFSQVLPIDTFK

was not observed in At3g2060 and At3g20380). Thus,
the response to P. indica appears to be highly specific for
At3g20370. No significant differences were observed
when the tree was generated under higher stringency
(data not shown). The position of a protein with more
than one MATH domain did not change significantly in
the tree if one MATH domain was replaced by another.
Taken together, the tree reflects the involvement of
MATH domains in proteins with different functions.

Proteomics uncovers MATH proteins in several
subcellular compartments

To obtain more information on the subcellular loca-
lization of MATH proteins and to provide an experi-
mental basis for the localization of individual
members of the MATH protein family, we checked
for these proteins in plasma membrane preparations,
soluble protein fractions, nuclei and plastids. After
trypsin digestion of the protein extracts from these
fractions (see ‘Materials and methods’), the

2-39760
5-21010

3-06190

5-26280
2-04170

5-26290

5-52330
1-04300

3-43700
3-03740

5-19000

1-65050
3-17380

5-43560

2-42460
2-25320

2-42480

2-42470
1-03580

5-06600
3-58220

3-58200

3-58270
3-58340

3-58360

3-58260

3-27040

2-05420

3-44790

3-58350
3-58210

3-58250

3-58440
3-29580

3-58410

2-32880

1-31400

1-31390

4-00780

4-09780

4-01390

4-09770

2-32870

2-04190

2-15710
5-26320

3-11910
1-69650

1-65370

3-20380
3-20360

1-65150

1-69660

3-28220
3-46190

3-20370

1-58270

2-01790

5-26300

Fig. 4. Phylogenetic tree of the MATH domains from the 59 MATH proteins from Arabidopsis. 3-20370, At3g20370 protein identified in this study.

For details, see ‘Materials and methods’.
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polypeptides were identified by mass spectrometry.
Each fraction contained at least one MATH protein
which could not be identified in any of the other
fractions (Table 2). At3g20370 appeared to be a pro-
minent protein in plasma membranes. All together,
we identified 17 different peptides which corres-
ponded to 78% of the entire peptide sequence; how-
ever, not all of them were specific for At3g20370,
because they also matched to At3g20360 and
At3g20380. At3g58210 was only detected in the
nuclear extract, while At2g05420 was found in the
nuclear as well as the cytosolic fraction. At least two
peptides in the cytosolic fraction matched to
At3g58360 and two peptides in plastid protein
preparations matched to At1g69650. More detailed
studies are under way to identify other members of
this protein family by mass spectrometry.

Discussion

We identified a modification of a MATH protein in
plasma membrane preparations of Arabidopsis roots
after co-cultivation with P. indica. As this protein mod-
ification is one of the earliest plant responses to a fun-
gus, as it does not occur in an Arabidopsis mutant which

is blind to P. indica, and as MATH proteins exhibit
similarities to extracellular proteases which are known
to be involved in the perception of fungal signals (see
below), we investigated MATH proteins in Arabidopsis
in more detail.

The function of MATH proteins in general is unclear at
present; however, the modular organization and domain
structure of MATH proteins, together with their homol-
ogy and structural similarity to meprins and TRAFs (see
below), suggest that they may be involved in processes
such as protein degradation and protein or peptide clea-
vage and/or activation, or in transferring signals to intra-
cellular signalling pathways. Meprins and TRAFs may
provide clues to the function of MATH proteins in plants.
The characteristic features of the MATH protein which
responds to P. indica are the two MATH domains pre-
dicted to be located in the extracellular space.

Meprins belong to the astacin protein family of zinc-
dependent metalloendopeptidases (Dumermuth et al.
1991, Bertenshaw et al. 2003, Norman et al. 2003a,
Kruse et al. 2004). Mature meprins are composed
of evolutionarily related a and b subunits which
exist as homo- and heterooligomeric complexes.
Homooligomers of a subunits are secreted into the
extracellular space. They are zymogens that form high-
molecular-mass complexes of 1–6 MDa with up to 100
molecules (Bertenshaw et al. 2003). The extent of oli-
gomerization is strongly dependent on the activation
state of the enzyme and various regulatory factors in
the extracellular environment. Oligomers containing
the b subunit are plasma membrane associated. In con-
trast with the b subunit, the C-terminal membrane
anchor of the a subunit is cleaved off in the ER, which
leads to secretion of the protein (Marchand et al. 1995).

Extracellular meprins are amongst the largest extra-
cellular proteases identified thus far in animal systems
(Villa et al. 2003a). A TNF-associated enzyme has been
identified as an activating component of meprins, and
the enzyme itself becomes activated via a protein kinase
C-dependent mechanism (Hahn et al. 2003, Villa et al.
2003b). Thus, meprins provide examples of novel ways
of concentrating proteolytic activity at the cell surface
and in defined areas in the extracellular milieu.

Meprins cleave a large variety of bioactive peptides
including growth factors, cytokines, factors required for
morphogenesis and extracellular matrix proteins (Wolz
and Bond 1995, Chestukhin et al. 1997, Becker et al.
2003; and references cited therein). Disruption of the
meprin allele in mice affects embryonic viability and the
distribution of meprin in kidney and intestine (Norman
et al. 2003b). These tissue-specific proteinases are also
involved in developmental processes and pathogenic
responses (Bond and Beynon 1995, Dietrich et al. 1996).

Table 2. MATH proteins in different cellular subfractions. The protein

numbers, subcellular localizations and identified peptides are given.

At3g20370 (plasma membrane)

IRQITDDLKT

MESFNT

FYIFNK

ERKYFTIQDTDVWK

KYFTIQDTDVWK

TMWGFSQVLPIDTFK

SELFSVTENFLNPR

NSYLSEVFSIGGRSWNIQINPSGLGTGEGK

ALNQLNLSNIER

At3g58210 (nuclear protein extract)

ACMNFLLSLMETLCQPPQK

LDVPEESEEETQVTQPMK

LDVPEESEEETQVTQPMKK

SLPPGWSR

At2g05420 (nuclear protein extract and cytoplasm)

FRPK

FRPKNPYLK

TAYMNVLLSLTQTTICQSPGELSNDDLSDSGAALAYLR

At3g58360 (cytoplasm)

VDLAEGYVALR

CLDLEAQLEK

ITWAIENFSSLHSK

At1g69650 (plastid)

YLSVFLYLADNETLK

TYLDK

EDTLMIEAEFEVVSATK
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Four potential glycosylation sites for the MATH pro-
tein have been predicted (Leuenberger et al. 2003).
Although the nature of the modification of the MATH
protein described here is not clear, the modification
occurs in response to fungal signals. The activated
MATH protein may have the potential to cleave a pep-
tide that, in turn, activates an intracellular signalling
pathway, as proposed for the Drosophila receptor
kinase TOLL system (De Gregorio et al. 2002). In
Drosophila, this mechanism is activated by pathogenic
fungi. In addition, plant–fungus interactions depend on
extracellular proteinase activities. For instance, a
tomato cysteine protease is required for Cf-2-dependent
disease resistance and suppression of autonecrosis
(Krüger et al. 2002).

TRAFs are the major signal transducers for the TNF
receptor superfamily and the interleukin-1 receptor/
Toll-like receptor superfamily (Inoue et al. 2000,
Wajant and Scheurich 2001, Chung et al. 2002). TNF
exerts its functions by interaction with the death
domain-containing TNF-receptor 1 (TNF-R1) and the
non-death domain-containing TNF-receptor 2 (TNF-
R2). Several TRAFs participate in the apoptotic pathway
and the signalling cascades leading to the activation of
NF-KB and JNK (Jun N-terminal kinase; Rothe et al.
1994, Park et al. 1999, Ye et al. 1999). TRAF proteins
promote cell survival by the activation of downstream
protein kinases and transcription factors (Chung et al.
2002; and references cited therein). Of special interest
for this study are TRAF 1 and 2, which define a novel
group of proteins involved in signal transduction by
many members of the TNF receptor family, including
the TOLL-like receptor proteins. TOLL proteins belong
to the same class of receptor kinases which, in plants,
are involved in plant–microbe interactions (Kistner and
Parniske 2002). In plants, a TNF-like receptor kinase has
been shown to be involved in maize epidermal differ-
entiation, but it is not known whether it interacts with
MATH proteins (Becraft et al. 1996).

Extracellular meprins and intracellular TRAFs share a
conserved region, called the MATH (meprin and TRAF
homology) domain (Sunnerhagen et al. 2002). The
importance of MATH proteins is also apparent from
Caenorhabditis elegans (The C. elegans Sequencing
Consortium 1998), which contains approximately 100
genes for these proteins. Databank analyses revealed
that MATH proteins were not exclusively found in
plasma membranes and/or the extracellular space, but
also in the ER, Golgi apparatus, cytosol, nucleus and
organellar membranes, preferentially peroxisomes. This
also appears to be true for Arabidopsis MATH proteins.
The phylogenetic tree does not relate the phylogenetic
classifications to cellular localizations. Those proteins

predicted to be located in plasma membranes differ
substantially in length and in their N- and C-terminal
regions.

Although the overall number of genes for MATH pro-
teins is similar in C. elegans and Arabidopsis, almost
nothing is known about their function in plants. The
high degree of similarity in all eukaryotic signalling
systems, and the identification of MATH proteins in
two independent screens for plant–microbe interactions
(Gamas et al. 1996, Peškan-Berghöfer et al. 2004), indi-
cate that this protein family should be analysed in
greater detail.
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Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C,

Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA,

Long SR, Denarie J, Cook DR (2004) Medicago truncatula

DMI1 required for bacterial and fungal symbioses in

legumes. Science 303: 1364–1367

Becker C, Kruse MN, Slotty KA, Kohler D, Harris JR,

Rosmann S, Sterchi EE, Stocker W (2003) Differences in

the activation mechanism between the alpha and beta

subunits of human meprin. J Biol Chem 384: 825–831

Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: a

TNFR-like receptor kinase involved in maize epidermal

differentiation. Science 273: 1406–1409

Bertenshaw GP, Norcum MT, Bond JS (2003) Structure of

homo- and hetero-oligomeric meprin metalloproteases.

Dimers, tetramers, and high molecular mass multimers. J

Biol Chem 278: 2522–2532

Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ

(2004) Changing partners in the dark: isotopic and mole-

cular evidence of ectomycorrhizal liaisons between forest

orchids and trees. Proc R Soc London Ser B 271:

1799–1806

Bond JS, Beynon RJ (1995) The astacin family of metalloen-

dopeptidases. Protein Sci 4: 1247–1261

Bucking H, Heyser W (2003) Uptake and transfer of nutrients

in ectomycorrhizal associations: interactions between

photosynthesis and phosphate nutrition. Mycorrhiza 13:

59–68

Chestukhin A, Litovchick L, Muradov K, Batkin M, Shaltiel S

(1997) Unveiling the substrate specificity of meprin beta

on the basis of the site in protein kinase A cleaved by the

kinase splitting membranal proteinase. J Biol Chem 272:

3153–3160

Chung JY, Park YC, Ye H, Wu H (2002) All TRAFs are not

created equal: common and distinct molecular mechan-

isms of TRAF-mediated signal transduction. J Cell Sci 115:

679–688

De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B

(2002) The Toll and Imd pathways are the major regulators of

the immune response in Drosophila. EMBO J 21: 2568–2579

12 Physiol. Plant. 2005



Dietrich JM, Jiang W, Bond JS (1996) A novel meprin beta´

mRNA in mouse embryonal and human colon carcinoma

cells. J Biol Chem 241: 2271–2278

Dumermuth E, Sterch EE, Jiang W, Wolz RL, Bond JS,

Flannery AV, Beynon RJ (1991) The astacin family of

metalloendopeptidases. J Biol Chem 266: 21 381–21 385
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Abstract 
The basidiomycete Piriformospora indica 
interacts with Arabidopsis roots and mim-
ics an arbuscular mycorrhiza. In order to 
identify components which are involved in 
early phases of recognition, we isolated 
mRNAs and proteins from Arabidopsis 
roots which respond to the fungus. A 
MATH protein with homology to metallo-
proteases is transiently modified in the 
plasma membrane of the roots during the 
recognition period of both organisms. Fur-
thermore, the messages for two receptor 
kinases are transiently upregulated. Bio-
chemical studies uncovered that the re-
ceptor kinases co-purify with a small 
GTP-binding protein of the Rab-family. 
Inactivation of one of the receptor kinases 
strongly retards the interaction between 
both organisms. Finally, recognition of 
both organisms appear to depend on a 
lipid-signalling pathway, since inactivation 
of AGC2, a protein kinase activated by 
the 3´-phosphoinositide-dependent kina-
se PDK1, completely abolishes the 
growth promoting effect induced by P. 
indica. Based on the available data we 
propose a working hypothesis which de-
scribes early phases of the recognition 

between both organisms on the basis of 
the MATH protein, membrane-bound re-
ceptor kinases and downstream signaling 
compoments such as small GTP-binding 
proteins and AGC2. 
 
