21 August 2012
Peter Royce
Princ ipal Advisor - Environmental Approvals
Approvals Division
Rio Tinto
Central Park
152-158 St George's Terrace
Perth WA 6000
(via email)

DearPeter

Brockman 4 Camps Vegetation and Flora Survey

Biota Environmental Sciences (Biota) was commissioned by Rio Tinto Pty Ltd (Rio Tinto) to conduct a vegetation and flora survey for the Brockman Camps area (hereafter referred to as the "study area"), located east of the operational BS4 mine and immediately a djacent to the existing accommodation village. This brief report presents the results obta ined during that field work.

Scope and Objectives

The potential development site (defined by the boundaries of the study area) a round the Brockman Camps extends over an area of 180 ha, of which 53 ha has been cleared or is deemed as extensively disturbed. Prior to this clearing, a survey conducted by Biota in early December 2006 and late J anuary 2007 recorded no flora of conservation significance in this a rea (Biota 2007). Vegetation over about 30 ha of the remaining area was previously mapped as part of the Brockman Syncline 4 (BS4) project (Biota 2006).

The botanic al field survey was therefore conducted over the remaining 97 ha of the study a rea (adjoining the previously surveyed BS4 study area). This survey was undertaken in accordance with the Guidance Statement No. 51 'Terrestrial Flora and Vegetation Surveys for Environmental Impact Assessment in Westem Australia " (EPA 2004).

The scope and objectives of the study were to:

- document the suite of flora species occuring in the study area;
- identify any plant species of conservation signific ance in the study a rea, including Threatened flora species listed under the Commonwealth Environment Protection and Biodiversity C onservation (EPBC) Act 1999 and Westem Australian (WA) Wild life Conservation Act 1950, a nd speciesclassified as Priority flora by the Department of Environment and Conservation (DEC);
- describe and map the vegetation communities occuming within the study a rea; and
- record the presence of introduced plant species (weeds) within the study a rea.

Approach and Methods

The survey was underta ken from 5 J uly to 7 J uly 2012. Two bota nists from Biota (Ra chel Butler and Dr Shadila Venkata samy) undertook the field work. A total of six person days were spent on the field component of the study.

During the survey, vegetation types were desc ribed and mapped at sub-association level (as per Level VI of the National Vegetation Information System framework¹). Vegetation descriptions were based on the height a nd estimated cover of domina nt species using Aplin's (1979) modification of the vegetation classific ation of Specht (1970). Descriptions were made and vegetation unit boundaries were recorded during foot traverses through representative areas.

In addition, vegetation was described in six quadrats (perma nently marked flora sampling sites with an area equivalent to $50 \times 50 \mathrm{~m}$) and one relevé (unbounded flora sampling site). The quadrats were 50 m by 50 m in size (or an equivalent area), which is the recognised standard for the Pilbara bioregion. The quadrats were permanently marked using steel fence droppers at all four comers. Optical squares and measuring tapes were used to correctly position the quadrat sides. A photograph representing the vegetation at each quadrat wastaken. These descriptions were integrated with those obtained from foot traverses in order to provide accurate information on the vegetation assemblages of the study a rea.

No systematic targeted rare flora searches were performed as part of this survey. However, searches for conservation signific ant flora were conducted while sampling the quadrats and relevé, and during foot-tra verses through the area. All loc ations of conservation signific a nt flora were recorded using a GPS (WG S84 datum).

The resulting data were then overlain on aerial photography in Qua ntum G IS Version 1.6.0 and unit boundaries were digitised. A final map wascreated and consolidated using MapInfo Version 11.

Limitations

Some limitations of the field survey are disc ussed below. These a re factors that must be considered when reviewing and applying the results of this study. Despite these limitations, the survey is believed to give a reasonable representation of the flora and vegetation of the study area.

- While foot traverses and quadrat sampling were conducted throughout the study area, no systematic searches were conducted for Threatened and Priority flora or introduced flora. The final species list should therefore be taken as indic ative rather than exha ustive.
- Even though conditions during the survey were adequate for the collection of ephemeral flora and cryptic perennial species, some species may not have been present or identifiable at the time of survey.
- Fungi a nd nonvascular flora (e.g. algae, mosses a nd liverworts) were not specific ally sa mpled, as is typic al for surveys of this na ture.

