

CANKER:

- Localized necrotic areas on bark of branches or tree trunk.
- Caused by a disease organism.
- Cannot be caused by non-infectious agents.

CAUSE OF TREE CANKERS:

Fungi, mistletoe, and bacteria

TYPES OF TREE CANKERS

ANNUAL

- Canker becomes inactive after one growing season.
- Agent dies out.
- Callus tissue heals over wound toward center.

DIFFUSE

- Canker grows through host tissue rapidly, tree can't respond.
- Lethal

PERENNIAL

- Cankers persist for many years.
- Annual callusing along the disease margin.
- Forms rings which may appear target-shaped.

EXAMPLES OF TREE CANKERS

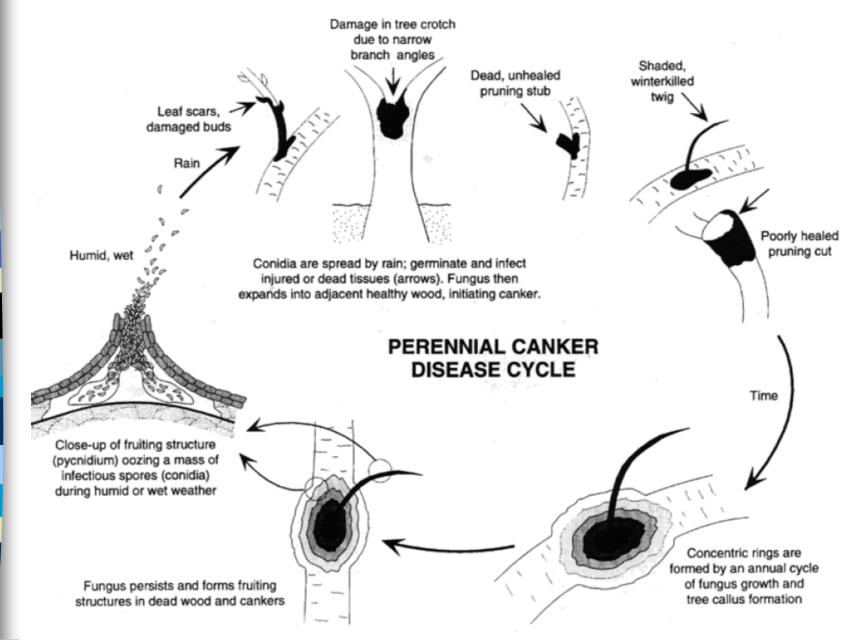
- Annual
 - Fusarium spp.

EXAMPLES OF TREE CANKERS

- Diffuse
 - Hypoxolon
 - Chestnut blight

EXAMPLES OF TREE CANKERS

- Perennial
 - Nectria canker on walnut


ENTRANCE

- Broken branches
- Trunk wounds
- Rusts enter through stomates.

DEVELOPMENT

- Primarily grows in inner bark and cambium.
- Cambium death causes drying and death of underlying wood.
- Cells killed by direct penetration and toxins.
- Usually spread during dormant season, tree callus checks spread during growing season.

Typical life cycle of canker fungi

Cytospora Canker

Cytospora albietis

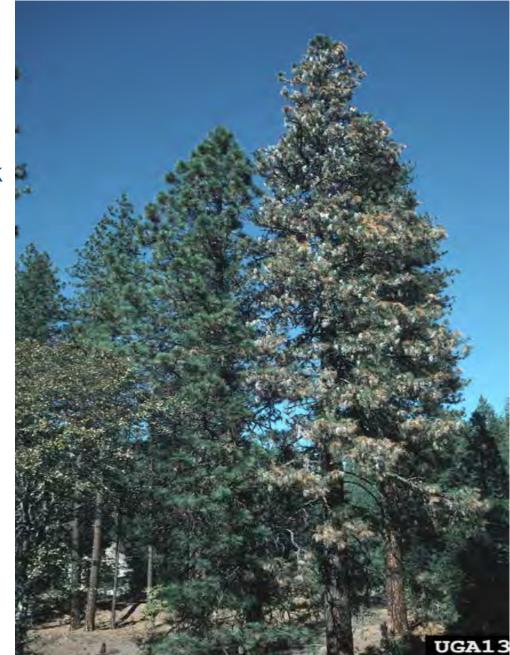
- Hosts: True firs, rarely Douglas-fir.
- Life Cycle:
 - Weak parasite attacks weakened trees by other agents – insects, fire, other diseases, and human activities.
 - Dwarf mistletoe predisposes fir to Cytospora canker.
 - Cytospora spreads by conidia (asexual spores) by rain splash
 - Infects through wounds and girdles and kills branches.

