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Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes,
fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant
pathogens are still controlled through application of agrochemicals, causing human disease and
impacting environmental and food security. Biological control provides a safe alternative for the control
of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some
Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact
directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress.
Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via myco-
parasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal
pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions
can influence crop production and food security. Finally, we will describe the future of crop production
using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.

Pre-harvest of crops

© 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Annually, large agricultural losses occur worldwide due to the
susceptibility of crops to diseases caused by plant pathogens,
impacting productivity and reducing the commercial value of the
product. It is estimated that 78 % is lost in fruit crops, 54 % in
vegetable crops, and 32 % in cereal crops due to diseases caused by
pathogens (Zhang, 2018). Plant pathogens are described as being
responsible for the large-scale destruction of various types of crops
worldwide, and can cause large losses in crops susceptible to dis-
eases both in the field (pre-harvest) and post-harvest. The major
groups of pathogens are viruses, bacteria, oomycetes, fungi, nem-
atodes, and parasitic plants (Strange and Scott, 2005). Fungi are the
primary cause of large losses in the world's major crops, such as
rice, beans, soybeans, corn, potatoes, and wheat (Fisher et al., 2012).
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The traditional means of combating plant pathogens is through
the application of agrochemicals. According to the Food and Agri-
culture Organization (FAO), the use of pesticides by continent is
52.2 % in Asia, 29.4 % in the Americas, 14 % in Europe, 2.1 % in Africa,
and 1.2 % in Oceania. Pesticide use has grown from 2000 tons of
active ingredients in 1990 to 4000 tons in 2016. The application of
fungicides is an efficient but expensive process, and can cause
damage to human and animal health, environmental damage, the
development of resistant pathogens, and the appearance of sec-
ondary pests. Furthermore, nonspecific fungicides can eliminate
microorganisms already established in the soil, increasing the
susceptibility of plants to soil pathogens (Heydari and Pessarakli,
2010).

An alternative to the use of fungicides is biological control, a
method applied in the use of antagonistic microorganisms sup-
pressing diseases, as well as host-specific pathogens to control
weed populations. The pest-suppressing organism or host-specific
pathogen is referred to more broadly as the biocontrol agent (BCA).
The term “biocontrol” may be used for natural products extracted
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Abbreviations

BCA biocontrol agent

CWDEs  cell wall-degrading enzymes

CAZy is a database of Carbohydrate-Active enZYmes
(CAZymes)

GH Glycosyl hydrolases

EST expressed sequence tag

SSH suppression subtractive hybridization

CFEM Common in Fungal Extracellular Membrane protein

NPP1 Ectonucleotide pyrophosphatase/
phosphodiesterase-1

SM secondary metabolites

CBD carbohydrate-binding domain

PAMP/MAMP pathogen/microbe-associated molecular pattern

PTI/MTI  pathogen/microbe-triggered immunity
ETI effector-triggered immunity

RLKs receptor-like kinases

RLPs receptor-like proteins

NB-LRR  nucleotide-binding domain leucine-rich repeat
HR hypersensitive response

SAR systemic acquired resistance

PGPR plant growth-promoting rhizobacteria

PGPF plant growth-promoting fungus

ISR induced systemic resistance

MAMP microbe-associated molecular pattern
DAMPs Damage-associated molecular patterns
AMPs antimicrobial peptides

PDR Pathogen-derived Resistance

or fermented from various sources. Such formulations may be
simple or complex blends of natural ingredients, with either a
specific activity or multiple effects on the host. For complex mix-
tures, and depending on the primary benefit provided to the host
plant, these may be termed biopesticides or biofertilizers (Heydari
and Pessarakli, 2010). While fungicides have only a temporary ef-
fect and usually require repeated applications during the cropping
season, biological control agents are able to establish themselves in
the ecosystem, reproduce, and colonize the rhizosphere, phyllo-
sphere, and rhizoplane (Zeilinger et al., 2016). In addition, biological
control strategies are highly compatible with the self-sustaining
farming practices necessary for the conservation of natural re-
sources for agriculture (Liu et al., 2008).

Over the years, several researchers have been showing the ap-
plications of fungi species in agriculture, wherein various species
have the ability to alter plant metabolism by providing resistance to
abiotic and biotic stress (Kumar et al., 2012). Some Species of the
genus Trichoderma are considered potential BCAs in plant disease
control, being an alternative for the control of phytopathogens
(Keswani et al., 2014). Furthermore, Trichoderma have been
observed to interact directly with roots, resulting in increased plant
growth potential, resistance to diseases, and tolerance to abiotic
stress (Gomes et al., 2015; Zeilinger et al., 2016). On the other hand,
other species of Trichoderma, such as Trichoderma reesei and Tri-
choderma longibrachiatum are recognized as industrial enzyme
producer and human immunocompromised opportunistic fungus
(Kubicek et al., 2011).

In this review, we will discuss the interactions that the Tricho-
derma genus has with plants, as well as mechanisms of the bio-
logical control of plant pathogens in pre-harvest crops. In addition,
we will highlight how these interactions can influence crop pro-
duction and food security.

2. Plant fungal pathogens in pre-harvest crops

Fungi are predominant among plant pathogens as agents in
plant diseases, and can cause enormous losses in crop yield and
quality. This is becoming an important issue for both human health
and food security. Fungal plant pathogen species include members
from the phyla Ascomycota, as well as Basidiomycota (Doehlemann
et al,, 2017).

Fungal phytopathogens have developed different modes of
interaction with their host plants. Those that synthesize and secrete
toxic secondary metabolites as the first resources for colonization,
killing host cells and thriving on organic compounds, are named
necrotrophic. Conversely, fungi that live off nutrients provided by

living hosts for prolonged periods of time and do not produce
toxins are called biotrophic (Zeilinger et al.,, 2016). Pathogens
exhibiting a combination of these two lifestyles and nutritional
strategies, wherein pathogens exhibit a transient biotrophic life
period followed by a necrotrophic lifestyle, are called hemi-
biotrophic (Zeilinger et al., 2016).

Fungal infections can cause a variety of diseases in different
crops. These include Botrytis cinerea (grey mould on fruits like
grapes and strawberries), Pythium ultimum (seed rots and
damping-off, root, stem and fruit rots, foliar blights, and post-
harvest decay of various host plants, including corn, soybeans,
potatoes, and wheat), Fusarium oxysporum (vascular wilt of the
banana tree), Sclerotinia sclerotiorum(soft rot in bean and soybean
crops), Ustilago maydis(maize smut in maize crops), Cladosporium
fulvum(tomato leaf mould), Phytophthora infestans(potato late
blight), Rhizoctonia solani (damping-off in beans, soybeans, cotton,
and rice crops), and Macrophomina phaseolina (damping off, seed-
ling blight, collar rot, stem rot, charcoal rot, basal stem rot, and root
rot in peanuts, cabbage, pepper, chickpeas, soybeans, sunflowers,
sweet potatoes, alfalfa, sesame, potatoes, sorghum, wheat, and
corn) (Akino et al., 2004; Babu et al., 2007; Bolton et al., 2006;
Cheung et al., 2008; Choquer et al., 2007; Gordon and Martyn,
1997; Rivas and Thomas, 2005; Snetselaar and Mims, 1992).

The top ten fungal pathogens in molecular plant pathology were
reviewed by Dean et al. (2012) and Doehlemann et al. (2017), based
on scientific/leconomic importance. The list includes (1) Magna-
porthe oryzae; (2) B. cinerea; (3) Puccinia spp.; (4) Fusarium grami-
nearum; (5) E oxysporum; (6) Blumeria graminis; (7) Mycosphaerella
graminicola; (8) Colletotrichum spp.; (9) U. maydis; and (10) Mel-
ampsora lini. Table 1 summarizes the fungal diseases and crops
affected, as well some symptoms.

3. Biological control strategies by Trichoderma

The genus Trichoderma comprises the imperfect phase of
Hypocrea, belonging to the Kingdom Fungi, Phylum Ascomycota,
Class Ascomycetes, Order Hypocreales, Family Hypocreaceae. The
genus was proposed by Persoon in 1794 for those fungi that
possessed the following set of well-defined characteristics: rapid
growth in culture medium; dispersed, floccose, or tufted compacts;
size and shape of the various conidia; chlamydospores, sometimes
present; and coloring of conidia varying from green to yellow, or
even hyaline, with well-defined conidiophores and conidia formed
at the phyalid ends of differentiated hyphae, tending towards mass
aggregation (Samuels, 1996). It comprises a group of fungi present
in almost all soil types, especially those containing organic matter
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Fungal disease

Causing agent

Crops affected

Spreading-factors

Symptoms

Reference

Rice blast

Grey mould

Rusts

Fusarium head blight

Fusarium wilt

Powdery mildew

Septoria Tritici
Blotch (STB)
Anthracnose

Corn smut

Flax rust

Magnaporthe oryzae

Botrytis cinerea

Puccinia spp

Fusarium graminearum

Fusarium oxysporum

Blumeria graminis
Mycosphaerella graminicola

Colletotrichum spp

Ustilago maydis

Melampsora lini

rice and wheat

Celery; lettuce; beans;
capsicum; tomato

Sweet corn; beans; onions;
spring onions; beets;

wheat, barley, oats,

rye and triticale

Tomato, tobacco,

legumes, cucurbits,

sweet potatoes and banana

wheat and barley
wheat

bananas, cassava,
sorghum, coffee,

strawberry, common bean
maize and teosinte

F lax, linseed, wheat

High relative humidity
Temp. 25-27.7 °C

Cool, wet weather

low rainfall, 100 % relative
humidity and cool to mild
temperatures

Warm, humid weather;

Warm to hot weather

low humidity and
moderate temperatures
temperate regions
Cool, wet conditions
plant environment

condition

Temperate plains or hills

white to gray-green lesions
or spots with darker
borders produced on all
parts of the shoot

soft rot, soft fruit and
leaves. Brown lesion

Small, red or reddish-
brown pustules

shriveling kernels

vascular browning, leaf
epinasty, stunting,
progressive wilting,
defoliation and plant death
white powdery spots on the
leaves and stems

necrotic blotches on the
foliage

anthracnose spots and
blights of aerial plant parts

causes the corn kernels to
swell up into tumor-like
galls

Yellowing of leaves

Couch et al. (2005)

Williamson et al. (2007)

Van Baarlen et al. (2007)

Wegulo et al. (2015)

Fravel et al. (2003)

Nowara et al. (2010)
Orton et al. (2011)

Prusky (1996)

Holliday (2004)

Lawrence et al. (2010)

Necrotic leaf spots

(Harman et al., 2004a). Some species of fungi of the genus Tricho-
derma are dominant components in the microflora present in a
wide variety of habitats. This is a special feature, due to its great
metabolic capacity and its aggressively competitive nature
(Kubicek et al., 2008; Lopes et al., 2012).