Introduction 
 
Piriformospora indica – a growth pro-
moting fungus of the Sebacinaceae 
family 
The majority of land plants live in my-
corrhizal interaction with fungi, a symbio-
sis which has a strong impact on ecosys-
tems, agriculture, flori-horticulture and 
forestry. The benefits of mycorrhizal as-
sociations arise from the nutrient trans-
port between the plant roots and fungal 
hyphae. The carbon source is transported 
from the plant to the fungus, whereas 
fungal hyphae serve as a fine link be-
tween the roots and the rhizosphere and 
improve the supply of the plant with inor-
ganic nutrients (Harrison 1999 and refer-
ences therein). Although the importance 
of mycorrhizal associations has been 
recognised long time ago, the knowledge 
about the mechanisms leading to the es-
tablishment and functioning of this sym-
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biosis is still limited. Substantial progress 
has been made in the last years when it 
became apparent that bacterial (rhizobial) 
and fungal (mycorrhizal) interactions with 
plant roots share common signalling 
components (cf. Marx 2004; Kistner and 
Parniske 2002; Parniske 2000, 2004). 
During the establishment of the arbuscu-
lar mycorrhizal interaction, fungal hyphae 
grow throughout root epidermal, exoder-
mal and cortical cell layers to reach the 
inner cortex where the arbuscles develop. 
Three essential components of a plant 
signalling network, a receptor-like kinase 
(Endré et al. 2002; Stracke et al. 2002), a 
predicted ion-channel (Ané et al. 2004) 
and a calmodulin-dependent protein 
kinase (Levy et al. 2004) have been iden-
tified. Furthermore, evidence of a diffus-
ible fungal signalling factor that triggers 
gene activation in the root has recently 
been obtained (Marx 2004; Parniske 
2004, and references therein).  

One obstacle in the molecular analy-
ses of benefical plant/microbe interac-
tions is the lack of genomic information 
for most plant species which form either 
bacterial or fungal symbioses. A. thaliana, 
a common model to study plant develop-
ment at the molecular level, does not be-
long to the hosts of mycorrhizal fungi or 
rhizobial bacteria. On the other side, ar-
buscular mycorrhizal fungi, which colo-
nize the roots of 80% of vascular plants, 
including the majority of crop plants, are 
obligate biotrophs and cannot be cultured 
without hosts (Newman and Reddel 1987; 
Varma 1999).  

P. indica is a recently isolated root-
interacting fungus of the group of Sebaci-
naceous fungi: related to the Hymenomy-
cetes of the Basidiomycota (Verma et al. 
1998). A comprehensive molecular phy-
logenetic analysis using the nuclear gene 
for the ribosomal large subunit (nrLSU) 
shed light on the ecology and evolution of 

the group of Sebacinaceous fungi whose 
striking biodiversity and ecological impor-
tance has only recently to be recognized 
(Glen et al. 2002; Kottke et al. 2003; 
Weiss and Oberwinkler 2001). In contrast 
to arbuscular mycorrhizal fungi, it can be 
easily cultivated in axenic culture where it 
produces chlamydospores (Peškan-
Berghöfer et al. 2004; Pham et al. 2004; 
Shahollari et al. 2004a). The fungus is 
able to associate with the roots of various 
plant species in a manner similar to my-
corrhiza and promotes plant growth (Ku-
mari et al. 2003; Pham et al. 2004; Singh 
et al. 2003; Varma et al. 1999, 2001; 
Shahollari et al. 2004a). Hence, it pro-
vides a promising model organism for the 
investigations of beneficial plant-microbe 
interaction and enables the identification 
of compounds, which may improve plant 
growth, productivity and maintain soil fer-
tility. The observation that growth and 
development of Arabidopsis is dramati-
cally stimulated by P. indica and that the 
presence of the fungus has also a strong 
impact on the number of siliques and 
seeds per plant is consistent with obser-
vations for other plant species which in-
teract with this fungus. Thus, identification 
of components which are involved in this 
interaction might be benefical for the un-
derstanding of the interaction at the mo-
lecular level as well as for agricultural 
applications. 
 
Results and Discussion 
 
Strategies to identify genes and pro-
teins involved in early phases of the 
recognition of P. indica and Arabidop-
sis thaliana 
To identify genes and proteins which are 
involved in early recognition processes, 
we co-cultivated Arabidopsis seedlings 
with the fungus and analysed changes in 
the roots within the first few days after the 
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onset of the experiments. RNA and pro-
tein patterns were analysed before a 
physical contact of both organisms and a 
growth-promoting effect of the fungus on 
Arabidopsis seedlings became visible (cf. 
Shahollari et al. 2004a; Peškan-Berghöfer 
et al. 2004). For these studies, microarray 
analyses with RNAs from roots grown in 
the presence or absence of P. indica 
were performed to identify genes which 
are either up- or down-regulated in re-
sponse to the fungus. As expected the 
number of regulated genes decreases, 
the earlier the interaction was studied. In 
parallel, suppression subtractive hybridi-
zations (SSH) libraries were generated. 
For these experiments root RNA (± fun-
gus) was extracted 2, 4, 5, 6, 7, 10 and 
14 days after the beginning of the co-
cultivation experiment. This covers early 
phases of recognition to a fully estab-
lished interaction (which can be moni-
tored by the cellular responses shown in 
Fig. 1, cf. below). They confirmed the 
regulation of several of the genes which 
were already identified by the microarray 
analyses. Five days after the onset of co-
cultivation, approximately 50% of the iso-
lated genes code for proteins involved in 
metabolic processes (such as nitrate as-
similation, sulfate reduction or carbohy-
drate metabolism), 30% of them encode 
proteins involved in signalling processes 
(such as kinases, GTP and Ca2+-binding 
proteins, enzymes involved in osmoregu-
lation or ion fluxes across the plasma 
memembrane) and the residual 20% for 
proteins with unknown functions. Genes 
which were up- or down-regulated two 
days after co-cultivation have either not 
yet been characterized for Arabidopsis 
(for instance genes which code for 
kinases) or code for signalling compo-
nents. We are currently analysing 31 
knock-out lines of these genes to under-
stand their role in the interaction between 

P. indica and Arabidopsis roots in greater 
details. In summary, these approaches let 
to the identification of several candidate 
genes which code for receptor kinases, 
signalling components at the plasma 
membrane, and putative downstream 
signalling molecules which might play 
specific functions during early phases of 
the recognition between P. indica and 
Arabidopsis (cf. below). 

In parallel, we isolated (crude or highly 
purified) plasma membranes from Arabi-
dopsis roots grown in the presence and 
absence of P. indica. After two-
dimensional gel electrophoresis, differen-
tially regulated protein spots were ex-
cised, digested with trypsin and the frag-
ments were analysed by mass spec-
trometry. Again, the number of proteins 
which respond to the fungus decrease, 
the earlier the experiment was performed. 
We could identify nine protein spots 
which appear to be specific for the recog-
nition period between both organisms 
(Peškan-Berghöfer et al. 2004). Again, 
their importance for the recognition be-
tween both organisms is currently be ana-
lysed in knock-out lines. Some of the pro-
teins correspond to those identified in our 
mRNA screens, indicating that the re-
sponse to P. indica can be detected at 
the transcript and protein levels. The 
other proteins identified in this screen 
have either not yet been studied or are 
signalling components (cf. below). 

These three approaches (microarray 
analyses, SSH, proteomics of Arabidop-
sis plasma membranes from roots) were 
supplemented by a screen for Arabidop-
sis mutants which fail to interact with P. 
indica. A number of lines were identified 
in an EMS population and in insertion 
lines, however, only one of them has 
been characterized so far at the molecu-
lar level (cf. below). 
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Figure 1: A scheme which describes five cellular functions which become activated in Arabidopsis roots after 
co-cultivation with P. indica. 
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The screen for mutants is based on at 
least five independent parameters which 
become apparent after the establishment 
of a positive interaction between both or-
ganisms (Fig. 1). First, we can monitor a 
strong autofluorescence in the root hairs. 
This fluorescence cannot be detected if 
both organisms grow together on the 
same Petri dish, but do not interact with 
each other (Peškan-Berghöfer et al. 
2004). Thus, the initial screen focused on 
those lines which fail to produce the auto-
fluorescence in the presence of the fun-
gus. The nature of the autofluorescence 
is unknown at present. Second, we ob-
serve a growth-promoting effect. This can 
first be observed for the Arabidopsis roots 
(approx. 4-5 days after co-cultivation on 
Petri dishes) and later also for the aerial 
parts of the seedlings (approx. 5-6 days 
after co-cultivation on Petri dishes). 
Growth promotion is visible throughout 
the whole life, even after transfer of the 
seedlings to soil, and results in a faster 
growth and a larger seed yield (Peškan-
Berghöfer et al. 2004). Third, between 3-9 
days after co-cultivation, the fungus in-
duces a modification of a plasma mem-
brane protein, At3g20370, in the Arabi-
dopsis roots which can easily be moni-
tored on two dimensional gels (cf. below). 
This modification is only transient and 
disappears again, as soon as the interac-
tion between both organisms is estab-
lished. Fourth, as mentioned above, P. 
indica stimulates the expression of sev-
eral genes in the roots. For the mutant 
screen, we monitor the transcript level for 
a receptor kinase, At5g16590, because 
the stimulatory effect of P. indica on this 
mRNA level is also only transient during 
early phases of the recognition. Fifth, 
growth promotion is associated with a 
stimulatory effect on nitrate assimilation in 
the roots. We monitor this effect by 

measuring nitrate reductase activity (cf. 
below).  
 
Genes and proteins involved in early 
recognition events between P. indica 
and Arabidopsis thaliana 
The information which we gathered over 
the last few years shed light on early 
steps during the recognition between both 
organisms (cf. Fig. 2). We first observed a 
modification of a MATH protein 
(At3g20370) which resulted in a different 
electrophoretic mobility of this protein on 
two-dimensional gels (Peškan-Berghöfer 
et al. 2004). This modification was only 
transient and disappeared again, as soon 
as the interaction between both organ-
isms was established (Oelmüller et al. 
submitted). The nature of this modifica-
tion is not known at present, however 
MATH proteins contain phosphorylation 
and glycosylation sites which might be 
responsible for the observed alteration in 
the electrophoretic mobility. The fungus 
did not only induce a modification of the 
MATH protein, but also stimulated its 
overall amount, consistent with the ob-
servation that a slight increase in the 
amount of the MATH protein mRNA in 
Arabidopsis roots was observed after the 
co-cultivation with P. indica. 59 genes for 
MATH proteins are present in the Arabi-
dopsis genome, however the function of 
the proteins has not yet been studied so 
far (cf. Sunnerhagen et al. 2002; 
Oelmüller et al. submitted). Some mem-
bers of this protein family exhibit strong 
sequence similarities to extracellular met-
alloproteases. It remains to be deter-
mined whether such an activity might be 
required for the recognition of signals 
from the fungus. It is also worth noting 
that MATH proteins are involved in nod-
ule formation in Medicago (Gamas et al. 
1996) and protein degradation in the 
Arabidopsis cytosol (Yan et al. 2000). 
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Figure 2: A model which describes putative proteins and signalling components in early steps of the recogni-
tion between Arabidopsis roots and P. indica. For details, see text. MATH, MATH domain in MATH proteins; 
PI, phosphoinositides; PDK1, 3’-phosphoinositide dependent kinase 1; AGC2, AGC-type kinase; Gα; Gβ, Gγ, 
α, β, γ subunit of heterotrimeric G proteins; Rab, small GTPase 
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Analyses of gene expression profiles 
uncovered that the message for a plasma 
membrane-localized receptor kinase 
(At5g16590) is transiently upregulated in 
RNA preparations from Arabidopsis roots 
during early phases of the interaction be-
tween both organisms (Shahollari et al. 
2004a). Since the messages for 29 other 
receptor kinases did not respond to the 
fungus, we have analysed this gene in 
greater details. We first observed that the 
increase in the mRNA level was observed 
only during a period of approximately 72 
h, i.e. the time period, when the interac-
tion between Arabidopsis roots and P. 
indica became established. This suggests 
that the protein might be specifically in-
volved in early recognition events be-
tween both organisms. Using mass spec-
trometry, we could also identify this pro-
tein in plasma membrane preparations 
from roots. Further fractionation of 
plasma membrane preparations uncov-
ered that the receptor kinase is present in 
a subfraction with similarities to lipid rafts 
from mammals (Shahollari et al. 2004b). 
The observation that the receptor kinase 
can easily be detected by mass spec-
trometry suggests further that it is present 
in relatively large amounts in the plasma 
membrane from Arabidopsis roots.  