Results

Overview of Vegetation Units

Six vegetation units were identified in the study area. The vegetation units are described and representative photographs presented in Attachment 1. Each vegetation unit has been assigned a code, where species are ordered from highest to lowest strata, and identified using a unique combination of upper-case letters for genus and lower-case letters for species. The map showing the distribution of the vegetation units is given in Attachment 2.

[^0]
Vegetation Units of Conservation Signific ance

None of the vegetation units identified in the Brockman Campsstudy a rea represent Threatened Ecologic al Communities (TECs) listed under the Commonwealth EPBC Act 1999, or TEC s listed by DEC (2012a). Similarly, none of the units represent Priority Ec ologic al Communities defined by DEC (2012b).

The vegetation units identified are considered to be widely distributed and well represented in this section of the Pilbara bioregion. All intact native vegetation has inherent conservation value, however none of the vegetation types in the study area are considered to be of any elevated conservation signific ance.

Ovenview of Rora

A total of 140 native vascular flora taxa from 68 genera a nd 29 fa milies was recorded from the study area. This included one Prionty 3 flora species, Indigofera sp. Bunga roo Creek (S. van Leeuwen 4301). Two additional introduced flora species, Cenchrus cilia ris and Fla veria trinervia, were recorded. The distributions of the above three plant taxa (Indigofera sp. Bungaroo Creek, Cenchruscilia ris and Flaveria trinervia) a re illustrated in Attachment 2, while their loc ations are given in Appendix 3. A list of all the plant species encountered in this survey is provided in Atta chment 4.

Fora Spec ies of Conservation Signific ance

The species recorded did not include a ny Threatened flora species listed under the Commonwealth EPBC Act 1999 or WA Wild life Conservation Act 1950.

The undescribed pea species Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) was identified during the course of this survey a nd is listed as a Priority 3 spec ies (DEC 2012c). Approximately 100 plants of Indigofera sp. Bungaroo Creek were recorded in the broad dra inage line habitat located in the far northeastem comer of the study area.

A number of other undescribed taxa were recorded. These included three undescribed taxa in the genus Euphorbia, namely Euphorbia aff. a ustralis var. 1 (MET 12 337), Euphorbia a ustralis (mid green form) and Euphorbia sp. (PAN5-15). None of these species are believed to be uncommon or restricted in distribution. Euphorbia australis (mid green form) a nd Euphorbia aff. australis var. 1 (MET12 337) a re both widespread and common in the Pilbara. Euphorbia sp. (PAN5-15) has been recorded from areas ranging from the Bunga roo Valley (near Pannawonica) to the Koodaideri area (situated approximately 70 km northea st of the current study a rea; Biota intemal database). A further undescribed taxon, Sida aff. echinocarpa (MET15,350), was sampled during this survey. The distribution of this species does not appear to be limited to any particular habitat and several collections have been made near Newman, roughly 183 km to the east of the current study area (Biota intemal database).

It should be noted that the identification of some of the specimenscollected has not yet been resolved. In partic ular, the recognised speciescomplex Acacia "a neura" (Mulga) conta ins numerous undescribed taxa in the Pilbara, some of which have only recently been described. A key to these taxa is not yet a vailable, consequently all variants of this spec ies have been temporarily assigned to the Acacia a neura complex. The specimens of Acacia a neura will be sent for specialist identific ation as soon as possible and the results will be forwarded to you. It is considered unlikely that these specimens represent any taxa of conservation signific ance.

Yours sincerely,

Biota Environmental Sciences Pty Ltd

Dr Shadila Venkata samy

Senior Botanist

References

Aplin, T.E.H. (1979). Chapter 3: The Flora. In O'Brien, B.J. (ed.). Environment and Science. The University of Westem Austra lia Press.

Biota (2006). Extension to vegetation mapping and seasonal resampling of floristic survey quadrats in the Brockman Syncline 4 project area, near Tom Price. Unpublished report prepared for Hamersley Iron Pty Ltd by Biota Environmental Sciences.

