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Grasslands across the African continent are under pressure from climate change
and human activities, particularly in arid ecosystems. From a remote sensing
perspective, these ecosystems have not received much scientific attention,
especially in Namibia. To address this knowledge gap, various remote sensing
methods were implemented using new generation spaceborne imaging
spectrometers amongst others. Therefore, this research provides a first
methodological approach aimed at mapping and evaluating the distribution of
grasslands within two private nature reserves, namely, the NamibRand Nature
Reserve (NRNR) and ProNamib Nature Reserve (PNNR) with surrounding
farmlands on the edge of Namib Sand Sea. The multi-sensor approach utilizes
Mixture Tuned Matched Filtering (MTMF) and incorporated spectral information
collected in the field to analyze grasslands. The research involves a sensor
comparison of multispectral Sentinel-2 and PlanetScope data, hyperspectral
data from Environmental Mapping and Analysis Programme (EnMAP) and
PRecursore IperSpettrale della Missione Applicativa (PRISMA) and an additional
data fusion product derived from Sentinel-2 and EnMAP imagery based on a
Smoothing Filter-based Intensity Modulation Hypersharpening method (SFIM-
HS). Additionally, a unique spectral library of collected field spectra was
established and inter-species spectral separability and intra-species spectral
homogeneity was analyzed. This library presents newly published spectra of
individual species. Due to dry initial conditions, the calculated spectral separability
of individual grasses is limited,making only amean endmember feasible for partial
unmixing. The validation results of satellite comparison show that data fusion
products (R2 = 0.51 with Normalized Difference Vegetation Index (NDVI); R2 =
0.66 with Soil Adjusted Vegetation Index (SAVI)) are more suitable for mapping
arid grasslands than multispectral or hyperspectral data (all R2 < 0.35). More
research is required and potential methodological adjustments are discussed to
further investigate the spatio-temporal dynamics of arid grasslands and to aid
conservation efforts in the Greater Sossusvlei-Namib Landscape in line with the
United Nations Decade of Restoration.
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1 Introduction

The decade from 2021 to 2030 has been designated by the
United Nations as the Decade of Ecosystem Restoration worldwide,
with the aim to achieve the Sustainable Development Goals (SDG)
by 2030 (UN Decade on Restoration, 2023). As one of the most
widespread ecosystems, covering approximately 30%–40% of the
Earth’s land surface and occurring on every continent except
Antarctica, restoration activities should particularly focus on
grasslands, especially in achievement of SDG 15 (Blair et al.,
2014; Latham et al., 2014). SDG 15 focuses on protecting,
restoring and promoting the sustainable use of terrestrial
ecosystems, sustainable forest management, combating
desertification, halting and reversing land degradation and
halting biodiversity loss (United Nations, 2023). Grasslands can
be defined as heterogenous and biodiversity rich areas where
vegetation consists almost exclusively of grasses (Poaceae) with
occasional trees and shrubs, which fulfil both ecological and
cultural functions (Gibson, 2009; Petermann and Buzhdygan,
2021). Ecosystem services provided by grasslands include water
supply and flow regulation, erosion control, forage for livestock
and wildlife, carbon sequestration, medicinal plants and other
cultural services (Derner and Schuman, 2007; Bengtsson et al.,
2019; Zhao et al., 2020; Kleppel and Frank, 2022; Kose et al.,
2022). Globally, grasslands have both degraded and improved
over the last decades as a result of regional impacts of climate
change and human activities (Gang et al., 2014; Yan et al., 2023).
Most of the global grassland degradation has occurred in Africa,
particularly in tropical and southern drylands (Yan et al., 2023).
Besides climate change and human activities, dryland grassland
degradation is increasing due to grazing pressure, often
unrecognized in national and international policies (Bardgett
et al., 2021; Maestre et al., 2022). Grasslands also receive less
scientific attention than other terrestrial ecosystems such as
wetlands and forests (Temperton et al., 2019; Török et al., 2021).
According to Zhao et al., 2020, there is a need for future research
efforts that consider grasslands more holistically, taking into
account pressure, state and response, and using a multi-scale,
multi-method and multi-perspective approach. Remote sensing
can provide a substantial contribution to monitor grassland
ecosystem dynamics at different spatio-temporal scales including
phenological states, distribution of grassland types, biomass,
biodiversity and forage quality (Ali et al., 2016; Gamon et al.,
2019; Zhao et al., 2020). Regional focuses of remote sensing
based grassland research can be identified in Asia, especially
China, North America, Western and Southern Europe, Australia
and South Africa, while for much of the rest of the world, including
Namibia, there are no or only scattered studies available
(Reinermann et al., 2020; Masenyama et al., 2022). Most
common multispectral sensors, but also radar sensors have been
used to analyze grasslands, but the advent of the new generation of
spaceborne imaging spectrometers opens new possibilities for
grassland monitoring in future (Reinermann et al., 2020; Ferner
et al., 2021; Masenyama et al., 2022). The advantage of hyperspectral
remote sensing or imaging spectroscopy compared to multispectral
data is that data is acquired in quasi-continuous narrow bands
rather than broad bands, resulting in much higher spectral
resolution and thus a laboratory-like spectrum for each pixel,

allowing better detection of surface materials and their qualitative
properties (Goetz et al., 1985; Schaepman, 2007). Since Alexander
Goetz pioneered the first airborne imaging spectrometer in the
1990s, hyperspectral remote sensing has continued to develop,
and in 2000 the Earth Observing-1 satellite (EO-1) was launched,
carrying the first spaceborne imaging spectrometer, Hyperion (Vane
et al., 1984; Goetz et al., 1985; Ungar, 2001; Pearlman et al., 2003;
Ustin et al., 2004; MacDonald et al., 2009). Since then, several
spaceborne imaging spectrometers have been launched. Some
examples of new generations are the German DLR Earth Sensing
Imaging Spectrometer (DESIS), the Italian PRecursore IperSpettrale
della Missione Applicativa (PRISMA), the Japanese Hyperspectral
Imager Suite (HISUI) or the German Environmental Mapping and
Analysis Program (EnMAP) (Rast and Painter, 2019). To validate
remote sensing data, field spectroscopy is one of the most commonly
used methods to collect in situ data, which is fast, non-destructive
and can measure biophysical parameters (Ali et al., 2016;
Masenyama et al., 2022). When combined with remote sensing
data, field spectra contribute to a better understanding of plant
biodiversity and forage quality on a larger scale (Cavender-Bares
et al., 2017; Dao et al., 2021). Vegetation spectra typically cover the
spectral range of 380–2,500 nm where the characteristic absorption
features are located (Kokaly et al., 2009; Ustin et al., 2009; Homolová
et al., 2013). These include the absorption of leaf photosynthetic
pigments such as chlorophylls (400–700 nm), leaf structure
(700–1,300 nm), especially plant water around 950–970 nm, and
water absorption and biochemicals such as protein
(1,300–2,500 nm) (Peñuelas et al., 1993; Homolová et al., 2013;
Gamon et al., 2019). Spectral libraries are databases of spectra of
various vegetation, minerals, materials, etc., designed to facilitate
laboratory and field spectroscopy and remote sensing and to make
these spectra available for applications beyond case studies (Ruby
and Fischer, 2002; Jiménez and Díaz-Delgado, 2015). However,
spectral information on individual species is limited worldwide,
with only few spectral libraries containing grass spectra (Jetz et al.,
2016). Less than 30 grass spectra were found in the United States
Geological Survey (USGS) Spectral Library Version seven and only a
few spectral libraries published in the Ecological Spectral
Information System (EcoSIS) contained grass spectra, mostly
from United States, Belgium or Brazil (Schweiger, 2016a; 2016b;
Dennison and Gardner, 2016; Kokaly et al., 2017; Dennison et al.,
2019a; 2019b; Wang, 2019a; 2019b; 2019c; Van Cleemput et al.,
2019; Van Cleemput et al., 2020; Wang et al., 2021; Wang, 2022a;
2022b). Only one spectral library contained grass spectra from
southern Africa (Frye et al., 2021). According to Ferner et al.,
2021, neither hyperspectral nor multispectral imagery combined
with field spectroscopy provide optimal results on the quality of
African savanna grasslands, but this may change in future with the
advent of new generation of spaceborne imaging spectrometers. In
southern Africa, past studies of grassland quality have often focused
on eastern South Africa, using field spectra, multispectral and
airborne hyperspectral data (Knox et al., 2011; Ramoelo et al.,
2011; Ramoelo et al., 2012; Ramoelo et al., 2013; Singh et al.,
2017). In addition, few studies in recent decades have used these
data to examine grasslands in the more semi-arid areas of Namibia
(Deshmukh, 1984; Oldeland et al., 2010; Juergens et al., 2013;
Shikangalah and Mapani, 2020; Amputu et al., 2022; Männer
et al., 2022; Amputu et al., 2023). In particular, research on arid
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grasslands using imaging spectroscopy has been limited to North
America and Mongolia (Van Cleemput et al., 2018). According to
Okin et al., 2001, the study of vegetation in drylands is particularly
challenging because drought results in less meaningful vegetation
spectra, making it difficult to separate and unmix, and can lead to
over-interpretation of vegetation cover. The same challenge applies
to Namibia, where highly variable and unpredictable rainfall,
combined with multi-year droughts, has a strong impact on
grasslands (Shikangalah, 2020; Liu and Zhou, 2021; Mendelsohn
andMendelsohn, 2022). As a result of climate change and associated
desertification and bush encroachment, Namibian grasslands are
expected to be replaced by deserts and arid shrublands as the
predominant form of vegetation (Midgley et al., 2005; Dirkx
et al., 2008). This study focuses on two private reserves located
within the Greater Sossusvlei-Namib Landscape, namely, the
NamibRand Nature Reserve (NRNR) and ProNamib Nature
Reserve (PNNR), aiming at holistic biodiversity conservation
including grassland restoration measures (NamibRand Nature
Reserve, 2023; ProNamib Nature Reserve, 2023). The aim of this
research is to effectively support both reserves by mapping the status