We have then analysed the plasma 
membrane subfraction in greater details. 
It contains 34 polypeptides and all of 
them were identified by mass spectrome-
try (Shahollari et al. 2004b). Seven of 
these polypeptides are receptor kinases. 
It was also apparent that signalling com-
ponents are highly enriched in these 
vesicles, among them we found several 
small GTP-binding proteins (Shahollari et 
al. 2004b). Dis-integration of these vesi-
cles by sonication at 30°C in the pres-
ence of elevated levels of detergents and 
subsequent separation of the vesicles on 
sucrose gradients uncovered that most of 

the polypeptides remained on the top of 
the gradient. However, one fraction con-
tained at least three polypeptides: two 
receptor kinases, At5g16590 and a so far 
uncharacterized receptor kinase and a 
small GTP-binding protein. A knock out 
line for the so far uncharacterized recep-
tor kinase revealed that the mutant is 
strongly retarded in its response to P. 
indica. Again, the message for this recep-
tor kinase also responds to the fungus. 
Thus, we propose that the two receptor 
kinases are involved in the recognition of 
P. indica at the plasma membrane of 
Arabidopsis roots.  

The small GTP binding protein, which 
co-purifies with the two receptor kinases 
after solubilzation of plasma membrane 
microdomains belongs to the Rab-family 
and might be a good candidate for trans-
ducing the activating fungal signal to 
downstream events. The involvement of 
small GTP-binding proteins in 
plant/microbe interaction is not new. At 
least 93 genes for small GTP-binding pro-
teins are present in the Arabidopsis ge-
nome (Fig. 3a, b; cf. also Vernoud et al. 
2003). The similarities between several 
GTP-binding proteins of one subfamily 
suggest that they have overlapping func-
tions. We are currently trying to under-
stand the role of individual GTP-binding 
proteins in the interaction between Arabi-
dopsis and P. indica in greater details.  

Besides growth promoting effects, the 
interaction between both organisms can 
be followed by other parameters, one of 
them is the strong autofluorescence in the 
root hairs mentioned above (cf. above, 
Peškan-Berghöfer et al. 2004). We have 
used these parameters (cf. Fig. 1) to 
screen for mutants which fail to respond 
to P. indica. One of the mutants, which 
show normal plant development, but fails 
to exhibit growth promotion in response to 
P. indica, has a lesion in the kinase 
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Figure 3a: A neighbour-joining tree of Arabidopsis small GTP-binding proteins. The protein sequences of 93 
small GTPases genes of A. thaliana were aligned using MultAlin (Corpet 1988). This procedure resulted in 
the elimination of the Attg07410 gene, one of the 57 Rab GTPases (Vernoud et al. 2003). Afterwards the 
alignment was edited manually to point out the conserved protein sequences. A phylogenetic tree prediction 
with 100 bootstrap replicates was made with TreeTop (Yushmanov and Chumakov 1988; Brodsky et al. 
1995). The resulting dataset established a basis to compile an unrooted tree diagram using Phylip (Felsen-
stein 1989).  
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Figure 3b: A neighbour-joining tree of Arabidopsis Rab GTPases. Enlargement of the Rab GTPases branch 
shown in Fig. 3a. 
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AGC2 (At3g25250). This kinase has 
recently been identified to be required for 
proper root hair development (Anthony et 
al. 2004). AGC2 interacts with 3´-
phosphoinositide-dependent kinase-1 
(PDK1), which, in turn, becomes acti-
vated by phosphatidic acid (PA) at the 
plasma membrane (Anthony et al. 2004, 
and references therein). In animals, 
PDK1 is a central integrator for many dif-
ferent signalling events downstream of 
various receptors. Among other proc-
esses, the animal PDK1 is crucial for 
growth, cell division and apoptosis (cf. 
Alessi 2001). The functional homolog in 
Arabidopsis (Storz and Toker 2002) might 
be involved in similar signalling events, 
although the enzyme lacks two conserved 
amino acid residues in the C-terminal 
Peckstrin Homology (PH) domain that 
interacts with high affinity with the 
PtdIns(3,4,5)P3 and PtdIns(3,4)P2 second 
messangers and with low affinity to 
PtdIns(4,5)P2. The Arabidopsis PDK1 is 
expressed in all plant tissues analysed so 
far, whereas expression of its interaction 
partner, AGC2, which was identified in 
our screen, is abundant in fast growing 
organs and dividing cells (Anthony et al., 
2004). AGC2 is highly dynamic in root 
hairs, confined to root hair tips and nuclei 
and knock out mutations result in a reduc-
tion of root hair length, suggesting a role 
for this kinase in root hair growth and de-
velopment (Anthony et al. 2004). Interest-
ing, the first interactions that can be de-
tected during the co-cultivation of P. in-
dica with Arabidopsis roots were ob-
served at the root hairs.  We are currently 
analysing different AGC2 knock-out lines 
in greater details. The data obtained so 
far allow already the conclusions, that 
recognition of P. indica by Arabidopsis 
roots involves PA, PDK1 and downstream 
signalling kinases of the AGC type. 

Mastoporan is a known activator of 
heterotrimeric G proteins and triggers PA 
signalling via phospholipase C and D ac-
tivation (Munnik et al., 1995). Since 
Mas7, but not its non-functional analogue 
Mas17 rapidly activates AGC2 in vitro, 
Anthony et al. (2004) suggested that a G-
protein-coupled receptor upstream of PA 
might activate PDK1 in Arabidopsis, lead-
ing to subsequent PDK1-dependent acti-
vation of AGC2. However, studies with 
transgenic tobacco plants overexpressing 
an antisense construction for the β sub-
unit of the heterotrimeric G protein re-
vealed that a more than 95% reduction of 
this subunit does not affect the growth - 
promoting effect induced by P. indica 
(Peškan-Berghöfer et al. 2004; Sherameti 
et al. submitted). This implies that hetero-
trimeric G proteins are not required for 
the recognition of P. indica in tobacco 
roots, and that AGC2 might be activated 
via other signalling cascades. This also 
implies that AGC2 is activated by a differ-
ent upstream component. 

Deak et al. (1999) and Anthony et al. 
(2004) have shown that the PH domain of 
the Arabidopsis PDK1 binds PI(4,5)P2 
and PA. Binding of these lipids increase 
the activity of PDK1, whereas AGC2 ac-
tivity is only regulated by PA in a PDK1-
dependent manner. PA controls many 
signalling events in animals. For instance, 
it regulates membrane trafficking, and it is 
involved in activation of the enzyme 
NADPH oxidase, which functions as part 
of the defence mechanism against infec-
tion and tissue damage during inflamma-
tion. Formation of PA has also been 
linked to a variety of responses in plants, 
such as biotic or abiotic stresses, dor-
mancy, formation of nodules and root 
hairs (Meijer and Munnik 2003). In ani-
mals, PA can be generated from diacyl-
glycerols by the action of a diacylglycerol 
kinase. However, a more important route 
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is via hydrolysis of other phospholipids by 
the enzyme phospholipase D (or by a 
family of related enzymes of this kind). 12 
members of the phospholipase D family 
are present in the Arabidopsis genome, 
but it is still unknown how these PA-
generating enzymes are coupled to 
downstream signalling events. Down-
stream candidates are MAP kinases, 
however unravelling of the complete sig-
nalling events require more detailed 
analyses of many mutants, which fail to 
respond to P. indica. Protein/protein in-
teraction studies are one way of defining 
signalling networks in biological systems. 
Our approach clearly puts AGC2 into a 
physiological context, in that it defines a 
specific role of this enzyme in 
plant/microbe interaction. 

Although the data obtained so far are 
only the beginning of the understanding 
of the interaction between P. indica and 
Arabidopsis roots, several observations 
provide a solid basis for further analyses. 
The specific and transient alterations of 
the MATH protein in the plasma mem-
brane and of the mRNA level for the re-
ceptor kinase At5g16590 during the early 
phases of the co-cultivation of both or-
ganisms are likely to be functionally re-
lated to recognition events. Inactivation of 
the receptor kinase At1g13230, which 
can be copurified with At5g16590, 
strongly retards the interaction between 
both organisms during early phases of 
the recognition. A screen for mutants with 
lesions in the recognition machinery iden-
tifies a protein that is involved in root hair 
development (Anthony et al. 2004). Fig-
ure 2 presents a working hypothesis for 
our future studies. In analogy to the Toll 
system from Drosophila (cf. De Gregorio 
et al. 2002) and similar to the recognition 
of rhizobia by legumes (cf. Introduction) 
fungal signals might be recognized by the 
extracellular MATH domains of the MATH 

protein. Upon activation of the fungal sig-
nals, one or more receptor kinases can 
be activated. The physical contact of the 
two receptor kinases (which respond to 
the presence of P. indica) to a small GTP 
binding protein suggests that they might 
be involved in downstream signalling 
events. Growth promotion requires 
AGC2. How this kinase is integrated into 
the signalling events is unknown at pre-
sent, however, Anthony et al. (2004) have 
shown that AGC2 become activated by 
PDK1 and PA. Finally, it appears that 
heterotrimeric G proteins are not involved 
in this scenario. 

In order to couple the recognition 
processes to downstream events, we 
analysed nitrate assimilation in the roots 
of Arabidopsis after infection with P. in-
dica (Sherameti et al. submitted). Nitrate 
reductase activity increases in the pres-
ence of the fungus. Western analyses 
confirmed that the increase is caused by 
an elevated level of the protein rather 
than an activation of pre-existing enzyme 
molecules. Northern analyses suggests 
that the fungus stimulates nitrate reduc-
tase by increasing the amount of its mes-
sage. We also analysed the Nia2 pro-
moter from Arabidopsis in transgenic to-
bacco and found that it also responds to 
P. indica in the tobacco background. This 
suggests that the recognition mecha-
nisms are conserved among different 
plant species. A crucial cis element in this 
promoter binds to a homeodomain pro-
tein. Surprisingly, also the message for 
this transcription factor is upregulated by 
P. indica. This suggests that the ho-
meodomain transcription factor plays a 
crucial role in stimulating nitrate reduc-
tase gene expression in response to P. 
indica. 
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Piriformospora indica, an endophytic fungus of the
Sebacinaceae family, promotes growth of Arabidopsis
and tobacco seedlings and stimulates nitrogen accumu-
lation and the expression of the genes for nitrate reduc-
tase and the starch-degrading enzyme glucan-water
dikinase (SEX1) in roots. Neither growth promotion nor
stimulation of the two enzymes requires heterotrimeric
G proteins. P. indica also stimulates the expression of
the uidA gene under the control of the Arabidopsis ni-
trate reductase (Nia2) promoter in transgenic tobacco
seedlings. At least two regions (�470/�439 and �103/
�89) are important for Nia2 promoter activity in to-
bacco roots. One of the regions contains an element,
ATGATAGATAAT, that binds to a homeodomain tran-
scription factor in vitro. The message for this transcrip-
tion factor is up-regulated by P. indica. The transcrip-
tion factor also binds to a CTGATAGATCT segment in
the SEX1 promoter in vitro. We propose that the growth-
promoting effect initiated by P. indica is accompanied
by a co-regulated stimulation of enzymes involved in
nitrate and starch metabolisms.

Often nitrogen is the limiting source for plant growth and
development. It is recruited by plants either as nitrate or
ammonium or for a few species by nitrogen fixation with the
help of rhizobia (1, 2). Mycorrhizal fungi also play an important
role in delivering either nitrate or ammonium to the root cells.
It is believed that mycorrhizal fungi preferentially recruit am-
monium rather than nitrate from the soil and that amino acids
represent the major compounds that serve to transfer nitrogen
to the host plant (cf. Refs. 3 and 4). We studied Piriformospora
indica, an endophytic fungus of the Sebacinaceae family, which
colonizes the roots of a wide variety of plant species and pro-
motes their growth (5–10). The interaction of the endophytic
fungus with plant roots is accompanied by an enormous requi-

sition of nitrogen from the environment. By analyzing the
interaction of P. indica with Arabidopsis and tobacco roots we
found that in contrast to mycorrhizal associations, nitrate re-
duction in the roots is stimulated by P. indica. A homeodomain
transcription factor responds to the fungus and binds to pro-
moter regions of the P. indica-responsive Nia2, SEX1, and
2-nitropropane dioxygenase genes. These results suggest that
the expression of P. indica-responsive target genes may be
controlled by common regulatory elements and trans-factors.

MATERIALS AND METHODS

Transgenic Tobacco—Transgenic seeds of Nicotiana tabacum L., var.
Samsun NN were obtained from greenhouse-grown plants (6). They
were sterilized and germinated on Murashige-Skoog medium (11) sup-
plemented with 2% (w/v) sucrose and 0.8% (w/v) agar in temperature-
controlled (25 °C) growth chambers under a 16-h light/8-h dark cycle. 80
�g of ml�1 (w/v) kanamycin was added to the medium. Four-week-old
plantlets were transferred to soil to obtain seeds for the physiological
experiments. The antisense lines for the heterotrimeric G protein sub-
unit � were described previously (12).