Biota (2007). A rare flora survey of the Brockman Syncline 4 Powerline Coridor and Campsite. Unpublished report prepared for Pilbara Iron Company by Biota Environmental Sc iences, April 2007. Project reference number 404.

DEC (2012a). List of Threatened Ecologic al Communities endorsed by the Westem Australian Minister for the Environment. List prepared by the Species and Communities Branch, WA Department of Environment and Conservation, correct to April 2012.

DEC (2012b). Priority Ec ologic al Communities for Westem Australia, Version 17. List prepared by the Spec ies and Communities Branch, WA Department of Environment and Conservation, 13 A pril 2012.

DEC (2012c). Flora Base - the Westem Australian Flora [www document]. Retrieved from http://florabase.dec.wa.gov.au/.

EPA (2004). EPA Guidance Statement 51: Terrestrial Flora a nd Vegetation Surveys for Environmental Impa ct Assessment in Westem Australia. Environmental Protection Authority, Westem Austra lia .

Specht, R.L. (1970). Vegetation. In G.W. Leeper (ed.). The Australian Environment, 4th Edition. Melboume.

Attachment 1: Vegetation Descriptions

Vegetation Code	Vegetation Unit Desc ription	Indicative Photographs
Drainage Lines		
ChGOrAaAbApyTeTw	Corymbia hamersleyana scattered low trees over Gossypium robinsonii scattered tall shrubs over Acacia ancistrocapa, A. bivenosa, A. pyrifolia var. pyrifolia open shrubland over Triodia epactia, T. wiseana very open hummock grassland This unit occurred in a broad drainage line at the north-eastem edge of the study a rea. A single population of a pproximately 100 plants of the Priority 3 species Indigofera sp. Bunga roo Creek (S. van Leeuwen 4301) was recorded from this vegetation type.	
Stony Plains		
P3 (desc ribed by Biota 2006)	Eucalyptus leuc ophloia scattered low treesover Acacia a neura (various forms), Acacia a yersia na tall open shrubland over Triodia epactia, T. wiseana hummock grassland This unit was mapped by Biota (2006) a soccuming in patches over the broad stony plain to the north of the BS4 range.	

Vegetation Code	Vegetation Unit Desc ription	Indicative Photographs
A a nAkAexTwTe	Acacia a neura open woodland overA. kempeana, A. exilis open shrubland over Triodia wiseana, T. epactia very open hummock grassla nd This open Mulga vegetation was similar to unit P3, but differed in the presence of Acacia kempeana in the understorey.	
CdAkAaTwTe	Corymbia desertic ola scattered low trees overAcacia kempeana, A. ancistrocarpa open shrubland over Triodia wiseana, T. epactia very open hummock grassland This unit, along with the two following units, oc curred over the broad stony plains; the units differed in the proportions of the dominant eucalypt, wattle and spinifex species. Unit P6 described by Biota (2006) would broadly encompass all three units, although Acacia kempeana wasfound to be more common in the Brockman Camps study area than A. atkinsiana, which wascharacteristic of unit P6 as desc ribed by Biota (2006).	

Vegetation Code	Vegetation Unit Desc ription	Indicative Photographs
ChCdAaAexAkTeTw	Corymbia hamersleyana, C. desertic ola scattered low trees over Acacia ancistrocarpa, A. exilis, A. kempeana open shrubland over Triodia epactia, T. wisea na open hummock grassla nd	
AkAexAiAbTw	Acacia kempeana, A. exilis, A. ina equilatera, A. bivenosa tall open shrubland over Triodia wiseana hummock grassland	

Vegetation Code	Vegetation Unit Desc ription	Indicative Photographs
Low Stony Rises		
ChAiAexTwTe	Corymbia hamersleyana scattered low trees overAcacia inaequilatera tall open shrubland over A. exilis scattered shrubs over Triodia wiseana, T. epactia open hummock grassland This unit extended over the lower slopes of a hill in the southwestem section of the study area.	

