## **2022 Highlights**

rest health issues, like insect and disease outbreaks and invasive plant infestations, do not adhere to management boundaries. Alaska's expansive forests encompass diverse ecoregions and ownership. Nested within the State & Private Forestry branch of the U.S. Forest Service, Forest Health Protection monitors across all lands to meet the needs of federal, state, and private stakeholders and Tribal Nations.

Of the 126 million acres of forestland in Alaska, nearly 11 of the 126 million acres of forestland in Alaska, nearly 11 million acres are contained within the United States' two largest National Forests: the Chugach (1.1 million acres) and the Tongass (9.8 million acres). Alaska contains one-quarter of all federal forestland and 43 percent of all state-owned forestland in the country. Completely outside National Forest boundaries, there are 115 million acres of boreal forest. Another unique aspect of Alaska's forest management is that more than 200 Alaska Native corporations own 35 million acres of non-industrial private forestland.

In 2022, approximately 874,800 acres of forest damage (Table 1) were mapped across the 16.3 million acres aerially surveyed (Table 2). In addition, our forest health team made more than 1,550 ground observations of forest damage from diseases (452 records), insects (1,038 records), and noninfectious agents (62 records), which can be accessed through the interactive data dashboard at https://arcg.is/1SH58a. Ground survey observations are summarized in Table 4, alongside research grade observations mined from the records of our citizen science project in iNaturalist. The Alaska Forest Health Observations from over 2,350 total observations in 2022. Organisms that commonly damage trees and plants in Alaska are automatically filtered into the project. Learn more at: https://www.inaturalist.org/projects/alaska-forest-health-observations.

## **Pathology Highlights**

Aspen running canker (Figure 8) was first detected in 2015 and taxonomically described as a new fungal pathogen last year. Now documented throughout Alaska's boreal forest, the highest disease occurrence is in the Tanana-Kuskokwim Lowland Ecoregion. There, an average of 30% of aspen trees are infected across study sites, and most cankered trees die within a year or two. Collaborators Drs. Schuette and Drown have sequenced and assembled the pathogen's genome into 18 putative chromosomes. A transcriptomics project is underway investigating how drought and carbon stress from aspen leafminer defoliation and shading influence gene expression and susceptibility to aspen running canker.

*Phellinus* species produce perennial conks and cause white trunk rot of hardwoods. Recently, *Phellinus igniarius* has been

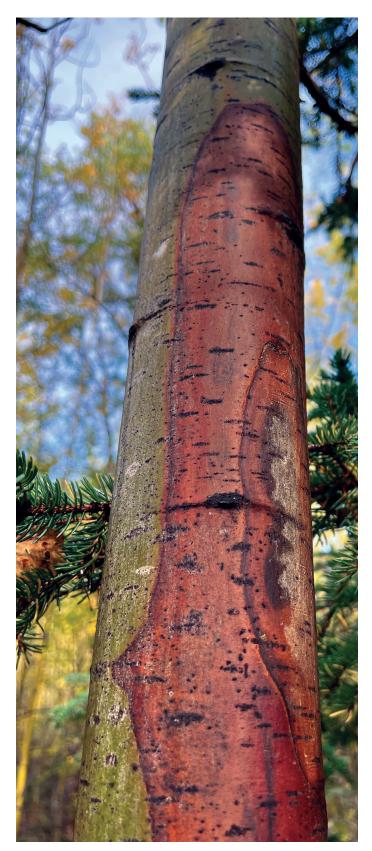



Figure 8. Aspen running canker (*Neodothiora populina*) on the Resurrection Pass Trail on the Kenai Peninsula. USDA Forest Service photo by Steve Swenson.

TABLE 1. Forest insect and disease activity detected during aerial detection surveys in Alaska in 2022 by land ownership and agent. All values are rounded to the nearest whole acre\*.