quo of grassland. First mapping and measurement activities were
conducted during a field campaign in March 2023, which forms the
basis for future monitoring. Additionally, results are compared to a
vegetation survey by Burke, 2022 to provide insight into grassland
dynamics. In addition, this work aims to contribute to the identified
research gaps on arid grasslands in southern Africa and particularly
in Namibia. A unique spectral library has been created to describe
spectra of common soil, grass and shrub species and to investigate
intra-species spectral homogeneity and inter-species spectral
separability. This will be used to determine the impact of
challenges described by Okin et al., 2001 on separability and
unmixing of vegetation spectra in drylands. Furthermore, a
multi-sensor remote sensing approach will be tested using the
latest generation of hyperspectral data (PRISMA and EnMAP),
Sentinel-2 as a publicly available multispectral dataset and
PlanetScope SuperDove as a high spatial resolution but
commercial multispectral dataset. A suitable approach will be
developed to combine this data with field spectra, for first-time
mapping of grasslands and to identify limitations and advantages of
each dataset. This addresses the research gap identified by Ferner

FIGURE 1
Location of the study area. (A) Area of Interest (AOI) and Nature Reserves with plots of fieldwork, although not all 35 plots are recognizable due to
overlap. (B) Location of NRNR and PNNR incl. neighboring livestock farms within Namibia. (C) Precipitation datamonthly aggregated for NRNR and PNNR
from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) with trend lines. CHIRPS data was analyzed using Google Earth Engine
(Gorelick et al., 2017). Trend lines over the 30-year period are shown in grey for PNNR and yellow for NRNR. Additional CHIRPS data on total annual
precipitation and annual precipitation in the first 3 months (January to March) of each year for the period 1993 to 2023 are presented in Supplementary
Table S1.
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et al., 2021, as to whether multispectral or hyperspectral data are
more appropriate to explore grassland, especially within arid
ecosystems. In addition, a data fusion product will be compared
to verify the assertion of Ghamisi et al., 2019 that data fusion
improves target identification. Finally, the knowledge gained
from these objectives will be used to enable holistic and spatio-
temporal monitoring of grassland ecosystem dynamics in the
Greater Sossusvlei-Namib Landscape in future.

2 Materials and methods

This chapter provides an overview of the study area and the
process of field data collection before detailing the processing steps
required to achieve the stated objectives.

2.1 Study area

The NRNR and PNNR are part of the Greater Sossusvlei-Namib
Landscape and are located between the Namib Naukluft National
Park and the Nubib Mountains at the edge of Namib Sand Sea in the
Hardap region of Namibia (Figures 1A, B). AccAording to
NamibRand Nature Reserve, 2023; ProNamib Nature Reserve,
2023, both were established on former farmland and are
currently surrounded by livestock farms. The relatively new
PNNR, which can be seen as an eastern extension, was
established in 2020, while the NRNR has been in existence for

over 30 years. Objectives of both reserves are very similar: To
increase biomass, restore grasslands and create a functional and
biodiverse ecosystem. For this purpose, remaining fences of former
farms were removed to facilitate wildlife migration and protect the
unique ecology and wildlife. Differences consist in the way tourism
is managed. PNNR aims to reduce human impact and plans to
largely avoid tourism, whilst NRNR relies on high quality, low
impact tourism for its funding. NRNR, one of the largest privately-
owned nature reserves in Southern Africa, encompasses an area of
around 1,700 km2. PNNR, covering approximately 680 km2, plans to
expand to match NRNR’s size in future. Fieldwork was conducted in
both reserves. The study’s area of interest (AOI) is approximately
760 km2 and covered by all satellite sensors allowing a multi-sensor
approach. The AOI comprises around 426 km2 of PNNR and about
334 km2 of surrounding livestock farmland. (Figure 1A). According
to Mendelsohn and Mendelsohn, 2022, growing season and
productivity of vegetation, especially grasses, in Namibia are
particularly dependent on rainfall, which is highly variable,
unpredictable, and strongly influenced by the El Niño Southern
Oscillation. The rainy season lasts from October to March and the
growing season from December to May. Based on Mendelsohn and
Mendelsohn, 2022, the climate in the study area is classified as arid
with average annual temperatures between 19°C and 21°C. In
addition, precipitation in the study area varies due to an
increasing rainfall gradient from west to east. The average annual
rainfall (1993–2022) of PNNR, is 102 mm, while NRNR shows an
average of only 43 mm respectively (Figure 1C). Most of the
precipitation occurs in the months of January to March

FIGURE 2
Workflow diagram. Light grey: Input data; Light green: Individual preprocessing steps; Green: General preprocessing steps; Light yellow:
Endmember selection; Yellow: Endmember resembling; Grey: unmixing using spectral hourglass wizard and regression analyses using selected indices.
Arrow colors correspond to input data contours, with black arrows representing processes that are common to all satellite data and colored arrows
representing processes that are specific to input data, e.g., blue arrows for PRISMA. SFIM-HS is the abbreviation for the generated data fusion
product based on the Smoothing Filter-based Intensity Modulation hypersharpening method, which is described in more detail in chapter
2.3.2 Description and pre-processing of satellite data.
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TABLE 1 Satellite image metadata.

EnMAP PRISMA PlanetScope SuperDove Sentinel-2

Original name ENMAP01-____L2A-
DT0000010602_20230313T094252Z_001_V010111_20230314T104620Z

PRS_L2D_STD_20230215090927_20230215090931_0001 20230313_084858_41_241c S2B_MSIL2A_20230312T083729_
N0509_R064_T33JXN_20230312T141328

20230313_084856_19_241c

20230313_084853_97_241c

20230313_084501_60_248c

20230313_084459_42_248c

Spectral
range [nm]

VNIR (420–1,000); SWIR (900–2,450) VNIR (400–1,010) Coastal Blue (431–452); Blue (465–515);
Green I (513. - 549); Green II (547–583);
Yellow (600–620); Red (650–680); Red-
Edge (697–713); NIR (845–885)

Central wavelength

SWIR (920–2,505) Band 1 (443); Band 2 (490); Band 3 (560); Band 4 (665);
Band 5 (705); Band 6 (740); Band 7 (783); Band 8 (842);
Band 8b (865); Band 9 (945); Band 10 (1,380); Band 11
(1,610); Band 12 (2,190)

Bands VNIR (94); SWIR (134) VNIR (66); SWIR (171) 8 13

Spectral
resolution
[nm]

averaged ≤12 Coastal Blue (21); Blue (50); Green I (36);
Green II (36); Yellow (20); Red (30); Red-
Edge (16); NIR (40)

Band 1 (20); Band 2 (65); Band 3 (35); Band 4 (30); Band
5 (15); Band 6 (15); Band 7 (20); Band 8 (115); Band 8b
(20); Band 9 (20); Band 10 (30); Band 11 (90); Band
12 (180)

VNIR (6.5) Resampled to 10 m

SWIR (10)

Spatial
resolution [m]

30 30 approximated Band 2, 3, 4, 8 (10)

3.7; delivered 3 m Band 5, 6, 7, 8b, 11, 12 (20); Band 1, 9 & 10 (60)

Radiometric
resolution [bit]

14 12 12 scaled to 16 bit after radiometric
corrections

12

Swath
width [km]

30 30 approximated 290

32.5 * 19.6

Acquisition
date

2023.03.13 2023.02.15 2023.03.13 2023.03.12

Processing
level

L2A L2D Analytic 3B L2A

Cloud-
cover [%]

0 0 0 0

Citation Stuffler et al. (2009), Chabrillat et al. (2022)
Guanter et al. (2015)

Guarini et al. (2018), Loizzo et al. (2018) Planet Labs (2022), Tu et al. (2022) Drusch et al. (2012), European Space Agency (2015)

Downloaded
from

EnMAP data ©DLR (2023). - All rights reserved PRISMA Product - ©ASI - Agenzia Spaziale Italiana - (2023).
- All rights reserved

Planet Team (2022) European Space Agency (2023)

Fro
n
tie

rs
in

R
e
m
o
te

Se
n
sin

g
fro

n
tie

rsin
.o
rg

0
5

B
an

te
lm

an
n
e
t
al.