CYTOSPOR. CANKER

- Damaging disease of true firs
- Trees all sizes affected
- Mortality result of heavy infection.

> Symptoms:

- Girdle branches 6 months -2 years
- Spore horns spores dissolve in water
- Sunken canker

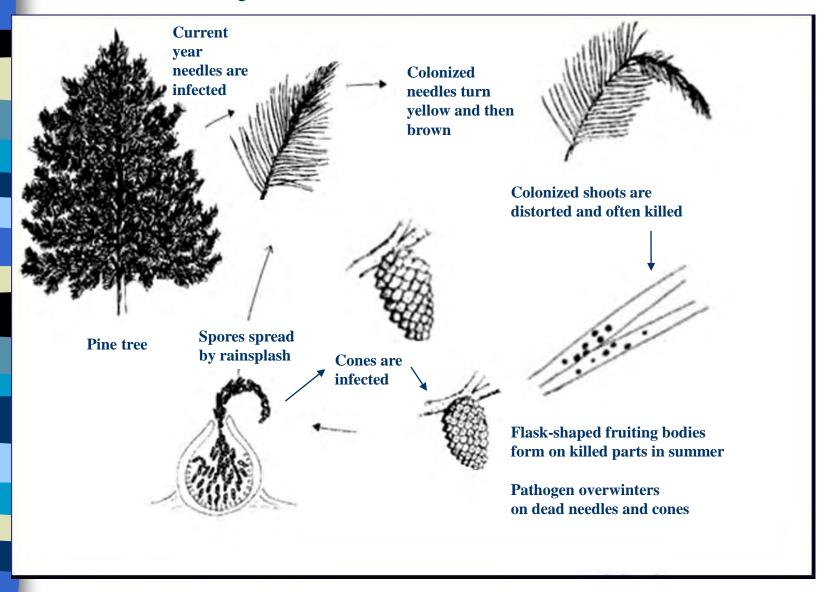


Diplodia

- Sphaeropsis sapinea
- Infects several pines (ponderosa & Monterey)
- Death of current shoots, major branches, and entire tree
- Beneath canker is dark, resin-soaked wood
- Common on mature and stressed trees

Diplodia

- Symptoms begin in Spring
 - Coincide with bud break and shoot and needle elongation
- High moisture and humidity
- Infect through wounds.
- Fungus present year round in dead needles, needle sheaths, twigs and cones.

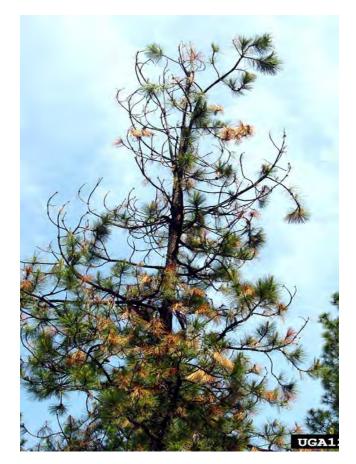

Diplodia

- Current years shoots are shorter than normal
- Needles retained on tree
- Resin soaked bark
- No evidence of insects killed the shoot

Figure 2. Infected shoot. Bark has been removed show discoloration of the wood in the dead shoo

Disease cycle

Disease Cycle


Pycnidia formed on needles, fascicle sheaths, scales of seed cones and bark

- Spores are dispersed from March to October
- High moist conditions are needed for infection

Fungus penetrates needles resulting in stunted shoots and needles.

Diplodia Management

- Stand or recreation site sanitation
- Remove severely infected trees
- Trees planted on productive sites
- Prune and destroy infected material and cones. Prune during dry weather
- In landscape, a fungicide + pruning may reduce infections

- Not native to CA
- Native SE US
- Found in S. Africa, Spain, Portugal, and Chile
- Fusarium circinatum

PITCH CANKER

Spores are wind blown

Insect carry spores

- Engraver beetle (Ips spp.)
- Twig beetle (Pityophthorus spp.)
- Cone beetle (Conophthorus radiata)
- Deathwatch beetle
- Ernobius Punctulaus)

Pitch Canker

- Pitch canker on bark of Monterey pine
- Infects from feeding insects or other wounds
- Low resistance in Monterey pine

PITCH CANKER

Sudden Oak Death

In the mid-1990s, large numbers of tanoaks and coast live oaks began to die in the coastal counties of central California.