Growth Conditions of Plant and Fungus—For physiological experi-
ments in Petri dishes, transgenic or wild-type tobacco or Arabidopsis
seeds were surface-sterilized and placed on Petri dishes containing
Murashige and Skoog (11) nutrient medium. After cold treatment at
4 °C for 48 h, plates were incubated for 10 days (Arabidopsis thaliana)
or 14 days (Nicotiana tabacum) at 22 °C under continuous illumination
(100 �mol m�2 sec�1 photosynthetic active radiation). P. indica, a
cultivable plant growth-promoting root endophyte (10), and Pisolithus
tinctorius were cultured as described previously (6, 13).

Co-cultivation Experiments, Determination of Fresh and Dry Weight,
Protein Content, and Nitrate Uptake—14-day-old tobacco (or 10-day-old
Arabidopsis) seedlings were transferred to nylon disks (mesh size 70
�m) and placed on top of a modified MMN1 culture medium (MMN1/10

medium with a 1/10 ratio of nitrogen and phosphorus and no carbohy-
drate) (14) in 90-mm Petri dishes. After 24 h, fungal plugs of 5 mm in
diameter were placed at a distance of 1 cm from the roots. Plates were
incubated at 22 °C under continuous illumination from the side (max-
imum 80 �mol m�2 s�1 photosynthetic active radiation).

Root length was measured with a ruler. The fresh weight of the roots
and aerial parts was determined directly. Proteins were extracted into
a 5-ml extraction buffer (50 mM Tris-HCl, pH 8.0, 0.1% SDS), precipi-
tated with trichloroacetic acid, and the protein concentration was de-
termined according to Lowry. Dry weight of the roots and aerial parts
was determined after incubation of the tissue at 105 °C for 16 h.

For pot experiments, 9-day-old sterile tobacco seedlings were trans-
ferred to sterile soil in pots (25-cm diameter). Aliquots of the soil were
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mixed with 1% (w/v) fungus and put into preformed holes surrounding
the roots of the seedling. Growth was followed in temperature-con-
trolled (25 °C) growth chambers under a 16-h light/8-h dark cycle.

Analysis of the Nia2 Promoter—Some transgenic tobacco lines har-
boring Nia2-promoter::uidA gene fusions were described previously
(15). For the analyses performed here, the Nia2 5�-upstream region
�1088/�1 (relative to the ATG start codon) of At1g37130 was fused to
the uidA reporter gene. Manipulations of the �1088/�1 fragment oc-
curred in pBSC� (Stratagene, San Diego, CA).

Starting from the �1088/�1 Nia2 fragment in pBSC�, 5�-deletions
were obtained with exonuclease III digestions. After religation, the
clones were sequenced. Further analyses were performed with the
following fragments: �1088/�1, �650/�1, �628/�1, �470/�1, �438/
�1, �361/�1, �310/�1, �111/�1, and �89/�1. Although seeds from all
plants were analyzed in parallel, only those plants that gave important
information for this study are mentioned under “Results.”

Site-directed mutagenesis was performed according to Mikaelian and
Sergeant (16) and specified in Ref. 17. The 5�-end of the promoter
segment, obtained after PCR with genomic DNA from A. thaliana,
ecotype Landsberg, was located toward the 3�-end of the vector. The
mutagenized DNA was obtained by three successive PCRs. An oligonu-
cleotide with the mutagenized region and 12 authentic nucleotides on
each side and the T7 primer were used for the first reaction. The second
reaction was performed with the T3 primer and an oligonucleotide
(5�-AAAAAACCGCTCTAGAACTAGTG-3�), which primes 20 bp 3� of
the T7 primer. This oligonucleotide contains a 5�-mismatched end (cf.
Ref. 16). The amplified fragments were purified on agarose gels, and 10
ng of each of them was used for the third PCR reaction with the T3 and
T7 primers. The final products were ligated into pBSC� and sequenced
before transfer to pBI101 (18) as BamHI/SalI fragments. After tripa-
rental mating (19) and plant transformation, 20 independent lines per
construct were generated. For physiological experiments with the seeds
of the F1 generation, detailed analyses were performed only for those
constructs relevant for this study. The transcription start site of the
Nia2 promoter was determined with Arabidopsis root RNA and primer
extension analysis.

For GUS staining, seedlings were harvested and immediately put
into 5-bromo-4-chloro-3-indolyl �-D-glucopyranoside (X-Glc) solution
(50 mg of X-Glc, 1 ml of dimethylformamide, 4.9 ml of 50 mM sodium
phosphate, pH 7.0, 250 �l of Me2SO, 500 �l of potassium hexacyano-
ferrate (III) (100 mM), 500 �l of potassium hexacyanoferrate (II) (100
mM)) and incubated overnight at 37 °C. After washing with water, the
seedlings were incubated in 70% ethanol and stored at 4 °C. For GUS
staining of root hairs, seeds were germinated and seedlings were grown
in liquid Murashige and Skoog medium to avoid hair damage.

RNA Preparation and Quantitative RT-PCR—Total RNA from root
material was isolated with the TRIzol reagent (Invitrogen). RT-PCR
analysis was performed by reverse transcription of 5 �g of total RNA
with gene-specific reverse primers (see below). First strand synthesis
was performed with a kit (K1631) from MBI Fermentas (St. Leon-Roth,
Germany). After 20 PCR cycles, the products were analyzed on 1.5%
agarose gels and stained with ethidium bromide; visualized bands were
quantified with the Image Master Video System (Amersham Bio-
sciences). For Northern analysis, gene-specific primers were designed
to amplify four DNA fragments from our cDNA library (20): Nia2
(At1g37130), SEX1 (At1g10760), and the genes for the homeodomain
transcription factor (At2g35940) and for 2-nitropropane dioxygenase
(At5g64250). The primers were designed such that they amplified the
entire coding region including 4 nucleotides up- and downstream of the
genes.

Gel Mobility Shift Assays—Gel mobility assays were performed with
a fraction enriched in root nuclei proteins from A. thaliana. Approxi-
mately 10 g of Arabidopsis roots was used to isolate a fraction enriched
in nuclei (21). The extracted proteins were further purified on heparin-
Sepharose (Amersham Biosciences) columns. After elution with 700 mM

KCl, the protein fraction was dialyzed against NEB buffer (25 mM

HEPES, pH 7.8, 50 mM KCl, 0.1 mM EDTA, 14 mM �-mercaptoethanol)
and concentrated using spin columns (Amicon, Witten, Germany).
These protein factions were used for gel mobility shift assays and the
filter binding assay.

Five pairs of oligonucleotides (Nia2-a, ATGATAGATAAT, Nia2-b,
ATTATCTATCAT; Nia2mu-a, ATGATGCATAAT; Nia2mu-b, ATTATG-
CATCAT; SEX1-a, CTGATAGATCT; SEX1-b, AGATCTATCAG; SEX-
1mu-a, CTGATGCATCT; SEX1mu-b, AGATGCATCAG; NpdO-a, AGG-
ATCGATGA; NpdO-b, TCATCGATCCT) were annealed and cloned into
the SmaI site of pBSC�. After restriction of the recombinant plasmid
DNA with EcoRI and XbaI, the recessive ends were filled in with
Klenow enzyme and radiolabeled nucleotides, and the insert was iso-

lated by polyacrylamide gel electrophoresis. For the filter binding
assay, the fragments were excised from the plasmid with XbaI and
EcoRI and purified on polyacrylamide gels (5%).

Enzyme Assays—The nitrate reductase (NR) and GUS assays were
described earlier (15, 17). In both instances the system of reference was
an equal amount of fresh weight.

Mass Spectrometry—Proteins extracted from membrane fractions
were further purified by two rounds of methanol precipitation before
digestion with trypsin (6). Alternatively, silver-stained gel spots from
the gels were excised and the proteins extracted into 500 �l of 50 mM

ammonium bicarbonate supplemented with 60 ng/�l trypsin. After ly-
ophilization, the pellet was resuspended in 5 �l of water/acetonitrile/
formic acid (95:5:0.1) prior to liquid chromatography-MS analysis. Pep-
tide analyses, analyte sampling, chromatography, and acquisition of
data were performed on a LC (Famos-Ultimate; LC-Packings) coupled
with an LCQ Deca XP ion trap mass spectrometer according to the
manufacturer’s instructions.

The measured MS-MS spectra were matched with the amino acid
sequences of tryptic peptides from the A. thaliana data base in FASTA
format. Cys modification by carbamidomethylation (�57 Da) was taken
into account, and known contaminants were filtered out. Raw MS-MS
data were analyzed by the Finnigan Sequest/Turbo Sequest software
(revision 3.0; ThermoQuest, San Jose, CA). The parameters for the
analysis by the Sequest algorithm were set according to Stauber et al.
(22). The similarity between the measured MS-MS spectrum and the
theoretical MS-MS spectrum, reported as the cross-correlation factor
(xcorr) was above 2.95 and 3.85 for doubly or triply charged precursor
ions, respectively. To identify corresponding loci, identified protein se-
quences were subjected to BLAST search at NCBI (www.ncbi.nlm.nih.
gov/) and FASTA searches by using the AGI protein data base at The
Arabidopsis Information Resource (www.arabidopsis.org/).

Macroarray Analyses—RNA was isolated from Arabidopsis roots 2
and 5 days after co-cultivation with P. indica. The macroarray filters
used for the hybridization and the hybridization conditions have been
described previously (23). Genes identified in these studies and those
that responded to P. indica were further analyzed in separate RT-PCR
studies. Only those genes that are relevant for this study are mentioned
here.

Miscellaneous—DNA extraction was performed according to stand-
ard protocols (24). Western analyses with polyclonal antibodies raised
against nitrate reductase (gift from Dr. K.-J. Appenroth) and the �-sub-
unit of heterotrimeric G proteins from tobacco (25) were performed
according to Stöckel and Oelmüller (26). Denaturing polyacrylamide gel
electrophoresis was performed with the buffer system from Laemmli
(27). Determination of total nitrogen was performed with Kjeldahl
equipment and protocols provided by “behr Labor-Technik” (Düsseldorf,
Germany). Roots of control and inoculated plants were stained with
cotton (blue) before examination under the light microscope (Zeiss Ax-
ioplan model MC 100).

RESULTS

Co-cultivation of Tobacco Seedlings with P. indica—14-Day-
old tobacco seedlings were transferred to MMN1/10 medium and
inoculated with P. indica. The fungal inoculum was placed 1 cm
away from the roots. MMN1/10 medium was chosen because it
contains low concentrations of phosphate and nitrate and no
carbon source, conditions known to promote the interaction
between plants and symbiotic fungi. The fungus grew slowly on
the co-cultivation medium and produced only a few spores. A
difference in root growth was not observed within the first 2
days of co-cultivation. After 5 days, a stimulatory effect of
P. indica on root growth became visible. After 7 days, the
inoculated seedlings were significantly larger and heavier
when compared with control seedlings, and after 10 days the
size of the tobacco seedlings was substantially larger (cf. Fig. 1A,
a and b, cf. also B–D). We also inoculated plants with the
ectomycobiont P. tinctorius because it was shown that hypa-
phorine, a major indolic compound from this fungus, has an
impact on Arabidopsis root growth (28). However, seedlings
inoculated with P. tinctorius did not differ from the uninocu-
lated controls (Fig. 1A, c–f). The stimulatory effect of P. indica
on the growth of tobacco was still detectable 6 weeks after
transfer of the seedlings to soil, and inoculated plants were
much bigger compared with their controls (Fig. 1E). This is not
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surprising considering the extensive colonization of the outer
cell layers of the roots by the fungal hyphae (Fig. 1, F and G).
After the initial lateral growth (Fig. 1F), the fungus produced
spores, which could be detected in almost all outer root cells
(Fig. 1G). It can be concluded that under the given conditions,
growth of tobacco seedlings is substantially stimulated by
P. indica, similar to previous observations with A. thaliana
seedlings2 (6, 30, 31).

P. indica Stimulates Nitrate Uptake and Nitrate Reductase
Gene Expression—After 10 days of co-cultivation with P. indica
the fresh weight of the aerial parts of the tobacco seedlings was
enhanced by 42.2 � 3.8%, the dry weight by 41.0 � 4.0%, and
the total protein content by 42.2 � 3.1% (n � 480 seedlings).
This was accompanied by substantial recruitment of nitrogen
from the agar medium. Based on equal amounts of fresh
weight, the nitrogen content in the aerial parts of the seedlings
increased by 21.4 � 4.4%. Thus, considering the larger size of
the cotyledons, �60% more nitrogen must have been trans-
ferred from the medium to the aerial parts of the seedlings.
This prompted us to investigate the effect of P. indica on
nitrate assimilation in more detail. We focused on seedlings
grown on agar because quantitative analyses were much easier
when compared with adult plants grown on soil.