Attachment 2: Vegetation Map and Legend

Vegetation of Brockman Camp

\square AanAkAexTwTe
\square AkAexAiAbTw

CdAkAaTwTe

ChAiAexTwTe
\square ChCdAaAexAkTeTw

ChGOrAaAbApyTeTw
Acacia aneura open woodland over Acacia kempeana, Acacia exilis open shrubland over Triodia wiseana, Triodia epactia very open hummock grassland

Acacia kempeana, Acacia exilis, Acacia inaequilatera, Acacia bivenosa tall open shrubland over Triodia wiseana hummock grassland

Corymbia deserticola scattered low trees over Acacia kempeana, Acacia ancistrocarpa open shrubland over Triodia wiseana, Triodia epactia very open hummock grassland

Corymbia hamersleyana scattered low trees over Acacia inaequilatera tall open shrubland over Acacia exilis scattered shrubs over Triodia wiseana, Triodia epactia open hummock grassland

Corymbia hamersleyana, Corymbia deserticola scattered low trees over Acacia ancistrocarpa, Acacia exilis, Acacia kempeana open shrubland over Triodia epactia, Triodia wiseana open hummock grassland

Corymbia hamersleyana scattered low trees over Gossypium robinsonii scattered tall shrubs over Acacia ancistrocarpa, Acacia bivenosa, Acacia pyrifolia var pyrifolia open shrubland over Triodia epactia, Triodia wiseana very open hummock grassland

Vegetation from Previous Survey

P3
Eucalyptus leucophloia scattered low trees over Acacia aneura (various forms), Acacia ayersiana tall open shrubland over Triodia epactia, Triodia wiseana hummock grassland

Attachment 3: Locations of Priority and Introduced Plant Species

Species	Easting	Northing	Site	No of individuals
Priority 3 Plant Species	Ind Ind igofera sp. Bunga roo C reek (S. van Leeuwen 4301)	531963	7504585	BCK02
Introduced Species			Approx. 100	
Cenc hrus ciliaris	532003	7504486	BCK02	11
	530240	7504293	BCK05	1
	531898	7504521	BCK-RSVA	2
Fla veria trinervia	532011	7504495	BCK02	1

Attachment 4: List of Species Rec orded from the Study Area

NB: An asterisk (*) prior to a species name denotes an introduced taxon (weed)
The genus Cassia has been reta ined in preference to Senna for this study, however equivalent namesunder the two genera are provided in the list below.

Amaranthaceae

Ama ra nthus c usp id ifolius
Gomphrena canescens subsp. canescens
Gomphrena cunninghamii
Ptilotus a strolasius
Ptilotus ca losta c hyus
Ptilotus fusiformis
Ptilotus helipteroides
Ptilotus nobilis subsp. nobilis
Ptilotus obovatus
Ptilotus rotund ifolius
Apocynaceae
Cynanchum floribundum
Rhyncharmena linea ris
Araliaceae
Trachymene oleracea subsp. oleracea

Asteraceae

*Fla veria trinervia (Speedy Weed)
Peripleura obovata
Pterocaulon sphacelatum
Streptoglossa bubakii
Streptoglossa decurrens

Boraginaceae

Trichodesma zeylanicum var. zeylanicum

Caryophyllaceae

Polycarpaea corymbosa var. corymbosa
Polycarpaea holtzei
Polycarpaea longiflora

Chenopodiaceae

Dysphania madinosta chya (sterile; subsp. not determined)
Dysphania madinostachya subsp. madinostachya
Maireana villosa
Salsola a ustralis

Cleomaceae

Convolvulaceae

Bonamia rosea
Duperreya commixta
Evolvulus a lsinoides var. villosic alyx

Cucurbitaceae

Cucumis va riabilis

Cyperaceae

Bulbostylis barbata
Fimbristylis simula ns

Euphorbiaceae

Euphorbia a ustra lis (mid-green form)
Euphorbia aff. a ustralis var. 1 (MET 12 337)
Euphorbia biconvexa
Euphorbia bic onvexa/alsiniflora (sterile; ina dequate material for further determination)
Euphorbia sp. (PAN5-15)