Widely used as biocontrol agents in agriculture, Trichoderma
spp. can induce a combination of antagonistic mechanisms, such
as: antibiosis through the production of secondary metabolites
with anti-fungal activity; mycoparasitism, with the production of
cell wall-degrading enzymes from plant pathogens, due to
competition for nutrients or space; and induction of resistance in
plants through the production and secretion of elicitor molecules
(Gomes et al., 2015). The general mechanisms of the biocontrol of
the Trichoderma spp. can be divided into direct and indirect effects.
Direct effects include competition for nutrients or space, produc-
tion of volatile and non-volatile antibiotics and lytic enzymes,
inactivation of pathogen enzymes, and parasitism. Indirect effects
include morphological and biochemical changes in the host plants,
such as stress tolerance, solubilization or sequestration of inorganic
nutrients, and induction of resistance to diseases caused by fungal
phytopathogens (Viterbo et al., 2002) (Fig. 1).

Some Trichoderma spp. are efficient in colonizing the surface of
plant roots, leading to large changes in plant metabolism. This ef-
fect has been reported in some Trichoderma spp., which favors plant
growth, increases nutrient availability, and increases disease
resistance (Harman et al., 2004a). Elicitor molecules produced by
Trichoderma activate the expression of genes involved in the plant
defense system, and promote plant growth, roots, and nutrient
availability (Gomes et al., 2017). In greenhouses, Trichoderma spp.,
especially Trichoderma harzianum T22 and Trichoderma atroviride
P1, have been well studied for being good promoters for the growth
of lettuce, tomato, and pepper. They have been shown to increase
the productivity in 300 % of the treated groups compared to the
untreated ones (Vinale et al., 2004).

Resistance induction is an indirect biological control mecha-
nism, wherein the plant responds to the aggression of the patho-
gens through activation of latent resistance mechanisms. This

process occurs when plants exposed to an inductive agent, biotic or
abiotic, activate their defense mechanisms in a relatively general-
ized way, not only in the induction site but also in other distant
locations. This activation can last for variable periods of time, and
the plant may produce phytoalexins, additional lignin from cells,
and phenolic compounds (Bailey et al., 2009; Rocha et al., 2017).
The term “secondary metabolites” refers to a group of different
natural chemical compounds possibly related to survival functions,
such as competition against microorganisms, symbiosis, metal
transport, differentiation, and antibiosis (Vinale et al., 2008a). The
first study on the toxic metabolites produced by Trichoderma spp.
was by Weindling (1934), who reported the control of plant dis-
eases by a “lethal principle” produced by Thielaviopsis lignorum.
This was later known as the antibiotic gliotoxin. Weindling
described Tlignorum mycoparasitism in detail against R. solani,
revealing the potential of Trichoderma spp. as biocontrol agents in
plant diseases (Howell, 2003a). Preliminary work to understand the
role of antibiotics produced by Trichoderma spp. in plant pathogen
biocontrol was carried out by Dennis and Webster (1971). In this
study, trichodermine and antibiotic peptides from culture extracts
of Trichoderma spp. secreted a diverse range of secondary metab-
olites, and their chemical characteristics and antimicrobial prop-
erties have been studied. Howell, Stipanovic, and Lumsden (1993)
isolated and described Gliocladium gliovirine (Trichoderma virens) as
a potent inhibitor of P. ultimum and Phytophthora, but determined it
did not exert any inhibitory activity against R. solani, Thielaviopsis
basicola, and Phymatotrichum, among others. It also did not have
any activity against some bacteria, such as Bacillus thuringensis.
Schirmbock et al. (1994) investigated the performance of Trichor-
zianins of T. harzianum as an antibiotic model against B. cinerea. The
authors showed that both enzyme and antibiotic synthesis were
directed to the cell wall of B. cinerea, and that the antibiotic acts in
synergism with chitinases and glucanases, inhibiting sporulation,
germination, and stretching of the fungal hyphae. It has also been
described that alkyl pyrones are responsible for the strong coconut
odor in Trichoderma viride species, where the 6-pentyl pyrone
compound is active against a variety of phytopathogens
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Fig. 1. Strategies used by the genus Trichoderma during biocontrol.

(Schirmbock et al., 1994). It has also been isolated from other spe-
cies, such as T. harzianum, Trichoderma koningii, and Trichoderma
hamatum (Vinale et al., 2008a). Another class of antibiotics is the
isonitriles, produced by Trichoderma spp. These include isonitrine
A-D and isonitric acid E and F, isolated from T. hamatum,
T. harzianum, T. koningii, Thielaviopsis polysporum, and T. viride
(Adelin et al., 2017). Isonitrin A is effective against Gram positive
and Gram negative bacteria, while Isonitrin D shows good fungal
activity and no activity against bacteria (Howell, 2003b). Studies
with the application of a racemic form of harzianopyridone
demonstrated its potent antifungal activity against R. solani and
B. cinerea (Cutler and Jacyno, 1991). Secondary metabolites such as
T22-azaphilone, harzianolide, and T39 butenolide from specific
Trichoderma strains have shown in vitro inhibition of R. solani,
P. ultimum, and G. graminis var. tritici (Almassi et al., 1991; Vinale
et al., 2006).

The competition, on the other hand, refers to the interaction
between two or more organisms engaged in the same action or
substrate, disputing specific resources such as space, nutrients,
water, and light (Benitez et al., 2004). As illustrative examples of
this mechanism, Trichoderma spp. are able to readily mobilize and
absorb the nutrients around them and use different carbon sources,
thereby rapidly multiplying and colonizing the rhizosphere
(Harman et al., 2004a). Moreover, several species of this genus are
characterized by resistance to different toxic compounds, both
those produced and released by plants in response to attack by
pathogens, and agrochemicals commonly used in agriculture (Chet
and Inbar, 1994; Harman, 2006).

Mycoparasitism is undoubtedly the most characteristic behavior
of the Trichoderma spp. Mycoparasitism is the ability to parasitize

other fungi, and is a complex process involving four distinct stages:
(a) chemotropic growth, in which a chemical stimulus attracts the
antagonistic fungus; (b) specific recognition, probably mediated by
lectins on the cell surface of both the pathogen and antagonist; (c)
attack and coiling of Trichoderma around the host hyphae; and (d)
secretion of lytic enzymes that degrade the host cell wall (Vinale
et al., 2008a). During the process of mycoparasitism, Trichoderma
secretes cell wall-degrading enzymes (CWDEs) that will degrade
the cell wall of the host fungus. This will then release oligomers,
activating the expression of genes involved in mycoparasitism
(Almeida et al., 2007). Evidence for this recognition comes from
studies on transcriptomics, which show the induction of CWDE
genes before actual contact with B. cinerea (Mukherjee et al., 2012b;
Seidl et al., 2005).

Some enzymes involved in mycoparasitism are released in
response to the cell wall of most phytopathogens fungi, which have
chitin and or glucan fibrils embedded in a protein matrix
(Bartnicki-Garcia, 1968). Thus, lysing of the cell wall of phyto-
pathogens is mainly done by glucanases, chitinases, and proteases
(Monteiro et al., 2010; Naher et al., 2014). Other CWDEs that
degrade smaller polymers, such as f-1,6-glucanases, f-1,3-
glucanases, and mannosidases, may be involved in the complete
and effective degradation of the cell wall of plant pathogens by
Trichoderma spp. (Monteiro et al, 2010; Saba, 2012). B-1,3-
glucanases are enzymes that catalyze the hydrolysis of the p-1,3-
glucan chain, a polymer composed of p-glucose residues bound in
a B-1,3 configuration. They are cleaved into the following com-
pounds: exo-f-1,3-glucanases (EC 3.2.1.58), which sequentially
hydrolyze B-1,3 glycosidic bonds at the non-reducing end of the
glucan molecule, releasing glucose as the end product; and endo-f-



R.N. Silva et al. / Fungal Biology 123 (2019) 565—583 569

1,3- glucanases (EC 3.2.1.39) that randomly cleave -B-1,3 bonds
along the polysaccharide chain by releasing small oligosaccharides,
with glucose as the final product (Monteiro and Ulhoa, 2006). It is
possible that synergistic action occurs between at least two en-
zymes, with different modes of action in fungi, that degrade B-
glucans (Ait-Lahsen et al., 2001). According to the CAZY databases,
the exo-f-glucanases (EC 3.2.1.58) were distributed in the GH
families 3, 5, 17, and 55, while the endo-f-glucanases (EC 3.2.1.39)
are in the GH families 16, 17, 55, 64, and 81 (Druzhinina et al., 2011).

