






First published May 2014 © Horticulture Australia Ltd.

Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of Horticulture Australia Ltd.

#### National Library of Australia Cataloguing-in-Publication entry

Jenny Ekman, Len Tesoriero and Stuart Grigg. Authors:

Title: Pests, Diseases and Disorders of Babyleaf Vegetables: A Field Identification Guide.

ISBN: 978-0-9925251-0-1

Subjects: Lettuce-Diseases and pests-Australia-Identification.

> Spinach-Diseases and pests-Australia-Identification. Brassica-Diseases and pests-Australia-Identification.

Other authors/Contributors:

Applied Horticultural Research, New South Wales Department of Primary Industries, AgHort Consulting,

Dewey number: 635.5

This project has been funded by Horticulture Australia Ltd using the vegetable levy and matched funds from the Australian Government.

Guide produced by Applied Horticultural Research. Designed by Noel Wendtman Design.

#### Disclaimer

Every care has been taken in the preparation of this publication to ensure information is accurate. Care has also been taken that all photographs are used appropriately, cited correctly and with permission where needed. The information contained therefore represents the authors' best knowledge and understanding at the time of writing (May 2014).

However, users are reminded to ensure that information on which they rely is up to date and to check its currency and accuracy with qualified advisors. In addition, the authors take no responsibility for the correctness or reliability of information included in this document that has been provided by third parties.

Any recommendations contained in this publication do not necessarily represent current Horticulture Australia Ltd policy. No person should act on the basis of the contents of this publication, whether as to matters of fact, expressed opinion or implied recommendation, without first obtaining specific, independent professional advice in respect of the matters set out in this publication.

This project was made possible by funding from Horticulture Australia Ltd using the national vegetable levy and matched funds from the Australian Government.

Production of the guide would not have been possible without the generous assistance of fellow researchers, agronomists, extension officers and interested amateur photographers who have allowed us to use photographs from their collections.

Special thanks are due to;

Sandra McDougall, Valerie Draper, Tony Napier and Lowan Turton — NSW DPI

Moazzem Khan, John Duff — ODAFF

Rob Dimsey — DEPI Vic

Adam Broadley — DAFF

Andy Ryland

Mike Titley

Helena Whitman — VGA Victoria

Niroshini Gunasinghe

Lindsey DuToit — Washington State University

John Damicone — Oklahoma State University

# **CONTENTS**

### **INSECTS**

| Aphid-brown sowthistle     | 2  | Leafhopper / Jassid       | 34 |
|----------------------------|----|---------------------------|----|
| Aphid-cabbage              | 4  | Leafminer-brassica        | 35 |
| Aphid-currant lettuce      | 6  | Leafminer-cineraria       | 36 |
| Aphid-green peach          | 7  | Leafminer-spinach         | 37 |
| Aphid-sowthistle           | 8  | Looper                    | 38 |
| Cabbage centre grub        | 9  | Lucerne leafroller        | 39 |
| Cabbage white butterfly    | 10 | Mite-blue oat             | 40 |
| Cluster caterpillar /      |    | Mite-clover               | 41 |
| Tropical armyworm          | 12 | Mite-predatory            | 42 |
| Cutworm                    | 14 | Mite-redlegged earth mite | 43 |
| Damsel bug                 | 17 | Mite-spinach crown / bulb | 44 |
| Diamondback moth           | 18 | Mite-two spotted          | 45 |
| False wireworm             | 20 | Parasitoid wasps          | 46 |
| Flea beetle                | 21 | Plague soldier beetle     | 48 |
| Fungus gnats               | 22 | Rove beetle               | 49 |
| Green mirid                | 23 | Rutherglen bug            | 50 |
| Green vegetable bug        | 24 | Shore flies               | 52 |
| Ground beetle              | 25 | Springtails               | 53 |
| Heliothis / Native budworm | 26 | Thrips-onion, plague,     |    |
| Hoverfly                   | 28 | tomato, WFT               | 54 |
| Lacewing-brown             | 29 | Weevil-vegetable          | 56 |
| Lacewing-green             | 30 | Weevil - white fringed    | 58 |
| Ladybird-fungus eating     | 31 | Wireworm                  | 59 |
| Ladybird-predatory         | 32 |                           |    |

### **DISEASES**

| Alternaria leaf spot/         |    | Downy mildew-spinach     | 79 |
|-------------------------------|----|--------------------------|----|
| Target spot                   | 62 | Grey mould               | 80 |
| Anthracnose-spinach           | 63 | Peppery leaf spot        | 81 |
| Anthracnose-lettuce           | 64 | Phoma leaf spot          | 82 |
| Bacterial leaf spot-brassicas | 65 | Powdery mildew           | 83 |
| Bacterial leaf spot-lettuce   | 66 | Root rot                 | 84 |
| Bacterial soft rot            | 67 | Root rot-black           | 85 |
| Black rot/Bacterial leaf spot | 68 | Root rot-bottom rot      | 86 |
| Cercospora leaf spot          | 69 | Septoria leaf spot       | 87 |
| Cladosporium leaf spot        | 70 | Stemphylium leaf spot-   |    |
| Clubroot                      | 71 | spinach                  | 88 |
| Corky root                    | 73 | Stemphylium leaf spot-   |    |
| Damping off                   | 74 | lettuce                  | 89 |
| Damping off-fusarium wilt     | 76 | Virus – Mosaic           | 90 |
| Damping off-wire stem         | 77 | White blister/white rust | 92 |
| Downy mildew-brassicas        | 78 | White leaf spot          | 93 |

### **DISORDERS**

| Blindness                  | 96  | Hail damage           | 105 |
|----------------------------|-----|-----------------------|-----|
| Calcium deficiency-tipburn | 97  | Herbicide damage      | 106 |
| Cold damage                | 98  | Nitrogen deficiency   | 108 |
| Copper toxicity            | 99  | Oedema                | 109 |
| Fertiliser burn-lettuce    | 100 | Old seed              | 110 |
| Fertiliser burn-urea       | 101 | Pesticide damage      | 111 |
| Frost damage-permanent     | 102 | Phosphorus deficiency | 112 |
| Frost damage-recoverable   | 103 | Waterlogging          | 113 |
| Guttation                  | 104 | Wind damage-lettuce   | 114 |
|                            |     |                       |     |



**Insects** 

# Aphid – brown sowthistle

Uroleucon sonchi

### **DESCRIPTION**

INSECTS

**Egg:** Only laid during cool winter periods; at other times females bear live young. Nymph: Solid yellow-green to pale brown.