California Bay Laurel

Umbellularia californica

- necrotic leaf tips
- black irregular patterned "zoneline" between healthy & non-healthy tissue
- chlorotic leaf margin

Tanoak

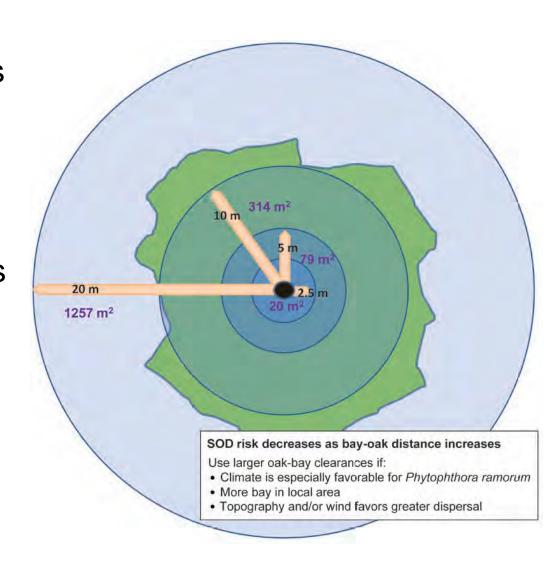
Notholithocarpus densiflorus

- dieback of young shoots
- "zone line" on under side of bark
- mortality

Coast Live Oak

Quercus agrifolia

- discoloration of foliage
- bleeding cankers
- "zone line" on under side of bark
- mortality



Bay Management

- In California, risk is largely based on proximity to California bay laurels.
 - Removal of bays within 15 feet of oak trunks.
 - Combine with chemical treatments

General Canker Management

- Prevention (reduce stress)
 - Hard to eradicate once affected.
 - Plant resistant varieties
 - Healthy, well-adapted seed stock
 - Protect young, thin barked trees from sunburn damage.
 - Proper water and fertility programs (summer vs. winter)
 - Avoid injury to trunk and limbs

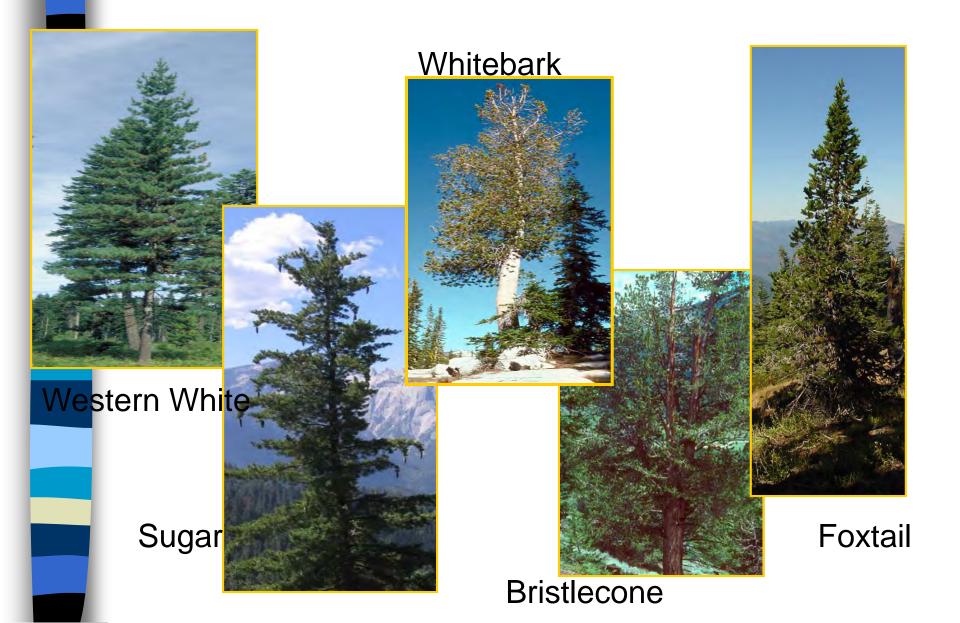
Canker Management

- Once disease occurs......
 - Increase plant vigor for recovery
 - Prune and/or remove dead bark (always disinfect tools).
 - Prune 2-3" below canker margin branch cankers
 - Discard infected material (practice sanitation)