Another important enzyme class in mycoparasitism is chitinase.
The best characterized chitinolytic system of Trichoderma species is
from T. harzianum and T. atroviride presenting a complex system of
more than six chitinolytic enzymes, endochitinases and two N-
acetylhexosaminidases (Ulhoa and Peberdy, 1991). Chitinases
include endo- and exochitinases where the endochitinases cleave
the chitin molecule internally in chitotetraose, chitotriosis and
diacetylchitobiose, and the exochitinases, that are subdivided in
chitobiosidases and N-acetyl-D-glucosaminidases. Chitobiosidases
catalyze the progressive liberation of diacetylchitobiose and N-
acetyl-D-glucosaminidases hydrolyze diacetylchitobiose in mono-
mers of N-acetylglucosamine (Gruber et al., 2011). According to the
CAZY databases, chitinases are glycosyl hydrolases allocated in the
GH 18, GH 19, and GH 20 families (Hjort et al., 2010). Antifungal
activity and mycoparasitism studies are well described for some
plant pathogens, such as B. cinerea, R. solani, Fusarium solani, and
S. sclerotiorium (Almeida et al., 2007; Lopes et al., 2012).

Proteases can also participate in the degradation of structural
cellular proteins, destabilizing the cellular integrity of the phyto-
pathogen and facilitating penetration and colonization by Tricho-
derma (De Marco and Felix, 2002). They are also involved in the
inactivation of enzymes produced by pathogens during the plant
infection process (Sudrez et al., 2007). Despite its importance for
mycoparasitism, the number of protease characterization, isolation,
and/or cloning studies is lower than studies related to chitinases
and B-1,3-glycanases. However, the genes of some serine endo-
peptidases (p8048, ss10) (Sudrez et al., 2007; Liu et al., 2009) and
aspartic proteases (papA, p6281) (Delgado-Jarana et al., 2002;
Sudrez et al., 2005) seem to be involved in the control of some
plant pathogens. Others proteins involved in mycoparasitism have
been described using ‘omics’ approaches (Adav and Sze, 2014;
Monteiro et al.,, 2010; Ramada et al., 2016; Tian et al., 2009). In
addition to glucanases, chitinases and proteases, other enzymes
such as a-galactosidase, «-1,2-mannosidase, a-L-arabinofur-
anosidase, mutanase and B-glucocerebrosidase have been identi-
fied by proteomic approach. Table 2 summarizes the most
important enzymes involved in the mycoparasitism process.

4. Molecular tools for Trichoderma/pathogen studies: ‘omics’
studies

The first fungal genomics milestone was the publication of the
whole genome sequence of the yeast Saccharomyces cerevisiae
(Goffeau et al.,, 1996). This organism has played an exceptional role
in expanding our basic knowledge of eukaryotic cell physiology,
with its ~6000 genes. The first Trichoderma strain that had its
genome sequenced was the T. reesei(Martinez et al., 2008), the in-
dustrial workhorse regarding cellulase production. Other species of
Trichoderma garnered attention due to the excellent ability of its
species to suppress diseases and stimulate the growth and devel-
opment of plants (Pereira et al., 2014).

The advent of high-throughput technologies, especially
regarding to next generation techniques (NGS), has led to a wealth
of publicly available 'omics' data coming from different experi-
mental sources, such as transcriptomics, proteomics, and metab-
olomics. Single strategies or combining different biological

datasets (dos Santos Castro et al., 2014) can lead to the discovery of
important biological insights, especially in complex microor-
ganism interactions. The addition of ‘omics' to a molecular term
implies a comprehensive or global assessment of a set of molecules
(Hasin et al., 2017). The first ‘omics’ discipline to appear, genomics,
focused on the study of whole genomes, as opposed to “genetics”
that focus on individual variants or single genes. The ‘omics’ field
has been mainly driven by technological advances that have made
the cost-efficient, high-throughput analysis of biological mole-
cules possible (Hasin et al., 2017). Fig. 2 shows the ‘omics’ com-
bined strategies that can be used to study Trichoderma/pathogen
interaction.

Combining large-scale initiatives of Trichoderma genome
sequencing (Druzhinina et al., 2018) with single genomes from labs
around the world (Table 3) is found in the National Center for
Biotechnology Information (NCBI) Genome Project databank
(www.ncbi.nlm.nih.gov/genome/). Sixteen genomes from different
species of Trichoderma are publicly available on the NCBI/genbank
database (Table 3). A good representation of the three major sec-
tions of this genus, Pachybasium, Longibrachiatum, and Trichoderma,
are available as demonstrated in the single-copy ortholog phylo-
genetic tree (Fig. 3).

With the advent of Sangerexpressed sequence tag (EST) projects
around a decade ago, it became possible to study a higher number
of transcripts from Trichoderma during its interaction with phyto-
pathogens (Seidl et al., 2009a,b; Steindorff et al., 2014; Vizcaino
et al, 2007). Despite this approach being sold as *“high-
throughput”, it usually generates around 1000 unique sequences
per library, which represents ~10 % of total Trichoderma genes
(considering average total gene count of 10,000 in Trichoderma).
Other techniques such as suppression subtractive hybridization
(SSH) were used to detect genes present only in Trichoderma in the
presence of phytopathogen cell walls (Vieira et al., 2013).

All these studies (Seidl et al., 2009a,b; Steindorff et al., 2012;
Vieira et al., 2013; Vizcaino et al., 2007) found a similar pattern of
genes involved in the response of Trichoderma to the presence of
phytopathogens, representing post translational processing and
amino acid metabolism. These included components of the stress
response, reaction to nitrogen shortage, signal transduction, lipid
catabolism pathogenicity factors, proteases, and a QID74/CFEM
protein considered to be involved in cell wall protection and
appressorium development.

Microarrays for expression profiling were used to study Tricho-
derma/pathogen interaction (Atanasova et al, 2013). They
compared the transcriptional responses of T. atroviride, T. virens,
and T. reesei during confrontations with a plant pathogenic fungus,
R. solani. The three Trichoderma spp. exhibited different tran-
scriptomic responses already before physical contact with phyto-
pathogens. T. atroviride expressed genes involved in the production
of secondary metabolites, B-glucanases, various proteases, and
small secreted cysteine-rich proteins (SSCP). T. virens, on the other
hand, mainly expressed genes involved in the biosynthesis of
gliotoxin and glutathione. In contrast, T. reesei increased the
expression of genes encoding cellulases and hemicellulases, and of
genes involved in solute transport (Atanasova et al., 2013). The
development of next-generation sequencing (NGS) methods again
rapidly changed the possibilities for studying gene expression,
through mapping to a reference genome and developing whole
genome expression profiles, in addition to introducing the possi-
bility of using NGS directly to sequence and assemble tran-
scriptomes (Kohler and Tisserant, 2014). Steindorff and
collaborators used Illumina sequencing to analyze the interac-
tion between T. harzianum and the phytopathogen E solani. They
identified various genes of biotechnological value, encoding
proteins with functions such as proteases, transporters, glycosyl
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Table 2
The most important enzymes involved in the mycoparasitism process by Trichoderma.
Source Enzyme Molecular Weight (kDa) Reference
Glucanases obtained by chromatography Exo-1,3-8 75 Dubourdieu et al. (1985)
Exo-1,3-B 31 Kitamoto et al. (1987)
Endo —-1,3-B 76 Lorito et al. (1994)
Endo —-1,3-B 36 De La Cruz et al. (1995)
Exo0-1,3-B 110 Cohen-Kupiec et al. (1999)
Endo-1,3-f 40 Noronha et al. (2000)
Exo-1,3-f 29 Noronha et al. (2000)
Exo-B8-1,3- 83.1 Bara et al. (2003)
Endo-B-1,6- 46 Monteiro and Ulhoa (2006)
Exo-1,3-B 78 Monteiro and Ulhoa (2006)
Exoglucanase (ExG Th1). 61 Liu et al. (2013)
Endoglucanase (EG Th1) 235 Liu et al. (2013)
a-(1 — 3)-glucanase 67 Wiater et al. (2013)
Chitinases obtained by chromatography N-acetylglicosaminidase 102—-118 Ulhoa and Peberdy (1991)
Endoquitinase 33-37 DelLa Cruz et al. (1992)
Ulhoa and Peberdy (1991)
Harman (1993)
Exoquitinase 40 Harman (1993)
N-acetylglicosaminidase 73 Harman (1993)
Lorito et al. (1994)
Endoquitinase 52 Harman (1993)
Endoquitinase 31-33 DelLa Cruz et al. (1992)
Endoquitinase 46 Lima et al. (1997)
Other enzymes found in secretoma o -mannosidase 53.52 Monteiro et al. (2010)
Acid phosphatase 41.71 Monteiro et al. (2010)
o-1,3-Glucanase 71.79 Monteiro et al. (2010)
Carboxypeptidase 2 53.79 Monteiro et al. (2010)
Glucosidase [ 27.50 Monteiro et al. (2010)
a-mannosidase 53.52 Monteiro et al. (2010)
Carboxypeptidase 2 53.45 Monteiro et al. (2010)
Endochitinase 41.71 Monteiro et al. (2010)
a-L-arabinofuranosidase ND Ramada et al. (2016)
Endo-1,3(4) -p glucanase ND Ramada et al. (2016)
Endochitinase chit33 33 Ramada et al. (2016)
chit37 Endochitinase 37 Ramada et al. (2016)
chit42 Endochitinase 42 Ramada et al. (2016)
o-Galactosidase ND Ramada et al. (2016)
o-1,2-mannosidase ND Ramada et al. (2016)
B-1,6-glucanase ND Ramada et al. (2016)
o-1,3-glucanase ND Ramada et al. (2016)
B-endo-1,3-glucanase ND Ramada et al. (2016)
Endo-B-1,4-glucanase ND Ramada et al. (2016)
Trypsin-like protease ND Ramada et al. (2016)
Serine protease ND Ramada et al. (2016)
aspartate protease ND Ramada et al. (2016)
Mutanase 67.63 Blauth de Lima et al. (2017)
Beta 1,3 exoglucanase 107.93 Blauth de Lima et al. (2017)
endochitinase 42 Blauth de Lima et al. (2017)
Serine endopeptidase 42.47 Blauth de Lima et al. (2017)
Glucoamylase 66.25 Blauth de Lima et al. (2017)
Endochitinase 34.026 Blauth de Lima et al. (2017)
B-1,3 exoglucanase 107.28 Kohler and Tisserant (2014)
endo-1,3-f glucanase 92.19 Nauom et al. (2018)
Six-hairpin glycosidase-like 76.55 Nauom et al. (2018)
1, 2-a-mannosidase 55.65 Nauom et al. (2018)
Peptidase S8 92.55 Nauom et al. (2018)
a-p-galactosidase 48.25 Nauom et al. (2018)
1,4-0-glucosidase 67.28 Nauom et al. (2018)
Tyrosinase 46.95 Nauom et al. (2018)
protein f-1,3 glucanase 40.1 Nauom et al. (2018)
peptidase M14 46.95 Nauom et al. (2018)
B-glucocerebrosidase 51.59 Nauom et al. (2018)