**Adult:** Wingless adults are one of the largest aphids (3 – 4.5 mm long), shiny and a distinctive dark reddish brown colour. Adults have pale legs with black joints and black antennae.

### DAMAGE

Sucks sap from lettuce leaves, causing them to become distorted, wilted and shrivelled. Whole plants may be severely damaged. Can transmit viruses and is also a potential contamination issue.



Brown sowthistle aphids (M Inbar Uni of Haifa)

### MOST COMMON

Although most commonly found on sowthistle weeds, this aphid is also a major pest of lettuce. Removing related weeds from around the crop is an important control measure.



Brown sowthistle aphids (S Grigg)



### **DESCRIPTION**

INSECTS

Nymph: Young nymphs are bright green, but soon develop a grey, mealy appearance due to their waxy coating.

**Adult:** Wingless adults are also waxy appearing similar to nymphs and up to 2.5 mm long. Winged adults are greyish with black head and thorax.

### DAMAGE

Tend to form colonies on the youngest leaves which become stunted and distorted. Can spread cauliflower mosaic virus to brassicas and is also a potential contamination issue.

### **MOST COMMON**

Mainly a pest of leafy brassicas, numbers tend to peak in spring and autumn.



Cabbage aphid adult and nymph (JK Clarke UC Davis)





Adults, nymphs, parasitised 'mummies' and hoverfly larvae (top, S Grigg) and cabbage aphid wingless adults (S Williams)

# Aphid - currant lettuce

Nasonovia ribisnigri

### **DESCRIPTION**

INSECT

**Nymph:** Yellowish to light brown.

Adult: Wingless adults are greenish with brown markings and up to 3 mm long. The dark markings are more distinct in winged females, which have blackish heads and leg joints. Lettuce aphids tend to be scattered rather than forming

dense colonies. They burrow deep into the leaf rosette in loose leaf lettuce varieties, making them hard to detect.

### **DAMAGE**

Mainly a contamination issue.

### **MOST COMMON**

A major pest of lettuces at all times of year.



Currant lettuce aphid nymph (W Cranshaw CSU, Bugwood.org)

# Aphid – green peach

Myzus persicae

#### DESCRIPTION

**Nymph:** Varies from yellowish to green.

Adult: Wingless adults are pale yellow to green and around 2 mm long; winged females have black heads with dark red eyes and patterned bodies.

### **DAMAGE**

Causes leaf distortion through feeding, contaminates the product and potentially acts as a vector for many viruses.

### **MOST COMMON**

Found during warmer months on a wide range of host plants.







Green peach aphid winged adult (S Bauer USDA ARS), wingless adults and nymphs (R) and the white 'skins' left after moulting (S Grigg)

7

# Aphid - sowthistle

Hyperomyzus lactucae

### **DESCRIPTION**

INSECT

**Egg:** Only laid during cool winter periods; at other times females bear live young.

**Nymph:** Solid yellowgreen to pale brown.

Adult: Wingless adults are 2–3 mm long, solid green with dark tips to their legs and antennaes. The winged form is similar in size and colour, but with black patches on the head and abdomen. Similar to currant lettuce aphid, but distinguished by the slightly club shaped siphunculi (tubes) on its abdomen.

### **DAMAGE**

Feeds on the undersides of lettuce leaves causing them to become curled and shriveled. Sowthistle aphids spread lettuce necrotic yellows virus and are a potential contamination issue.

#### MOST COMMON

Primary hosts are sowthistle and rubus species; this aphid cannot breed on lettuce alone.



Sowthistle aphids (D Fenwick)

## Cabbage centre grub

Hellula hydralis

### **DESCRIPTION**

**Egg:** Oval, creamy, laid on young leaves or the soil surface.

Caterpillar: Chunky, cream coloured caterpillar up to 12 mm long with indistinct reddish brown stripes.

**Pupae:** Brown, often formed within webbing on the plant.

Adult: Mottled brown moth, wings held in a flattened tent over body, around 12 mm long.

#### DAMAGE

Caterpillars feed on new growth, producing webbing

as well as frass. Leaves can be webbed together.

### **MOST COMMON**

Usually a minor pest of brassicas during summer through to autumn in QLD and NSW, high numbers occasionally in southern states during spring.





Adult moth (D Hobern) and larvae (DNRE Victoria)

INSECT

### **DESCRIPTION**

**Egg:** Laid singly, yellow to orange, bullet shaped.

Caterpillar: Velvety green with a thin yellow stripe on their sides and top.
Mature caterpillars are approx 30 mm long.

Pupae: Yellow green, ridged with prominent spines near the midpoint, attached to a leaf or stem.

Adult: Immediately recognisable white butterfly with one (male) or two

(female) black spots on the forewing. Wings held folded upward at rest.

### **DAMAGE**

Large, irregular chewing damage to leaves and leaf edges, dark green droppings on leaves and in leaf angles.

### **MOST COMMON**

Warmer months. A minor pest which can attack all brassicas, including Asian leafy lines and rockets.



Cabbage white egg (J Ekman)





 $\textbf{Cabbage white caterpillar and adult butterfly} \; (\texttt{J Ekman})$ 

### Cluster caterpillar / Tropical armyworm

Spodoptera litura

### **DESCRIPTION**

INSECT

**Egg:** Laid in large mass, creamy cream markings, reaching spheres usually covered with fluffy white hairs and scales.

Caterpillar: Initially greygreen and feed as a group but separate as they mature. Caterpillars become dark grey to black with red, yellow and

50 mm length. Tend to curl into a ball if disturbed.

Pupae: Reddish brown, found in the soil.

Adult: Wings held in a tent over back, patterned with brown, cream and grey.

### DAMAGE

Caterpillars skeletonise leaves.

### **MOST COMMON**

Spring-autumn in Queensland. Very wide host range, potentially affecting all babyleaf crops.











Mature caterpillar (NSW DPI) and adult moth (D Hobern)

Agrotis spp.

INSECT

### **DESCRIPTION**

**Egg:** Laid in a large mass, creamy spheres usually covered with fluffy white hairs and scales.

Caterpillar: Initially greygreen and feed as a group but separate as they mature. Caterpillars darken as they age, becoming dark green/ grey to black with red, yellow and cream markings, reaching up to 50 mm length. Tend to curl into a ball if disturbed.

**Pupae:** Reddish brown, found in the soil.

Adult: Wings held in a tent over back, patterned with brown, cream and grey. The bogong moth is a type of cutworm.



Active (FT Gort Flickriver) and disturbed (SARDI (inset)) caterpillars

### DAMAGE

Larvae cut off seedlings at soil level, usually during the night. Plants may be dragged under the soil to feed on during the day.