10
.3
3
8
9
/frse

n
.2
0
2
4
.13

6
8
5
5
1

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1368551


(Figure 1C). The variability of precipitation between years is evident
with the wettest year in 2011 (185 mmof rainfall in PNNR and 87 mm
in NRNR), and the driest year in 2019 (48 mm of rainfall in PNNR
and 20 mm in NRNR). After two very good rainy seasons in 2021 and
2022, the first months of 2023 had only slightly more precipitation
than in 2019. Besides precipitation, the second dominant factor for
vegetation growth is substrate. The predominant soil types, apart from
sandy dunes, are leptosols and regosols, whose formation depends on
the adjacent geology (Burke, 2022; Mendelsohn and Mendelsohn,
2022). In general, the geology of the area can be divided into three
areas: The escarpment in the east with sandstone, sedimentary rocks
and limestone of the Nama formation, various rock types of the
NamaquaMetamorphic Complex prevailing in the east and south and
granites in the northern, western and central parts of the reserves
(Miller, 2008; Burke, 2022). The elevation ranges from nearly 500 m in
the northwest of NRNR to around 2000 m above sea level, with the
highest mountains in the East central part near the northern border
between both reserves (German Aerospace Center, 2022). The most
recent vegetation survey of both reserves was conducted in 2022,
during a period of very high rainfall, when over 250 plant species in
11 different vegetation types were recorded (Burke, 2022). Most
dominant grass species were the sour grass Schmidtia kalihariensis
(annual) and the bushman grasses Stipagrostis ciliata, Stipagrostis
obtusa and Stipagrostis uniplumis (all perennial) (Burke, 2022; van
Oudtshoorn, 2022). Other dominant vegetation species included the
shrubs Boscia foetida, Calicorema capitata, Lycium bosciifolium,
Monechma cleomoides, Petalidium setosum and Rhigozum
trichotomum, the acacia Acacia erioloba and the herb Gisekia
africana (Burke, 2022).

2.2 Field work

Fieldwork was carried out in both reserves from 11 to 17 March
2023 between 8 a.m. and 5 p.m. under clear skies. A total of
42 spectra were collected from 35 one-square-meter plots selected
according to topography and vegetation greenness. The data
collected at each plot was documented in a study-specific
protocol, which can be found in the appendix (Supplementary
Figure S1). Waypoint averaging feature of the Garmin GPSMAP
60CSx handheld GPS unit was used to measure the plots with an
inaccuracy of less than 10 m (Garmin International Inc, 2005).
Books by Müller, 2007; Burke, 2008, 2009a, 2009b; Roodt, 2015;
van Oudtshoorn, 2022 were used to identify species in the field, but
no distinction was possible between individual variations, e.g.,
Stipagrostis uniplumis and the variations var. uniplumis, neesii or
intermedia. Field spectra were measured using an Analytical Spectral
Devices FieldSpec 3, which records the radiant energy using three
different detectors (VNIR [350–1,000 nm], SWIR
1 [1,000–1830 nm] and SWIR 2 [1830–2,500 nm]) with a spectral
resolution of 3–10 nm (Analytical Spectral Devices Inc., 2010a,
Boulder, Colorado, United States). The protocol of Kalacska
et al., 2018 was applied to standardize field measurements of
spectra. The spectroradiometer was recalibrated before each
measurement using dark current and white reference correction.
The white reference correction for pistol measurements was
performed on a 95% white reference (SphereOptics, 2022,
Herrsching am Ammersee, Germany: ID. NO: SG3151). For

pistol measurements, the pistol was held in a nadir position 1 m
above the canopy with a 25° field of view. The solar height during the
measurements ranged from 30 to 90°. It was not possible to measure
exclusively at zenith due to high temperatures above 40°C and the
temporary failure of our instruments around midday. For contact
measurements, the blade, sheath and internode were clamped and
jointly measured using the Analytical Spectral Devices Leaf Clip
(Analytical Spectral Devices Inc., 2010b., Boulder, Colorado,
United States). The two programs RS3 and ViewSpec Pro were
used to check the spectra for measurement errors in field (Analytical
Spectral Devices Inc, 2008a; Analytical Spectral Devices Inc, 2008b.,
Boulder, Colorado, United States). Spectral measurements by
contact and pistol were focused on grasses, but also included
selected shrubs. Plots with poor vegetation were measured by
contact only, and soils were generally measured close to selected
plots by pistol only. For each plot and measurement type,
10 replicates were measured. The output data for each spectrum
were reflectance values interpolated to 1 nm spectral resolution.
Each spectra was stored in a single. asd file. In addition to soil
spectra, soil color, clay content and particle size of topsoil (relevant
for this approach) were evaluated using Munsell Soil Color Chart
Book and World Reference Base for Soil Resources (Munsell Color
Corporation, 2009; International Union of Soil Sciences, 2022).

2.3 Data processing

A suitable approach for combining the field spectra with the
selected satellite data is shown in Figure 2 and includes all necessary
processing and analysis steps, which are described in detail in the
following chapter.

2.3.1 Pre-processing field spectra
The field spectra were preprocessed using R version 4.3.0 and

the packages hsdar, hyperSpec, asdreader and RStoolbox
(Roudier, 2017; Lehnert et al., 2019; Beleites and Sergo, 2021;
Leutner et al., 2023; R Core Team, 2023). Correction factors were
first applied to all spectra to remove channel crossings from the
three different detectors of the ASD FieldSpec 3. Subsequently, a
mean spectrum of all replicates for each plot was calculated and
the Savitzky and Golay filter was applied to smooth the spectra
with a window size of five and second-order polynomial
transformation (Savitzky and Golay, 1964). Since spectral
measurements at leaf level cannot easily be upscaled to
satellite images, only canopy measurements taken with the
pistol were processed (Homolová et al., 2013; Gamon et al.,
2019). In addition, only pistol measurements of species with at
least two independent measurements were considered as the
reflectance of vegetation and resulting spectral profiles of
pistol measurements vary with changing environmental
conditions such as background and Sun position and strongly
depend on the degree of disturbance or phenological stage (Lieth,
1974; Ollinger, 2011). The water absorption bands between
1,280 and 1,532 nm and 1727 and 2034 nm were removed
from these spectra. In addition, the spectral range up to
420 nm and from 2,450 nm was also removed due to noise. In
the next step, the Spectral Angle Mapper (SAM) analysis was
used to determine the intra-species spectral homogeneity, inter-
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species spectral separability and the separability from soil spectra
(Kruse et al., 1993). Small SAM angles close to 0 indicate greater
homogeneity and larger angles, usually above 0.1 to 1, indicate
better separability (Kruse et al., 1993). The formula for the SAM
angle, given in radians, for a spectrum t and the reference
spectrum r is shown below. In this formula, nb is the number
of bands (Kruse et al., 1993).

SAM � cos−1
∑nb

i�1 ti ri∑nb
i�1 t

2
i( ) 1

2 ∑nb
i�1 r

2
i( ) 1

2

⎛⎝ ⎞⎠
(Kruse et al., 1993) Results of SAM analysis provides the basis for

the calculation of a mean grass endmember, which is used as target
spectrum, also called endmember for partial unmixing. A more
detailed description of the procedure, including justification, is
provided in chapter 3.4. Therefore, the endmember was
resampled to the spectral resolution of satellite images (EnMAP,
PRISMA, PlanetScope and Sentinel-2 and SFIM-HS).