| Category       | Agent                         | Total Acres | National<br>Forest | Native | Other<br>Federal | State &<br>Private |
|----------------|-------------------------------|-------------|--------------------|--------|------------------|--------------------|
| Disease        | Alder dieback                 | 993         | 35                 | 500    | 128              | 331                |
| Disease        | Aspen running canker          | 49          | 0                  | 0      | 0                | 49                 |
| Disease        | Dothistroma needle blight     | 242         | 0                  | 18     | 0                | 223                |
| Disease        | Spruce broom rust             | 48          | 0                  | 6      | 10               | 32                 |
| Disease        | Western gall rust dieback     | 373         | 279                | 6      | 5                | 82                 |
| Noninfectious  | Drought                       | 3           | 0                  | 3      | 0                | 0                  |
| Noninfectious  | Flooding/high-water damage    | 977         | 93                 | 8      | 509              | 366                |
| Noninfectious  | Hemlock flagging              | 1           | 1                  | 0      | 0                | 0                  |
| Noninfectious  | Landslide/avalanche           | 6           | 6                  | 0      | 0                | 0                  |
| Noninfectious  | Porcupine damage              | 1           | 0                  | 0      | 1                | 0                  |
| Noninfectious  | Windthrow/blowdown            | 271         | 251                | 10     | 0                | 9                  |
| Noninfectious  | Winter damage                 | 2,120       | 0                  | 18     | 1,751            | 351                |
| Noninfectious  | Yellow-cedar decline          | 11,677      | 11,257             | 133    | 82               | 205                |
| General Damage | Alder defoliation             | 12,669      | 635                | 6,165  | 2,728            | 3,142              |
| General Damage | Aspen defoliation             | 963         | 0                  | 182    | 45               | 736                |
| General Damage | Birch defoliation             | 1,073       | 0                  | 42     | 63               | 968                |
| General Damage | Conifer defoliation           | 11          | 0                  | 6      | 0                | 6                  |
| General Damage | Cottonwood defoliation        | 5           | 0                  | 0      | 5                | 0                  |
| General Damage | Hardwood defoliation          | 1,033       | 9                  | 778    | 4                | 242                |
| General Damage | Willow defoliation            | 938         | 3                  | 890    | 0                | 45                 |
| General Damage | Willow dieback                | 8           | 0                  | 8      | 0                | 0                  |
| Insects        | Aspen leafminer               | 38,079      | 0                  | 3,977  | 2,260            | 31,842             |
| Insects        | Birch leafminer               | 21,523      | 0                  | 181    | 4,016            | 17,327             |
| Insects        | Cottonwood leafminer          | 701         | 0                  | 54     | 0                | 647                |
| Insects        | Hemlock mortality - past year | 73,542      | 70,240             | 990    | 0                | 2,313              |
| Insects        | Hemlock sawfly defoliation    | 1,335       | 702                | 13     | 4                | 615                |
| Insects        | Northern spruce engraver      | 841         | 0                  | 139    | 150              | 552                |
| Insects        | Spruce beetle                 | 48,778      | 11,859             | 6,369  | 13,063           | 17,487             |
| Insects        | Western balsam bark beetle    | 4           | 1                  | 0      | 1                | 2                  |
| Insects        | Western blackheaded budworm   | 684,860     | 581,466            | 36,558 | 15,105           | 51,730             |
| Insects        | Willow leafblotch miner       | 16,095      | 0                  | 10,773 | 4,688            | 635                |

\*Acre values are only relative to survey transects and do not represent the total possible area affected. Table entries do not include many diseases (e.g., decays and dwarf mistletoe), which are not detectable in aerial surveys.

\*\*General Damage is tree damage that cannot be attributed to a particular agent because more than one agent is known to similarly damage the same host. Either or both insects and pathogens may cause the damage. Damage caused by a currently unidentified agent is also included in this category.



Figure 9. An uncommon *Phellinus* sp. conk on willow at Pt. Bridget State Park north of Juneau. USDA Forest Service photo by Robin Mulvey.

reclassified as eight distinct species. We have initiated a project in partnership with Research Plant Pathologist Dr. Mee-Sook Kim (PNW Research Station) to explore the diversity of *Phellinus* species on willow, alder, and birch in Alaska. We recorded 29 observations of *Phellinus* spp. on hardwoods throughout Alaska in 2022 (Figure 9) and preserved conk tissue collections using FTA cards, which are used to preserve sample DNA for molecular identification.

## **Noninfectous Highlights**

Mortality from yellow-cedar decline was mapped across 11,700 acres in Southeast Alaska in 2022, a moderate amount compared to recent years. Decline detection was hindered by the western blackheaded budworm outbreak, since both types of damage cause tree crowns to appear reddish-brown. The highest concentration of mapped yellow-cedar decline (one-third of the decline acreage) occurred on Kuiu Island. Kuiu was surveyed in 2021, but the detection of conifer defoliation was emphasized. We confirmed yellow-cedar mortality observed last year along the outer coast of Glacier Bay National Park near Finger and La Perouse Glaciers. Ground assessments are needed to determine if mortality was caused by yellow-cedar decline or other factors. Yellow-cedar forests in this area have been considered healthy and will be closely tracked. Yellow-cedar decline in young-growth stands, which was first identified as a management concern in 2012, is another monitoring priority.

Western redcedar topkill (Figure 10), which is associated with girdling stem wounds, was investigated with roadside surveys and destructive sampling. We sampled 15 affected trees on Prince of Wales Island, documenting the number, height, and size of wounds, and collected wounded stem sections. Wounds occurred seven to 31 feet from the ground on parts of the stem less than 4 inches in diameter. Apparent toothmark grooves were visible on fresh wounds (Figure 11), which are most likely caused by feeding or bark collection activity of northern flying squirrels. The cause is still under investigation. Although the island hosts a distinct squirrel subspecies, the Prince of Wales flying squirrel, the damage has also been noted on Revillagigedo and Wrangell Islands where the broader species occurs.



**Figure 10.** Western redcedar trees with topkill damage in a managed young-growth stand near Rush Creek on Prince of Wales Island. There were numerous topkilled and wounded trees in this unit initially harvested in 1992. USDA Forest Service photo by Robin Mulvey.