hydrolases, adherence, appressorium development, and patho-

genesis (Steindorff et al., 2014).

On the other hand, the analysis of whole proteomes has only
been possible with the advent of mass spectrometry-based
methods. The proteome Trichoderma/pathogen interactions started
with classical two-dimensional electrophoresis, where “spots” from
each acrylamide gel were excised and digested with trypsin in order
to sequence tryptic peptides through spectrometric analysis, using

matrix-assisted laser desorption/ionization-time of flight (MALDI-
TOF) analysis. Studies then went to a more sophisticated liquid
chromatography-tandem mass (LC-MS-MS) to separate peptides
(Marra et al., 2006; Monteiro et al., 2010; Nauom et al., 2018; Pereira
et al., 2014; Ramada et al., 2016). Marra et al. (2006) used two-
dimensional (2-D) electrophoresis to separately analyze collected
proteomes from each single, two-, or three-partner interaction (i.e.,
plant, pathogenic, and antagonistic fungus alone, and in all possible
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Fig. 2. 'Omics’ strategies to study Trichoderma/pathogen interaction.
Table 3
Genome features of Trichoderma genomes publicly available at NCBI/Genbank.
Species Strain Genome size Gene count Reference
T. reesei QM6a 32.7 9877 Martinez et al. (2008)
T. longibrachiatum ATCC18648 31.74 10938 Druzhinina et al. (2018)
T. citrinoviride TUCIM 6016 33.2 9737 Druzhinina et al. (2018)
T. parareesei CBS125925 32.07 9292 Yang et al. (2015)
T. harzianum CBS 226.95 40.9 14 095 Druzhinina et al. (2018)
TR274 394 13932
T. arundinaceum IBT40837 36.87 10473 Proctor et al. (2018)
T. atrobruneum ITEM 908 39.15 8649 Fanelli et al. (2018)
T. koningiopsis POS7 36.58 12 661 Castrillo et al. (2017)
T. koningii JCM 1883 3232 -
T. pleuroti TPhul 38.14 -
T. guizhouense NJAU4742 38.8 11297 Druzhinina et al. (2018)
T. virens Gv29-8 40.52 12 427 Kubicek et al. (2011)
T. atroviride IMI 206040 36.4 11 863 Kubicek et al. (2011)
T. gamsii T6085 37.9 10 709 Baroncelli et al. (2015)
T. asperellum CBS433.97 37.66 12 586 Druzhinina et al. (2018)
T. hamatum GD12 38.43 10 520 Studholme et al. (2013)

combinations). In the plant proteome, specific pathogenesis-related
proteins and other disease-related factors (i.e., potential resistance
genes) seem to be associated with the interaction with either
T. atroviride and/or pathogens. On the other hand, in the T. atroviride
interaction proteome, a fungal hydrophobin and ABC transporters
were found. Pereira et al. (2014) evaluated the ability of T. harzianum
to promote common bean growth and to modulate its metabolism
and defense response, in the presence or absence of the phyto-
pathogenic fungi R. solani and E solani, using a proteomic approach.
T. harzianum was able to promote common bean plant growth, as
shown by the increase in root/foliar areas and by its size in com-
parison to plants grown in its absence. The interaction appeared to
modulate the expression of defense-related genes (glul, pod3, and
lox1) in roots of Phaseolus vulgaris.

Identification of T. harzianum-secreted proteins (secretome)
grown on phytopathogen cell walls (mycoparasitism simulation)
through MS-based analysis was used to understand the interaction.
Monteiro et al. (2010) identified seven proteins using MASCOT search
with associated functions, such as a-1,3-glucanase, carboxypeptidase
2, glucosidase I, a-mannosidase, acid-phosphatase, and an endo-
chitinase (Table 2). Ramada et al. (2016) (Ramada et al., 2016) used
a similar approach using T. harzianum grown on E solani cell walls. In
this study, a manual sequencing of MS-MS spectra was used. This
laborious method yielded 97 spots (from a total of 105) using MS

spectra, with good ion intensity. 94 proteins from 37 different genes
were identified in this study, including 22 CAZymes, 11 proteases,
and 4 proteins with other functions, such as NPP1 and Epl-1. The
latter was studied in more detail, and it was revealed that this protein
is involved in mycoparasitism, plant resistance induction, and self-
cell wall protection (Gomes et al., 2017, 2015).

In order to survive and compete in their ecological niche, fungi
apply not only enzymatic weapons but also have a potent arsenal
for chemical warfare at their disposal (Vinale et al., 2008b).
Thereby, not only potential antibiotics (e.g. peptaibols) but also
mycotoxins and more than 100 metabolites with antibiotic activity
were detected in Trichoderma spp., including polyketides, pyrones,
terpenes, metabolites derived from amino acids, and polypeptides
(Brito et al., 2014). It was described that secondary metabolites
(SM) result in specific communication between the microorgan-
isms (Netzker et al., 2015). SM plays a key role in this communi-
cation, and it was shown that interspecies “talk” between
microorganisms represents a physiological trigger to activate silent
gene clusters, leading to the formation of novel SMs by the involved
species (Netzker et al., 2015). Therefore, a larger repertoire of SM
could represent a more diverse “vocabulary” during the interaction
between different microorganisms.

Fungi produce a wide range of SMs, and Trichoderma is a good
source of such molecules. The production of these compounds by
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Trichoderma spp. is strain-dependent, and includes different classes
of antifungal compounds, like volatile antibiotics, water-soluble
compounds, peptaibiotics, and peptaibols. Britto et al. ((Brito
et al., 2014) identified seven different peptaibols (asperelines and
trichotoxins) in Trichoderma asperellum, grown in a simple medium
and using only glucose as a carbon source. An example of the
application of these secondary metabolites is the application of
harzianic acid (HA) in tomato plants, stimulating the response of
tomatoes to the pathogen. This is done by inducing the expression
of several genes involved in the defense response (including pro-
tease inhibitors, resistance proteins like CC-NBS-LRR) and hormone
interplay (Pascale et al., 2017). Table 4 shows the diversity of sec-
ondary metabolite clusters on the six organisms with its genomes
recently published (Druzhinina et al., 2018).

Interestingly, the genomes of mycoparasitic species are enriched
in virtually all types of SMs. The majority of computationally
identified fungal SM gene clusters are silent under standard labo-
ratory growth conditions (Mukherjee et al., 2012b). The availability
of new genomes reveals an excellent opportunity to study and
compare SM clusters in a vast array of species, and potentially
discover new functional compounds.

Table 4

5. Interaction mechanism of Trichoderma/pathogens/plants

Trichoderma spp. are soil-borne fungi characterized by their
saprophytic, mycoparasitic, and symbiotic lifestyles. Symbiotic
Trichoderma spp. interact directly with host plants, being able to
colonize their roots and promoting plant growth, tolerance to
abiotic stress, or resistance to further infections (Brotman et al.,
2012; Contreras-Cornejo et al.,, 2011; Mukherjee et al., 2012b;
Shoresh et al,, 2010). In addition, these species protect against
pathogens in an indirect way as a result of their direct action
against plant pathogens. Presently, the main goal is to provide an
overview of the mechanism and molecular players involved in in-
teractions between host plants and Trichoderma spp., especially
T. harzianum, T. atroviride, T. virens, and T. asperellum.

A set of proteins and metabolites has been mapped and pre-
dicted based on the secretomes of Trichoderma spp., during inter-
action with host plants (Nogueira-Lopez et al., 2018; Lamdan et al.,
2015; Moran-Diez et al., 2015; Hermosa et al., 2013; Mendoza-
Mendoza et al., 2018; Druzhinina et al., 2012). The three groups
mainly represented are carbohydrate active enzymes, including
plant cell wall and fungal cell wall-degrading enzymes, proteases,

The number of secondary metabolites clusters found on recently published Trichoderma genomes.

