Priority Conservation Ranking of Federally Listed, State Endangered and other Plant Species of Concern

Mitch East, Esteban Muldavin and Rayo McCollough
Natural Heritage New Mexico
Biology Department and Museum of Southwestern Biology
University of New Mexico, Albuquerque, NM

March 22, 2016

Introduction

Natural Heritage New Mexico (NHNM) worked with Daniela Roth of the State Forestry Division of the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) to update New Mexico conservation status ranks for 31 sensitive plant species in New Mexico following the standards developed by NatureServe and the national network of Natural Heritage programs (Faber-Langendoen et al. 2009; Table 1). Conservation status ranks are an estimate of extinction risk (S1 = Critically Imperiled, S2 = Imperiled, S3 = Vulnerable, S4 = Apparently Secure, S5 = Secure). These ranks can be used to prioritize conservation actions. For instance, the Bureau of Land Management (BLM) considers state conservation ranks for inclusion and updates of their sensitive species list. Ranks may sometimes be the only available information regarding the conservation status of a species, which is particularly true for plants (Evans et al. 2016). Natural Heritage programs tend to focus their data collection and research goals on species with relatively high conservation status ranks (S1 – S3).

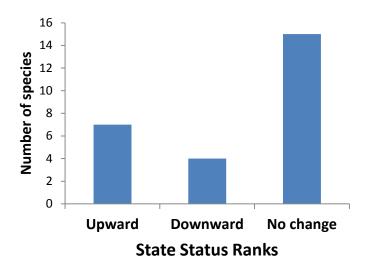
Species were selected if there were recent data collection efforts that warranted review, when they were last ranked, or if they lacked a rank (i.e. SNR in Table 1) but were considered species of concern on other lists (NMRPTC 1999). Accordingly, recently collected data (from EMNRD and NHNM) and legacy data (U.S. Forest Service and BLM) were added to the New Mexico Conservation Information System maintained by NHNM. The data consolidation process involved creating and updating element occurrences (EOs). EOs are the NatureServe standard for delineating populations based on the distance (separation distance) between mapped locations in the absence of population genetic data. The number and quality of EOs is a key determination factor of ranks. Relatively new standards for plants specify that EO separation distance varies depending on the suitability of habitat between mapped locations where the separation distance is larger if there is available suitable habitat features but the distance is smaller if the habitat is not suitable (NatureServe 2004).

Prior to 2012, New Mexico state conservation status ranks maintained by NHNM were qualitatively assessed by local subject-area experts. In 2012, NHNM adopted the NatureServe rank calculator to assess conservation status ranks more quantitatively (Faber-Langendoen et al. 2009). The rank calculator uses factors that were likely implicitly considered during previous species ranking by experts. There three fundamental factors that go into ranks: population numbers and extent (No of EOs),

population trends, and threats that may impact the species in the future. Factors are weighted to output a suggested rank that is then reviewed (Master et al. 2009). In the review step, species experts approve and finalize the rank. At this step, the rank may be adjusted relative to information not captured by the calculator or relative to other species. There are five basic status ranks (S1 = Critically Imperiled, S2 = Imperiled, S3 = Vulnerable, S4 = Apparently Secure, S5 = Secure). Here, we only considered species with S1 through S3 ranks.

The rank calculator is advantageous for several reasons. Ranks are quantitatively assessed based on existing information. The rank calculator facilitates consistent and repeatable comparisons among species, over time, and across geopolitical lines. For example, rank factors at the state or province level across the range of a species can be relatively easily consolidated to generate national and global rank updates because the same ranking framework is being applied across jurisdictional lines. Additionally, the calculator incorporates a threat assessment based on a standardized list of threats compiled by Salafsky et al. (2008). Lastly, during the ranking process, data gaps and uncertainties can be identified that can help guide management priorities and future monitoring efforts.

Results


We focused on species that had not been ranked or had their ranks updated within the last 15 years. That is of the 31 species chosen, five plant species had not been previously ranked and 24 had not been updated since before the year 2000. Two species had been ranked more recently, but new information prompted a review of the 2012 ranks (Phacelia cloudcroftensis, Mentzelia todiltoensis). Details of how current ranks were derived for each species are available on request and will be visible on the NHNM website (nhnm.unm.edu). The rank review resulted in a change for 42% of the 26 plants that had previously been ranked (Figure 1). For 7 species the rank moved upward (e.g. from S2 to S1) indicating a trend towards greater imperilment. Two species jumped two steps from S3 to S1, Anticlea mogollonensis (Mogollon death camas) and Erigeron subglaber (Pecos fleabane). Four species dropped rank (e.g., S1 to S2) and appeared more secure since the last assessment, particularly Mentzelia todiltoensis (Todilto Stickleaf), which dropped from an S1 to S3. New information and delineating EOs using new data standards are the primary reasons for changes in rank status. Among the five previously unranked species, it is noteworthy that three were ranked as S1 yet were only identified as "species of concern" by other agencies (Agalinis calycina (Leoncita false foxglove), Paronychia wilkinsonii (Wilkinson's nailwort), and Penstemon metcalfei (Metcalfe's penstemon)). This may be partly due to the lack of baseline information on the occurrence and status of these species. The ranking process functions as a tool to identify the most imperiled species in New Mexico, identifies data gaps, and alerts to changes in species status based on the most current data available, which can significantly contribute to guiding management priorities and determining the conservation status and needs of sensitive species.