Fabaceae

Goodeniaceae

Acacia ancistrocarpa
Acacia a neura (speciescomplex; pending further identific ation)
Acacia atkinsiana
Acacia ayersiana
Acacia bivenosa
Acacia cowleana
Acacia elachantha
Acacia eniopoda
Acacia exilis
Acacia ina equilatera
Acacia kempeana
Acacia monticola
Acacia pruinocarpa
Acacia pyrifolia var. pyrifolia
Acacia sibinica
Acacia sibirica (crowded smaller phyllodes)
C assia 'gla ucifolia' (=Senna glaucifolia)
Cassia ferraria (=Senna ferraria)
Cassia glutinosa (=Senna glutinosa subsp. glutinosa)
Cassia glutinosa x'stricta' (=Senna glutinosa subsp. glutinosa x Senna stricta)
Cassia helmsii (=Senna a rtemisioides subsp. helmsii)
Cassia helmsii x (=Senna artemisioides subsp. helmsii hybrid)
Cassia luerssenii (=Senna glutinosa subsp. x luerssenii)
Cassia luerssenii x'stricta' (=Senna glutinosa subsp. x luerssenii x Senna stricta)
Cassia notabilis (=Senna notabilis)
Cassia oligophylla (=Senna artemisioides subsp. oligophylla)
Cassia oligophylla x helmsii (=Senna a rtemisioidessubsp. oligophylla x subsp. helmsii)
Cassia aff. oligophylla (thinly seric eous) (a taxon with affinities to Senna artemisioides subsp. oligophylla, but with a thin appressed indumentum on the leaflets)
Cassia pruinosa (=Senna glutinosa subsp. pruinosa)
Crotalaria medicaginea var. neglecta
Gompholobium oreophilum
Indigofera monophylla
Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) (Prority 3)
Rhynchosia minima
Tephrosia rosea var. glabrior

Dampiera candicans
Goodenia forrestii
Goodenia microptera
Goodenia stobbsiana
Scaevola spinescens
Gyrostemonaceae
Codonocarpus cotinifolius

Lamiaceae

Oleaceae

Phyllanthaceae
Plantaginaceae

Poaceae

Malvaceae

Molluginaceae

Myrtaceae

,

Phylla nthus madera spa tensis

Stemodia grossa
Clerodendrum floribundum var. a ng ustifolium

Abutilon dioicum
Abutilon otoca pum
Abutilon trudgenii
Corchorus c rozophorifolius
Corchorus la sioc a pus subsp. parvus
Gossypium a ustrale (Bumup Peninsula form)
Gossypium a ustrale (Whim Creek form)
Gossypium robinsonii
Hibisc us burtonii
Hibisc us coatesii
Hibisc us gold sworthii
Hib isc us sturtii var. ca mpyloc hla mys
Hib isc us sturtii var. platyc hla mys
Keraudrenia nephrosperma
Melhania oblongifolia
Sida a renic ola
Sida a rsiniata
Sida cardiophylla
Sida aff. echinocarpa (MET15,350)
Sida sp. spic iform panicles (E. Leyland s.n. 14/8/1990)

Mollugo molluginea

Corymbia desertic ola subsp. desertic ola
Corymbia hamersleyana
Euc alyptus ga mophylla
Euc a lyptus leucophloia subsp. leucophloia

J a sminum didymum subsp. lineare

Amphipogon sp. (sterile; ina dequate material for further determination)
Aristida contorta
Aristida holathera var. holathera
*C enc hrus cilia ris (Buffel Grass)
Cymbopogon ambiguus
Cymbopogon obtectus
Digita ria brownii
Enneapogon caerulescens
Enneapogon lindleyanus
Enneapogon polyphyllus
Eriachne a ristidea
Eriachne mucronata (typical form)
Eriachne pulchella
Eriac hne tenuiculmis
Eulalia a urea
Panicum effusum
Paraneurachne muelleri
Paspalidium clementii
Schiza chyrium fragile
Poaceae (continued)
Themeda triandra
Triodia epactia
Triodia wiseana
Trira phis mollis
Ya kirra a ustra liensis var. a ustra liensis
Proteaceae
Rubiaceae
Hakea lorea subsp. lorea
Psydrax sua veolens
Scrophulariaceae
Eremophila forrestii subsp. forestii
Eremophila longifolia
Solanaceae
Violaceae
Zygophyllaceae
Tribulus suberosus

[^0]: 1 http://www.environment.gov.au/erin/nvis/publications/avam/section-2-1.html\#hierarchy