### **MOST COMMON**

Damage most likely during spring, especially in damper areas newly converted to cropping.





Adult moth (NSW DPI) and cutworm damage to chard (C Longacre)



# **Damsel bug**

Nabis spp.

### DESCRIPTION

**Egg:** Whitish, oval eggs laid into plant tissues.

Nymph: Similar to adults except smaller and lacking wings.

Adult: Slender, light tan bug 8–12 mm long with long, prominant sucking mouthpart for feeding. Long legs, of which the front two are stronger for grasping prey.

### DAMAGE

Beneficial insect: Damsel bug nymphs and adults are extremely aggressive predators on other insects, including aphids, leafhoppers and various caterpillar species.

### **MOST COMMON**

Can occur at any time of year.



Damsel bug adult (J Ekman)

### Diamondback moth

Plutella xylostella

### **DESCRIPTION**

INSECT

**Egg:** Pale yellow, oval eggs are laid in clumps on leaves and stems.

Caterpillar: Initially colourless, developing to bright yellowish green. Tend to drop from the plant if disturbed.

Mature at 10–12 mm long.

**Pupae:** Silvery mesh cocoon attached to the leaf or stem.

Adult: Slender, brown wings held in a tent over its body. Central light brown stripe along the back edges of the wings incorporates 3 'diamond' shapes.

#### **DAMAGE**

As they grow, caterpillars progress from mining the insides of leaves to making



Feeding windows and holes in kale seedling and buk choy leaf (J Ekman)



numerous small feeding holes or 'windows' (leaving the upper leaf surface intact). Mature caterpillars leave large holes, especially between leaf veins.

### **MOST COMMON**

Major pest of brassica crops such as Asian leafy, rocket and kale. Numbers increase from spring in South Australia, summer in Victoria and autumn in Queensland. Eggs don't hatch below 8°C while temperatures over 35°C reduce insect survival.





Caterpillar (R Ottens Uni Georgia, Bugwood.org), pupae (W Cranshaw Colorado SU, Bugwood.org) and adult moth (D Griffiths)

### False wireworm

Gonocephalum spp.

### **DESCRIPTION**

INSECT

20

**Egg:** Laid on or just below the soil surface

Larvae: Dark cream to golden larvae with round head and darker mouthparts. Hard, smooth body with obvious segments, up to 30 mm long. Similar to the common mealworm, to which they are closely related.

Adult: Dull dark grey, brown or black oval shaped beetle commonly known as a 'darkling beetle'. Thorax has flanged edges (like a pie dish).

### DAMAGE

Larvae live in the soil where they feed on newly germinated seeds and plant roots. Adults chew stems at ground level, and may ring-bark small plants.

### **MOST COMMON**

Found in districts of NSW and Queensland, larvae develop through autumn and winter but cause most damage during spring. Unlike true wireworms, false wireworms tend not to move around but stay at the junction of loose, cultivated soil and undisturbed soil below.





Adult beetle (U Schmidt) and false wireworm larvae (Virginia Tech)

### Flea beetle

Phyllotreta spp.

#### DESCRIPTION

**Egg:** White to oval, laid in the soil.

**Larvae:** White grubs with brown heads which live in the soil.

Adult: Small, shiny beetle, often black with yellowish stripes along its wing covers. The hind legs are enlarged, allowing them to jump like fleas.

### **DAMAGE**

Adults feed on the plant leaves, causing small round pits or holes, while larvae feed on the plant roots. Adult beetles are a potential contaminant.

### **MOST COMMON**

Occasional spring-summer pest, particularly to Asian leafy products and rocket.







Red headed flea beetle (top) (C Mares, QDAFF), flea beetle on rocket (Ontario MAF) and turnip flea beetle (right) (M Deml Encyclopedia of Life)

Bradvsia spp.

INSECT

### DESCRIPTION

Egg: Tiny, laid in soil.

Larvae: Clear to white maggots with a small black head, 5-8 mm long. Leaves a trail of slime as it travels across the soil.

Adult: Tiny black flies 2-3 mm long with a single pair of clear or smoky wings, long antennae and long, slender legs.

### DAMAGE

Larvae live near the soil surface where they feed on



seedling roots and stems. They can also potentially act as vectors for fungal diseases, especially those affecting seedlings. Adults are mainly a contamination issue

### MOST COMMON

Prefer damp conditions where there are high levels of organic matter and/or nutrients. More commonly a pest of greenhouses than field crops.



Fungus gnat larvae (JK Clark) and adult (A Broadley DAFF)

### Green mirid

Creontiades dilutus

#### DESCRIPTION

**Egg:** Single eggs are inserted into the leaves, with the tops projecting from the surface.

Nymph: Pale green, pear shaped nymph. Antennae have reddish brown tips.

Adult: Pale green bug approximately 7 mm long with clear wings folded flat over its back. Antennae nearly as

long as the body. Agile bug, sometimes with red markings.

### DAMAGE

During feeding adults and nymphs inject digestive enzymes into plants, which can kill growing points.

### MOST COMMON

Summer months.





Nymph and adult green mirids (M Khan QDAFF)

# Green vegetable bug

Nezara viridula

S

INSECT

### **DESCRIPTION**

Egg: Neat rafts of barrel shaped, creamy eggs are laid on leaf undersides, turning golden as they mature.

Nymph: Initially orangered, then turning green with bright red, black and white patterning. Tend to aggregate together.

**Adult:** Green, shield shaped bug around 15 mm long.

### **DAMAGE**

Young shoots are damaged by sap sucking. Adults can be hard to see, so a potential contamination issue.

### **MOST COMMON**

Spring-summer on a wide range of host plants.

# **Ground beetle**

Carabidae spp.

### **DESCRIPTION**

**Egg:** Laid in clusters in moist soil debris.

Larvae: Segmented grub with relatively large head and obvious jaws for attacking prey.

Adult: Flattened black beetle 8-12mm long with ridged wing covers. They are fast runners and rarely fly.

### **DAMAGE**

Beneficial insect: larvae and adult beetles are predatory on insects, caterpillars, slugs, snails and other pests. They usually forage in soil litter, or close to the ground.

#### **MOST COMMON**

Year round.





Nymph (L Turton NSW DPI) and adult bug (S McDougall NSW DPI)



Ground beetle (J Ekman)

### **Heliothis / Native budworm**

Helicoverpa armigera, H. punctigera

### **DESCRIPTION**

Egg: Laid singly. Ribbed, white domes 1 mm diameter, darkening to yellow, orange and finally brown before hatching.