Overall, the species-specific data provided here within the rank calculator framework can provide a foundation for addressing inventory, monitoring, and management needs to provide conservation direction for New Mexico's most imperiled species. Using the rank calculator in the future, ranks can be

adjusted efficiently as new data becomes available, leading to well documented status assessments of sensitive plant species around New Mexico.

Table 1. Plant species ranked in 2015-2016 (S1 = Critically Imperiled, S2 = Imperiled, S3 = Vulnerable, S4 = Apparently Secure, S5 = Secure).

Scientific Name	Common Name	Old Rank	Last Review	New Rank
Echinocereus fendleri var. kuenzleri	Kuenzler's hedgehog cactus	S3	10/14/1988	S2
Aliciella formosa	Aztec gilia	S2	11/10/1997	S2
Peniocereus greggii var. greggii	Night-blooming cereus	S2	6/26/1995	S 3
Erigeron rhizomatus	Zuni fleabane	S2	10/14/1988	S1
Amsonia tharpii	Tharp's blue-star	S1	3/26/1991	S1
Abronia bigelovii	Tufted sand verbena	S3	10/27/1982	S2
Allium gooddingii	Goodding's onion	S1	9/17/1997	S2
Helianthus paradoxus	Pecos sunflower	S2	1/20/1997	S2
Cirsium vinaceum	Sacramento Mountains thistle	S2	10/27/1982	S1
Hedeoma todsenii	Todsen's pennyroyal	S2	3/25/1991	S2
Escobaria sneedii var. sneedii	Sneed's pincushion cactus	S2	3/8/1989	S2
Scrophularia macrantha	Mimbres figwort	S2	9/26/1983	S2
Townsendia gypsophila	Gypsum Townsend's aster	S2	1/28/1997	S2
Pediomelum pentaphyllum	Chihuahua scurf pea	S1	12/9/1998	S1
Cirsium wrightii	Wright's marsh thistle	S2	7/29/1997	S2
Escobaria sneedii var. leei	Lee's pincushion cactus	S2	12/22/1989	S2
Argemone pinnatisecta	Sacramento prickly poppy	S2	3/7/1994	S2
Ionactis elegans	Sierra Blanca cliff daisy	S2	3/25/1991	S2
Sclerocactus cloverae ssp. brackii	Brack hardwall cactus	S1	12/10/1997	S2
Coryphantha scheeri var. scheeri	Scheer pincushion	S2	8/10/1989	S2
Penstemon metcalfei	Metcalfe's penstemon	SNR		S1
Anticlea mogollonensis	Mogollon death camas	S3	7/30/1997	S1
Packera cardamine	Heartleaf groundsel	S3	1/31/1991	S2
Hieracium brevipilum	Mogollon hawkweed	S2	5/1/1992	S2
Agalinis calycina	Leoncita false foxglove	SNR		S1
Paronychia wilkinsonii	Wilkinson's nailwort	SNR		S1
Phacelia cloudcroftensis	Cloudcroft scorpionweed	S1	2/6/2012	S1
Phacelia sivinskii	Sivinski's scorpionweed	SNR		S3
Rhodiola integrifolia ssp. neomexicana	New Mexico stonecrop	SNR		S2
Erigeron subglaber	Pecos fleabane	S3	3/11/1994	S1
Mentzelia todiltoensis	Todilto Stickleaf	S1	12/1/2012	S 3

Figure 1. Direction of rank changes for previously ranked plants.

References

- Evans, D. M., J. P. Che-Castaldo, D. Crouse, F. W. Davis, R. Epanchin-Niell, C. H. Flather, et al. 2016. Species recovery in the United States: increasing the effectiveness of the endangered species act. Issues in Ecology 2016 (20).
- Faber-Langendoen, D., L. Master, J. Nichols, K. Snow, A. Tomaino, R. Bittman, G. Hammerson, B. Heidel, L. Ramsay, and B. Young. 2009. NatureServe Conservation Status Assessments: Methodology for Assigning Ranks. NatureServe, Arlington, VA.
- Master, L., D. Faber-Langendoen, R. Bittman, G.A. Hammerson, B. Heidel, J. Nichols, L. Ramsay, and A. Tomaino. 2009. NatureServe Conservation Status Assessments: Factors for Assessing Extinction Risk. NatureServe, Arlington, VA.
- NatureServe. 2004. A habitat-based strategy for delimiting plant element occurrences: guidance from the 2004 working group. NatureServe, Arlington, Virginia.
- New Mexico Rare Plant Technical Council (NMRPTC). 1999. New Mexico Rare Plants. Albuquerque, NM: New Mexico Rare Plants Home Page. http://nmrareplants.unm.edu (Latest update: 20 April 2015).
- Salafsky, N., D. Salzer, A. J. Stattersfield, C. Hilton-Taylor, R. Neugarten, S. H. M. Butchart, B. Collen, N. Cox, L. L. Master, S. O'Connor, and D. Wilkie. 2008. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conservation Biology 22:897–911.