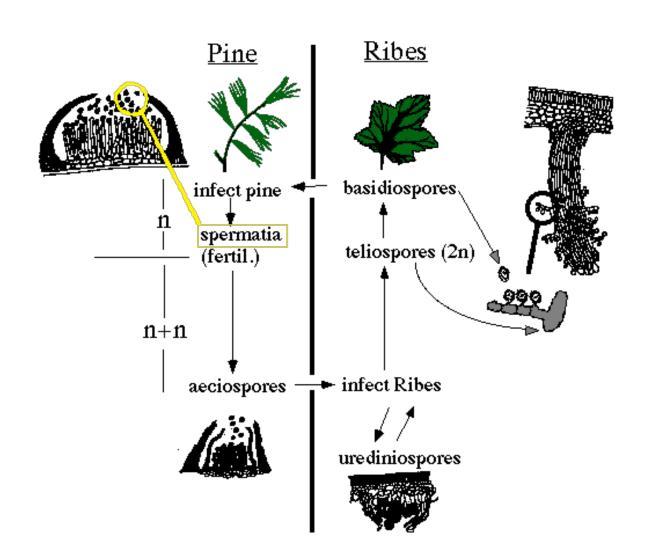
RUSTS

- Obligate parasites
- Some rusts have primary hosts
- Some rusts have primary and alternate hosts

- Autoecious rusts with one host primary
- Heteroecious rusts with two hosts are
 - primary and alternate host


RUSTS

- Macrocyclic rust long cycle rust
 - Produces all 5 spore types
- Demicyclic rust medium cycle rust
 - Omits uredia
- Microcyclic rust short cycle rust
 - Produces basidiospores, teliospores and spematia.



- Most complex of cankers due to number of spore stages that may be involved
- Rusts generally enter through stomates.

California White Pine Hosts

White Pine Blister Rust Disease Cycle

SPORE STAGES OF WHITE PINE BLISTER RUST

- White Pine Blister Rust
 - Stage 0 Spermatium (Pycniospores)
 - Stage 1 Aeciospores
 - Stage II Urediospores
 - Stage III Teliospores
 - Stage IV Basidiospores

WHITE PINE BLISTER RUST STAGE 0

- Stage 0 = Spermatium (Pycniospores)
- Haploid (n)
- Produced in a spermogonium (pycnium) on the bark of white pine.
- Pressure builds up inside and the spores ooze out 2 – 3 years after tree has been infected.
- Some spores are (+) and some (-) and they perform a sexual function.
- Spores are sticky and insects feed on them.
- White blisters appear in the same area the spring following spermatium production.

Stage 0 – Pycniospores

- Sticky yellow to orange
- Smelly
- Sugary
- Spread by flies
- Sexual function

WHITE PINE BLISTER RUST STAGE I

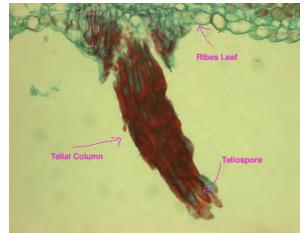
- Stage I = Aeciospores
- Dikaryotic (n + n)
- Formed in an aecium in the same place as the spermatia were the previous year.
- New spermatia produced around the outside.
- Canker spreads each year until the tree or branch is girdled.
- Spores are carried by the wind to Ribes spp. In the spring.
- Able to travel up to 350 miles.
- Spores germinate on the Ribes leaves and enter through the stomates.

- Early Spring
- White papery covering
- Powdery
- Wind disseminated
- Yellow → White
- Spread 350 miles

WHITE PINE BLISTER RUST STAGE II

- Stage II = Urediospores
- Dikaryotic (n + n)
- Produced on the Ribes spp. On the lower surface of the leaves.
- Produced in the uredium two weeks after infection.
- Infects other Ribes spp.
- More Urediospores are formed, cycle is repeated 5 6 times.
- Spores are airborne and travel several hundred yards.