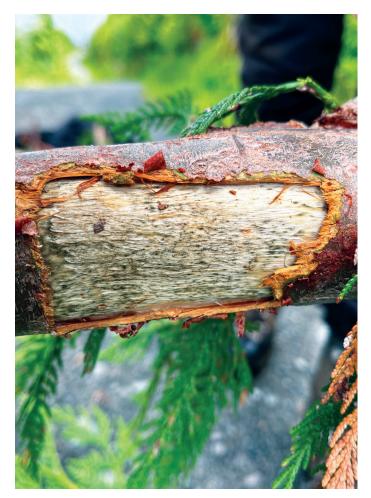



Figure 11. A fresh, fibrous wound on a 30-year-old western redcedar crop tree near Rush Creek on Prince of Wales Island. USDA Forest Service photo by Robin Mulvey.

| Damage Category *                        | 2018   | 2019   | 2020 ** | 2021    | 2022   |
|------------------------------------------|--------|--------|---------|---------|--------|
| Abiotic damage                           | 5.0    | 10.8   | 0.2     | 16.7    | 3.4    |
| Alder defoliation                        | 0.9    | 2.6    | 1.0     | 3.1     | 12.7   |
| Alder dieback                            | 3.2    | 1.2    | 0.0     | 0.1     | 1.0    |
| Aspen defoliation                        | 259.7  | 132.4  | 38.8    | 150.5   | 39.0   |
| Aspen mortality                          | 5.7    | 0.1    | 0.0     | 0.1     | 0.05   |
| Birch defoliation                        | 132.8  | 283.4  | 3.9     | 55.6    | 22.6   |
| Cottonwood defoliation                   | 3.6    | 1.7    | 0.7     | 0.7     | 0.7    |
| Fir mortality                            | 0.1    | 0.1    | 0.0     | 0.1     | 0.0    |
| Hardwood defoliation                     | 15     | 3.9    | 0.1     | 0.4     | 1.0    |
| Hemlock defoliation                      | 48.6   | 381    | 124.4   | 520.0   | 1.3    |
| Hemlock mortality                        | 0.1    | 0.0    | 80.0    | 21.0    | 73.5   |
| Larch mortality                          | 0.01   | 0.0    | 0.0     | 0.0     | 0.0    |
| Porcupine damage                         | 2.5    | 1.9    | 0.1     | 0.2     | 0.0    |
| Shore pine damage                        | 3.7    | 0.4    | 0.0     | 0.5     | 0.6    |
| Spruce damage                            | 2.5    | 117.8  | 0.7     | 7.6     | 4.2    |
| Spruce mortality                         | 594.3  | 140.6  | 145.3   | 193.7   | 49.6   |
| Spruce/hemlock defoliation               | 4.2    | 0.0    | 0.0     | 0.0     | 685.8  |
| Willow defoliation                       | 39.9   | 32.7   | 0.5     | 58.3    | 17.0   |
| Willow dieback                           | 0.0    | 0.6    | 0.0     | 0.0     | 0.0    |
| Yellow-cedar decline                     | 17.7   | 20.0   | 10.4    | 8.2     | 11.7   |
| Total damage acres ***                   | 1113.8 | 1127.6 | 309.0   | 1019.68 | 874.8  |
| Total acres surveyed                     | 27,954 | 24,421 | 7,322   | 15,724  | 16,314 |
| Percent of acres surveyed showing damage | 4.0%   | 4.6%   | 4.2%    | 6.5%    | 5.4%   |

\* Agents specific to each category are listed in Table 3 on page 9.

\*\* In 2020, aerial detection surveys were not conducted. Data was collected via high-resolution satellite imagery for a limited area.

\*\*\* Total damage acres do not double count overlapping damage areas, do not include older spruce damage collected in the current year, and may include minor damage not reported above.

## **Invasive Plant Highlights**

Partnerships prove valuable when holding the line at Portage to prevent the movement of recently documented orange hawkweed, white sweetclover, and bird vetch from moving onto the Kenai Peninsula. Chugach National Forest, Kenai Watershed Forum, Kenai Peninsula –Cooperative Invasive Species Management Area, and Alien Species Control LLC staff worked together in 2022 to secure funding and treat these species. EDRR continues as an effective method to protect the Kenai Peninsula.

The Anchorage Cooperative Invasive Species Management Area (CISMA) has a new member: The Anchorage Soil and Water Conservation District (SWCD) initiated an invasive program in 2022 that will bolster and complement the good work being done. The Anchorage SWCD initiated a citizen Early Detection program, resulting in reports of orange hawkweed and chokecherry at the wildland-urban interface. These crucial locations were promptly treated by Anchorage CISMA members. Other Anchorage CISMA priorities include creeping thistle, a priority species for control with 49 acres treated in 2022 and eradication at 12 sites; Bohemian knotweed treated in 2021 and not found in 2022; and white sweetclover, bird vetch, orange hawkweed and reed canarygrass in Girdwood. In addition to species-specific treatments, the Anchorage CISMA members have organized multiple volunteer control activities to educate and engage the public, including coordinated efforts to smack down invasive plants in the Anchorage Municipality!

In the continuing battle to control aquatic Elodea, it is noteworthy that Elodea eradication has been achieved in two water bodies and no new infestations were found in 2022. The Alaska Department of Natural Resources (ADNR), the U.S. Fish and Wildlife Service, and the Fairbanks Soil and Water Conservation District (SWCD) surveyed 200 water bodies for Elodea with zero detections. Meanwhile, the Fairbanks SWCD continued to treat 26 water bodies (Figure 13) and ADNR treated 3 water bodies in the Anchorage area in ongoing Elodea control efforts.