Hybrid PKS/NRPS NRPS PKS Terpene cyclases
Trichoderma asperellum CBS 433.97 2 24 14 4
Trichoderma atroviride IMI 206040 2 19 15 3
Trichoderma harzianum CBS 226.95 5 23 23 6
Trichoderma virens Gv29-8 2 31 19 6
Trichoderma longibrachiatum ATCC 18648 1 12 12 3
Trichoderma reesei QM6a 2 13 11 4

Adapted from (Druzhinina et al., 2018).
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and small cysteine-rich secreted proteins. These proteins might
play a role in the mechanisms of interaction between symbiotic
Trichoderma spp. and their hosts in colonization, plant growth
promotion, or modulation of the defense response. However, their
effective participation in these processes is still uncertain, and must
be further elucidated.

Appressoria-like structures favor attachment of the fungus to
the host roots, enabling tissue penetration by the hyphae of Tri-
choderma spp., usually limited to the intercellular spaces of roots
and restricted to the epidermis (Hermosa et al., 2012; Yedidia et al.,
1999). Swollenins, hydrophobins, and SM2 are classified as part of
the small secreted cysteine-rich proteins family, and have been
demonstrated to be critical to colonization of host roots by Tri-
choderma spp. T. asperellum mutants for a class I hydrophobin
(TASHYD) severely impaired the ability of cucumber (Cucumis sat-
ivus) roots to attach and colonize, and this ability was restored in
complemented mutants ((Viterbo and Chet, 2006). Hydrophobin
also participates in the colonization of tomato plant roots by
T. virens. Resistance induction is an indirect biological control
mechanism, wherein the plant responds to the aggression of the
pathogens through the activation of latent resistance mechanismes.
This process occurs when plants are exposed to an inductive agent,
biotic or abiotic, and their defense mechanisms are activated in a
generalized manner, both in the induction site and other distant
locations. This can last for variable periods of time, and the plant
may produce phytoalexins, additional lignin from cells, and
phenolic compounds (Bailey et al., 2009; Rocha et al., 2017).

The authors showed that overexpression of a gene that encoded
a hydrophobin class II, tvhydii, leads to an increased ability to
colonize host roots, while its deletion decreases it (Guzman-
Guzmadn et al,, 2017).

The role of a swollenin in root colonization was showed by
observing the interaction between T. asperellum and cucumber.
Fungal transformants over-expressing the swollenin-encoding
gene, tasswo, displayed a remarkably increased ability to colonize
cucumber roots 6 h after inoculation (Brotman et al., 2008). The
protein contains a carbohydrate-binding domain (CBD) able to
recognize and interact with cellulose in plant cell walls connected
by a linker region to an expansin-like domain. Expansins have been
described in other fungi as acting on an extension of plant cell
walls, by weakening the non-covalent interactions that help to
maintain its integrity. Therefore, TASSWO may modify plant cell
wall architecture, favoring root colonization by T. asperellum. The
protein SM2 is highly expressed by T. virens, grown in association
with maize. Deletion of its encoding gene leads to a lowered ability
to colonize maize roots (Crutcher et al., 2015).

Plant CWDEs secreted during host plant and Trichoderma spp.
interaction, in turn, allow root penetration by thickening the plant
cell wall (Hermosa et al., 2012). This role was described for an
endopolygalacturonase, which was differentially upregulated dur-
ing interaction of T. harzianum with tomato plants. Silencing of the
enzyme-encoding gene, thpgl, resulted in a significant decrease of
fungal root colonization activity (Moran-Diez et al., 2009). Using
Arabidopsis as a model organism, Martinez-Medina et al. (2017)
showed that in addition to the previously mentioned proteins,
the level of salicylic and jasmonic acid also influences root coloni-
zation by T. harzianum T-78. An increased level of salicylic acid
prevents root colonization, while jasmonic acid acts as an antago-
nist hormone and improves colonization.

Once the plant epidermis is reached by Trichoderma spp., a set of
reactions is triggered to restrict fungal growth and invasion. On the
other hand, fungi also produce and secrete molecules enabling
them to tolerate the attack and remain inside of the root tissue.

Plants present an immune response triggered by the recognition
of organisms, including microbes, which interact with them in the

rhizosphere or colonize their tissues. Plant immunity results in
compatible or incompatible processes related to the microbe or
plant species, and provides protection to invaders. In general,
plants sense and respond to microbes by two main branches:
pathogen/microbe-associated molecular pattern (PAMP/MAMP)-
triggered immunity, PTI/MTI, or effector-triggered immunity (ETI)
(Jones and Dangl, 2006). PTI/MTI is activated as a result of the
interaction between pathogen/microbe-associated molecular pat-
terns (PAMP/MAMP) and host pattern recognition receptors (PRRs).
These include receptor-like kinases (RLKs) and receptor-like pro-
teins (RLPs) (Monaghan and Zipfel, 2012). PAMP/MAMPs are com-
mon microbial compounds essential to survival, and include
bacterial flagellin and fungal chitin. PTI is also triggered by damage-
associated molecular patterns (DAMPs), which arise from damage
caused by organism invasion into plant tissues (Boller and Felix,
2009) (see Fig. 4).

To overcome or inhibit this first line of defense, pathogens have
evolved virulence effector molecules or effector proteins. Following
this, there is a second line of plant defense ETI. ETI involves inter-
action between plant resistance R protein receptors, such as the
nucleotide-binding domain leucine-rich repeat (NB-LRR) proteins,
and cognate pathogen effector molecules that target PTI or other
key host functions. In fact, pathogen effector molecules have
evolved to minimize the plant immunity system, enabling their
colonization by pathogens (Jones and Dangl, 2006).

PTI and ETI involve the activation of a mitogen-activated pro-
tein kinase (MAPK) cascade and WRKY transcription factors (TFs),
coupled to a rapid calcium cytoplasmic influx and accumulation of
reactive oxygen species (ROS). Additionally, there is callose
deposition between the plant cell wall and plasma membrane at
the site of infection. Kinase cascade activation results in increased
synthesis of pathogenesis-related proteins and phytoalexins, as
well as cell wall fortification and stomatal closure (Pitzschke et al.,
2009). Despite the sharing of molecular events and results trig-
gered during PTI-MTI/ETI, the latter is qualitatively stronger and
faster, often leading to localized cell death (hypersensitive
response-HR) (see Fig. 4).

Induced resistance in tissues distal from the infection site is one
of the downstream effects of PTI/ETI, in which signals propagate to
undamaged parts of the plant. This enhances their defense capacity,
a well-described pathogen-induced resistance known as systemic
acquired resistance (SAR) (Pieterse et al., 2014). SAR is character-
ized by salicylic acid accumulation, which can lead to aHR (Durrant
and Dong, 2004) with the expression of genes coding for acidic PR
proteins, mainly those with antimicrobial activity (Park and Wu,
2016; van Loon et al., 1998). Therefore, SAR is accompanied by
the coordinated activation of pathogenesis-related genes (van Loon
et al., 1998; Vernooij et al., 1994).

Beneficial microbes, such as plant growth-promoting rhizobac-
teria (PGPR) and plant growth-promoting fungus (PGPF), also lead
the host plants to a state of resistance. This is called induced sys-
temic resistance (ISR), in which the entire host plant is protected on
an enhanced level from future attacks by a broad spectrum of in-
vaders upon local infection (Walters et al., 2013). This process is
tightly regulated by a network of interconnected signaling path-
ways in which plant hormones play a central role, especially jas-
monic acid (JA) (Bardoel et al., 2011).

Upregulation of pathogenesis-related (PR) genes is also associ-
ated with biosynthesis of JA and ethylene (ET). JA is known to be
involved in biosynthesis of PR proteins and proteinase inhibitors.
ET acts in synergy with JA signaling, with involvement in PR protein
production and enhancement of the SA-mediated NPR1 pathway in
SAR (Leon-Reyes et al., 2009; Lorenzo et al., 2003).

Plant growth-promoting fungi Trichoderma spp. modulate the
aforementioned plant defense responses, leading to a coordinated
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transcriptomic, proteomic, and metabolomic response (Djonovic
et al, 2007; Harman et al., 2004b; Pereira et al, 2014). Such
changes have been described for associations between T. virens/
Cotton, T. harzianum T22/Zea mays, T. harzianum T39/Grapevine,
T harzianum ALL 42/P. vulgaris, andT. virens/Maize and tomato
(Mukherjee et al., 2012a; Pereira et al., 2014; Shoresh et al., 2010).
The type of defense response triggered varies according to the
Trichoderma sp., host plant, time after colonization, and inoculum
concentration. There are records of the triggering of induced sys-
temic resistance, system acquired resistance-like response, or both.
Therefore, there is no classical model to describe the molecular
events or type of defense response triggered by Trichoderma sp. in
association with host plants. As previously described for