Co-cultivation of tobacco seedlings with P. indica causes a
50.2 � 4.2% increase in the plant-specific NADH-dependent
NR activity in the roots. Western analysis with antibodies
against plant NR confirmed that the higher NADH-dependent
enzyme activity correlated with an increase in the amount of
the root enzyme (Fig. 2). Equal loading of root protein extracts
was confirmed with an antibody against the �-subunit of het-
erotrimeric GTP-binding proteins (25). Thus, in contrast to
mycorrhizal symbioses, the endophytic fungus P. indica stim-
ulates the assimilatory enzyme NR. The stimulatory effect of
P. indica on NR is predominantly found in roots and to a much
lesser extent in the shoots (12.2 � 1.2%). Thus, the higher
nitrogen level in the aerial parts of the seedlings after co-
cultivation with P. indica must be caused by more efficient
nitrate assimilation in the roots. In principle, the same results
were obtained for Arabidopsis seedlings except that the overall
stimulation of NR activity in the roots was only 29.8 � 3.1%.

The Arabidopsis Nia2 5�-upstream region �1088/�1 (rela-
tive to the ATG codon, the transcription start site is located 88
nucleotides upstream of the ATG codon) fused to the �-glucu-
ronidase gene (uidA) was introduced into Nicotiana. When
co-cultivated with P. indica, a stimulatory effect can also be
monitored at the level of transgene expression (Table I). Com-
parable with the results obtained for NR activity, P. indica
stimulated uidA gene expression in tobacco roots by �50%.
Again, a much lower stimulatory effect was observed in shoots
(�10–15%).

Deletions of the promoter from �1088 to �470 had no sig-
nificant effect on uidA expression, whereas further deletion to
�438 caused an �60% decrease in uidA expression in roots but
not in shoots. Thus, the region �470/�439 appears to be im-
portant for the promoter activity in roots.

Replacement of AG by GC in the ATGATAGATAAT sequence
(�459/�448) within this region causes the same decrease in
GUS activity as deletion from �470/�1 to �438/�1 (Table I).
Furthermore, although the �111/�1 segment is active in roots
and shoots, deletion to �89 completely abolishes the promoter
activity. Thus, an additional crucial cis-element(s) for Nia2
expression appears to be located in the region between �111
and the transcription start site at position �88. Random site-
directed mutagenesis in the latter region in the context of the
�1088/�1 fragment followed by expression analysis in trans-
genic tobacco revealed that the two GT nucleotides directly

2 Oelmüller, R., Peškan-Berghöfer, T., Shallohari, B., Trebicka, A.,
Sherameti, I., and Varma, A. (2005) Physiol. Plant. 124, 152–166.

FIG. 1. Tobacco plants grown in the
presence or absence of P. indica or
P. tinctorius. A, 24-day-old tobacco seed-
lings grown either in the absence (a and f)
or presence of P. indica (b) or P. tinctorius
(c–e). Bars represent 1 cm. B–D, 24-day-
old tobacco seedlings overexpressing an
antisense block for the �-subunit of het-
erotrimeric GTP-binding proteins. B, line
14-4; C, line 15-4; D, line 15-6, represent-
ing independent primary transformants.
Top, without P. indica; bottom, with
P. indica. E, tobacco plants 6 weeks after
transfer of the seedlings to pots. Middle,
without P. indica; left and right, with
P. indica. Bar represents 10 cm. F, the
outer cell layers of inoculated roots under
the light microscope (Zeiss Axioplan
model MC 100). Arrowhead, fast dividing
fungal cells, which are in focus. Bar rep-
resents 100 �m. G, root epidermal cells
stained with cotton (blue). Bar represents
100 �m.

FIG. 2. Western analyses with antibodies against nitrate re-
ductase (left) and the G� (right, control). Protein extracts from
24-day-old tobacco roots were either grown in the absence (�) or pres-
ence (�) of P. indica. 25 �g of protein was loaded per lane.
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upstream of the transcription start site and the CA nucleotides
at position �97/�96 play a crucial role in the promoter activity
in vivo because replacement of GT by AA and of CA by GC
completely abolished gene expression. The close vicinity of the
CA and GT motifs to the transcription start site makes it
unlikely that this region functions as a TATA box element.
Taken together, the �470/�439 and �97/�89 regions up-
stream of the ATG codon are essential for Nia2 promoter ac-
tivity in transgenic tobacco.

GUS staining revealed that the promoter was active in al-
most all of the living cells of the roots (Fig. 3). High GUS
activity is found in the living cells of the vascular tissue. In the
larger cells surrounding the vascular tissue, the stain is mainly
detectable in the narrow cytoplasmic tubes attached to the
plasma membrane. Most of the GUS staining was observed in
the cytoplasm of the root hair (Fig. 3, upper panel, cf. also Ref.
15). Semiquantitative analysis revealed that the stimulatory
effect of P. indica on uidA gene expression in the root hairs is
at least 2-fold, i.e. significantly higher than the effect observed
for the entire root (data not shown). When grown in the pres-
ence of P. indica, a significant stimulation of uidA expression in
the roots was detected for all active fragments tested. However,
the extent of the stimulatory effect in the roots declines dra-
matically when the promoter is deleted from �470 to �438
(Table I). Thus, in addition to its specific role for Nia2 promoter
activity in roots, the �470/�439 region also functions as a
P. indica-responsive element in the Nia2 promoter. A stimula-
tory effect in response to P. indica was still measurable for the
�110/�1 promoter fragment (24 � 2%), although to a lesser
extent. Thus sequences within this segment in combination
with or in addition to the P. indica-responsive element are
involved in P. indica-mediated Nia2 expression. A fusion of the
�470/�439-bp region to the �90-bp cauliflower mosaic virus
minimal promoter did not respond to P. indica (data not
shown).

A double-stranded nucleotide from the �459/�448 segment
ATGATAGATAAT shows a retarded band in gel mobility shift
assays with nuclear extracts from Arabidopsis roots (Fig. 4). No
retardation is detectable with the double-stranded mutant ol-
igonucleotide ATGATGCATAAT. Furthermore, the binding
can be competed with an excess of the original but not with
mutant oligonucleotide (Fig. 4). These and other results (cf.
below) indicate that root nuclei from Arabidopsis contain a
protein(s), which binds to the P. indica-responsive element in
the Nia2 promoter.

The Nia2 Promoter Binds a Homeodomain Transcription
Factor in Vitro, and the Message for the Transcription Factor Is
Up-regulated in Response to P. indica—The Nia2 (and the
mutant) double-stranded promoter segments were immobilized
on nylon membranes. The membranes were then incubated
with nuclear extract from Arabidopsis roots for �60 h at 6 °C
under continuous shaking. The filters were washed five times

with 90 mM NaCl (10 min each, first at 6 °C, then at 18 °C).
Finally, DNA-bound proteins were solubilized by boiling the
membranes in loading buffer, and the extracted proteins were
analyzed on SDS-polyacrylamide gels. Two dominant protein
bands of �75 and 160 kDa, which are not detectable in protein

FIG. 3. Upper panel, cross-section through a root from a 24-day-old
tobacco seedling stained for GUS. Lower panel, a growing root hair;
GUS staining is visible in the cytoplasm. The seedling expresses the
uidA gene under the control of the �1088/�1 bp Nia2 promoter frag-
ment from A. thaliana.

FIG. 4. Gel mobility shift assays with the Nia2 promoter frag-
ment ATGATAGATAAT, the NpdO promoter fragment AGGATC-
GATGA, and the SEX1 fragment CTGATAGATCT with nuclear
extract from Arabidopsis roots. The figure also shows cross-compe-
tition experiments between the binding activities to these fragments. �,
lanes without nuclear extract. Lane 1, retardation assay with ATGATA-
GATAAT (Nia2); lanes 2–5, competition with increasing concentrations
of cold fragment (Nia2); lanes 6–9, competition with increasing concen-
trations of cold ATGATGCATAAT fragment (Nia2). Lanes a and d,
retardation assay with AGGATCGATGA (NpdO); lane b, competition
with excess Nia2 fragment ATGATAGATAAT (NpdO); lane c, competi-
tion with excess SEX1 fragment CTGATAGATCT (NpdO). Lane 1,
retardation assay with CTGATAGATCT (SEX1); lanes 2–5, competition
with increasing concentrations of the Nia2 fragment ATGATAGATAAT
(SEX1). For experimental details, cf. “Materials and Methods.”

TABLE I
GUS activity in 24-day-old transgenic tobacco seedlings, grown in either the presence (�) or absence (�) of P. indica

The uidA gene was expressed under the control of the Arabidopsis Nia2 promoter fragment �1088/�1, �470/�1, �438/�1 or Mu (�470/�1, in
which AG at position �454/�453 was replaced by GC). Experimental details, cultivation of the seedlings, and the enzyme assays are described
under “Materials and Methods.” The enzyme activity was determined separately for shoots and roots. For each value, 490 individual plants were
analyzed. The system of reference is fresh weight. The protein content in the shoots and roots increased linearly with the fresh weight. Errors are
given as S.E.s.

GUS activity

�1088/�1 �470/�1 �438/�1 Mu

� � � � � � � �

nmol/g�1 min�1

Shoot 87.1 � 4.1 102.2 � 4.1 89.2 � 3.4 98.7 � 4.1 89.5 � 6.2 107.3 � 6.3 91.7 � 3.9 103.4 � 5.1

Root 11.3 � 0.2 21.3 � 0.1 10.0 � 0.2 20.1 � 0.2 1.7 � 0.2 8.9 � 0.3 1.5 � 0.1 8.3 � 0.8
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extracts from the control oligonucleotide (Fig. 5), can be eluted
from the Nia2 oligonucleotide. The bands were extracted from
the gel and analyzed by mass spectrometry after trypsin diges-
tion. The lower band corresponds to the Arabidopsis frag-
ments SLGEEDSVSGVGR and TSDETMMQPINADFSSNEK.
Searches of the literature show that the upper band correspond
to GSCGNDK and PVELGTAER. The four peptides are present
in the homeodomain protein At2g35940. In the upper band, we
could also identify peptides that correspond to other homeod-
omain transcription factors; however, the xcorr values were too
low to allow conclusions. It appears that the upper band cont-
ains components of a larger, unresolved complex together with
At2g35940 (cf. “Discussion”).

Northern analyses uncovered that the message for
At2g35940 is up-regulated in roots co-cultivated with P. indica
(Fig. 6). Stimulation of the homeodomain protein mRNA level
was observed before the Nia2 mRNA level increased.

The Expression-relevant Upstream Region ATGATA-
GATAAT of the Nia2 Promoter Exhibits Sequence Similarities
to a SEX1 Promoter Region for the Starch-degrading Enzyme
Glucan-water Dikinase and to a Region in the 2-Nitropropane
Dioxygenase (At5g64250) Promoter, and the Messages of All
Three Genes Are Up-regulated in Response to P. indica—Com-
puter analyses uncovered that sequences with similarities to
the expression-relevant ATGATAGATAAT element are also
present in the SEX1 promoter (�1182, CTGATAGATCT,
�1172) and the promoter of the 2-nitropropane dioxygenase
(At5g64250) (�238, AGGATCGATGA, �228). A gel shift assay
with double-stranded oligonucleotide sequences from these two
promoter regions confirmed that they also bind to protein fac-
tors from root nuclei extracts (Fig. 4). Because both binding
activities competed with the Nia2 promoter sequence, it is
likely that they bind to the same or similar DNA-binding pro-
teins (Fig. 4). Furthermore, filter binding assays with the SEX1
promoter segment led to the identification of the same two
protein bands of 75 and 160 kDa, which also bind to the Nia2
promoter sequence, although the amounts of the two bands
relative to each other differed for the two fragments (Fig. 5).
Mass spectrometry identified a peptide that corresponds to
PVELGTAER in the lower band and to LSNMLHEVEQR in the
upper band; both are present in At2g35940. No reproducible
data with this assay could be obtained for the At5g64250 pro-
moter segment, presumably because the binding activity to this
fragment was too low (data not shown). Macroarray and North-
ern analyses confirmed that the SEX1 and At5g64250 mes-
sages also respond to P. indica. Although the SEX1 and Nia2
messages accumulate with similar kinetics (Fig. 6), the
At5g64250 message begins to accumulate earlier, although
later than the message for the homeodomain transcription
factor (Fig. 6). The enzyme glucan-water dikinase catalyzes the

phosphorylation of starch by a dikinase-type reaction in which
the �-phosphate of ATP is transferred to either the C-6 or the
C-3 position of the glycosyl residue of amylopectin. As a conse-
quence, transitory starch is more rapidly degraded (cf. Refs.
32–34). Up-regulation of the message for this enzyme in re-
sponse to P. indica might have two functions. Starch break-
down products released from the root amyloplasts might be
required for growth that is promoted by P. indica or for the
export to the fungus, which is dependent on sucrose supply
from the plant. It appears that nitrate assimilation and starch
degradation is co-regulated in Arabidopsis roots via the same
cis-elements in their promoters. 2-Nitropropane dioxygenase
might have different functions in the interaction. The enzyme
incorporates molecular oxygen into 2-nitropropane and re-
leases acetone and nitrite. Thus, the enzyme might detoxify
2-nitropropane, which is generated under stress or as a defen-
sive toxin (35), and generates nitrite, which might serve as an
additional nitrogen source. Plants also detoxify 2-nitropropane
from the environment because it is used commercially as a
solvent, although it is a known mutagen (36, 37).