**Figure 14.** Western blackheaded budworm defoliation in old and young growth forests near Excursion Inlet. USDA Forest Service photo by Dr. Elizabeth Graham.

## **Insect Highlights**

The western blackheaded budworm outbreak that exploded in 2021 continued in 2022 with caterpillars feeding on Sitka spruce as well as western hemlock throughout Southeast Alaska (Figure 14). Damage was recorded from Haines to Ketchikan with over 685,000 acres of defoliation recorded during aerial detection surveys. Mortality associated with the hemlock sawfly and western blackheaded budworm defoliation event was observed in western hemlock across 73,500 acres, with the worst damage on Admiralty Island and the Central Tongass area.

A ground survey was conducted across the road systems of Southeast Alaska to determine the status of the insect populations and damage from the ground. This also served as a team-building opportunity for the Forest Health group with some members meeting for the first time in person (Figure 15). Additional surveys off the road system were conducted by Alaska Youth Stewards on



Figure 13. FSWCD staff work to eradicate the invasive aquatic plant Elodea in Birch Lake, near Fairbanks. Photo courtesy of Aditi Shenoy, Fairbanks Soil and Water Conservation District.



**Figure 15.** Forest Health Protection team members met in Petersburg, AK to conduct ground detection surveys for defoliating insects. The group spent time together calibrating how to measure damage and enjoying time in the field (with ice cream sandwiches for fuel)! USDA Forest Service Photo by Dr. Elizabeth Graham.



Figure 16. Alaska Youth Stewards Justice Duncan and Luke Jack developed note taking and field data collection skills during one of the many affectionately dubbed "bug hunts." USDA Forest Service photo by Eric Benedict.

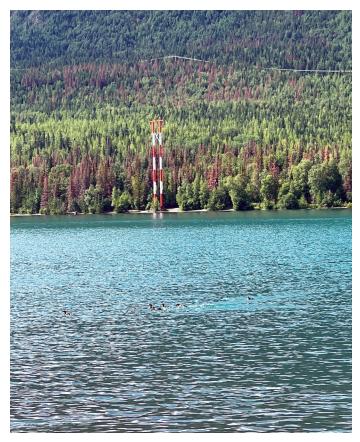




Figure 17. Spruce beetle damage along Snug Harbor Road in the Cooper Landing area, viewed across Kenai Lake. USDA Forest Service photo by Steve Swenson.

Admiralty Island. The students from Angoon learned about insects and data collection while providing much needed ground data from their remote locations (Figure 16).

Spruce beetle activity has decreased dramatically, with only 48,800 acres of damage recorded during aerial detection surveys, the least reported since 2015, almost entirely in Southcentral, where the outbreak has impacted more than 1.86 million cumulative acres. The outbreak remains most active in the northern Matanuska-Susitna Borough, the lower Denali Borough, in and around the Chugach National Forest, and near Soldotna and Kasilof on the Kenai Peninsula. (Figure 17).

Aspen and birch leafminer continue to be the most damaging agents in the Interior, despite lower acreage recorded during aerial detection surveys. Ground detection surveys confirmed heavy defoliation predominately caused by two birch leafminer species in the Fairbanks North Star Borough: late birch leaf edgeminer and amber-marked birch leafminer. Aspen leafminer damage (Figure 18) was detected along every major roadway in and out of Fairbanks, with damage tapering in severity towards the Brooks Range, the Alaska Range, and the Canadian border.



**Figure 18.** Heavily defoliated aspen saplings were commonly observed in urban settings and along major roadways in the Interior. USDA Forest Service photo by Dr. Sydney Brannoch.

#### TABLE 3. Damage Type by Category\*

#### **ABIOTIC**

Drought Flooding Landslide/avalanche Windthrow Winter damage

#### **ALDER DEFOLIATION**

Alder defoliation Alder leafroller Alder sawfly

#### ALDER DIEBACK

Alder dieback

#### **ASPEN DEFOLIATION**

Aspen defoliation Aspen leaf blight Aspen leafminer Large aspen tortrix

#### **ASPEN MORTALITY**

Aspen running canker

#### **BIRCH DEFOLIATION**

Birch aphid Birch crown thinning Birch defoliation Birch leafminer Birch leafroller Dwarf birch defoliation Spear-marked black moth

#### **COTTONWOOD DEFOLIATION**

Cottonwood defoliation Cottonwood leaf beetle Cottonwood leafminer Cottonwood leafroller

## **FIR MORTALITY** Western balsam bark beetle

#### HARDWOOD DEFOLIATION

Hardwood defoliation Rusty Tussock Moth Speckled green fruitworm

#### **HEMLOCK DEFOLIATION**

Hemlock flagging Hemlock looper Hemlock sawfly Western blackheaded budworm

## **HEMLOCK MORTALITY**

Hemlock canker Hemlock mortality Hemlock sawfly mortality

## LARCH DEFOLIATION

Larch budmoth Larch discoloration Larch sawfly

## LARCH MORTALITY

## SHORE PINE DAMAGE

Dothistroma needle blight Shore pine dieback Western gall rust

#### **SPRUCE DAMAGE**

Spruce aphid Spruce broom rust Spruce bud moth Spruce budworm Spruce defoliation Spruce needle cast Spruce needle rust

#### **SPRUCE MORTALITY**

Northern spruce engraver Spruce beetle

#### SPRUCE/HEMLOCK DEFOLIATION

Western black-headed budworm Conifer defoliation

#### WILLOW DEFOLIATION

Willow defoliation Willow leafblotch miner Willow rust

#### WILLOW DIEBACK

Willow dieback

#### **YELLOW-CEDAR DECLINE**

Yellow-cedar decline

\* Animal-caused damage are not listed as stand-alone categories; when notable, they are listed under the host species they have affected.