Caterpillar: Initially 1.5 mm long, light brown with dark heads. They remain this colour until they reach around 15mm long, when they darken and develop distinctive stripes along their length. Colour varies from brown to greenish or reddish. Caterpillars grow up to 50 mm long.

Pupae: Golden colour, generally found just under the soil surface. Rain stimulates emergence.

**Adult:** Stout moth with lightly patterned brown wings spanning up to 25 mm, held flat across the body, hind wings pale brown with dark edges.

### DAMAGE

Large, ragged holes in leaves, frass is a contamination issue.

### **MOST COMMON**

Warm weather, Larvae prefer leaf undersides or the central part of the plant. Common hosts include lettuce and brassica crops, rarer on spinach.



Heliothis eggs (S Grigg)





Heliothis caterpillar (J Ekman), and adult moth (K Power)

INSECT

### **DESCRIPTION**

**Egg:** Oval white eggs usually laid near aphid colonies.

Larvae: Cream coloured maggot with stripe on upper surface and dark mouth hooks, up to 10 mm long.

Adult: Resembles a bee or wasp with black and yellow bands across its rather flattened abdomen, but actually harmless. Often

hovers near plants, feeding on nectar and pollen.

### **DAMAGE**

Beneficial insect: maggots eat large numbers of aphids. However, larvae can present a contamination issue.

### **MOST COMMON**

Warm weather, especially summer.





 $\textbf{Hoverfly} \; (\textbf{J} \; \textbf{Ekman}) \; \textbf{and} \; \textbf{larvae} \; \textbf{with} \; \textbf{cabbage} \; \textbf{aphid} \; \textbf{prey} \; (\textbf{S} \; \textbf{Grigg})$ 

# Lacewing – brown

Micromus tasmaniae

#### **DESCRIPTION**

**Egg:** Cream, oval eggs laid singly on leaves.

Nymph: Slender brown larvae up to 10 mm long with smallish head but large, sickle shaped jaws and long tail.

Adult: Delicate brown insect up to 8 mm long with large, finely veined wings held upright along it's body. Large, round, greenish eyes and long antennae. Smaller than green lacewing.

### **DAMAGE**

Beneficial insect: adults and nymphs are voracious predators of aphids, small caterpillars, thrips and mites. However, can be a contamination issue, especially as the adults' large wings may stick to wet leaves.

### **MOST COMMON**

Year round.





 $\textbf{Brown lacewing larvae} \ (S \ Grigg) \ \textbf{and adult} \ (J \ Ekman)$ 

# Lacewing – green

Mallada signatus

S

INSECT

### **DESCRIPTION**

**Egg:** Whitish eggs laid on long, thin stalks, either singly or in rough groups.

Nymph: Thick bodied, up to 8 mm long light brown larva which camouflages itself with the remains of its prey.

Adult: Slender, delicate pale green insect 12–15 mm long with transparent, finely veined wings held upright along the body. Large, round red eyes and long antennae.

### **DAMAGE**

**Beneficial insect:** Adults and nymphs are voracious predators of aphids, small caterpillars, thrips and mites.

### **MOST COMMON**

Year round.



Adult green lacewing (J Ekman)

30

# Ladybird – fungus eating

Illeis galbula

### **DESCRIPTION**

**Larvae:** White with black dots and reptilian appearance, up to 6mm long.

**Adult:** Bright yellow with black markings, fast moving and active during the day.



### **DAMAGE**

None: Nymphs and adults feed primarily on powdery mildew fungus. Other fungal species and pollen may also be eaten. Can be an early indicator of pathogen infection.

### **MOST COMMON**

Late spring to autumn.



Fungus eating ladybird larvae and adult (J Ekman)

# Ladybird – predatory

Coccinella transversa, Hippodamia variegata, Diomus notescens

### **DESCRIPTION**

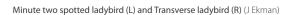
INSECTS

**Egg:** Upright yellow eggs, laid in small clusters.

**Nymph:** Black with coloured markings and 'crocodile like' appearance, up to 6 mm long.

Adult: Brightly coloured, dome shaped beetles with distinctive spots and stripes on their outer wing covers.

### **DAMAGE**


Beneficial insect: Both adults and larvae are active predators of aphids, thrips, moth eggs and mites. However, ladybird larvae can represent a contamination risk.

#### MOST COMMON

Late spring to autumn.











 $\textbf{Transverse ladybird larvae (top) and white collared ladybird (\verb|JEkman|)|}$ 

# **Leafhopper / Jassid**

Family Cicadellidae

### **DESCRIPTION**

INSECT

**Egg:** Tiny and laid under the leaf surface.

**Nymph:** Similar to the adult but wingless. Habit of moving sideways when disturbed.

Adult: Look like tiny cicadas; torpedo shaped, ranging in colour from yellowish to green and mottled brown. Jump away quickly if disturbed. Tend to feed on

the undersides of leaves of a wide range of host plants.

### **DAMAGE**

All lifestages suck plant sap, reducing vigour and leaving whitish patches on the leaves.

### **MOST COMMON**

Warmer months, only occasionally a major pest.

 $\textbf{Spotted leafhopper} \ (\textbf{NSW DPI}) \ \textbf{\& feeding damage} \ (\textbf{L Tesoriero NSW DPI})$ 

### Leafminer – brassica

Liriomyza brassicae

### **DESCRIPTION**

**Egg:** Small, round white eggs laid singly into the leaf underside.

Larvae: White to creamy yellow maggots up to 3 mm long. Mature larvae drop to the soil to pupate.

**Adult:** Small grey or black fly about 3–4 mm long.

### **DAMAGE**

Females may puncture leaves multiple times before laying an egg, causing leaf spots. Developing larvae make increasingly obvious feeding tunnels inside the leaves, depositing dark particles of frass.

### **MOST COMMON**

A major pest of brassicas including leafy Asian greens and rocket, especially during early spring. Several species of parasitoid wasp attack this leaf miner.





Leaf miner feeding tunnels on rocket (J Ekman) and an adult fly.

### Leafminer – cineraria

Chromatomyia syngenesiae

### **DESCRIPTION**

INSECT

**Egg:** Small eggs laid singly into or on leaf tissue.

Larvae: Cream to yellow maggots up to 5 mm long. Pupates shallowly inside the leaf underside.

**Adult:** Small grey and black fly about 3–4 mm long.

### **DAMAGE**

The larvae form a narrow, linear mine tending to either the upper or lower leaf surface, making them unmarketable.

### **MOST COMMON**

Commonly feeds on sowthistle and related garden plants (nasturtium, chrysanthemum etc), only an occasional pest on lettuce. Usually controlled naturally by parasitoid wasps.