2.3.2 Description and pre-processing of
satellite data

In this study, twomultispectral satellites and two new generation
spaceborne imaging spectrometers were used to unmix the
endmember spectra. Table 1 shows the metadata of the satellite
images used, which are all surface reflectance data products that
have been geometrically and atmospherically corrected (Table 1;
European Space Agency, 2015; Guanter et al., 2015; Guarini et al.,
2018; Planet Labs, 2022). All data are in the coordinate systemWGS
84 UTM Zone 33 S (EPSG: 32,733). One of these spectrometers is
the EnMAP mission, which is led by the Space Agency of the
German Aerospace Centre (DLR) and successfully launched in
2022 (Müller et al., 2009; Stuffler et al., 2009; Chabrillat et al.,
2022). Since March 2023, it has been possible to request and receive
data on demand for the study area. In general, EnMAP scenes
typically have a geolocation error of 0.3–0.4 pixels following
automatic co-registration (Chabrillat et al., 2022). However, the
scene acquired in March 2023 demonstrates exceptional accuracy in
terms of geolocation and displays no noticeable shift when
compared to the Sentinel-2 scene. Thus, there is no need for any
additional co-registration process. The second imaging
spectrometer analyzed is PRISMA from the Italian Space Agency

(ASI), which was launched in 2019 (Loizzo et al., 2018; Vangi et al.,
2021). Due to bad weather conditions, it was not possible to acquire
a scene during the field campaign, whereupon a scene from February
2023 was used. Both imaging spectrometer data sets have a spatial
resolution of 30 m (Table 1). To import the hyperspectral scenes and
to remove the channel overlap between VNIR and SWIR cubes, the
EnMAP Toolbox version 3.11 was used in QGIS 3.28 Firenze (van
der Linden et al., 2015; EnMAP-Box Developers, 2019; QGIS
Development Team, 2023). However, the geolocation error of
PRISMA images is up to 200 m, which means further co-
registration is needed (Baiocchi et al., 2022). The co-registration
was performed using the image registration workflow in ENVI 5.5.3
(Jin, 2017; L3Harris Geospatial Solutions, 2023). Band four from the
Sentinel-2 image was used as the base image, and band 31 from
PRISMA as the warp image. The warping method was polynomial
and the resampling method was bilinear. A total of 11 tie points were
used with a maximum RMS error of 0.2392. The warped PRISMA
image has an overall RMS error of 0.1446. In addition to
hyperspectral imagery, two multispectral data sets, namely,
Sentinel-2 and PlanetScope were used within the study. The
Sentinel-2 image was acquired from Sentinel-2B satellite, which,
together with the Sentinel-2A satellite, are part of the Global
Monitoring for Environment and Security (GMES) initiative
from European Space Agency and were launched in 2015 and
2017, respectively (Drusch et al., 2012; Revel et al., 2019). All
spectral image bands were resampled to 10 m using the sen2r
package in R (Ranghetti et al., 2020). The PlanetScope
SuperDove data set is from the third generation of commercial
high spatial resolution multispectral satellites from Planet Labs Inc
(Roy et al., 2021; Tu et al., 2022). The first SuperDove satellites were
launched in 2020 and are now providing data almost on a daily basis,
worldwide (Planet Labs, 2022). Five PlanetScope images were
acquired and mosaiced using the Seamless Mosaic tool and
automatically generated seamlines in ENVI 5.5.3 (Table 1; Pan
et al., 2009). In addition to the four satellite images, a fifth data
set was derived through data fusion. The reason for this is that
multisensory data fusion can be used to enhance low spatial
resolution hyperspectral imagery with high spatial resolution
multispectral imagery, resulting in a high spatial and spectral
resolution image that improves target identification (Ghamisi
et al., 2019). The potential of fusing the new hyperspectral

FIGURE 3
Fact sheet of measured soil spectra. (A) Example image of a measurement site on a grass plain and summarized information on all measured soil
samples. (B) Spectral profiles using pistol measurements from all sites with mean spectra in yellow.
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imagery with the Sentinel-2 data to improve classification results has
been described in several studies (Chan and Yokoya, 2016; Yokoya
et al., 2016; Acito et al., 2022). For this study, the Smoothing Filter-
based Intensity Modulation hypersharpening method (SFIM-HS),
which formulates the relationship between solar radiation and land
surface reflectance, was used to fuse the existing EnMAP image with
the resampled Sentinel-2 image (Yokoya et al., 2017). The SFIM-
algorithm was first described by Liu, 2000 and the hypersharpening-
algorithm by Selva et al., 2015. The advantage of the SFIM-HS
algorithm over other data fusion algorithms is that the spectral
change is negligible compared to the hyperspectral image (Liu, 2000;
Yokoya et al., 2017; Ren et al., 2020). Therefore, the SFIM-HS
product generated for this work has the same spectral resolution as
the EnMAP image (Table 1) and a spatial resolution of 10 m.

2.3.3 Satellite data processing
The five images were processed identically using ENVI

5.5.3 software (L3Harris Geospatial Solutions, 2023). Images
were clipped to the AOI extent and rescaled to values between
0 and 1. Endmember unmixing was performed using the Spectral
Hourglass Wizard and the Minimum Noise Fraction (MNF) was
applied to separate data from noise and to reduce data
dimensionality (Green et al., 1988; Lee et al., 1990; Boardman
and Kruse, 1994). The MNF transformation consists of two
cascaded Principal Component Analysis rotations and a noise
reduction step, and generally results in a better signal-to-noise
ratio than simple Principal Component Analysis for noise
reduction (Luo et al., 2016). The benefits of MNF for noise
reduction in hyperspectral images are well known, but the
analysis of multispectral data can also be improved (Syarif and
Kumara, 2018). Figure 2 shows the MNF eigenvalue threshold
used for each image and the remaining number of MNF bands
where spatial coherence values are higher than the threshold. To
estimate the abundance of an endmember in an image, several
linear, nonlinear, and partial unmixing techniques have been
tested in the last decades (Plaza et al., 2011; Quintano et al.,
2012; Heylen et al., 2014; Wei and Wang, 2020; Peyghambari and
Zhang, 2021; Cavalli, 2023). The advantage of partial unmixing
methods such as Mixture Tuned Matched Filtering (MTMF) over
other methods is that knowledge of background and other
endmembers is not required to match individual endmembers,
while the disadvantage is that this method is not suitable for
mapping background (Boardman, 1998; Mundt et al., 2007;
Boardman and Kruse, 2011). The MTMF process can be
divided into two steps: The matched filter provides a score
value representing the estimated abundance, and the mixture
tuning provides an infeasibility value for each endmember and
pixel (Boardman and Kruse, 2011). The infeasibility value
indicates the quality of the matched filter result and allows
detection of false positive pixels (Mundt et al., 2007). A pixel
with a low score value should also have a low infeasibility value,
while higher score values may be correct even if the infeasibility
value is higher and score values above one mostly represent
background (Mundt et al., 2007). Hence, the setting of
infeasibility thresholds between correctly and falsely classified
pixels is the most critical part of MTMF classification.
Traditionally, this threshold is set manually using a 2D scatter
plot of infeasibility and score values, followed by an iterative

adjustment of the threshold using validation points (Boardman
and Kruse, 2011). Alternatively, supervised learning algorithms or
regression based thresholds can be used (Sankey, 2009; Routh
et al., 2018). In this study, according to Kruse et al., 2015, a ratio of
score to infeasibility value (ration = score value/infeasibility value)
is used to standardize the results of the different satellite data and
thus make them comparable. Only pixels with a ratio value greater
than 0.025 were considered true, otherwise they were false
positives. Additionally, all pixels with scores below 0.05 were
considered false positives.

2.3.4 Validation approaches
Two approaches are used to validate unmixing results of all

five datasets. The first approach is a linear regression between
pixels classified as true by MTMF and the Normalized
Difference Vegetation Index (NDVI), one of the most widely
used vegetation indices in the world, and the Soil Adjusted
Vegetation Index (SAVI), which is considered more sensitive in
arid grasslands due to the canopy background adjustment factor
(Rouse et al., 1974; Tucker, 1979; Huete, 1988; Zhou et al., 2014;
Reinermann et al., 2020). This validation is based on the
relationship between vegetation indices and increasing
vegetation cover described by Purevdorj et al., 1998, and on
the expected values of vegetation indices for arid vegetation and
grass for both indices according to Huete, 1997. According to
this study, the SAVI values for grass are around 0.2 to 0.4 and
for semi-arid to arid vegetation below 0.2. For NDVI, the values
for grass are around 0.3 to 0.6 and for semi-arid to arid
vegetation below 0.5. The formulas for both indices are
presented below:

NDVI � NIR − Red

NIR + Red
; SAVI � 1.5* NIR − Red( )

NIR + Red + 0.5( )
(Rouse et al., 1974; Tucker, 1979; Huete, 1988) Both indices were

calculated from each dataset using the spectral indices tool in ENVI,
where the bands selected for calculation are those closest to the
center wavelength of 650 nm for Red and 860 nm for NIR. The
indices are compared to MTMF results from same data set. The
second validation attempt was carried out using the plots recorded
during fieldwork. The 17 grass plots in the study area were compared
to the correctly classified pixels of the MTMF. This allowed to
determine how many of these plots were correctly classified. All
graphs (Figures 3–13) were finally generated with the
ggplot2 package using tidyverse, tidyterra and the terra package
for remote sensing data in R (Hadley, 2016; Wickham et al., 2019;
Hernangómez, 2023; Hijmans, 2023).