Growth Promotion and Stimulation of Nitrate Assimilation
by P. indica Does Not Require Heterotrimeric G Proteins—We
tested whether P. indica can stimulate growth and NR in
tobacco lines expressing an antisense construct for the �-sub-
unit of heterotrimeric GTP-binding proteins (G�). Previously,
we have characterized three tobacco lines in which G� was
severely reduced in green leaves (12). Fig. 7 demonstrates that
a comparable reduction of G� can also be observed in root.
Severely reduced levels of G� do not inhibit the stimulatory
effect of the fungus on growth (Fig. 1, B–D) and NR activity
(data not shown). Thus, bulk G� is not required for P. indica
action.

DISCUSSION

Nitrate Assimilation Is Stimulated by P. indica—We demon-
strate that co-cultivation of tobacco and Arabidopsis seedlings
with P. indica is accompanied by a massive transfer of nitrogen
from the agar plates into the aerial part of the seedlings, an
observation that is not surprising considering the growth pro-
motion caused by the fungus. This effect is associated with a
stimulation of the NADH-dependent NR, the key enzyme of
nitrate assimilation in plants. Whether the stimulation of ni-
trate assimilation by P. indica is the reason for the growth
promotion or the result of it remains to be determined. A
stimulatory effect of mycorrhizal associations has also been
reported for nitrate uptake into tomato root cells (38). However,
recruitment of nitrogen in endophytic interactions differs from
mycorrhizal interactions in which the fungus preferentially
recruits ammonium rather than nitrate from the soil (cf. Refs.
3 and 4). Moreover, several studies have demonstrated that
after the establishment of ectomycorrhizal symbioses, the fun-
gal NR is increased and the plant enzyme down-regulated (4,
38, 39). Apparently in mycorrhizal symbioses, amino acids rep-
resent the major compounds that serve to transfer nitrogen to
the host plant (38). We did not study NR in the fungal hyphae,

FIG. 5. Silver-stained gel with proteins extracted from filter-
bound oligonucleotides. Wild-type Nia2, ATGATAGATAAT; wild-
type SEX1, CTGATAGATCT; mutant Nia2, ATGATGCATAAT; mutant
SEX1, CTGATGCATCT. Left, sizes in kDa.

FIG. 6. Northern analyses for the homeodomain transcription
factor (Homeo), Nia2, SEX1, and 2-nitropropane dioxygenase
(NpdO) genes. RNA was extracted from Arabidopsis roots 0, 3, 6, and
10 days after co-cultivation with P. indica. An equal amount of RNA (25
�g) was loaded per lane.
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and thus we cannot exclude that the fungal NR also contributes
to nitrate assimilation. However, it appears that the fungal NR
alone cannot account for the entire nitrate assimilation.

A Homeodomain Transcription Factor Appears to Be Involved
in Nitrate Assimilation—P. indica activates uptake of nitrate
and induces a signaling pathway, which ultimately leads to a
higher transcription of Nia2, SEX1, and the gene for 2-nitropro-
pane dioxygenase. The ATGATAGATAAT sequence in the Nia2
promoter was shown to be crucial for the regulation of the ex-
pression, and a homeodomain transcription factor binds to this
sequence in vitro. Binding activity was also observed to a related
motif in the SEX1 promoter. The 2-nitropropane dioxygenase
promoter also contains a conserved motif; however, we could not
demonstrate conclusively that this element also binds to the
same transcription factor. The homeodomain factor was identi-
fied by mass spectrometry. Most strikingly, the message for the
transcription factor itself was up-regulated by the fungus in
Arabidopsis roots. This was first discovered by macroarray anal-
yses with 4000 randomly chosen cDNAs from Arabidopsis; the
homeodomain transcription factor attracted attention because its
message was among the few transcription factor messages, which
was up-regulated by the fungus in Arabidopsis roots.3 Later, this
result was confirmed by RT-PCR and Northern analyses. Be-
cause homeodomain proteins are involved in the transcriptional
regulation of key eukaryotic developmental processes, we pro-
pose that this factor might play a crucial role in coupling the
expression of P. indica-responsive genes to upstream signaling
events. We also propose that the genes identified in this study
(for enzymes involved in nitrate assimilation, starch degradation,
and detoxification of nitroalkanes) are not the only ones that are
regulated by this transcription factor. Homeodomain proteins
bind to DNA as monomers or as homo- and/or heterodimers in a
sequence-specific manner, and thus their target genes depend on
their interaction partners. The upper band on the SDS gel, which
contains the homeodomain transcription factor, might therefore
represent an unresolved protein-DNA complex, which contains
another homeodomain partner(s). The best studied homologs of
the protein identified in this study are the BEL1-like transcrip-
tion factors from potato (40). Seven members of the BEL1 protein
family interact with KNOX transcription factors, and they con-
trol vegetative development and tuber formation. A rice homolog
of the homeodomain protein is inducible by benzothiadiazole, a

component that induces disease resistance in Arabidopsis and
wheat by activation of the systemic acquired resistance signal
transduction pathway (41, 42). Benzothiadiazole also activates
resistance in sunflower to the root-parasitic weed Orobanche
cumana (43). This suggests that the identified homeodomain
transcription factor might also be involved in signaling pathways
related to plant/microbe interaction.

Hoth et al. (44) have identified At2g35940 as one of the genes
that are up-regulated in response to abscisic acid. Whether
abscisic acid- and P. indica-signaling in roots is related to each
other is unknown at present.

Heterotrimeric GTP-binding Proteins Are Not Involved in
P. indica-induced Growth Promotion and Nitrate Assimila-
tion—Heterotrimeric GTP-binding proteins are tested here be-
cause they are involved in many signaling events including
those for plant/microbe interactions. However, antisense to-
bacco lines with severely reduced G� protein levels exhibit a
normal growth response to P. indica and contain elevated lev-
els of NR. This indicates that bulk levels of heterotrimeric G
proteins are not involved in P. indica-induced signaling events.
A similar result has been described for the defense of barley
against the powdery mildew fungus (45).

A Comparative Analysis of Promoter Regions Led to the Iden-
tification of New Genes with a Similar Response Pattern—We
identified four genes that are up-regulated in response to
P. indica, i.e. the gene for the homeodomain transcription fac-
tor itself as well as three genes that share a conserved sequence
element. For two of these elements (the ATGATAGATAAT
motif in the Nia2 promoter and the CTGATAGATCT motif in
the SEX1 promoter) we could show binding to the homeodo-
main transcription factor in vitro. Comparison of these two
sequences with the AGGATCGATGA element in the promoter
of the 2-nitropropane dioxygenase suggests that the central
GAT(A/C) GAT(C/T) sequence might be crucial for binding.
TAGA is also part of the binding site of the homeodomain
protein POU3F1 (29). The three enzymes have in common that
they are involved in key metabolic processes in roots (nitrate
assimilation, starch degradation, and detoxification of nitro
compounds). It remains to be determined whether other genes
contain similar DNA binding sites and thus might also be
regulated by the homeodomain transcription factor.
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Discussion 
 

 

3. Discussion 
 
Role of receptor kinases in cellular signalling processes. 

 

Plant/microbe recognition is often mediated via receptor kinases (RKs) which exhibit a 

high degree of variation in their receptor domains and, after ligand binding and 

receptor oligomerization, activate an intracellular kinase domain (Torii 2004). The 

kinase domains play important roles in signalling, because they provide docking sites 

for substrates that are implicated in activating downstream phosphorylation cascades. 

Additionally, proteins that are involved in the regulation of receptor activity could 

directly bind to the kinase domain (Johnson and Ingram 2005). 

An important mechanism for regulating plant RK signalling at the subcellular level is 

realized by restriction of their localisation to microdomains or lipid rafts. This 

mechanism is probably mediated by cytoplasmic interactions and was shown to be an 

important mechanism for the spatial control of signalling in animal systems (Foster et 

al. 2003). Formation of microdomain-like structures that contain specific plasma 

membrane proteins at sites of infection has recently been shown to be important in 

disease resistance (Bhat et al. 2005). 

Studies of animal receptor kinases revealed that a ligand binds to the extracellular LRR 

domain and causes receptor dimerization, which triggers the subsequent activation of 

the intracellular kinase domain. The activated kinases then phosphorylate substrate 

proteins within the cell, resulting in the transduction of the signals (Hunter 1995). 

Recently, a number of RKs with this characteristic architecture have been identified 

also in plants. The sequence homology and structural similarity of animal and plant 

RKs suggests similar mechanisms of action of these signal transduction pathways 

(Zhang 1998). 

Many RKs contain extracellularly located leucine-rich repeats (LRR), which might be 

involved in the perception of microbial signal molecules (Hause and Fester 2005). It is 

not clear whether ligand binding induces dimerization and/or phosphorylation of LRR-

RKs. Likewise, it is not known whether forcing dimerization can trigger constitutively 

active signal transduction of plant LRR-RKs. In the majority of LRR-RKs, the LRR 

domain seems to play a role as receptor heterodimer, followed by the activation of the 

intracellular kinase domain. Mutations in the kinase domain inactivate the signalling 
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process, as shown for BRI1, CLV1, ERECTA, FLS2, and SYMRK/NORK, and confer 

severe phenotypes (Clark et al. 1997; Gomez-Gomez et al. 2001; Lease et al. 2001; 

Stracke et al. 2002; Endré et al. 2002). Several studies indicate that LRR-RKs act as 

dimers, and some may form a receptor complex with an LRR-domain that lacks the 

cytoplasmic kinase region (Torii 2004). Some LRR-RKs, including CLV1 and BRI1, 

may form a core receptor dimer in the absence of corresponding ligands, to which 

other compounds become associated after activation. For instance, CLV1 and CLV2 

exist as a disulfide-linked core receptor dimer (Trotochaud at al. 1999). In yeast cells it 

was found that BRI1 and BAK1 constitute a ligand–independent dimer, because they 

associate with each other in the absence of the activating ligand (Li et al. 2002; Nam 

and Li 2002). 

The identified ligands for LRR-RKs are structurally diverse, from steroids to peptides 

and secreted proteins. Studies of CLV1, BRI1, and FLS2 signaling pathways revealed 

that downstream components of LRR-RKs also differ substantially, although the logic 

of signal transduction, such as activation or repression of the downstream components 

via phosphorylation/dephosphorylation, appears universal (Torii 2004). 

SYMRK, a RK involved in mycorrhiza and nodule formation in Legumes, favours a 

model in which the extracellular domain is involved in the perception of an 

extracellular ligand, and the signal is then transduced through the intracellular kinase 

domain. Whether the LRRs of SYMRK are required for the direct interaction with a 

signalling ligand, or they play a role in the assembly of a receptor complex, is still not 

known. It may be possible that bacterial and fungal signal molecules are sufficiently 

similar to be recognized by the same receptor, or alternatively, additional specific 

components are involved which perceive either the rhizobial Nod factors or an as yet 

hypothetical signal emanating from the arbuscular mycorrhiza fungus (Kistner and 

Parniske 2002). The fact that SYMRK has kinase activity supports furthermore the 

idea that the signal is transduced via a phosphorylation event (Yoshida and Parniske 

2005). A popular conceptual model proposes that SYMRK/DMI2 acts upstream of 

DMI1 and regulates channel activity, probably by phosphorylation (Parniske 2004; 

Riely 2004). DMI1 is a candidate for mediating early ion fluxes across the plasma 

membrane, although its location is not clear at present (Hogg et al. 2006). In Legumes, 

mycorrhiza formation by fungi and nodule formation by nitrogen-fixing bacteria 

require common signalling components, due to the same components required for 

entry mechanism of both organisms into the root cell (Kistner and Parniske 2002; 
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Parniske 2004; Udvardi et al. 2005; Harrison 2005; Geurts et al. 2005). One of the 

crucial components required for both interactions in Legumes is DMI1 (Ané et al. 

2004). DMI1 does not cause calcium spiking, and the early calcium flux into the root 

hairs is intact in the DMI1 mutant (Shaw and Long 2003). The calcium spiking 

response occurs in the DMI3 mutant, and therefore DMI3 is placed downstream of 

DMI1, SYMRK/DMI2 and the calcium spiking response (Wais et al. 2000). On the 

basis of the identification of DMI3 as a calcium-calmodulin-dependent kinase, it is 

anticipated that DMI3 perceives and transduces the calcium spiking signal, leading to 

the activation of downstream responses including the expression of early nodulation 

genes (Levy et al. 2004; Mitra et al. 2004). It has been shown in this study that 

inactivation of the DMI1 homolog in A. thaliana, a single copy gene expressed 

exclusively in roots, does not eliminate the interaction with the fungus P. indica. This 

means that the entry mechanism of the fungus into the A. thaliana root cell appears to 

differ from the entry of fungi and bacteria into Legume root cells. This raises the 

question whether Legume mycorrhiza utilize genetic programs, which differ from 

those in primitive plant-fungi interactions (Shahollari at al. 2006). More recently, 

Kost´s group (Marburg, personal communication) has provided evidence that P. indica 

can colonize root and root hair cells, but these cells are either dead or weakened. 