pathogenic fungi, chitin and B-glucans constituting Trichoderma
spp. cell walls act as structural MAMPs (Hermosa et al., 2013). Tri-
choderma spp. also releases DAMPs by the action of fungal cell wall
hydrolases (Chitinases, -1,3-glucanases, and proteases) on path-
ogen cell walls, as well as by the action of plant cell wall hydrolases
like pectinases, cellulases, and xylanases (Alkooranee et al., 2017;
Hermosa et al., 2013). In addition to their role as producers of
DAMPs, plant cell hydrolases have been described as modulators of
host plant resistance against fungal phytopathogens, acting as
MAMPs or through other mechanisms. Endopolygalacturonase
TVPG2 from T. virens, previously described as an inducer of tomato
resistance against B. cinerea, is quite related to the expression
control of tvpgl, endopolygalacturonase 1-encoding gene tvpgl
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(Sarrocco et al., 2017). T. virens endopolygalacturonase 2-encoding
gene, tvpg 2, showed a regulatory role in the induction of tvpgl,
endopolygalacturonase 1-encoding gene, which encodes TVPGI.
This was previously described as having a role in host plant root
colonization and production of DAMPs. A tvpg2-knockout strain
fails to transcribe the inducible tvpg1 during in vivo interaction with
tomato roots, significantly reducing its defense against B. cinerea
(Sarrocco et al., 2017). Sarvanakumar et al. (2016) showed the role
of two T. harzianum cellulase-like enzymes (THPH 1 and THPH 2) in
maize-induced resistance (ISR) against Curvilaria leaf spots, acting
as an MAMP. A mixture of T. virens cellulases and cellusyn induces
the biosynthesis of volatile compounds coupled to increased levels
of endogenous JA in tobacco, lima bean, and corn (Piel et al., 1997).
Melon cotyledons infiltrated with an active cellulase from
T. longibrachiatum produced a rapid oxidative burst and the acti-
vation of early defense mechanisms associated with the ET and SA
signaling pathways, remarkably increasing peroxidase and chiti-
nase activity. In addition, its heat-denatured form induces ET pro-
duction (Martinez et al., 2008). A B-1,4-endoxylanase (EIX) isolated
from T. viride elicits plant defense responses, ISR, in tobacco
(Nicotiana tabacum L.) and tomato cultivars, increasing ethylene
biosynthesis independently of its hydrolytic activity(Sharon et al.,
1993). Secreted small cysteine-rich proteins like SM1/EPL1, SM2,
and expansin-like proteins such as swollenins also take part in the
induction of the defense response. The carbohydrate-binding
domain (CBD) from TASSWO is capable of stimulating defense re-
sponses in tomato plants, potentially acting as an MAMP. The
protein SM1 (small protein-1) from T. virens and T. harzianum, and
its homologous Epll (eliciting plant response-like) from
T. atroviride, are non-enzymatic elicitors of ISR (Djonovic et al.,
2007; Seidl et al., 2006). The role of SM1/EPL1 in T. virens,
T. atroviride, and T. harzianum interactions with host plants present
differences. T. virens, T. atroviride SM1, and EPL1 knockout mutants
are unable to protect maize from the attack of C. heterostrophus
(Lamdan et al., 2015). T. harzianum ALL 42 SM1 mutant instead
shows the ability to trigger the expression level of defense related
genes, lox and glu, in a more intense manner in comparison to the
wild type (Gomes et al., 2015). A similar negative effect of small
secreted cysteine-rich proteins was also described by Lamdan et al.
(2015). The authors showed that T. virens SSCP knockout lines for
two expansin-like proteins, MRSP1 and MRSP3, showed higher ISR-
promoting activity than wild type (Lamdan et al., 2015) (see Fig. 4).
More recent finds reinforced and demonstrated the secretion
and presence of genes encoding effector-like proteins in the ge-
nomes of symbiotic Trichoderma spp. These pathogen effectors can
inhibit host plant defense response allowing their establishment on
host plants (Guzman-Guzmadn et al., 2017; Kubicek et al., 2011;
Mendoza-Mendoza et al., 2018). Therefore, the close and benefi-
cial interaction between Trichoderma spp. and host plants is a final
result of the balance between triggering and inhibition of defense,
avoiding a strong defense response. This would lead to a hyper-
sensitive response and ultimately, plant cell death. Serine and
metaloproteases, thioredoxins, glycoside hydrolases, hydro-
phobins, proteins containing the domain common in fungal
extracellular membranes (CFEM), LysM proteins, WSC domain
proteins, ribonucleases T2, and eliciting plant response protein
(EPL) are among the proteins identified as putative like-effectors
(Guzmdan-Guzman et al., 2017; Mendoza-Mendoza et al., 2018).
The involvement of serine and metalloproteases as effectors has
been described in pathosystems (Franceschetti et al, 2017).
F. oxysporum f. sp. lycopersicum secretes a serine protease, Sep1,
and a metalloprotease, Mep]1, that act synergistically to cleave host
chitinases. This prevents their activity in degrading fungal cell walls
and producing DAMPs (Jashni et al., 2015). They are also a candidate
for full virulence, since a double mutant of Sep1 and Mep1 showed

reduced disease on tomato plants (Jashni et al., 2015). An avirulence
protein secreted by the rice blast fungus M. oryzae and homologous
to other avirulence proteins from other organisms, AVR-Pita, pre-
sents typical features of zinc metalloproteases and catalysis
(Giraldo et al., 2013; Orbach et al., 2000). Despite the detailed
description of their role as effector proteins, protease activity has
not been linked to their action to date.

In pathosystems, CFEM proteins have been described as cell-
surface receptors, signal transducers, or adhesion molecules
related to host plant—pathogen interactions and colonization
(DeZwaan, 1999; Kulkarni et al., 2003). Regarding Trichoderma spp.,
Lamdan et al. (2015) showed decreasing on the abundance of a set
of CFEM domain proteins during the interaction of T. virens and
maize roots. In addition, T. virensknockout lines for these proteins
showed higher ISR-promoting activity than wild type. However, the
action mode of these proteins has not yet been elucidated.

Proteins containing the LysM motif might inhibit PTI-scavenging
chitin oligomers liberated by the action of host plant PR proteins on
fungal cell walls (Hermosa et al., 2013). It has also been suggested
that LysM domains may provide fungi with a mechanism of self-
protection against their own chitinases (Gruber et al., 2011).

The role of WSC domain proteins in interactions between
beneficial fungi and host plants has not quite been established. For
the beneficial fungus Piriformospora indica FGB1, a WSC domain
protein was identified as suppressor of immunity in different plant
hosts, altering fungal cell wall composition and properties
(Rovenich et al., 2016; Wawra et al., 2016). These proteins also have
been related to cellular resistance and cell wall perturbation,
oxidation, high osmolarity, and metal ions (Tong et al., 2016). Ri-
bonucleases classified as T2 family RNases have been described in
genomes of other mycoparasitic Trichoderma spp. However, their
function on interactions between Trichoderma and host plants has
not been established. Thioredoxins may act by scavenging oxidative
stress, a crucial strategy of resistance to allow the permanence of
Trichoderma spp. in host root plant tissue, as previously suggested
(Nogueira-Lopez et al., 2018).

Knowledge about the interaction of Trichoderma spp. with their
hosts and their transcriptomic and proteomic approaches is a useful
and powerful tool for describing an extensive list of protein can-
didates to play roles in these interactions. More efforts to perform
function-oriented experiments are required to describe the action
mode of the previously described proteins and their involvement in
Trichoderma/host plant interactions. Many questions still remain to
be answered in regard to this.

Promotion of plant growth caused by Trichoderma spp. can be a
result of their indirect action, increasing the solubilization and
availability of plant nutrients and micronutrients. It may also be a
direct action for controlling the level of phytohormones, produc-
tion of auxin or auxin-like effect molecules, and proteins which act
by changing root architecture (Contreras-Cornejo et al., 2009;
Hermosa et al., 2012; Nieto-Jacobo et al., 2017). Among the phy-
tohormones, ethylene (ET) promotes root-hair initiation and
elongation, but in contrast to auxin, ET inhibits lateral root for-
mation and elongation.

Mutant strains of T. harzianum overexpressing the hydrophobin
QID74 in association with cucumber leads to significantly longer
lateral roots, as well as more numerous and longer secondary root
hairs. These modifications increase the total absorptive surface,
facilitating nutrient uptake and the translocation of nutrients in the
shoots, ultimately resulting in increased total plant biomass
(Samolski et al., 2012). The same kind of growth promotion was
described for a hydrophobin from T. longibrachiatum in association
with tomato and tobacco (Ruocco et al., 2015).

The major SMs produced by different Trichoderma strains, har-
zianolide and 6-pentyl-a-pyrone, also act as inducers of plant
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growth presenting an auxin-like effect (Vinale et al., 2008). In
addition to the former molecules, other volatile organic com-
pounds, terpene derivatives, were recently added to the list of
molecules secreted by Trichoderma spp. able to increase root sur-
face and plant biomass (Lee et al., 2016).

The growth-promoting activity of T. atroviride and T. asperellum
on tomato and canola seedlings has been suggested to be associated
with the activity of 1-aminocyclo- propane-1-carboxylic acid (ACC)
deaminase (ACCD) (Contreras-Cornejo et al., 2009; Viterbo et al.,
2010). ACCD activity reduces the level of ACC precursors for ET
biosynthesis, decreasing the effects triggered by it. In the absence of
ET, the effects of auxin produced by the fungus-ruled plant growth
and root development. As discussed for the triggering of defense
response, the molecular mechanism underlying growth promotion
is still unclear.