3 Results

This chapter presents and describes the measured soil, shrub,
and grass spectra that form the first set of spectra in the unique
spectral library. Intra-species spectral homogeneity, inter-species
spectral separability, vegetation-soil separability, and soil
homogeneity are derived from the SAM results to identify a
likely endmember for grass unmixing under arid conditions.
Finally, the resulting distribution maps of grass endmember
abundance are described and validated.
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3.1 Soil spectra

Thirteen soil spectra were collected during the field campaign, taken
from vegetation-free grass plain, riverbed, and dune areas (Figure 3A).
The collected soil samples showed nearly homogeneous color variation
between dusky red, dark red, and dark reddish-brown (Figure 3A).
Most of the samples had a clay content of about 20%, whereas one plot
had a clay content of over 35%. Differences in grain size were found
from the predominantly sandy loam, to sandy clay loam, to soils with
more soil skeleton on themountain slopes. Figure 3B) shows the spectra
for each soil plot, highlighting the calculated mean soil spectrum in
yellow. The soil spectra exhibit varying reflectance intensity across the
spectrum. In addition, most spectra display a concave feature at
2,250 nm that varies in intensity and is absent in one spectrum.

3.2 Shrub spectra

Six shrub spectra from four different species could be measured
during field work. Two species R. trichotomum, also known as
Dreidorn, and Galenia africana, also known as Kraalbos, were
measured only once and are not further illustrated, but the contact
spectra are shown in Figure 4. Rhigozum trichotomum belongs to the
family of Bignoniaceae and Galenia africana to the family of
Aizoaceae. Due to the very dry and hard branches and the
interfering thorns, the contact measurement of R. trichotomum
was not meaningful. The Galenia africana was vigorous at the
time of recording with partially browned leaves. However, the
concave shape in the spectral range from 950 to 970 indicates a
higher leaf water potential and thus lowerwater stress, probably due to
the greener leaves measured (Figure 4). In addition, the two species
Pechuel-Loeschea leubnitziae and C. capitata were measured twice at
different locations (see fact sheet in Figure 5). Pechuel-Loeschea
leubnitziae belongs to the family of Asteraceae. These measured
shrubs were predominantly green, over 1 m high, over 2 m in
diameter and were found in dry riverbeds in the study area.
However, one was browner and is shown in Figure 5A).
Calicorema capitata is a member of the Amaranthaceae family and
has a greyish/bluish to green color and is shown in Figure 5D). They
were found clustered on both large grassy plains and hilly regions with
rocky substrates. Those that weremeasuredwere less than 1 m tall and
had a diameter ranging from less than 2 m to nearly 3 m. The contact
measurements of both species are shown in Figures 5B, E) and the
pistol measurement in C) and F). All four figures contain a mean
spectrum of the respective measurement type in red. The decrease of
the spectral reflectance of one of the C. capitata spectra in the region
below 500 nm indicates an interfering light incidence during the
measurement. Otherwise, the region influenced by chlorophyll
absorption and reflectance is less pronounced in the C. capitata
spectra than in the Pechuel-Loeschea leubnitziae spectra. The cell
wall absorption region indicates lower water stress for both species
and the Pechuel-Loeschea leubnitziae spectrum shows more
pronounced regions of higher reflectance in the biochemical region.
The pistol measurement spectra were generally less informative for
both species. For example, the region influenced by chlorophyll
content is significantly less pronounced, similar to the region of cell
water absorption. The Pechuel-Loeschea leubnitziae and the C. capitata
are both frequently found in the study area, but are not dominant.

3.3 Grass spectra

A total of 23 spectra from 12 different Poaceae or grass species
were measured during field work. Seven of them were measured once.
The spectra from contact measurements are shown in Figure 6. The
two grasses found on the dunes are Stipagrostis sabulicola also known
as dune bushman-grass, which was measured on the top, and
Stipagrostis lutescens, also commonly known as golden bushman-
grass which was measured on the slope. Both dune grasses were more
than one up to 2 m high. The comparison of both spectra shows lower
chlorophyll and cell water absorption, indicating more water stress of
S. sabulicola spectrum compared to S. lutescens spectrum. Tricholaena
monachne, also known as blue-seed grass, Aristida adscensionis, also
known as annual bristle grass, and Enneapogon cenchroides, also
known as fur grass, were found together with S. uniplumis, Sporobolus
festivus (both shown in Figure 7) and other non-presented species at
the edge of a riverbed, the most species-rich area within this study site.
The three species have similar spectra with different reflectance
intensities, with the strong water absorption of the T. monachne
spectrum showing a major a difference. In addition, the
measurements of A. adscensionis and E. cenchroides in the region
below 500 nm were partially disturbed by light incidence. On the plot
where soil had a particularly high clay content (>35%), quite green S.
kalihariensis, also known as bushman grass, could be found. However,
some of these S. kalihariensis were disturbed by livestock grazing, but
the spectrum tends to represent a grass that is higher stress resistant.
Stipagrostis obtusa, the small bushman´s grass, located on a grass
plain, showed a very brown condition. The spectrum also showed
lower chlorophyll and cell water uptake, indicating water stress. Other
species were measuredmore frequently and were therefore considered
for further analysis (see fact sheets in Figure 7). One of these grasses is
Cladoraphis spinosa, which was found andmeasured on top of a dune
and on a sandy grass plain. The two specimens measured were almost
the same height and in a rather brown condition. In dry riverbeds
Stipagrostis namaquensis was more common. It was measured four
times showing different conditions, from less than 1 m height and
green to more than one and a half meter height and brown. Canopy
diameter was very variable from less than 50 cm to almost 250 cm.
Two Sporobolus festivus were found close to each other in the most
species-rich area and did not differ much concerning phenological

FIGURE 4
Contact spectra from Galenia africana (GA) and Rhigozum
trichotomum (RT), whereas the measurement of Rhigozum
trichotomum is not meaningful.

Frontiers in Remote Sensing frontiersin.org09

Bantelmann et al. 10.3389/frsen.2024.1368551

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1368551


condition or size range. Two grass species clearly dominated within
this study area. These were S. ciliata and S. uniplumis. Stipagrostis
uniplumiswas slightly shorter than S. ciliata, but both were less than a
meter high. They were measured in either slightly greener or
predominantly browner phenological states. Both species were
found solitary or mixed, often occurring on grass plains or dry
riverbeds. In general, the spectra of these five species show
similarities across the spectrum, with S. ciliata having lower
reflectance maxima in the 1,300–2,500 nm spectral range than
other grasses. These grass spectra show lower chlorophyll and cell
water absorption compared to shrub spectra, indicating increased
water stress. Two spectra of S. ciliata and one spectrum of S.

namaquensis stand out, showing particularly high reflectance in
these spectral regions, indicating very dry conditions (Figures 7E,
K). In the following, the intra-species spectral homogeneity, inter-
species spectral separability, vegetation-soil separability and soil
homogeneity of the spectra presented are described in more detail.

3.4 SAM analysis and derivation
of endmember

The results of spectral separability analysis performed with SAM
are shown in Figures 8, 9. They show the spectral angle between all

FIGURE 5
Fact sheets of Pechuel-Loeschea leubnitziae and Calicorema capitata. (A–C) Fact sheet of Pechuel-Loeschea leubnitziae, including (A) image and
summarized information, (B) contact measurements and (C) pistol measurements. (D–F) Fact sheet of Calicorema capitata, including (D) image and
summarized information, (E) contact measurements and (F) pistol measurements. All mean spectra in (B, C, E, F) are presented in red.
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soil spectra (Figure 8) and all vegetation spectra except species only
measured once (Figure 9). The mean soil spectrum is also shown in
both figures. Based on these results, intra-species spectral
homogeneity, inter-species spectral separability, as well as
separability from soil spectra, can be determined. The spectral
angle between all soil spectra is very small, indicating high
homogeneity. The calculated spectral angles range from 0.01 to
0.07. The two most similar spectra were measured on dunes. Largest
difference is between one of these dune spectra and a spectrum taken
from a stonier soil. The spectral angle between all soil spectra and
mean soil spectra is less than 0.04, indicating the representativeness
of mean spectra. Due to arid conditions in the study area, the soil
spectra were considered as a background spectrum for partial
unmixing. Therefore, the separability of vegetation from soil
spectrum is important for successful unmixing. In general, the
spectral angle between vegetation spectra and mean soil spectra
is at least 0.30, indicating separability. Two exceptions are the
spectra of very dry S. ciliata which show an angle of up to 0.08
(Figure 9). The spectra of Pechuel-Loeschea leubnitziae show the best
separation from the mean soil spectrum, with high intra-species
spectral homogeneity. While the intra-species spectral homogeneity
of the shrub C. capitata is low with 0.28. Similarly, the inter-species
spectral separability of C. capitata from spectra of the considered
grass species and Pechuel-Loeschea leubnitziae is low, so
separability cannot be granted. The comparison of SAM results
of grass species in general shows that spectra of C. spinosa, S.
uniplumis and Sporobolus festivus show a higher intra-species
spectral homogeneity with a SAM angle below 0.06. In
comparison, the spectra of S. ciliata and S. namaquensis show a
lower intra-species spectral homogeneity depending on the
condition of the measured grass. Occasionally, grass species
show a higher inter-species spectral separability with a mean
SAM angle greater than 0.1, with individual spectra being
considerably smaller. For example, the spectra of C. spinosa and
Sporobulus festivus show a high separability. However, the inter-
species spectral separability of presented grass spectra is generally
low, due to the extreme arid conditions during measurement.
Therefore, individual grass species cannot be represented by the
partial unmixing method. However, the SAM results show that it is