Although these studies were not confirmed for A. thaliana, they support our results that 

the colonization of root cells by P. indica differs from that of mycorrhiza fungi.  

For the rhizobium-legume interaction, the input signal is defined and activation of the 

pathway occurs via the Nod factor receptors NFR1/LYK3 and NFR5 (Limpens et al. 

2003; Madsen et al. 2003; Radutoiu et al. 2003). For the arbuscular mycorrhiza, the 

input and, consequently, the beginning of the pathway are not yet clear. There might be 

additional receptors, or the pathway might begin with the SYMRK/DMI2 receptor 

kinase (Harrison 2005). 

 

 

LRR1 is an atypical receptor kinase involved in the interaction between P. indica 

and A. thaliana roots. 

 

Based on differential display and microarray analysis, the mRNA for a LRR-RK called 

LRR1 was isolated in the present research. No functional knock out line for this 

protein was available in the A. thaliana databases. I, therefore, characterized a knock 
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out line with an insertion in the promoter region. However the LRR1 gene was 

expressed in this line and therefore, the response to P. indica was normal. Thus, a 

direct proof for the involvement of LRR1 in the interaction between A. thaliana and P. 

indica is still missing. However, two lines of evidence suggest that LRR1 should be 

involved in the interaction. First, the LRR1 mRNA is transiently upregulated in roots 

during the recognition process of the two symbiotic partners. Second, in a knock out 

line for LRR2, the LRR1 protein (together with LRR2) fails to accumulate in the 

Triton X-100 insoluble plasma membrane microdomains. LRR1 (Fig. 7) exhibits 

sequence similarities to a LRR protein which is upregulated in response to salicylic 

acid (Ohtake et al. 2000), to an atypical receptor kinase with a defective kinase domain 

(Llompart et al. 2003), to several LRR proteins reported to be involved in pollen-tube 

development (Muschietti et al. 1998; Kim et al. 2002), to the peptide hormone 

phytosulfokine receptor (Matsubayashi et al. 2002) and the brassinosteroide insensitive 

receptor kinase BRI1 (Li and Chory 1997, cf. Bishop and Koncz 2002). Upregulation 

of the mRNA for LRR1 appears to be specific for P. indica and is not observed for 

other fungi and also not for a set of other LRR protein mRNA tested (Shahollari et al. 

2005). Finally, mutants which fail to respond to P. indica, also do not upregulate the 

LRR1 mRNA during the recognition period. 

 

             

 
 

 
Figure 7. Schematic representation of the LRR1 protein. LRR1 signature motifs include a signal 
peptide, an extracellular LRR domain, a transmembrane domain and an atypical kinase domain (aa 
amino acids). 
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LRR1 appears to be an atypical receptor kinase (Fig. 8), which transduces signals by 

phosphorylation-independent mechanisms (Kroiher et al. 2001). Although the 

intracellular domains of atypical receptor kinases such as LRR1 contain conserved 

serine/threonine kinase domains, some of the highly conserved amino acids within 

these domains are altered. For instance, an aspartic acid in the subdomain IVb which is 

assumed to be part of the kinase-active site (Knighton et al. 1993) is replaced by 

asparagine (position 468) and the phenylalanine and glycine within the DFG activation 

loop are respectively replaced by tyrosine and cysteine (positions 487 and 488) in 

LRR1. The crucial role of the phenylalanine in the DFG triplet has been demonstrated 

for H-Ryk (Katso et al. 1999).  

 

                                
                   
Figure 8. Model how the LRR1 and MATH proteins can be involved in signalling pathways. This 
model describes the mechanism how the LRR1 and MATH proteins can be involved in signalling 
pathways in early steps of the recognition between A. thaliana and P. indica. The MATH protein might 
be involved in peptide cleavage from pro-signal to the signal. This signal is then recognised by the LRR 
domain. Since the LRR1 protein has an atypical kinase domain, it needs an interaction partner, like 
kinase proteins to induce the signal. G proteins (αβγ) do not play a role in the interaction. 
 

 

Identical or similar amino acid substitutions have also been observed for MARK, a 

maize atypical receptor kinase which does not autophosphorylate in vitro (Llompart et 

al. 2003). The intracellular domain of MARK interacts with the regulatory domain of 
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MIK, a germinal center kinase-like kinase, and strongly induces MIK kinase activity. 

Llompart et al. (2003) proposed that MIK could represent a novel component for 

signalling through atypical receptor kinases in plants. Interestingly, an atypical 

receptor kinase of the LysM type is also involved in legume perception or rhizobial 

signals (Madsen et al. 2003). One might speculate that both kinases can activate the 

same downstream signalling path. 
 

 

A second leucine-rich repeat protein, LRR2, is essential for the stimulatory effect 

of P. indica on A. thaliana growth and enhanced seed production. 

 

It could be shown here that another leucine-rich repeat containing protein, called LRR2 

(cf. Tab.1), is required for the interaction between A. thaliana and P. indica. In a P. 

indica insensitive (Pi)-EMS mutant, called Pi-2, none of the normally observed 

responses of Arabdiopsis to P. indica were detectable. This includes the growth 

response and the enhanced production of seeds (Shahollari et al. 2006). The EMS 

mutant is defective in the gene encoding LRR2. A conversion of G to A at an 

exon/intron junction prevents intron splicing, leading to the accumulation of a non-

functional LRR2 mRNA. A T-DNA knock out line for the same gene has also no 

responses to P. indica. Thus, LRR2 appears to be crucial for the interaction between P. 

indica and A. thaliana. 

LRR2 was purified with A. thaliana Triton X-100 insoluble plasma membrane 

microdomains (Shahollari et al. 2004). The protein lacks a predictable transmembrane 

segment (Fig. 9) and can easily be removed from the microdomains by extended 

detergent treatments. Thus, LRR2 appears to be a soluble protein which is loosely 

attached to these membrane preparations. The predicted signal sequence suggests that 

LRR2 is sorted via the secretory pathway. Based on the KKxx endoplasmic reticulum 

retardation sequence in the C terminal part of the protein, LRR2 appear to remain in 

the endoplasmic reticulum. Although significantly shorter, LRR2 exhibits striking 

similarities to the Cf-2/4/5/9s, tomato transmembrane proteins which confer resistance 

to Cladosporium fulvum (Dixon et al. 1996; de Wit et al. 1999, 2002; Rivas and 

Thomas 2005). Comparison of the LRR2 protein with tomato Cf proteins makes it 

unlikely that LRR2 is the primary target site for fungal elicitors (Rivas and Thomas 

2005; Rooney et al. 2005).  
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Figure 9. Schematic representation of the LRR2 protein. LRR2 signature motifs include a signal 

peptide, a LRR domain and a KKLE sequence (aa amino acids). 

 

 

In particular, the C and N-terminal domains present in Cf2 proteins are not found in 

LRR2, suggesting that the protein alone cannot receive signals directly and transfer 

them to downstream components. Thus, the conserved LRR domain in the LRR2 

protein might be crucial for its function, presumably by establishing and/or controlling 

protein/protein interactions required for the beneficial interaction between the two 

symbiotic organisms. The LRR sequence of LRR2 exhibits also striking similarities to 

TOO MANY MOUTHS (TMM), a transmembrane LRR-RK. The protein appears to 

function in a position-dependent signaling pathway that controls the plane of 

patterning divisions as well as the balance between stem cell renewal and 

differentiation in stomatal and epidermal development (Nadeau and Sack 2002, 2003; 

Shpak et al. 2005). Similar to LRR2, TMM also lacks a recognizable intracellular 

domain for downstream signalling. Thus, both components might require interaction 

partners with co-receptor kinase activities. 

 

 

LRR1, LRR2 and additional five LRR proteins are localised in Triton X-100 

insoluble plasma membrane microdomains in A. thaliana. 

 

The observation that LRR1 and LRR2 are present in Triton X-100 insoluble plasma 

membrane microdomains offers the opportunity to identify interacting signalling 

components with biochemical means. Proteins, presumably interacting with or residing 

in lipid rafts are therefore often enriched and identified based on their ability to float in 

vitro on gradients with detergent-resistant membranes (DRMs) that were derived from 
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cell lysates treated with Triton X-100 (Mongrand et al. 2004; Shahollari et al. 2004). 

Despite the wealth of information concerning presumptive lipid raft composition and 

structure, the precise functional roles of these microdomains are still subject to 

considerable debate (Shin and Abraham 2001). Many cellular tasks have been ascribed 

to sterol-rich lipid microdomains, including such diverse processes as signal 

transduction, polarized secretion, membrane transport, transcytosis across epithelial 

monolayers, cytoskeletal organization, apoptosis, generation of cell polarity and the 

entry of infectious organisms in living cells (Simons and Ikonen 1997; Rosenberger et 

al. 2000; Bagnat and Simons 2002). In this project Triton X-100 insoluble plasma 

membrane microdomains were isolated from A. thaliana and mustard seedlings, using 

established protocols for animal cells (Larsson et al. 1987; Peškan et al. 2000). Low 

density Triton X-100 insoluble plasma membrane microdomains are well characterized 

in animals and yeast; however, little is known about their role and their protein 

composition in plants. In animals, they contain resident integral membrane proteins 

such as caveolin, stomatin, and flotillin, extracellular proteins with 

glycophosphatidylinositol anchors and cytoplasmic proteins modified by 

myristoylation/palmitoylation (Simons and Toomre 2000; Nebl et al. 2002; Munro 

2003). These microdomains are less than 50 nm in diameter and can recruit different 

signalling components depending on their cellular signalling functions and receptor 

activation. The protein patterns of microdomain preparations from roots grown in the 

presence or absence of the fungus were identical. There was also no difference in the 

protein composition of micodomains from the two Brassicaceae A. thaliana and 

mustard. We found that the number of proteins in these vesicles, which can be detected 

on two-dimensional Coomassie-stained gels, is very similar to that from animals. 

However, they contain many proteins which are not present in or not characteristic for 

mammalian microdomains. The plasma membrane ATPase, aquaporins and 

membrane-intrinsic proteins are major constituents of the plant vesicles. We also found 

that receptor kinases with LRRs are highly enriched in these vesicles. This suggests 

that they either interact with each other or are organized in similar plasma membrane 

environments or share similar biochemical purification features. Six of these receptor 

kinases appear to be integral membrane proteins, whereas one protein (LRR2), exhibits 

unusual features. Its apparent molecular weight on the denaturing SDS gel differs from 

the calculated size and the protein does not contain a predicted transmembrane 

segment. We also found typical plasma membrane proteins such as phospholipase Dδ 
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or a cAMP-dependent kinase, several so far uncharacterized protein kinases, Ca2+- and 

small GTP-binding proteins, heterotrimeric G-protein subunits and putative 

downstream signalling compounds (cf. the CBL-interacting protein kinases 8 and 9).  

Protein/protein interaction studies between these proteins and the analyses of knock 

out lines will help in future to elucidate the function of these proteins in signalling 

processes across the plasma membrane. It is also interesting that the microdomains 

contain several proteins involved in stress responses (At1g30360, At5g62740). Further 

transduction of activating signals depends on the presence of proteins associated at the 

inner site of the plasma membrane. Our list of proteins provides several candidates. 

The list contains also proteins involved in protein trafficking through the secretory 

pathway (e.g. Sar1, Rab1c and Rab2). Since the organization of a plant cell with its 

huge vacuole differs substantially from that of animal cells, membrane trafficking 

between the ER and the plasma membrane might be different. Recently, Wienkoop and 

Saalbach (2003) analysed the proteome of the plasma membrane-derived peribacteroid 

membrane from Lotus japonicus root nodules. Many of the proteins identified in our 

microdomains are also present in their peribacteroid membrane system. In particular, 

both membrane preparations contain ATPases, aquaporins, GTP-binding proteins, 

proteins involved in signalling processes, receptor kinases, 14-3-3 proteins and 

pathogen-related proteins. Wienkoop and Saalbach (2003) also found proteins that are 

expected to be localized in other plant endomembranes, comparable with the results 

reported here. Likewise, Marmagne et al. (2004) analysed the proteome of soluble and 

insoluble plasma membrane fractions from suspension-cultured A. thaliana cells and 

found several transporter proteins, receptors, GTP-binding proteins, proteins involved 

in various trafficking processes as well as stress-related proteins. The high degree of 

overlapping of the identified proteins in these membrane preparations provides a solid 

basis for future studies. The increasing awareness of lipid rafts is probably fuelled by 

the broad range of essential cellular tasks that are attributed to these plasma membrane 

microdomains (Bhat et al. 2005). 