6. The future of friendly microbes in crop production
6.1. Antimicrobial peptides (AMPs)

Higher organisms fight against a great variety of pathogens
using several defense strategies, such as the production of anti-
microbial peptides (AMPs), which have become an interesting tool
to reduce crop losses (Pelegrini et al, 2011, 2008). AMPs are
generally active against various kinds of infectious agents, being
most effective as antibacterial agents, fungicides, antiviral agents,
and antiparasitic agents, reducing the risk of resistance develop-
ment in pathogenic microorganism populations. The difference in
membrane architecture of prokaryotes and eukaryotes imparts
microbial selectivity of AMPs, since AMPs are active at uM con-
centrations not generally toxic to cells of higher organisms (Perron
et al., 2006). AMPs are small and low molecular weight peptides
(generally consisting of 12—50 amino acids) and, unlike some an-
tibiotics proteins, are normally synthesized through ribosomal
protein synthesis machinery (Fox, 2013). The term “AMPs” is used
for the peptides of eukaryotes, while “bacteriocins” is used for the
bacterial defense peptides and proteins (Wiesner and Vilcinskas,
2010). AMPs are classified based on their structure and the pres-
ence of cysteine disulfide bond, which stabilize their structure. In
plants, the main classes of AMPs are cyclotides, defensins, thionins,
lipid transfer proteins, snakins, and hevein-like, vicilin-like, and
knottins. Other AMPs include: IbAMPs, 2S albumin peptides, pur-
oindolines, hairpinins, p-barrelins, and glycine-rich cysteine-free
peptides. The latter are unique in their amino acid composition and
structure, and distinct from the aforementioned classes (Goyal and
Mattoo, 2014). It is well known that most AMPs show hydrophobic
regions with a net positive charge at physiological pH, and thus are
commonly referred to as cationic AMPs. Plant AMPs with net
negative charge are known as anionic AMPs. They therefore
interact with the hydroxylated phospholipids, lipopolysaccharides,
and teichoic acids in microbial membranes, which present nega-
tively charged components. These support the inclusion of the
peptides into the membranes, leading to permeabilization by pore
formation in what is described as a detergent-like manner (“carpet”
mechanism) (Brogden, 2005; Goyal and Mattoo, 2014). Concerning
antifungal activity, Yokoyama et al. (2009) showed that AMP chitin-
binding capability plays a crucial role in antifungal activity, and the
antifungal mechanism may differ from the antibacterial mecha-
nism (Van Der Weerden et al., 2010). The AMP antiviral effect de-
pends on different factors, such as: direct interaction with the viral
envelope, disrupting or destabilizing it; competition with viruses
for the host membrane, preventing viral interaction with specific
cellular receptors; and prevention of the expression of viral genes
in the earlier infection stages, affecting propagation and viral
infection (Salas et al., 2015). The structure of AMPs can alter its

activities, such as the linearization of cyclic antimicrobial peptides,
which generally alters their ability to interact with cell membranes.
Preliminary evidence has indicated that the structure maintained
especially by the disulfide bonds is important to antimicrobial ac-
tivity (Park et al., 1992; Tamamura et al., 1993). However, there is
also evidence indicating that the function of amphipathic structure
(a-helical or disulfide-linked B-sheet) and high cationic charge is
the main feature for the biological activity of AMPs (Rao, 1999). The
in vitro activity of many plant AMPs indicates potential utility in
agribusiness. Thus, more than 2000 peptides are known and were
cataloged in several databases available in the public domain, such
as the Antimicrobial Peptide Database (http://aps.unmc.edu/AP/
main.php) and others (Sarika et al., 2012). Furthermore, there are
many works listing different classes of plant AMPs (De Souza
Candido et al., 2014; Goyal and Mattoo, 2014; Pelegrini et al.,
2011; Salas et al., 2015). Plant genetic transformation with AMP
sequences is a promising approach that combines broad-spectrum
activity and efficient antibacterial mechanisms, and has been suc-
cessfully implemented in different plant species (Boscariol et al.,
2006; Osusky et al., 2005). Studies have shown that when heter-
ologous, variant, synthetic, or other AMPs are introduced into
plants, they present broad-spectrum resistance to diverse types of
phytopathogens (Osusky et al., 2005, 2004; 2000; Ponti et al.,
2003). Furman et al. (2013) evaluated the effect of constitutive
expression of a dermaseptin coding sequence, a cationic AMP iso-
lated from frogs of the Phyllomedusa genus. This exhibited in vitro
activity against bacteria, filamentous fungi, protozoa, and yeast at
micromolar levels, and did not show toxicity to human cells
(Amiche and Galanth, 2011; Kastin, 2013; Mor et al., 1994) when
expressed in sweet orange plants against Xanthomonas spp. The
results showed a strong reduction in the frequency and intensity of
citrus canker symptoms. Combined expression of antimicrobial
transgenes could also be a suitable approach to obtain stable,
broad-range protection against different kinds of phytopathogens.
Rivero et al. (2012) combined different constructs expressing der-
maseptin, lysozyme (which hydrolyze the N-acetyl-p-muramic
acid: N-acetyl p-glucosamine linkage of peptidoglycans), and AP24
(a thaumatin-like pathogenesis-related protein belonging to the
PR-5 family) coding sequences in potato (Solanum tuberosum)
plants, and reported high levels of resistance to different species of
bacteria and fungi. Besides broad-range protection, AMPs are also
associated with other physiological aspects of plants. Nahirnak
et al. (2012) reported that overexpression of the AMP snaking-1-
encoding gene in potato plants enhanced resistance to R. solani and
Erwinia carotovora pathogens. However, when this gene was
silenced, it was found to affect growth and development processes
such as cell division, primary metabolism, and cell wall chemistry.
Goyal et al. (2013) described the construction of a new gene called
msrA3 by the molecular engineering of the N terminus of the
temporin A gene, which belongs to a family of smallest antimicro-
bial peptides in nature. Using plant transformants for this gene, the
authors tested transgenic potato lines for responses to abiotic stress
and resistance to the potato pathogen E solani. They showed that
msrA3 expression modulated the physiology and gene transcript
profiles of the transgenic potato plants. Their results suggested that
MSRA3 regulates the common step(s) of the hypersensitive (HR)
and reactive oxygen species (ROS) defense pathways. Although
some reports indicated that most naturally occurring AMPs exhibit
a narrow activity spectrum, low activity against important patho-
gens, or high toxicity against human and plant cells (Bechinger and
Lohner, 2006; Marcos et al., 2008), the major barrier for the use of
AMPs as antibiotics is their toxicity or ability to lyse eukaryotic
cells. This is normally expressed as hemolytic activity, or toxicity to
human red blood cells. The selective toxicity is due to the fact that
in eukaryotic cell membranes, the phospholipids which are
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negatively charged are predominantly in the inner leaflet of the
lipid bilayer, while the outer leaflet is mainly composed of
cholesterol and sphingomyelin, which present no charge or elec-
trically neutral (zwitterionic) (Matsuzaki, 1999). Hemolysis of
eukaryotic cells requires the peptides to insert into the hydrophobic
core of the membrane, perpendicular to the membrane surface, and
interaction of the nonpolar face of the amphipathic a-helix with the
hydrophobic lipid core of the bilayer. The peptide may thus form
transmembrane channels/pores and the hydrophilic surfaces point
inward, producing an aqueous pore (“barrel-stave” mechanism)
(Jiang et al., 2008). Modern agriculture requires the use of antimi-
crobial compounds with low toxicity and reduced negative envi-
ronmental impact. Thus, the development and design of new
molecules by the use of combinatorial-chemistry procedures
coupled to high-throughput screening systems are interesting av-
enues. Since the characteristics of the AMPs determine their
“modus operandi”, direct modification of these features allows the
design of new and specific AMPs. The modification of natural se-
quences seems to be a promising strategy for de novo synthesized
peptides, using chemical libraries oriented for this purpose
(Montesinos and Bardaji, 2008). Zeitler et al. (2013) used this
strategy for the development of structurally different groups of
peptides. Four groups were assayed for their ability to inhibit
bacterial growth and fungal spore germination, being highly active
at different concentrations with no hemolytic activity at concen-
trations up to 200 mg/ml. These new molecules were also active
after spraying on the plant surface.

6.2. Pathogen-derived resistance (PDR)

Besides the growing demand for food with every passing year,
one of the greatest constraints affecting agricultural productivity
is the impact of phytopathogens (Agrios, 2005). These include
viruses, which are responsible for a significant number of
commercially relevant plant diseases. With limited effective
countermeasures, this places them among the most important
agricultural pathogens (Gomez et al., 2009). Genetic engineering
and biotechnology offer opportunities for disease prevention, such
as the introduction of genes from diverse sources into plants. This
could generate disease resistance, with none of the species barriers
that apply to conventional strategies. The expression of structural
viral nucleic acid sequences (e.g. coat protein, movement protein,
or replicase protein genes) in plants is known as pathogen-derived
resistance (PDR). This is a concept first proposed by Sanford and
Johnston (1985), and generally offers a broader range of resis-
tance to the related viruses. The technique is effective against a low
level of inoculums, but as with most viral proteins, this strategy can
produce elicitors of R gene-driven effector triggered immunity
(ETI). This may cause HR (for review see Garcia and Pallds, 2015),
which is out of the scope of this review. On the other hand, the
accumulation of non-structural viral nucleic acid sequences can
bring about protection, by introducing a transgenic RNA to cause
degradation of the transcripts or genomic RNA of plant viruses.
Although resistance is highly species-specific, it is effective against
a high level of inoculum (Galvez et al., 2014; Koh et al., 2014). Viral
genes expressing for intact or modified replicase protein or RNA-
dependent RNA polymerase (RdRp) were used, and were reported
to provide protection (Baulcombe, 1996; Lomonossoff, 1995). Evi-
dence indicated that different mechanisms may be responsible for
replicase-mediated resistance to different virus species. However,
most of the reports describe resistance mediated by a functional or
dysfunctional protein, interfering with the replicase enzyme com-
plex and disrupting the viral replication cycle. It was also proposed
that protein produced by the transgenic plants somehow interferes
with the function of the replicase produced by the virus. It may

potentially bind to host factors or virus proteins that regulate
replication and virus gene expression (Beachy, 1997). This type of
resistance is often confused with RNA-mediated resistance. This
mechanism is related to post-transcriptional gene silencing in
transgenic plants, and resistance is dependent upon the sequence
similarity between the sense RNA products of the transgene and
the inoculated virus (Marano and Baulcombe, 1998; Tenllado et al.,
1996). The major secondary metabolites produced by different
Trichoderma strains, harzianolide and 6-pentyl-a-pyrone, also act as
inducers of plant growth, presenting an auxin-like effect (Vinale
et al., 2008). In addition to the former molecules, volatile organic
compounds named terpene derivatives were recently added to the
list of molecules secreted by Trichoderma spp. that are able to in-
crease root surface and plant biomass (Lee et al., 2016).