 TABLE 4. Ground observations of forest insects and pathogens in Alaska in 2022 (1/1/22-12/27/22). Cumulative ground detection survey observations by forest health professionals are displayed in our interactive Ground Survey Dashboard at <a href="https://arcg.is/1SH58a">https://arcg.is/1SH58a</a>. Ground survey protocols are described in Appendix 2 on <a href="mailto:page\_82">page</a>

 82. Ground observations by citizen scientists can be found in The Alaska Forest Health Observations project on iNaturalist, accessed at <a href="https://www.inaturalist.org/projects/alaska-forest-health-observations">https://www.inaturalist.org/projects/alaska-forest-health-observations</a>.

 Observations of unidentified or noninfectious agents from our ground surveys and species not closely tied to forest health are excluded.

| Damage<br>Agent<br>Category | Damage Causing Agent         | Scientific Names             | Ground<br>Observations* | iNaturalist<br>Research Grade<br>Observations** | Total |
|-----------------------------|------------------------------|------------------------------|-------------------------|-------------------------------------------------|-------|
| Insects                     | Adelgidae                    | Adelgidae spp.               | 16                      | 1                                               | 17    |
| Insects                     | Alder woolly sawfly          | Eriocampa ovata              | 8                       | 12                                              | 20    |
| Insects                     | Amber-marked birch leafminer | Profenusa thomsoni           | 54                      | 3                                               | 57    |
| Insects                     | Aspen leafminer              | Phyllocnistis populiella     | 105                     | 35                                              | 140   |
| Insects                     | Birch aphid                  | Euceraphis betulae           | 4                       | 0                                               | 4     |
| Insects                     | Birch leafminer              | Fenusa pusilla               | 2                       | 0                                               | 2     |
| Insects                     | Birch leafminer/roller       | Caloptilia spp.              | 46                      | 0                                               | 46    |
| Insects                     | Birch leafroller             | Epinotia solandriana         | 16                      | 0                                               | 16    |
| Insects                     | Cottonwood leaf beetle       | Chrysomela scripta           | 6                       | 0                                               | 6     |
| Insects                     | Cottonwood leafblotch miner  | Phyllonorycter nipigan       | 3                       | 0                                               | 3     |
| Insects                     | Eriophyid mite               | Eriophyidae spp.             | 74                      | 7                                               | 81    |
| Insects                     | Gall/Adelgidae spp.          | Gall/Adelgidae spp.          | 39                      | 0                                               | 0     |
| Insects                     | Gall midge                   | Cecidomyiidae spp.           | 15                      | 7                                               | 22    |
| Insects                     | Green alder sawfly           | Monsoma pulveratum           | 24                      | 12                                              | 36    |
| Insects                     | Hemlock sawfly               | Neodiprion tsugae            | 11                      | 0                                               | 11    |
| Insects                     | Late birch leaf edgeminer    | Heterarthrus nemoratus       | 52                      | 1                                               | 53    |
| Insects                     | Leaf beetles spp.            | Leaf beetles spp.            | 74                      | 3                                               | 77    |
| Insects                     | Leafminers spp.              | leafminer spp.               | 60                      | 3                                               | 63    |
| Insects                     | Rusty tussock moth           | Orgyia antiqua               | 0                       | 13                                              | 13    |
| Insects                     | Spotted tussock moth         | Lophocampa maculata          | 1                       | 48                                              | 49    |
| Insects                     | Spruce beetle                | Dendroctonus rufipennis      | 2                       | 7                                               | 9     |
| Insects                     | Spruce bud moth              | Zeiraphera canadensis        | 19                      | 0                                               | 19    |
| Insects                     | Spruce budworm               | Choristoneura spp.           | 6                       | 0                                               | 6     |
| Insects                     | Striped alder sawfly         | Hemichroa crocea             | 3                       | 0                                               | 3     |
| Insects                     | Western black-headed budworm | Acleris gloverana            | 82                      | 30                                              | 112   |
| Insects                     | Western tent caterpillar     | Malacosoma californicum      | 0                       | 2                                               | 2     |
| Insects                     | Willow leafblotch miner      | Micrurapteryx salicifoliella | 78                      | 4                                               | 82    |
| Insects                     | Yellowheaded spruce sawfly   | Pikonema alaskensis          | 4                       | 0                                               | 4     |
| Pathogens                   | Alder canker dieback         | Valsa melanodiscus           | 9                       | 0                                               | 9     |
| Pathogens                   | Artist's conk                | Ganoderma applanatum         | 10                      | 24                                              | 34    |
| Pathogens                   | Aspen running canker         | Neodothiora populina         | 16                      | 0                                               | 16    |
| Pathogens                   | Aspen shoot blight           | Venturia mucularis           | 5                       | 0                                               | 5     |
| Pathogens                   | Aspen target canker          | Cytospora notastroma         | 2                       | 0                                               | 2     |