 

Triton X-100 insoluble plasma membrane microdomains contain at least 7 LRR-

containing proteins, and only two of them, LRR1 and LRR2, are released from these 

domains by detergent treatments. This suggests that they are only loosely associated 

with these vesicles. LRR1 is clearly a RK with a plasma membrane-localized 

transmembrane domain. Its release from the vesicles might indicate that LRR1 is in a 
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lipid environment which differs from that of the rafts. In contrast, LRR2 might be 

located in the endoplasmic reticulum. The presence of this protein in the microdomain 

preparation is consistent with our observation that also other proteins normally found 

in the endoplasmic reticulum are present in the microdomain preparation. This 

indicates that either the plasma membrane microdomain preparations used are 

contaminated with endoplasmic reticulum, or both membrane systems are so similar in 

plants that they cannot be separated with the classical protocols established for 

mammalian membranes. 

 

 

A MATH (meprin and TRAF homology) protein is modified during early 

recognition events between P. indica and A. thaliana. 

 

P. indica induces a modification of a plasma membrane protein, a MATH protein in 

the A. thaliana roots which can easily be monitored on two dimensional gels (Peškan-

Berghöfer et al. 2004). This modification is only transient and disappears as soon as 

the interaction between both organisms is established (Oelmüller et al. 2004). The 

MATH protein modification is one of the earliest plant responses to a fungus and does 

not occur in the A. thaliana mutant Pi-2 which fails to recognise P. indica. MATH 

proteins exhibit similarities to extracellular proteases which are known to be involved 

in the perception of fungal signals. The function of MATH proteins in general is 

unclear at present. However, the modular organization and domain structure of MATH 

proteins suggest that they may be involved in processes such as protein degradation 

and protein or peptide cleavage and/or activation. The characteristic features of the 

MATH protein which responds to P. indica are the two MATH domains predicted to 

be located in the extracellular space (Fig. 8). These domains exhibit sequence 

similarities to zinc dependent metallo-endopeptidases (Dumermuth et al. 1991, 

Bertenshaw et al. 2003, Norman et al. 2003a, Kruse et al. 2004) and are amongst the 

largest extracellular proteases so far identified in animal systems (Villa et al. 2003a). It 

has been postulated that they provide examples of novel ways of concentrating 

proteolytic activity at the cell surface and in defined areas in the extracellular milieu. 

The catalytic domains of these proteins cleave a large variety of bioactive peptides 

including growth factors, cytokinins, factors required for morphogenesis and 

extracellular matrix proteins (cf. Wolz and Bond 1995; Chestukhin et al. 1997; Becker 
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et al. 2003). These tissue-specific proteinases are also involved in developmental 

processes and pathogenic responses (Bond and Beynon 1995; Dietrich et al. 1996). 

Thus, MATH proteins may have the potential to cleave a peptide that in turn activates 

an intracellular signalling pathway, as proposed for the Drosophila receptor kinase 

TOLL system (De Gregorio et al. 2002). Another example provides the tomato 

cysteine protease which is required for Cf-2-dependent disease resistance and 

suppression of autonecrosis (Krüger et al. 2002). The identification of MATH proteins 

in two independent screens for plant–microbe interactions (Gamas et al. 1996; Peskan-

Berghöfer et al. 2004) suggest that they might play a role in plant/microbe interactions. 

 

 

The growth promoting effect initiated by P. indica is accompanied by a co-

regulated stimulation of enzymes involved in nitrate and starch metabolisms and 

requires a homeodomain transcription factor.  

 

By analysing the interaction of P. indica with both A. thaliana and tobacco roots it was 

found that in contrast to mycorrhizal associations, nitrate reduction in the roots is 

stimulated by P. indica. The mRNA for a homeodomain transcription factor is 

upregulated in response to P. indica in A. thaliana roots and the corresponding protein 

binds to promoter regions of the P. indica responsive Nia2 and SEX1 genes. The 

TTCTAGAGT sequence in the Nia2 promoter was shown to be crucial for the 

regulation and the homeodomain transcription factor binds to this sequence in vitro. 

Binding activity was also observed to a related motif in the SEX1 promoter. The 

homeodomain factor was identified by mass spectrometry and in an independent 

experiment by microarray analyses. These results suggest that the expression of P. 

indica-responsive target genes may be controlled by common regulatory elements and 

trans-factors. 

 

Homeodomain proteins bind to DNA as homo- and/or heterodimers in a sequence-

specific manner, and thus their target genes depend on their interaction partners. The 

best studied homologs of the protein identified in this study are the BEL1-like 

transcription factors from potato (Chen et al. 2003). Seven members of the BEL1 

protein family interact with KNOX transcription factors and they control vegetative 

development and tuber formation. A rice homolog of the homeodomain protein is 

 145



Discussion 
 

 

 146

inducible by benzothiadiazole, a component which induces disease resistance in A. 

thaliana and wheat by activation of the systemic acquired resistance signal 

transduction pathway (Gorlach et al. 1996; Lawton et al. 1996). Benzothiadiazole also 

activates resistance in sunflower to the root-parasitic weed Orobanche cumana 

(Sauerborn et al. 2002). This suggests that the identified homeodomain transcription 

factor might also be involved in signalling pathways related to plant/microbe 

interaction.  

 

In the present project was a knock out line for the homeodomain transcription factor 

from A. thaliana isolated. It could be shown that this mutant does not respond to P. 

indica. (Fig. 10). This confirms the important role of the transcription factor (TF), 

originally identified and characterized in tobacco, also for A. thaliana. 

 

 

                                  
 

 

Figure 10. A knock out line for a transcription factor does not respond to P. indica. (A) and (B): TF 
knock out line seedlings with and without fungus, respectively, (C) and (D) wild-type seedlings with 
and without fungus, respectively. Plants shown in this figure were co-cultivated with P. indica for 10 
days. 
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4. Summary 
 

The fungus Piriformospora indica promotes growth and seed production of 

Arabidopsis thaliana plants, very similar to what has been observed for other plant 

species. Using molecular tools and mutant screens, two leucine-rich repeat proteins, 

LRR1 and LRR2, were identified which are involved in the recognition of the two 

symbiotic partners. 

 

The mRNA for LRR1 is transiently upregulated in A. thaliana roots co-cultivated 

with P. indica. Mutants which do not respond to P. indica do not show this 

upregulation. LRR1 is an atypical receptor kinase located in the plasma membrane. 

The protein is present in Triton X-100 insoluble plasma membrane microdomains. A 

mutant with a lesion in another leucine-rich repeat protein, LRR2, also fails to 

accumulate LRR1 in Triton X-100 insoluble plasma membrane microdomains. The 

requirement of LRR1 for the symbiotic interaction is unclear, because no functional 

knock out line is available. 

 

Two mutants with lesions in LRR2 were characterized. Both of them fail to respond 

to P. indica with regard to growth promotion and enhanced seed production. LRR2 

appears to be loosely associated with Triton X-100 insoluble plasma membrane 

microdomains and might be located in the endoplasmatic reticulum.  

 

Triton X-100 insoluble plasma membrane microdomains were isolated from A. 

thaliana and the protein composition of this fraction was determined by mass 

spectrometry. 34 proteins mainly related to signalling processes are present in this 

preparation, including seven leucine-rich repeat proteins. Two of them are LRR1 and 

LRR2. 

 

DMI1 is an essential protein for mycorrhiza formation in legumes. Inactivation of the 

only homologous gene in A. thaliana, a gene that is exclusively expressed in roots 

does not affect growth promotion and enhanced seed production in A. thaliana in 

response to P. indica. Thus, the endophytic interaction between P. indica and A. 

thaliana appears to differ from mycorrhiza in Legumes. 
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The interaction between A. thaliana and P. indica is accompanied by the 

modification of a plasma membrane-localized MATH protein (Peskan-Berghöfer et 

al. 2004). This protein modification does not occur in an Arabidopsis mutant, which 

does not respond to P. indica. At present the function of MATH proteins is still 

unclear; however, the modular organization and domain structure of MATH proteins 

suggest that they may be involved in protein degradation or protein/peptide cleavage. 

 

This homeodomain transcription factor BHL1 responds to the fungus and binds to 

promoter regions of the P. indica responsive Nia2, SEX1 and 2-nitropropane 

dioxygenase genes in tobacco (Sherameti et al. 2005). Inactivation of the BHL1 gene 

in A. thaliana completely abolished the growth promotion and enhanced seed 

production.  
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5. Zusammenfassung 
 

Der endophytische Pilz Piriformospora indica fördert das Wachstum und die 

Samenproduktion von Arabidopsis thaliana vergleichbar mit Untersuchungen an 

anderen Pflanzen. Mit Hilfe der Analyse von  Mutanten und molekularen Techniken 

konnten in der vorliegenden Arbeit zwei leucine-rich repeat Proteine (LRR1 und 

LRR2) identifiziert werden, die vermutlich an der Erkennung von P. indica durch A. 

thaliana beteiligt sind. 

 

Die Expression von LRR1 ist während der Erkennungsphase beider Organismen 

vorübergehend gesteigert. Diese Reaktion bleibt in A. thaliana Mutanten, die P. indica 

nicht erkennen, aus. LRR1 ist eine atypische Rezeptorkinase, die in der Plasmamembran 

lokalisiert ist. Das Protein ist in Triton X-100-unlöslichen Plasmamembranvesikeln 

vorhanden. In einer Mutante mit einem Defekt in einem zweiten leucine-rich repeat 

Protein, LRR2, ist LRR1 hingegen nicht in den Plasmamembranvesikeln nachweisbar. 

Obwohl die physiologischen Daten einen Bezug von LRR1 zur Interaktion mit P. indica 

vermuten lassen, konnte dieser letztendlich nicht bewiesen werden, da keine 

funktionsfähige knock out Linie für das LRR1 Gen existiert. 

 

Für das LRR2 Protein wurden zwei Mutanten charakterisiert. Beide zeigen in 

Anwesenheit von P. indica keine Wachstumssteigerung und keine erhöhte 

Samenproduktion. LRR2 ist ebenfalls in Triton X-100 unlöslichen 

Plasmamembranvesikeln nachweisbar. Im Gegensatz zu LRR1 kann dieses Protein aber 

leicht abgelöst werden und ist vermutlich im endoplasmatischen Retikulum lokalisiert. 

LRR2 ist somit eine essentielle Komponente für die Etablierung der Interaktion 

zwischen A.  thaliana und P. indica. 

 

Die Proteinzusammensetzung der Triton X-100 unlöslichen Plasmamembranvesikel von       

A. thaliana wurde mit Hilfe der Massenspektrometrie bestimmt. 34 Proteine, die vor 

allem mit Prozessen der Signalweiterleitung in Verbindung stehen, finden sich in dieser 

Fraktion, dazu gehören sieben leucine-rich repeat Proteine. LRR1 und LRR2 sind zwei 

dieser Proteine. 
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DMI (does not make infection) ist als essentielles Protein für die Mykorrhizabildung in 

Leguminosen bekannt. Eine knock out Linie für das einzige DMI Gen in A. thaliana 

wurde analysiert. Die DMI mRNA ist wie bei Leguminosen nur in Wurzeln 

nachweisbar. Die knock out Linie reagiert wie der Wildtyp auf P. indica. Die 

endophytische Interaktion zwischen P. indica und A. thaliana scheint sich demnach von 

der Mykorrhizabildung bei Leguminosen zu unterscheiden. Das Protein muss bei A. 

thaliana eine andere Funktion haben. 

 

Die Interaktion zwischen P. indica und A. thaliana verursacht eine Veränderung eines 

MATH Proteins in der Plasmamembran von Wurzeln (Peškan-Berghöfer et al. 2004). 

Diese Modifikation ist in einer Mutante, die keine Reaktion auf P. indica zeigt, nicht 

nachweisbar. Die Funktion von MATH Proteinen ist unklar, Sequenzanalysen lassen 

allerdings vermuten, dass es sich bei dem von uns charakterisiertem MATH Protein um 

eine extrazelluläre Metalloprotease handeln könnte, die in der Plasmamembran 

verankert ist. 

 

Die mRNA für den Homeodomän-Transkriptionsfaktor BHL1 wird in Antwort auf P. 

indica in Tabak-Wurzeln verstärkt exprimiert, dieser Transkriptionsfaktor bindet in 

vitro an die Promotoren der Gene von Nia2, SEX1 und 2-Nitropropan Dioxygenase und 

stimuliert deren Expression (Sherameti et al. 2004). In der vorliegenden Arbeit konnte 

gezeigt werden, dass die Inaktivierung von BHL1 in A. thaliana die 

Wachstumsstimulation und erhöhte Samenproduktion komplett blockiert. BHL1 ist 

folglich essentiell an der Reaktion von A. thaliana mit dem endophytischen Pilz P. 

indica beteiligt. 
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