Cineraria leaf miner feeding tunnels on sowthistle (G Csoka HFRI, Bugwood.org) and lettuce.

# Leafminer – spinach

Liriomyza chenopodii

### DESCRIPTION

**Egg:** Small, white, cylindrical eggs laid into the leaf tissue.

Larvae: Cream to yellow maggots up to 3 mm long. Mature larvae drop to the soil to pupate.

Adult: Small black and yellow fly about 2 mm long.

### DAMAGE

Females may puncture leaves multiple times before laying an egg, causing leaf spots. Developing larvae make winding feeding tunnels inside the leaves, making leaves unsaleable.

### **MOST COMMON**

A major pest of spinach and chards. Most common in spring and early autumn in southern Australia. Several species of parasitoid wasp attack this leaf miner.





Leaf miner egg lay into spinach (S Grigg) and feeding tunnels (P Ridland)

INSECT

38

# Chrysodeixis spp.

### DESCRIPTION

**Egg:** Laid singly, usually on leaf undersides. Ribbed, flattened domes cream to yellow in colour.

Caterpillar: Light green to dark green slender caterpillars with distinct looping motion (unlike heliothis, they have no central prolegs). Mature larvae are 35-40 mm long and feed openly on a wide range of host plants.

Pupae: Dark brown, attached to the plant.

Adult: Stout moth with richly patterned wings held in a tent over its body.

### DAMAGE

Holes in leaves, leaves can be skeletonised

### MOST COMMON

Summer-autumn.





Adult looper (P Hampson, Bugwood.org) and caterpillar (J Ekman)

### Lucerne leafroller

Merophyas divulsana

### DESCRIPTION

Egg: Flattened, yellow, laid in small clusters

Caterpillar: Light grey-green to brown, up to 12 mm long. Caterpillar wriggles backwards if ejected from its leaf tunnel.

Adult: Light tan (female) or tan with brown markings (male) moth up to 10 mm long.

### DAMAGE

Caterpillars roll leaves up with webbing, then feed from inside.

### **MOST COMMON**

Mainly a pest of lettuce in southeastern Oueensland. most common during late summer-autumn.





Leafroller caterpillar and adults (NSW DPI)

### Mite – blue oat

Penthaleus spp.

INSECT

### DESCRIPTION

Egg: Round, laid singly or in clusters of 3-6 on the soil surface or on roots and stems of food plants.

Nymph: Pinkish orange, 0.3 mm long immediately after hatching, darkening as they mature.

Adult: Bluish black with 8 bright red legs and distinctive red mark on the back. Moves quickly if disturbed.

### DAMAGE

Active during cooler part of the day when it leaves the soil to feed on young leaves



and shoots. Feeding damages the surface, causing large whitish patches on leaves.

#### MOST COMMON

Widespread from Tasmania to southern Queensland during the cool, wet part of the vear. When daily maximums exceed 20°C diapausing eggs are laid, which hatch only after exposure to high temperatures followed by cool weather and rain.



Blue oat mites and damage (Vic DPI) and adult mite (L Schimming)

### Mite - clover

Brvobia spp.

### DESCRIPTION

Egg: Round, red, measuring approx. 0.2mm diameter, laid singly or in small groups.

Nymph: Bright orangered, initially with six legs but developing eight in later instars.

Adult: Dark greyish orange or olive green, eight orange-red legs of which the front two are much longer than the others.

### DAMAGE

Tends to feed mainly on the upper leaf surfaces, causing distortion and scarring of young leaves.

### MOST COMMON

Found on spinach and brassica crops, most active during warm periods but can be found at any time of year.





Clover mite and mite damage on spinach leaves (S Grigg)

Phytoseiulis persimilis

### **DESCRIPTION**

INSECT

There are a number of predatory mite species, of which *Phtyoseiulus persimilis* is the most commonly used as a biological control agent.



**Egg:** Oval, orange tinged, double the size of pest mite egg.

**Nymph:** Pale orange, pear shaped.

Adult: Orange to reddish, pear shaped, fast moving, slightly larger than pest mite.

### **DAMAGE**

**Beneficial mite:** Predatory on two spotted mite and bean spider mite.

### **MOST COMMON**

Multiplies rapidly at temperatures over 26°C.



Predatory mite Phyoseiulis persimilis (Bugwood.org (top) and M Talbot)

### Mite – redlegged earth mite

Halotydeus destructor

### **DESCRIPTION**

Egg: Orange, minute, laid singly on lower stems or soil debris during winter-spring. During summer a diapausing egg is retained within the female mites' body.

**Nymph:** Reddish pink with 6 legs, 0.2 mm long, darkens as it matures.

Adult: Completely bluishblack body with bright red legs. Generally feeds in groups of up to 30.

### **DAMAGE**

Lacerates plant leaves to release sap, resulting in large, whitish patches on leaves.
Mainly feeds in the morning or in overcast conditions.
If disturbed it will drop to the ground and hide.

### **MOST COMMON**

Cool, wet weather, generally autumn to early summer in southern parts of Australia. Spends most of the time in the soil.



Redlegged earth mite (NSW DPI)

# Mite – spinach crown / bulb

Rhizoglyphus spp.

### **DESCRIPTION**

INSECT

Egg: Round, semitransparent, barely visible with the naked eye (0.1 mm long), deposited between folds in new leaves.

Nymph & Adult: Nymphs and adults are similar in appearance and only reach 0.7 mm long. All stages are semitransparent with prominent long hairs and light brown legs.

### DAMAGE

Mites feed mainly on young, expanding leaves at the centre

of the plant. Emerging tissues are stunted and deformed.

#### MOST COMMON

Favoured by cool, wet conditions and soils rich in organic matter especially if used for repeated crops of spinach. Mainly a pest of spinach and chard in Tasmania and southern Victoria. Most damage occurs during spring when plant growth is slow, with occasional outbreaks in autumn.





 $\textbf{Spinach crown mite} \ (S \ Tirpak, \ Rutgers \ PDL) \ \textbf{and damage} \ (S \ Grigg)$ 

### Mite – two spotted

Tetranychus urticae

#### DESCRIPTION

**Egg:** Translucent white, laid on leaf undersides.

**Nymph:** Translucent white, changing to bright orange in overwintering form.

Adult: Whitish to yellow green, around 0.5 mm long with a large dark olive spot either side of its body. Overwintering form has a dark red body and white legs.

### **DAMAGE**

Mites form colonies on lower leaf surfaces, especially near the petiole. These areas become covered in fine webbing. Feeding causes silvery speckling on the leaf surface and the leaves to become twisted and distorted.