possible to separate most of the grass spectra from soil spectra and
the spectra of the shrub Pechuel-Loeschea leubnitziae. Therefore, a
mean spectrum of all grass spectra was used as an endmember for
partial unmixing. To improve this endmember, three spectra
showing high similarity to soil or Pechuel-Loeschea leubnitziae
spectra were excluded. The three excluded spectra are two from S.
ciliata and one from S. namaquensis, labelled SC1, SC3 and SN4 in
Figure 9. The calculated mean endmember for grass spectra is
shown in Figure 10 along with the mean spectra of all
species and soil.

3.5 Unmixing and validation

Before comparing the results from unmixing with the five
different image datasets, it should be noted that the PRISMA
image was taken in February, not at the time of fieldwork, which
limits the comparability of PRISMA with the other four images.
The results from MTMF and possible validation are presented in
Table 2 and Figures 11–13. The scatterplots in Figures 11, 12
show aggregated pixels. Darker areas represent more pixels than
brighter areas. Figures 11A, D show scatterplots between score
and infeasibility values for all pixels with a score value between
0 and 1 and an infeasibility value between 0 and 40. The
regression line is shown in blue, and the R-squared values for
each image are low, up to 0.2. Pixels below the dashed red
threshold line are classified as correct, while pixels above the
line are classified as false positives and are not further considered.
Score values decrease from nearly 1 for the high-resolution
PlanetScope image to 0.7 for EnMAP and 0.25 for PRISMA,
both being lower-resolution hyperspectral images. The PRISMA
results show the least scatter (Figure 12A), which makes
interpretation of results difficult. The SFIM-HS result, on the
other hand, shows the widest dispersion of all, especially in the
range of low scores and high infeasibility values (Figure 12G).
This may indicate that fusion of high spectral and spatial
resolution data improves the detectability of false positive
pixels. The PlanetScope and Sentinel-2 results tend to show an
exponential increase in infeasibility with increasing score values.
The grass distribution maps from the five different images are
shown in Figure 13. PRISMA shows single patches of grass in the
central grass plains, on the slopes of the central hills, especially on
the north slope, and larger patches of grass in the hillier north-
central, northwestern, and western parts of the study area
(Figure 13C). Similar spatial patterns are detected by the other
sensors, but with varying degrees of intensity and spatial
coverage. In general, PlanetScope shows more grass areas and
also higher abundances throughout the study area (Figure 13A).
The same is true for EnMAP in the western areas, while the SFIM-
HS image (Figure 13) detects less grass compared to the other
images. The northwestern area has the highest abundance of grass
in all five distribution maps. Excluding PRISMA, the largest
differences are in the northeast and southeast of the study area,
where EnMAP and PlanetScope detect grass in the valley areas,
while Sentinel-2 and SFIM-HS detect less to no grass in these areas.
In addition, the SFIM-HS detects less grass cover in the
southwestern grass plains compared to the other three datasets.
PlanetScope and Sentinel-2 results show more grass in the dry

FIGURE 6
Contact measurement of Aristida adscensionis (AA),
Enneapogon cenchroides (EC), Schmidtia kalihariensis (SK),
Stipagrostis lutescens (SL), Stipagrostis obtusa (SO), Stipagrostis
sabulicola (SS) and Tricholaena monachne (TM).
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FIGURE 7
Fact sheets ofCladoraphis spinosa, Stipagrostis namaquensis, Sporobolus festivus, Stipagrostis ciliata and Stipagrostis uniplumis. (A–C) Fact sheet of
Cladoraphis spinosa, including (A) image and summarized information, (B) contact measurements and (C) pistol measurements. (D–F) Fact sheet of
Stipagrostis namaquensis, including (D) image and summarized information, (E) contact measurements and (F) pistol measurement. (G–I) Fact sheet of
Sporobolus festivus, including (G) image and summarized information, (H) contact measurements and (I) pistol measurements. (J–L) Fact sheet of
Stipagrostis ciliata, including (J) image and summarized information, (K) contact measurements and (L) pistol measurements. (M–O) Fact sheet of
Stipagrostis uniplumis, including (M) image and summarized information, (N) contact measurements and (O) pistol measurements. All mean spectra in
(B, C, E, F, H, I, K, L, N, O) are presented in green.
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riverbeds in the central-northern to central-southern areas, while
EnMAP and SFIM-HS only partially detect it. To validate the
results, the score values classified as correct were compared to
NDVI and SAVI values of these pixels. In general, the NDVI and
SAVI values shown are within the expected range and can
therefore be considered realistic for grassland. The R2-values for
the linear regression with NDVI ranged from 0.23 to 0.51 and from
0.26 to 0.66 with SAVI. The scatter of the points around the
regression line was less for SAVI than for NDVI. The PlanetScope
and PRISMA results have the lowest R2 values. The results for
Sentinel-2 and EnMAP are slightly better, with R2-values between
0.32 and 0.34 for both comparisons. Only the SFIM-HS results
show higher R2-values of 0.51 for NDVI and 0.66 for SAVI. A
second way of validation is to look at the 17 one-square meter grass
plots within the study area. These plots, measured during the field
work, were compared with to distribution maps from each image.
The results are shown in Table 2. PRISMA detected only one grass
plot. The results of the other four datasets are quite similar: only
four of the grass plots were correctly identified by SFIM-HS, while
the PlanetScope, Sentinel-2, and EnMAP images correctly
identified six grass plots.

4 Discussion

In this chapter, the initial section examines field observations
and the spectral library in regards to the current state of research
and potential future developments. The subsequent section
contextualizes the results of the sensor comparison, identifies
limitations, and adjustments for enhancing the methodology for
mapping grassland distribution. Finally, the discussions have
yielded recommendations for future grassland monitoring in
the NRNR and PNNR reserves, as well as for Greater
Sossusvlei-Namib Landscape.

4.1 Field observations and spectral library

The field observations conducted in March 2023 reveal
noteworthy contrasts in species distribution when compared to
the Burke, 2022 survey. These distinctions are linked to
significantly greater fluctuations in precipitation between the two
rainy seasons of 2022 and 2023. Annual grasses such as S.
kalihariensis, which was one of the dominant grass species in
2022, was almost absent in 2023. The only exception is the plot
having a higher clay content and therefore a higher water capacity.
Stipagrostis obtusa was also much less dominant in 2023 than in the
previous year. The very common herb Gisekia africana could not be
found at all in 2023. On the other hand, Sporobolus festivus, a grass
not found in 2022, was found and measured this year. This grass is
generally found in tropical Africa and northern Namibia, but also
grows in poorly drained and rocky areas (van Oudtshoorn, 2022).
The plot where Sporobolus festivus was found may have fulfilled the
latter conditions. The only dominant grasses found in a similar
distribution in both years, were S. ciliata and S. uniplumis.
Stipagrostis namaquensis, the dominant grass in the dry
riverbeds, was also common in 2023. The three dune grasses C.
spinosa, S. lutescens and S. sabulicola were also found and measured
in 2023. This comparison indicates that composition and
biodiversity can vary greatly from year to year, and that the
distribution of annual grasses in particular, but also of perennial
grasses, is strongly dependent on precipitation. In future, it may be
appropriate to monitor some of the species presented more closely,
such as S. kalihariensis, which van Oudtshoorn, 2022 considered to
be an important pioneer grass and a potential indicator of
overgrazing, and whose distribution varied greatly from 2022 to
2023. The distribution of R. trichotomum, considered an invader,
should also be monitored in the two reserves as well as in central and

FIGURE 9
SAM analysis for vegetation spectra and comparison with the
mean soil spectra. Abbreviations: PL Pechuel-Loeschea leubnitziae;
CC Calicorema capitata; CS Cladoraphis spinosa; SC Stipagrostis
ciliata; SF Sporobolus festivus; SN Stipagrostis namaquensis; SU
Stipagrostis uniplumis; SOIL mean soil spectra. See Supplementary
Table S3 for exact values and Supplementary Table S4 for mean SAM
values for each species.