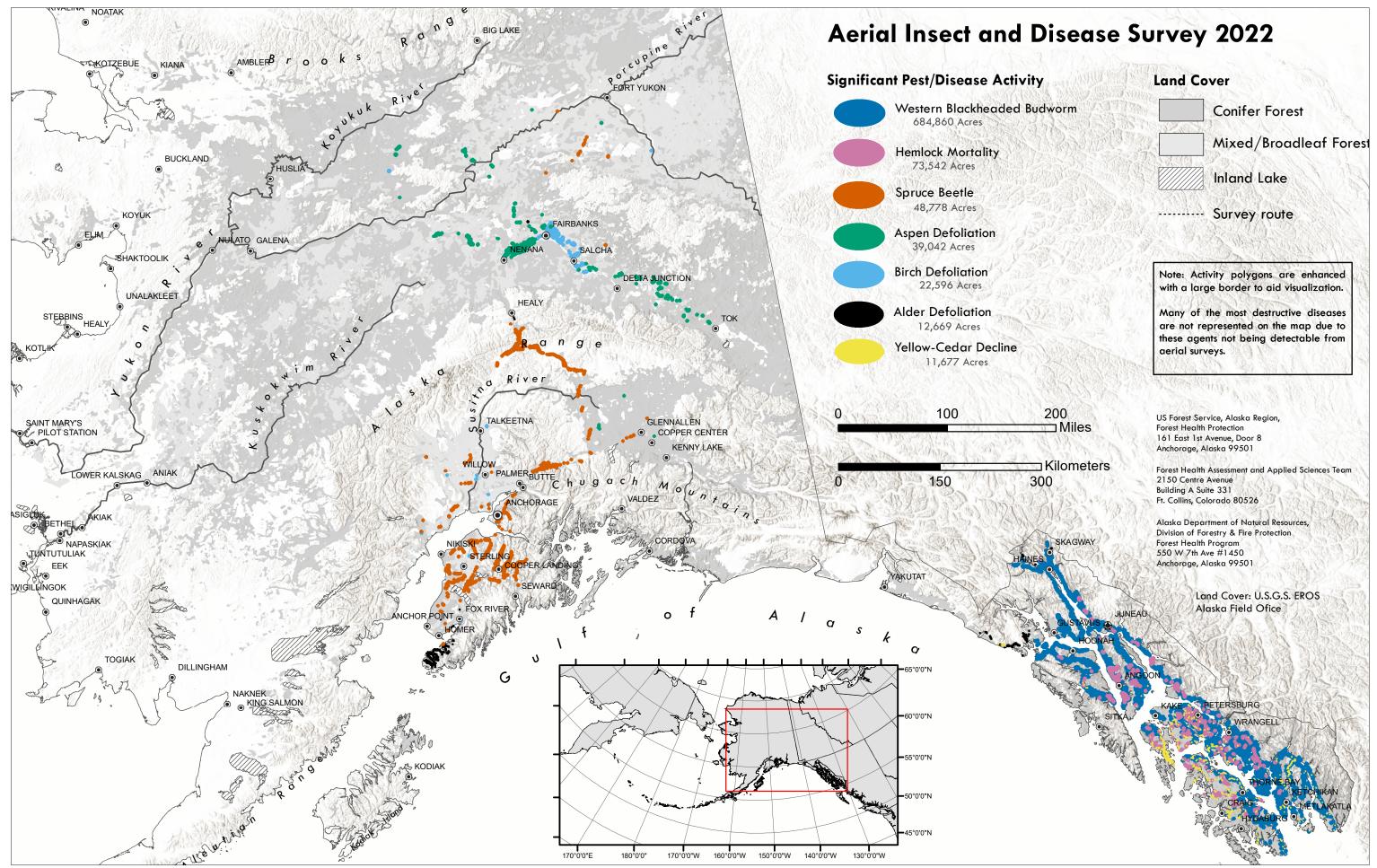
 TABLE 4. Ground observations of forest insects and pathogens in Alaska in 2022 (1/1/22-12/27/22). Cumulative ground detection survey observations by forest health professionals are displayed in our interactive Ground Survey Dashboard at <a href="https://arcg.is/1SH58a">https://arcg.is/1SH58a</a>. Ground survey protocols are described in Appendix 2 on <a href="mailto:page\_82">page</a>

 82. Ground observations by citizen scientists can be found in The Alaska Forest Health Observations project on iNaturalist, accessed at <a href="https://www.inaturalist.org/projects/alaska-forest-health-observations">https://www.inaturalist.org/projects/alaska-forest-health-observations</a>.