### **MOST COMMON**

Mainly during hot, dry weather (25–30°C).







Two spotted mites overwintering form (L, top), normal form with egg (R) (G San Martin) and damage to rocket (J  $\,$ Ekman)

### **DESCRIPTION**

INSECT

There are many different types of parasitoid wasps, a number of which are sold commercially for control of caterpillars and aphids.

Adult: Range in size from tiny black wasps less than 0.5mm long that lay their eggs inside moth eggs (eg Trichogramma or Telenomus) to larger species up to 18mm long that lay their eggs in pest caterpillars or pupae (eg Diadegma, Netelia and Diadromus). While many are black or grey, others are orange or a mixture of colours. Some parasitoids are highly host specific, others will attack a range of species.





Diadegma sp., a parasitoid of diamondback moth (J Ekman) and pupae with newly emerged adult Cotesia glomerata, parasitoid of cabbage white caterpillars (S Grigq)

### DAMAGE

Beneficial insect: The adult females lay their eggs inside eggs, caterpillar or pupae of pest moths or butterflies, or directly into aphid adults or nymphs. One or many larvae live inside their host, eventually killing it.

### **MOST COMMON**

Any time of year.







Parasitised aphid 'mummies' (top) (N Dimmock Uni Northampton, Bugwood.org), Telenomus sp. and Trichogramma sp. wasps laying into heliothis eggs (NSW DPI)

# Plague soldier beetle

Chauliognathus lugubris

### **DESCRIPTION**

INSECT

Larvae: Soil dwelling, with distinct rounded segments, larvae are strict carnivores that consume insect pupae, insect eggs, young caterpillars and other organisms. Larvae take up to a year to mature.

Adult: Slender beetle with bright orange abdomen and metallic green wings. Up to 15 mm long.

### **DAMAGE**

Beneficial insect: Predatory on aphids, caterpillar eggs and other pests, which are supplemented with nectar and pollen. However, can be a significant contaminant issue.

#### MOST COMMON

Summer in southeastern Australia. Large swarms periodically form to mate, but the causes of swarming are unknown.



Plague soldier beetle adult (J Ekman)

### Rove beetle

Paederus spp.

### **DESCRIPTION**

Adult: Resembles an earwig or large ant more than a beetle due to tiny size of its wing covers. Black head and body with orange-red thorax and wide orange red stripe across the lower part of its body. Although the beetle can fly, it prefers to run and is very agile. It has a habit of curling its abdomen when running or disturbed.

### DAMAGE

Beneficial insect: Predatory on various small insects. However, beetles contain a toxin which is released if they are damaged or crushed. This can cause extreme skin irritation, known as Paederus dermatitus.

### **MOST COMMON**

On soil around moist places. They are attracted to irrigated areas and hunt actively during the day.



Rove beetle (J Ekman)

# Rutherglen bug

**Nvsius vinitor** 

### **DESCRIPTION**

Nymph: Pear shaped, reddish brown and wingless. Nymphs mainly feed on a range of weed species, not vegetable crops.

Adult: Slender, dark grey bugs about 5 mm long with transparent wings and black eyes.

### DAMAGE

Can cause some feeding damage through sap sucking, although vegetable crops are not preferred hosts.

Main issue is contamination of fresh cut products.





Rutherglen bug (E Tubb, J Ekman)

### MOST COMMON

Multiplies during spring in weed species as well as in field crops such as sunflower, sorghum and safflower. Moves into vegetables during summer when other hosts

are unavailable, where it can reach large numbers. May be controlled during late summer in southern states by a naturally occurring fungal infection.



Healthy and parasitised Rutherglen bugs on Victorian lettuce (S Grigg)

### **Shore flies**

Family Scatella

INSECT

52

### DESCRIPTION

Egg: White, oval, about 0.4 mm long and laid on the soil surface

Larvae: Pale, brownish maggots grow up to 3 mm long.

Adult: Small black flies with grey wings and reddish eyes, up to 2 mm long, similar shape to drosophila.

### DAMAGE

Both adults and larvae do not directly damage plants as they feed on algae, yeast and soil microorganisms. However, they leave black excrement (fly specks) on the plant leaves and are a contamination issue

### MOST COMMON

Like fungus gnats, shore flies are attracted to damp areas with actively growing algae and high levels of organic matter. More commonly found in greenhouses than field crops.





Shore fly adult (M Suvac) and pupa

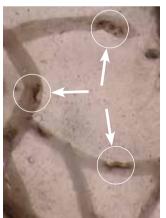
# **Springtails**

Family Collembola

#### DESCRIPTION

**Egg:** Microscopic, laid within the top 50 mm of soil in batches of up to 50.

### **Nymph and Adult:**


Semitransparent, ranging in size from 0.5-2 mm long. Soil inhabiting springtails are effectively blind and semi-aquatic. They lack the springing apparatus of above ground species.

### DAMAGE

Springtails feed on plant roots, causing extensive scarring. Roots can become brown or blackened, the plant wilts and may die.

### MOST COMMON

Favoured by cool, wet conditions with heavy soils rich in organic materials. They are a particular pest of spinach.





Springtail damage to spinach roots (L Du Toit, WSU)

Thrips tabaci, T. imaginis, Frankliniella schultzei, F. occidentalis

### **DESCRIPTION**

INSECT

While there are many species of thrips, onion thrips, plague thrips, blossom thrips and western flower thrips are the main pest species in vegetables. Identification of thrips species is difficult due to their tiny size — significant magnification is required.

**Nymph:** Cream to yellowish, wingless, generally <1 mm long.

Adult: Light to dark brown with thin bodies approx. 1–2 mm long. Narrow, transparent wings are held along their backs.

### DAMAGE

Feeding causes silvering of the leaves, in severe cases leading to leaf curling. The major damage potentially caused by certain thrips species is their transmission and spread of viruses (eg tomato spotted wilt virus) into the crop.

**Western flower thrips** (PMJ Ramakers APR, Bugwood.org)

### **MOST COMMON**

ALL crops may be affected, especially during warm, dry weather. Onion thrips are common in early summer, WFT and tomato thrips most common in mid-late summer. Thrips prefer new shoots as well as hiding in the leaf axis of young seedlings. Western flower thrips is known for pesticide resistance.









Thrips damage on rocket (Uni Mass. Ext.) and lettuce (Y Pinot, INRA Montpellier (top) and M Mirnezhad Leiden Uni, Bugwood.org)

54

### **DESCRIPTION**

INSECT

Egg: Pale, laid in soil surface litter in autumn.