FIGURE 8
SAM analysis for all soil spectra with the mean soil spectra.
Location of the plots: S01 hilly stony; S02 and S10 dune; S03, S04, S05,
S06, S07 and S11 grass plain; S08, S09, S12 and S13 riverbed; SOIL
mean soil spectra. See Supplementary Table S2 for exact values.
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southern Namibia to mitigate possible bush encroachment
(Shikangalah and Mapani, 2020; Burke, 2022). The distribution
of Galenia africana deserves further analysis because of its
medicinal value, for example, against breast cancer cells
(Mohamed et al., 2020). Finally, it is necessary to conduct further
research on the three dominant and drought-resistant grasses S.
ciliata, S. uniplumis and S. namaquensis. These grasses play a vital
role in the environment as they provide forage and protect the soil
(van Oudtshoorn, 2022). The described field spectra of soils, shrubs
and grasses, which form the basis of a unique spectral library of the
arid grasslands of the Greater Sossusvlei-Namib Landscape, are
invaluable for further research. Not only because the construction
of this spectral library will begin to fill the knowledge gap of spectral
information described by Jetz et al., 2016, but also because it may
help to provide more information on forage quality and biodiversity,
possible spread of invasive species and overgrazing in future (Ferner
et al., 2015; Cavender-Bares et al., 2017). The spectral library
presented here contains, as far as known, the first published
spectra of the shrub species Pechuel-Loeschea leubnitziae and C.
capitata and the grass species A. adscensionis, E. cenchroides, S.
kalihariensis, S. lutescens, S. sabulicola, T. monachne and S.
uniplumis. The spectra of S. obtusa, S. namaquensis, S. ciliata
and of the shrub Galenia africana are included in the Frye et al.,
2021 spectral library, but only in the 450–949 nm range, whereas all
spectra presented here cover the 450–2,500 nm range, covering
almost the entire range of characteristic absorption features of
vegetation spectra (Kokaly et al., 2009; Ustin et al., 2009;
Homolová et al., 2013). However, these spectra should only be
considered as snapshots under very dry conditions. In order for this
spectral library to have future application potential outside of this
limited study area and to allow for longer term monitoring, the
spectra should cover the phenological cycle of the recorded species
(Somers et al., 2011; Dudley et al., 2015; Cavender-Bares et al., 2017).
In addition, information on leaf photosynthetic pigments, leaf
structure and biochemicals recorded in the field could help to
better understand the variability of the spectra of individual
species, but also between species, thus improving the applicability
of the spectral library (Ollinger, 2011). The intra-species spectral
homogeneity, inter-species spectral separability and separability

from soil spectra, was determined using SAM. In general, the
results show that grass spectra are separable from Pechuel-
Loeschea leubnitziae spectra and soil spectra, whereas C. capitata
spectra were too heterogeneous to clearly separate them from grass
spectra. Intra-species spectra homogeneity of C. spinosa, S.
uniplumis and Sporobolus festivus is particularly high, in contrast
to S. ciliata and S. namaquensis. Some inter-species spectral
separability could be observed, even though grasses showed
different phenological stages depending on their location under
extremely dry conditions in 2023. These conditions lead to less
meaningful vegetation spectra, making it difficult to separate species.
This fact can be confirmed in this study and was already described by
Okin et al., 2001. As a consequence, the results of unmixing
algorithms using satellite imagery worsen, leading to over-
interpretation of vegetation cover (Okin et al., 2001). In addition,
van Leeuwen et al., 2021 describe that species identification becomes
more complex as spatial resolution decreases and biodiversity
increases. For these reasons, it was decided not to attempt to
map individual species in this study, but grass coverage in total.
Identifying diagnostic wavelength ranges in which species are
particularly separable could improve future attempts to map
individual species. It is likely that these vary according to the
influences described by Ollinger, 2011 and depend on phenology,
but this identification needs further investigation.

4.2 Satellite data comparison and grassland
distribution

This paper presents a suitable and unique approach to combine
multi-sensor remote sensing data with collected field spectra to map
grasslands within the Greater Sossusvlei-Namib Landscape and to
identify limitations and advantages of each image data set. The
approach used hyperspectral EnMAP and PRISMA data,
multispectral Sentinel-2, PlanetScope and a SFIM-HS fused
product. The results presented contribute to the research gap
identified by Ferner et al., 2021 on whether multispectral or
hyperspectral data are more effective for grassland monitoring,
especially in arid regions. In addition, SFIM-HS images were
compared to validate the assertion of Ghamisi et al., 2019 that
data fusion improves target identification. The resulting grass
distribution maps show clear differences, but also similarities.
Grasses are detected particularly in the hilly northwest, where the
highest abundances were recorded, as well as in the hilly regions of
the north-central and western parts of the study area. Burke, 2022
also identified abundant grasses and shrubs in these areas in 2022,
attributing this to cooler temperatures and increased precipitation
due to elevation and the described west-east precipitation gradient of
the study area. Terrain was not a central component of this study,
but has high relevance as topo-edaphic conditions largely influence
grassland vitality. The influence of terrain and seasonality on
grassland dynamics and species composition has already been
described by Masenyama et al., 2022; Dao et al., 2021;
Reinermann et al., 2020 also describe the advantages of seasonal
monitoring of grasslands, which is still rather limited due to the on-
demand acquisition of hyperspectral imagery. As such, no PRISMA
image could be acquired at the time of field work according to bad
weather conditions, and thus a less comparable image from February

FIGURE 10
Endmember for MTMF. Mean spectra for both shrub spectra in
red, all five grass mean spectra in green, soil mean spectra in yellow
and the grass Endmember in black.
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2023 was used. In combination with the described geolocation error
of PRISMA and the necessary co-registration, which inevitably
changed the reflectivity values slightly during resampling, the
results using PRISMA imagery are of limited value and less
comparable. However, the results of the NDVI and SAVI
validation of the high spatial resolution PlanetScope image show
similarly low R2-values. It can be assumed that PlanetScope
overestimates grassland despite having the highest spatial resolution.
According to Ali et al., 2016, the reason for this could be the low
spectral coverage of 421–885 nm, leading to degraded target
identification. The results of EnMAP and Sentinel-2 show almost
identical R2-values despite considerable differences in the grassland
distribution maps, especially in the hillier areas. The alleged over-
interpretation of grass cover in the hilly areas of the EnMAP results is
probably due to the low spatial resolution and small-scale relief in this
area. The SFIM-HS product has higher R2-values of 0.55 (NDVI) and
0.66 (SAVI) and shows a distribution map that does not directly
indicate overinterpretation. This supports the suggestion of Ghamisi
et al., 2019 that data fusion improves target identification. However, the

approach presented here has limitations as the distribution maps are
based on a single mean grass endmember. The envisaged future use of
phenological spectra will likely improve the spectral separability of
species, allowing a Multi-Endmember Spectral Mixture Analysis,
which can more adequately account for the spectral variability of
individual species (Borsoi et al., 2021; Blanco et al., 2014 already
combined the partial unmixing methodMTMF used in this work with
such a multi-endmember approach. Another limitation is the
definition of threshold being the most arbitrary and influential part
of MTMF. Here, a ratio threshold according to Kruse et al., 2015 was
used to standardize and better compare the results of different datasets.
According to Routh et al., 2018, supervised learning algorithms and
cross-validation could be used to determine the “correct” threshold
if enough good validation points are available. However, the one
square meter plots used in this study are not sufficient for such an
approach. Also, validation using these plots does not provide
robust information on the quality of distribution maps, so
larger validation plots are needed for future work, as already
described by Sankey, 2009; Routh et al., 2018.