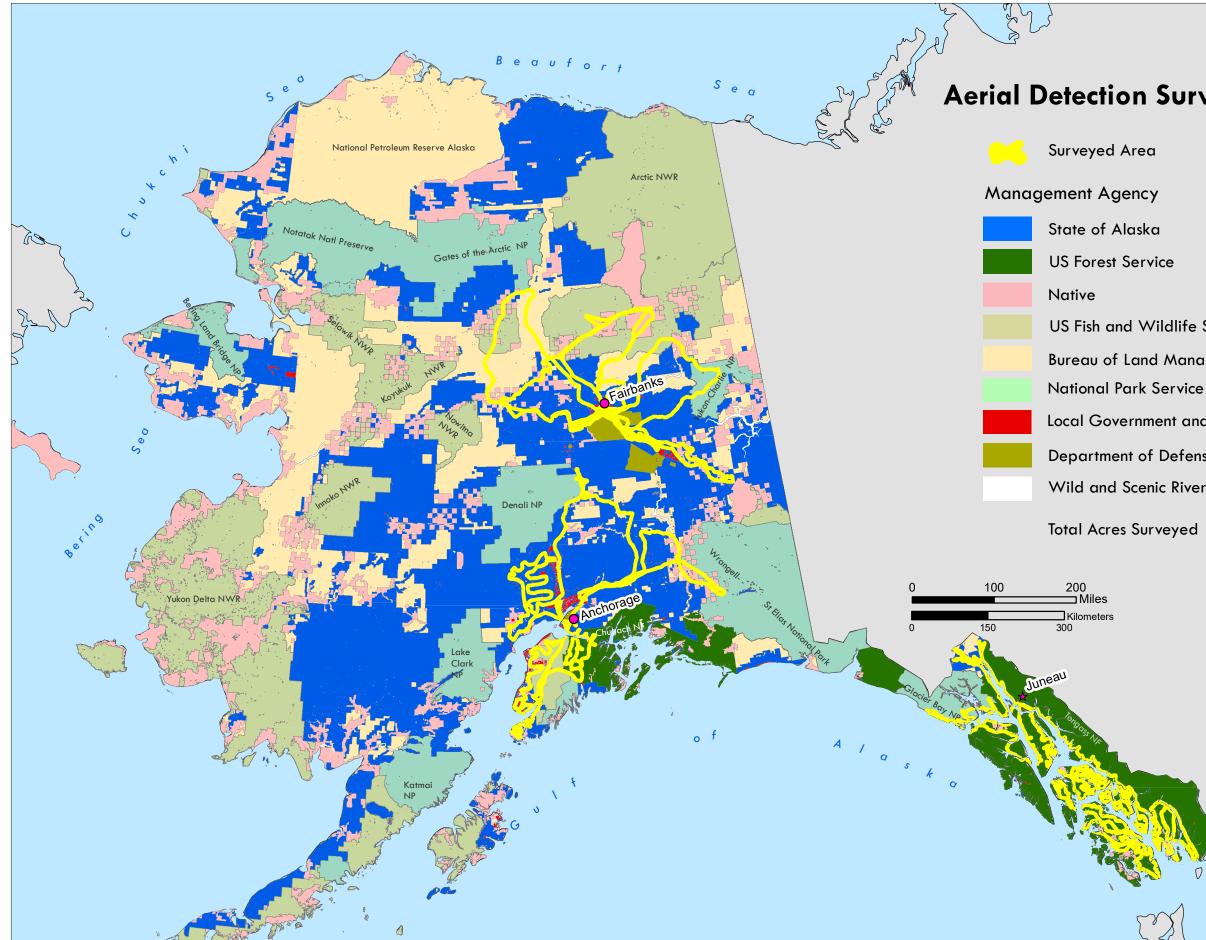
 Observations of unidentified or noninfectious agents from our ground surveys and species not closely tied to forest health are excluded.