The growth-promoting activity of T. atroviride and T. asperellum
on tomato and canola seedlings has been suggested to be associated
to the activity of 1-aminocyclo- propane-1-carboxylic acid (ACC)
deaminase (ACCD) (Contreras-Cornejo et al., 2009; Viterbo et al.,
2010). ACCD activity reduces the level of ACC precursor for ET
biosynthesis, decreasing the effects triggered by it. In the absence of
ET, the effects of auxin produced by the fungus rule plant growth
and root development. As discussed for triggering of the defense
response, the molecular mechanism that underlies growth pro-
motion is still unclear.

Fungal diseases also impact crop production worldwide, and
their control is mainly carried using chemical fungicides. This is
efficient, but if applied on a large scale can cause a remarkable
impact on the environment. Within this context, the exploitation of
biological systems to overcome disease occurrence is a useful and
harmless alternative strategy for improving crop production. Tri-
choderma spp. are already used in formulations directly applied on
soils to control plant pathogens, especially phytopathogenic fun-
gus. Due to their action as antagonists of plant pathogens, they also
can be used as biofertilizers and bioprotectors, improving plant
health and resistance to diseases, respectively.

The successful use of Trichoderma isolates to trigger the desired
positive effects occurs depending on their ability to adapt to the
biome in which it will be introduced, in terms of abiotic and/or
biotic stresses. Therefore, there is a greater chance of success when
using isolates obtained from the same biome into which it will be
re-introduced.

The function of symbiotic fungus may be improved by the
development of mutants with increased activity. Mutants may be
obtained using random genetic modification or site-direct muta-
genesis, aiming for the knockout or over-expression of a gene.
Genome editing using the CRISPR/Cas9 system has emerged as a
powerful tool that facilitates genetic alteration in a variety of or-
ganisms. Despite this, there is not yet any record of the use of this
method to obtain symbiotic Trichoderma spp. genomic editing. On
the other hand, Trichoderma spp. genes may be used to develop
transgenic plants with increased health and ability to resist to
abiotic or biotic stresses.

There are published papers showing the improvement of plant
protection by expressing the genes of antimicrobial proteins from
Trichoderma spp., as well as genes related to resistance to biotic
stresses. However, commercial cultivars are not yet available.

6.3. Plantibodies

Hiatt et al. (1989) first showed that individual cDNAs for
immunoglobulin k- and y-chains could be efficiently expressed in
plants to form and assemble functional antibodies, later named
“plantibodies” (De Jaeger et al., 2000). Plantibodies have been
developed for the following purposes: therapeutic applications
(Fischer et al., 2003); immunomodulations (the expression of
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antibodies to disrupt the function of antigens, or inhibit the activity
of a host enzyme or metabolite that may be involved in the infec-
tion process) (Jobling et al., 2003); and for the protection of plants,
which could be designed to target any pathogen, sequestrating the
antigens which are often required to complete the infection cycle
and thus preventing disease (for review see Safarnejad et al., 2011).
Furthermore, the plantibodies approach has several advantages
over PDR in transgenic plants, which may create more virulent
pathogens via genetic recombination (Aaziz and Tepfer, 1999).
There are also some limitations, including: most antibodies cannot
form their critical disulfide form in the reducing environment of the
cytoplasm, affecting its secondary structure and thus, its function;
difficulties targeting the antibodies to subcellular organelles; and
only a few antibodies bind to the active sites of enzymes, and thus
they generally do not neutralize enzyme function. Stable antibody
fragments (Fv) have therefore been engineered by connecting the
domains with a hydrophilic and flexible peptide linker to create
single-chain Fv fragments (scFvs) (Huston et al., 1988). These
molecules are particularly suitable for expression in plants. This is
because of their small size (25 kDa) compared to full-size immu-
noglobulins (150 kDa) and their lack of assembly requirements.
Alternatively, serum of camels, dromedaries, and llamas contains a
unique type of antibody destitute of light chains, thus called heavy-
chain antibodies (HCAb) (Hamers-Casterman et al., 1993). These
have a lower molecular weight (12—15 kDa) than scFv and con-
ventional antibodies, binding their antigen by one single domain.
This is the variable domain of the heavy immunoglobulin chain,
thus referred to as (VHH) or ‘nanobody’ (Muyldermans, 2001)
(Muyldermans, 2001). They display resistance to heat, detergents,
and high concentrations of urea, as they do not require disulfide
bonds for stability and thus are appropriate for expression in plants
(Jobling et al., 2003). The heavy-chain antibodies target correctly to
subcellular organelles and inhibit the enzyme function in plants
more efficiently than antisense approaches. Furthermore, the
development of the phage display approach (which permit selec-
tion of peptides and proteins, including antibodies, with high af-
finity and specificity for nearly any target) (Krishnaswamy et al.,
2009), and the generation of synthetic scFv libraries have greatly
improved the applicability of these strategies (Prins et al., 2008).
This has been observed for the cytoplasmic expression of an scFv
antibody against the coat protein of artichoke mottled crinkle virus
in transgenic tobacco (Nicotiana benthamiana), reducing the viral
infection and delaying progression of disease symptoms
(Tavladoraki et al., 1993). Cervera et al. (2010) reported virus
resistance in the transgenic Mexican lime plants, which expressed
two different scFv constructs against epitopes of the major Citrus
tristeza virus. Interestingly, Boonrod et al. (2004) reported a strat-
egy to achieve virus resistance based on the expression of scFvs
against a conserved domain in a plant viral RNA-dependent RNA
polymerase (RdRp), which is essential for replication of the viral
genome. This strategy showed to be effective in the inhibition of
complementary RNA synthesis of different plant virus RdRps
in vitro and virus replication in planta. Furthermore, transgenic
lines of N. benthamiana expressing different scFvs in different
cellular compartments (cytosol or endoplasmic reticulum) showed
varying degrees of resistance against four plant viruses from
different genera. The authors also described that the scFvs had
specific affinity to a distantly related human hepatitis C virus in
in vitro assays, indicating the use of anti-RdRp-scFvs beyond plant
pathology. Alternatively, Ghannam et al. (2015) reported a novel
genetic approach for plant virus resistance based on the in planta
expression of camelid-specific nanobodies against broad bean
mottle virus. For fungal pathogens, Peschen et al. (2004) reported
the expression of fusion proteins consisting of a Fusarium-specific
recombinant antibody linked to antifungal peptides. The results

indicated inhibition of fungal growth and high levels of protection
against F oxysporum f.sp. matthiolae in transgenic Arabdopsis
thaliana plants. Yajima et al. (2010) reported transgenic canola
(Brassica napus) lines expressing S. sclerotiorum-specific scFv anti-
body, which showed significant levels of tolerance against steam
rot. Mollicutes are bacteria that can infect humans, animals, and
plants (Bové, 1993). These pathogens have lost the genes respon-
sible for the synthesis of a bacterial cell wall (regressive evolution).
Thus, they are limited by a single cytoplasmic membrane. Their
metabolism and growth can be inhibited by antibodies directed
against their membrane epitopes, and thus mollicutes may be an
ideal candidate for a plantibody-controlled resistance strategy. This
was reported by Le Gall et al. (1998), who engineered, cloned, and
expressed a functional scFv-specific fragment recognizing the
major immunodominant membrane protein of stolbur phyto-
plasma in Escherichia coli (to confirm its specificity and stability),
and thus conferred resistance in tobacco plants. Antibody-based
detection assays are commercially available for Xylella fastidiosa, a
member of the gamma proteobacteria which causes a variety of
diseases on a wide range of economically important crops,
including grape and citrus. They are effective at the species level,
but not at the subspecies level. Yuan et al. (2015) used phage
display technology to successfully develop a library of scFv anti-
body fragments, which have the potential to distinguish
X. fastidiosa at the subspecies level.

The use of these approaches in plant protection, animal treat-
ment, or even in human medicine may offer new and safer alter-
natives to control microbial diseases. Their unique properties allow
the use of different molecules from various sources against diverse
pathogens, representing promising future candidates for
combating microbial diseases. This will allow avoidance of the
development of drug resistance, thus reducing losses and
increasing the yield, quality, and safety of agricultural products.
Furthermore, other interesting biological activities and potential
applications, such as signaling molecules, immune modulators,
antitumor agents, drug delivery vehicles, and plant transgenes
mediators, can be developed.

7. Conclusion

Food security is a large global issue that causes risk to human
health. However, in order to guarantee food security, it is necessary
to monitor crops throughout planting, pre-harvest, and post-
harvest. The use of the fungus Trichoderma is promising, as this
fungus can interact directly with the plant, promoting growth and
providing the crops with resistance to a pathogenic fungus. This
will lead to an increase in yield and food production. On the other
hand, fungi of the genus Trichoderma can attack phytopathogenic
fungi, by different mechanisms. Knowledge of the biological pro-
cesses of the interactions between Trichoderma/plants/pathogens is
fundamentally important for the development of specific strategies
for each culture, with the aim of promoting food security. In
addition, with the advent of molecular biotechnology, the mole-
cules produced by microorganisms, including fungi of the genus
Trichoderma, can be identified to immunize plants against diseases.
The use of recombinant DNA technology for plant research may also
aid in combating disease and adverse environmental effects. It is
our hope that the technology contained in this review can be
applied gradually as an alternative to the use of agrochemicals, for
more sustainable and food-fed agriculture.
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