FIGURE 11
Scatterplots between infeasibility value, NDVI, SAVI and the score value for both multispectral images: PlanetScope and Sentinel-2. (A–F) show all
aggregated pixels as a function of the number of pixels per value range. Darker areas representmore pixels than lighter areas. The regression line between
both parameters is shown in blue and the R2-value is in the top right. Figure (A, D) show the scatterplot between infeasibility and score value with the
threshold line in dashed red (Formula: y = x*0.025). In general, pixels with a score value below 0.05 are also classified as false positive. Figure (B, E)
showing the scatterplot between NDVI and score value and Figure (C, F) between SAVI and score value. The score values represented in these figures
compared to NDVI or SAVI are all pixels with a ratio >0.025 and a score value above 0.05. Maps of SAVI and NDVI for each image used for these plots are
shown in Supplementary Figures S2A, B and Supplementary Figures S3A, B. In addition, identical scatterplots are shown in Supplementary Figure S4 for the
results with a ratio threshold of 0.02, resulting in slightly lower R2-values for each regression.
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4.3 Outlook

Future research on dynamics of arid grasslands in both NRNR
and PNNR, and in the wider context of grasslands in the Greater
Sossusvlei-Namib Landscape, should adopt a more holistic spatio-
temporal monitoring approach. This should include the Zhao et al.,

2020 framework of pressure, state, response and a multi-scale, multi-
method and multi-perspective approach. In order to fill the research
gap on arid grasslands in southern Africa described by Van Cleemput
et al., 2018; Reinermann et al., 2020; Masenyama et al., 2022 some
adjustments need to be made. Although the AOI used in this study
includes both reserves and adjacent farmland, no comparison between

FIGURE 12
Scatterplots between infeasibility value, NDVI, SAVI and the score value for both hyperspectral and data fusion images: PRISMA, EnMAP and SFIM-
HS. Figures (A–I) show all aggregated pixels as a function of the number of pixels per value range. Darker areas represent more pixels than lighter areas.
The regression line between both parameters is shown in blue and the R2-value is in the top right. Figure (A, D, G) show the scatterplot between
infeasibility and score value with the threshold line in dashed red (Formula: y = x*0.025). In general, pixels with a score value below 0.05 are also
classified as false positive. Figure (A, E, H) showing the scatterplot between NDVI and score value and Figure (A, F, I) between SAVI and score value. The
score values represented in these figures compared to NDVI or SAVI are all pixels with a ratio >0.025 and a score value above 0.05. Maps of SAVI and NDVI
for each image used for these plots are shown in Supplementary Figures S2C–E and Supplementary Figures S3C–E. In addition, identical scatterplots are
shown in Supplementary Figure S5 for the results with a ratio threshold of 0.02, resulting in slightly lower R2-values for each regression.
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usage andmanagement forms has been conducted. To further analyze
the impact of human activities, a comparison is crucial. Hence, it
would be advisable to expand the study area beyond the reserves to

include monitoring of all adjacent commercial farmlands. This
adaptation could provide valuable insights into the effects of
different management strategies and the planned expansion of the

FIGURE 13
Distribution maps of grass endmember abundance. (A) PlanetScope, (B) Sentinel-2, (C) PRISMA, (D) EnMAP, (E) SFIM-HS, and (F) is showing the
legend for all maps. The backgroundmap is a greyscale hill shade derived fromTanDEM-X data (Resolution 12 m) (German Aerospace Center, 2022) using
QGIS 3.28 Firenze (QGIS Development Team, 2023). Supplementary Figure S6 shows the comparativemaps for a ratio threshold of 0.02. The distribution
of grasses varies only slightly.
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PNNR. Additionally, it could enhance our comprehension of the
dynamics along the rainfall gradient. Combining these two aspects
may result in a greater understanding of the grassland ecosystem in
the Greater Sossusvlei-Namib Landscape. The results presented in this
paper show that neither multispectral nor hyperspectral data are
better suited for monitoring grassland dynamics, but the results of the
SFIM-HS product provide promising results. Further monitoring
should therefore continue to use the three different types of data.
The results also showed that the terrain affects the distribution of
grasses, which should be further investigated. A TanDEM-X data set
with a resolution of 12 m is already available for this purpose (German
Aerospace Center, 2022). In future, distribution analysis of certain
species such as R. trichotomum for monitoring potential bush
encroachment, S. kalihariensis as a potential indicator of
overgrazing, and the distribution of the dominant grasses S. ciliata,
S. uniplumis and S. namaquensis due to their important functions in
the environment is of high interest. The variable grassland species
composition, as a result of precipitation intensity and distribution
during the rainy season, indicates that additional species and
compositions can be expected. Therefore, the unique spectral
library presented here should be expanded and supplemented with
additional information. This extension includes the measurement of
phenological spectra and the determination of selected leaf
photosynthetic pigments, leaf structure and biochemicals by
laboratory and field measurements. This will help to better
describe the spectral variability of species and make the spectral
library useful for research outside the study area, improve
unmixing results using multi-endmember approaches, and provide
information on forage quality and biodiversity of grasslands (Ollinger,
2011; Somers et al., 2011; Dudley et al., 2015; Ferner et al., 2015;
Cavender-Bares et al., 2017; Imran et al., 2021; Rocchini et al., 2022).
Due to Mendelsohn and Mendelsohn, 2022; Huo et al., 2023; Lian
et al., 2023 lower rainfall is expected in the upcoming rainy season due
to a future El Niño phenomenon in 2024. As a result, an irrigated
phenological garden could be established in collaboration with both
reserves to measure the predominant grass and shrub spectra. In
addition, the importance of larger validation points to determine the
quality of distribution maps and for a more robust definition of the
MTMF threshold according to Routh et al., 2018 was described. For
this purpose, an unmanned aerial vehicle (UAV) equipped with a
hyperspectral camera will be used to acquire imagery within plots of
significantly larger size, surpassing 30 × 30 m in spatial extent. This
will allow validation of lower resolution satellite data against high
resolution UAVdata. A DJIMatriceM300 RTK (DJI, 2023., Nanshan,
Shenzhen, China) UAV equipped with a Black Bird V2 camera (Haip
solutions, 2023,. Hanover, Germany) is available for this purpose.
According to Gamon et al., 2019 the use of UAV data provides a layer
of spatial resolution between field spectroscopy and satellite data and
thus, together with field and laboratory measurements, allows the

validation of biomass, forage quality, biodiversity and species
identification of grasslands at satellite level (Pölönen et al., 2013;
Librán-Embid et al., 2020; Geipel et al., 2021; Huelsman et al., 2023).
UAVs have already been deployed in Namibia by Amputu et al., 2023
for mapping rangeland conditions in drylands. Another advantage of
flying selected plots with the UAVs would be to map taller shrubs and
acacias, which are less common in the area but cannot easily be
measured with field spectroradiometers.

5 Conclusion

Grasslands in general have been degrading over the last
decades, especially on the African continent. To date, only a
few studies have used remote sensing techniques and
specifically imaging spectroscopy to study arid grasslands,
particularly in Namibia. This may be attributed to the aridity
and resulting variability in vegetation cover associated with
changes in the intensity of the rainy season, affecting the
meaningfulness of the field spectra. The objectives of this study
have been set to partially fill this knowledge gap. For this purpose,
the grasslands of the two reserves NRNR and PNNR at the edge of
the Namib Sand See were mapped for the first time in a selected
area including large parts of PNNR and surrounding commercial
farmlands using a multi-sensor remote sensing approach. The
results were compared, and a unique spectral library was
created based on the collected field spectra. The presented
approach utilizes the MTMF algorithm to integrate field spectra
data with satellite data from various sources, including
multispectral PlanetScope and Sentinel-2, hyperspectral EnMAP
and PRISMA, and the SFIM-HS product originated from Sentinel-
2 and EnMAP. The study results demonstrate that neither
multispectral nor hyperspectral data yields superior results in
accurately mapping grasslands. However, the outcomes derived
from the SFIM-HS product indicate that data fusion is a more
effective approach for this purpose. Due to minimal precipitation
during the 2023 rainy season, the resultant less meaningful spectra
preclude any satellite-level analyses aimed at isolating particular
grass species. Nevertheless, the present spectral library contains the
first published spectra of two shrub and seven grass species,
representing a small but significant contribution to filling the
knowledge gap of spectral information on arid grasslands of
Namibia. In future research, these spectral libraries should be
expanded to encompass phenological spectra, as well as
information of leaf structure, leaf photosynthetic pigments, and
biochemicals, for each species. It is planned to expand the
validation plots, incorporate UAV flyovers equipped with a
hyperspectral camera, and carry out further analysis on the
impact of terrain on grassland dynamics. Additionally, to

TABLE 2 Attempt to validate with the collected plots. Total number of grass plots: 17. A comparison table for the results with a ratio threshold of 0.02 is
shown in Supplementary Table S5. With this threshold, the SFIM-HS image detects three more grass plots and PRISMA one more. Other results remain the
same.

PlanetScope Sentinel-2 PRISMA EnMAP SFIM-HS

Detected Grass 6 6 1 6 4

Non-detected 11 11 16 11 13
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expand the study area and further analyze the differences between
commercial farmland and reserves. These adaptations could enable
monitoring of the grasslands in the Greater Soussusvlei-Namib
Landscape beyond the two reserves, allowing conclusions to be
drawn about dynamics in biodiversity, forage quality, overgrazing,
bush encroachment, desertification and implemented
management strategies. Such adaptations could provide essential
information for resident farmers and stakeholders to protect and
better manage grasslands in future. This study adds to initial
explorations of this unique ecosystem and contributes towards
SDG 15 and the Decade of Restoration proclaimed by the
United Nations.
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