| Damage<br>Agent<br>Category | Damage Causing Agent      | Scientific Names                | Ground<br>Observations* | iNaturalist<br>Research Grade<br>Observations** | Total |
|-----------------------------|---------------------------|---------------------------------|-------------------------|-------------------------------------------------|-------|
| Pathogens                   | Bear's tooth fungus       | Hercicium abietis               | 0                       | 5                                               | 5     |
| Pathogens                   | Birch polypore            | Fomitopsis betulina             | 6                       | 60                                              | 66    |
| Pathogens                   | Brown crumbly rot         | Fomitopsis mounceae*            | 3                       | 44                                              | 47    |
| Pathogens                   | Brown crumbly rot         | Fomitopsis ochraceae*           | 7                       | 123                                             | 130   |
| Pathogens                   | Brown crumbly rot         | Fomitopsis pinicola sensu lato* | 3                       | 4                                               | 7     |
| Pathogens                   | Brown cubical butt rot    | Phaeolus schweinitzii           | 7                       | 13                                              | 20    |
| Pathogens                   | Canker-rot of birch       | Inonotus obliquus               | 0                       | 17                                              | 17    |
| Pathogens                   | Cedar leaf blight         | Didymascella thujina            | 22                      | 1                                               | 23    |
| Pathogens                   | Coral tooth fungus        | Hericium coralloides            | 1                       | 79                                              | 80    |
| Pathogens                   | Diplodia gall             | Diplodia tumefaciens            | 2                       | 4                                               | 6     |
| Pathogens                   | Dothistroma needle blight | Dothistroma septosporum         | 5                       | 0                                               | 5     |
| Pathogens                   | Hardwood leaf rusts       | Melamspora spp.                 | 12                      | 3                                               | 15    |
| Pathogens                   | Hartig's conk             | Phellinus hartigii              | 2                       | 0                                               | 2     |
| Pathogens                   | Hemlock dwarf mistletoe   | Arceuthobium tsugense           | 15                      | 3                                               | 18    |
| Pathogens                   | Hemlock-blueberry rust    | Naohidemyces vaccinii           | 15                      | 0                                               | 15    |
| Pathogens                   | Lacquer/varnish conk      | Ganoderma oregonense            | 1                       | 16                                              | 17    |
| Pathogens                   | Lirula needle cast        | Lirula macrospora               | 14                      | 3                                               | 17    |
| Pathogens                   | Paint fungus              | Echinodontium tinctorium        | 0                       | 1                                               | 1     |
| Pathogens                   | Powdery mildew            | Erisiphe adunca                 | 24                      | 1                                               | 25    |
| Pathogens                   | Quinine conk              | Laricifomes officinalis         | 3                       | 4                                               | 7     |
| Pathogens                   | Red ring rot              | Porodaedalea pini               | 16                      | 13                                              | 29    |
| Pathogens                   | Rhizosphaera needle cast  | Rhizosphaera pini               | 6                       | 0                                               | 6     |
| Pathogens                   | Sirococcus shoot blight   | Sirococcus tsugae               | 1                       | 0                                               | 1     |
| Pathogens                   | Spruce broom rust         | Chrysomyxa arctostaphyli        | 40                      | 19                                              | 59    |
| Pathogens                   | Spruce bud blights        | Spruce bud blights spp.         | 14                      | 0                                               | 14    |
| Pathogens                   | Spruce bud rust           | Chrysomyxa woroninii            | 22                      | 2                                               | 24    |
| Pathogens                   | Spruce needle rust        | Chrysomyxa ledicola             | 53                      | 6                                               | 59    |
| Pathogens                   | Sulfur fungus             | Laetiporus conifericola         | 11                      | 57                                              | 68    |
| Pathogens                   | Tinder conk/hoof fungus   | Fomes fomentarius               | 7                       | 70                                              | 77    |
| Pathogens                   | Tomentosus root rot       | Onnia tomentosa                 | 2                       | 8                                               | 10    |

\* FHP staff identifies *Fomitopsis pinicola sensu lato* (a species complex) to species level whenever diagnostic features are present. There are two species that occur within Alaska: *F. mounceae* and *F. ochraceae*.


 TABLE 4. Ground observations of forest insects and pathogens in Alaska in 2022 (1/1/22-12/27/22). Cumulative ground detection survey observations by forest health professionals are displayed in our interactive Ground Survey Dashboard at <a href="https://arcg.is/1SH58a">https://arcg.is/1SH58a</a>. Ground survey protocols are described in Appendix 2 on <a href="mailto:page\_82">page</a>

 82. Ground observations by citizen scientists can be found in The Alaska Forest Health Observations project on iNaturalist, accessed at <a href="https://www.inaturalist.org/projects/alaska-forest-health-observations">https://www.inaturalist.org/projects/alaska-forest-health-observations</a>.


 Observations of unidentified or noninfectious agents from our ground surveys and species not closely tied to forest health are excluded.

| Damage<br>Agent<br>Category | Damage Causing Agent        | Scientific Names                 | Ground<br>Observations* | iNaturalist<br>Research Grade<br>Observations** | Total |
|-----------------------------|-----------------------------|----------------------------------|-------------------------|-------------------------------------------------|-------|
| Pathogens                   | Trunk rot of aspen          | Phellinus tremulae               | 7                       | 1                                               | 8     |
| Pathogens                   | Trunk rot of birch          | Phellinus igniarius sensu lato** | 29                      | 13                                              | 42    |
| Pathogens                   | Viburnum leaf and stem rust | Puccinia linkii                  | 2                       | 5                                               | 7     |
| Pathogens                   | Western gall rust           | Cronartium harknessii            | 16                      | 4                                               | 20    |
| Pathogens                   | Yellow-cedar shoot blight   | Kabatina thujae                  | 3                       | 0                                               | 3     |

\*\* *Phellinus igniarius sensu lato* (a species complex) in Alaska in not well understood but is widespread and common in Alaska on both live and dead birch trees and occurs less frequently on alder and willow species. We will refer to this species complex until we have more complete information.



Map 2. Aerial Detection Survey flight paths. For more information on survey methods in 2022, please see Appendix 1, page 77.



# Aerial Detection Survey Flight Paths 2022

W

|                | Surveyed Acres |
|----------------|----------------|
|                | 6,227,000      |
| e              | 4,279,000      |
|                | 2,183,000      |
| dlife Service  | 1,136,000      |
| Management     | 975,000        |
| ervice         | 783,000        |
| nt and Private | 293,000        |
| Defense        | 227,000        |
| River          | 152,000        |

eyed 16,314,000

US Forest Service, Alaska Region, Forest Health Protection 161 East 1st Avenue, Door 8 Anchorage, Alaska 99501

Forest Health Assessment and Applied Sciences Team 2150 Centre Avenue Building A Suite 331 Ft. Collins, Colorado 80526

Alaska Department of Natural Resources, Division of Forestry & Fire Protection Forest Health Program 550 W 7th Ave #1450 Anchorage, Alaska 99501