Larvae: Up to 12 mm long, creamy yellow or greenish grub with orange brown head. Pupates in the soil in early spring

Adult: Mottled brown about 8 mm long with pale V-shaped mark in the middle of the back and a prominant snout.

### DAMAGE

Larvae and adults chew distinctive rounded holes in leaves during the evening and at night. Usually minor pest, damage is generally superficial but affects plant appearance and saleability. Heavy infestations can kill seedlings.





Vegetable weevil larvae (S Learmonth DAFWA), larvae on wombok (A Ryland) and (right) adult (DAFWA)

### **MOST COMMON**

Larvae are present during autumn and winter, emerging as adults in spring. Adults are inactive in the soil during summer.





Larvae in pak choy (D Roos NC State Uni) and spinach leaf damage with young larvae (S Grigg)

# Weevil – white fringed

Naupactus leucoloma

### DESCRIPTION

INSECT

Egg: Pale yellow, laid in sticky, gelatinous clumps in ground litter or lower plant stems.

Larvae: Whitish C-shaped grub with brown head and black mandibles, up to 13 mm long.

**Adult:** Grey-brown striped with white side band and a short snout. Up to 12 mm long. Adults cannot fly but walk long distances.

### DAMAGE

Larvae live 5–15 cm deep in the soil where they eat plant roots. Adults feed on lower leaves but rarely cause major damage.

### MOST COMMON

Mainly a pest of potatoes and legumes such as lucerne. However, larvae remaining in the soil following a susceptible crop will attack vegetable plant roots. Larvae are active during autumn to spring, adults emerge in summer. Females can lay eggs without mating.





White fringed weevil larvae with feeding damage to lettuce roots (S Grigg) and adult weevil (S Hinkley & K Walker, Museum Vic)

### Wireworm

Family Elateridae

#### **DESCRIPTION**

surface or in small crevices

Larvae: Cylindrical or slightly flattened larvae, creamy coloured with a smooth. distinctly segmented body. Brown to reddish head equipped with large mandibles. The tail is also brown to reddish and may be forked with a serrated edge.

Adult: Dark grey, brown or black, torpedo shaped beetle with finely ridged wing covers. Commonly known as 'click beetle' due to its ability to right itself with a clicking noise if placed upside down.

#### DAMAGE

**Egg:** Laid in batches on the soil Larvae live in the soil where they feed on plant roots.

### MOST COMMON

Most often a problem in fields recently planted to mulches or weedy. Larvae mainly cause damage during summer and autumn, when they feed on roots in the top 5cm of soil. Transplants are particularly at risk. They burrow deeper into the soil under dry conditions but may re-appear after irrigation or in cooler temperatures.



Wireworm larvae (M Bertone)



Diseases

# Alternaria leaf spot / Target spot

Alternaria spp.

### **SYMPTOMS**

Dark grey to black spreading spots with distinct margins and sunken centre, surrounded by a yellow halo. Fine black spores develop in the centres of the lesions. As the lesions age they dry and become papery, eventually falling out to give a 'shot hole' effect.

### **CROPS AFFECTED**

Lettuce and leafy brassicas.

### **FAVOURED BY**

Moist conditions, especially if plants are stressed. Can be seed borne and survive in plant debris, but generally uncommon.



Alternaria leaf spot on mizuna (Ontario MAF)

# Anthracnose – spinach

Colletotrichum dematium

### **SYMPTOMS**

Small, circular water soaked lesions which grow in diameter as they develop. Older lesions turn light brown, with tissues becoming thin and papery. Tiny, dark, spines (setae) eventually develop on the outer border of the lesions.

### **CROPS AFFECTED**

Spinach.

### **FAVOURED BY**

Leaves remaining wet for more than a few hours, cool conditions (10 – 20°C).





Anthracnose on spinach (J Damicone (L) L Tesoriero NSW DPI)

### Anthracnose – lettuce

Microdochium panattonianum

### **SYMPTOMS**

ES

S

A

S

Small, brownish circular to oval lesions, often developing initially on leaf midribs. These grow and join together, the centres becoming light brown and papery.

#### **CROPS AFFECTED**

Lettuce

### **FAVOURED BY**

Damp, cool conditions (15–18°C), where leaves remain wet for 8 hours or more. Most commonly occurs in late winter and spring.





Anthracnose on lettuce seedling and green coral lettuce (S  $\mathsf{Grigg})$ 

# Bacterial leaf spot – brassicas

Pseudomonas spp., Xanthomonas spp.

### **SYMPTOMS**

Brownish, angular lesions develop between the leaf veins, often with a dark edge or yellow halo.

### **CROPS AFFECTED**

ALL brassica crops.

### **FAVOURED BY**

Moderately uncommon.



Bacterial leaf spot on rocket (L Tesoriero NSW DPI)

# **Bacterial leaf spot – lettuce**

Xanthomonas axonopodis pv. vitians, X. hortorum pv. vitians

#### **SYMPTOMS**

S

ш

E A S

S

Dark, angular water-soaked lesions develop between the leaf veins, sometimes with a dark edge or yellow halo.

#### **CROPS AFFECTED**

Lettuce.

#### **FAVOURED BY**

Moderately uncommon.







Bacterial spot on lettuce (L Tesoriero NSW DPI (top), S Grigg)

### **Bacterial soft rot**

Pectobacterium carotovorum

#### **SYMPTOMS**

Wet, slimy rot of stems and leaves, often with an unpleasant smell.

#### **CROPS AFFECTED**

Asian leafy, lettuce.

#### **FAVOURED BY**

Warm, wet conditions. Common as a secondary infection following other physical damage (eg pest).



Bacterial soft rot in coral lettuce (S Grigg)

#### **SYMPTOMS**

ES

S

⋖

ш

S

Roughly 'V' shaped bright yellow to brown lesions, usually on the leaf edges initially but progressing inwards. Veins become blackened within the necrotic area.

#### **CROPS AFFECTED**

Brassicas.

#### **FAVOURED BY**

Warm, humid conditions. Can be seed borne, also spreads through a crop by equipment or water splash.





Black rot on brassica seedlings (L Tesoriero NSW DPI)

# Cercospora leaf spot

Cercospora spp.

#### **SYMPTOMS**

Small red or brown-black flecks with reddish borders expand to circular spots with ashy grey centres. These may eventually fall out, giving a "shot hole" appearance.

#### **CROPS AFFECTED**

Spinach, chards.

#### **FAVOURED BY**

Warm, humid weather.





Cercospora leaf spot on chard (J Ekman) and beet (S Grigg)

# **Cladosporium leaf spot**

Cladosporium variabile

#### **SYMPTOMS**

ES

S

⋖

ш

S

Small, sunken leaf spot <5 mm diameter with distinct margins, white to tan in colour. Spots multiply in number as the disease progresses. Dark green spores develop in older spots.