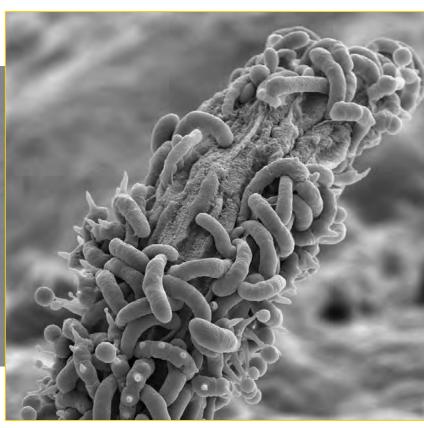
Stage 2 - Urediospores



WHITE PINE BLISTER RUST STAGE III

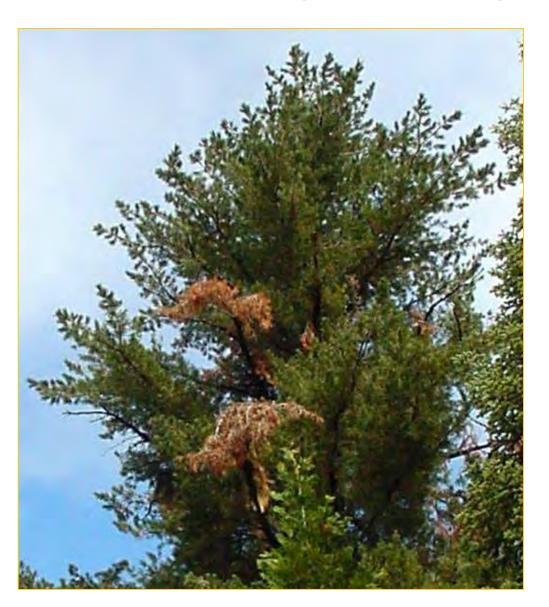
- Stage III = Teliospores
- Dikaryotic (n + n) progressing to diploid (2n).
- Formed on the under side of the Ribes spp. Leaf in the old uredium.
- Over wintering stage
- Meiosis occurs and 4 Basidiospores are formed.

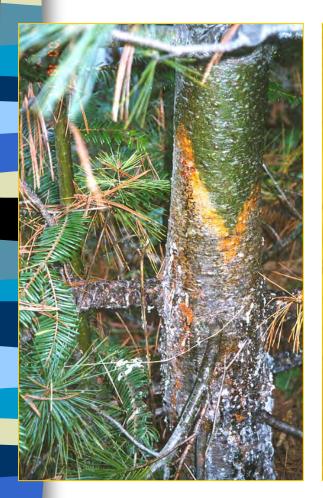
Stage 3 - Teliospores



WHITE PINE BLISTER RUST STAGE IV

- Stage IV = Basidiospores
- Haploid (n)
- From teliospore in spring.
- Airborne and travel up to 900 feet to land on white pine.
- Spores germinate and enter through stomates on leaves.


Stage 4 - Basidiospores



Basidiospores Shot from Teliospore "Hairs" can Infect Pine Needles

Dead Branch "Flags" in Sugar Pine

Blister Rust Cankers and Mortality

White Pine Blister Rust Control

- Genetic Resistance
 - Deploy resistant seedlings
 - Major Gene Resistance, Multigenic Resistance
 - Foster natural regeneration from survivors
 - Even from "Good" infected trees

Silviculture

- Shade out alternate hosts
- Closed canopy conditions not as favorable for infection
- Prune lower branches
- Historical: Ribes eradication

Peridermium harknessi

- WESTERN GALL RUST
- SPERMATIA AND AECIAL STAGE ON PINES

- WGR has a two-year life cycle.
- In May-July, climate dependent, aecial spores form.
- Damaging rust throughout CA.
- Spores become airborne and infect new shoots.
- Galls visible on branches about 1.5 to 2 years
- Galls grow and release spores each spring girdle the host stem or branch.
- Major hosts lodgepole, ponderosa, bishop, shore and Monterey pine.
- Autoecious

Melampsorella caryophyllacearum

- MELAMPSORA RUST BROOM
- Spermatia and aeciospores on true firs
- Uredia and teliospores on chickweed

RUST MANAGEMENT

- Removal of infected trees
- Don't plant pure stands
- Resistance
- Raising the understory
- Pruning