#### **CROPS AFFECTED**

Spinach, chards.

#### **FAVOURED BY**

Cool conditions (10–20°C) with high humidity.
Disease is seed borne.



Cladosporum leaf spot on spinach (L du Toit WSU)

### Clubroot

Plasmodiophora brassicae

#### **SYMPTOMS**

Distortion and thickening of the roots, particularly the tap root. Plants tend to wilt, particularly on hot days, lack vigour and have stunted growth. Infected roots are unable to effectively take up water and nutrients, and eventually the plant will die.

#### **CROPS AFFECTED**

Asian leafy, rocket, kale.

#### **FAVOURED BY**

Warm temperatures combined with wet, acidic (pH<7.0) soil.

Crops which are direct seeded into heavy soil are most at risk, especially if clubroot has been observed on the site within the previous 5 years. Spores can persist in the soil for several years and are easily spread in water, on machinery and within plant trash. There is no cure, so disease management involves using resistant varieties, liming soil to raise pH over 7.0, improving drainage and rotating crop types.



Clubroot on rocket (S Grigg)

71



# **Corky root**

Rhizomonas suberifaciens

#### **SYMPTOMS**

Yellowish patches appear on the roots, which gradually enlarge and turn greenish brown. Cracks and rough, swollen areas develop on the root surface and the entire taproot can become brown and non-functioning. Feeder roots are reduced, breaking off easily when examined. Above ground symptoms include stunting, wilting during warm weather and uneven growth.

#### **CROPS AFFECTED**

Lettuce.

#### **FAVOURED BY**

Continual cropping with susceptible lettuce varieties, especially if direct seeded under warm (over 20°C) conditions. High soil nitrate levels due to nitrogenous fertilisers increase disease.





Normal (L) and corky root affected (R) lettuce seedlings (M Titley) and closeup of corky root symptoms (L Tesoriero, NSW DPI). Clubroot rocket field (opp) (S Grigq)

# **Damping off**

Pythium spp., Aphanomyces spp., Phytophthora spp.

#### **SYMPTOMS**

Pre-emergence, damping off can cause brown, gelatinous rotting within the seed coat. If seeds do germinate, crop emergence is poor and seedlings are stunted, yellowing and wilted. Water soaked lesions appear on the upper part of the tap root, near the soil junction, sometimes resulting in excess branching of the root system above the infection (especially

Pythium). Seedlings tend to fall over or collapse and die.

#### **CROPS AFFECTED**

All.

#### **FAVOURED BY**

Wet soil conditions. The various fungi responsible for damping off can survive in the soil for extended periods, either as resting spores or in plant trash.



Damping off of spinach due to Pythium (E Tubb)





Collapse of spinach seedlings (top) and brown decay at the root/shoot junction (S Grigg)

# Damping off – fusarium wilt

Fusarium oxysporum

#### **SYMPTOMS**

General wilting of seedlings, foliage loses colour and eventually dies. Roots and vascular tissues turn black.

#### **CROPS AFFECTED**

Spinach.

#### **FAVOURED BY**

Acidic soils low in organic matter.





Fusarium wilt of spinach (L Tesoriero NSW DPI (top), L du Toit WSU)

# Damping off – wire stem

Rhizoctonia solani

#### **SYMPTOMS**

Dry, sunken cankers with a sharply defined margin develop near the soil junction soon after seedlings emerge. Plants wilt and collapse. More advanced seedlings may send out new shoots from below the diseased area. Like other causes of damping off, *Rhizoctonia* is common in soil and can survive long periods on plant debris or as sclerotia (hard resting structures).

#### **CROPS AFFECTED**

Asian leafy, rocket, spinach.

#### **FAVOURED BY**

Warm wet soils especially if combined with physical damage at soil level, eg windy conditions, transplanting or insect damage.





Damping off of spinach due to wire stem (S  $\mathsf{Grigg})$ 

# Downy mildew – brassicas

Peronospora spp.

#### **SYMPTOMS**

ES

S

EA

S

In the early stages, bleached or yellowish areas start to appear on the leaf upper surfaces. Soft whitish mould develops on the undersides of leaves, turning brown with age. The upper surfaces of cotyledon leaves become puckered and

speckled, while sunken, black, angular speckling develops on more mature leaves.

#### **CROPS AFFECTED**

Asian leafy, rocket.

#### **FAVOURED BY**

Cool, moist conditions.





Downy mildew on tatsoi and rocket (S Grigg)

# Downy mildew – spinach

Peronospora farinosa f.sp. spinaciae

#### **SYMPTOMS**

Initially, mottled, yellow areas appear, mainly between the leaf veins. Soft, bluish grey mould develops on the undersides of leaves, turning brown with age.

#### **CROPS AFFECTED**

Spinach, chard.

#### **FAVOURED BY**

Cool (10–20°C) conditions, free water on the leaves.







 $\textbf{Downy mildew on spinach early} \; (\textbf{J Ekman}) \; \textbf{and advanced} \; (\textbf{S Grigg})$ 

# **Grey mould**

Botrytis cinerea

ES

S

⋖

ш

S

#### **SYMPTOMS**

Water-soaked rot quickly followed by development of fluffy grey mould on leaves and lower stems. The plant wilts and eventually dies.

#### **CROPS AFFECTED**

All.

#### **FAVOURED BY**

Cool, damp conditions.
A common postharvest disease.





Grey mould on cos seedlings (L Tesoriero) and oakleaf lettuce (J Foulkes)

# Peppery leaf spot

Pseudomonas syringae pv. maculicola

#### **SYMPTOMS**

Small, black to purple irregularly shaped spots and speckling develop on leaves, sometimes with very thin yellow margins. Can be seed borne and survive on crop residues.

#### **CROPS AFFECTED**

Asian leafy, rocket, kale.

#### **FAVOURED BY**

Prolonged cold, damp conditions, especially if leaves remain wet.



Peppery spot on wombok (L Tesoriero NSW DPI)

# Phoma leaf spot

Phoma lingam (asexual form of Leptosphaeria maculans)

#### **SYMPTOMS**

ES

S

**∀** 

S

Round to oval white-brown spots, up to 2 cm in diameter, mainly on the older leaves. Small black specks (spores) are scattered over the leaf spots but more pronounced in its centre. Dry rot can develop on leaf petioles and stem bases, and plants wilt and collapse.

#### **CROPS AFFECTED**

Mainly Asian leafy.

#### **FAVOURED BY**

High relative humidity and temperatures of 15–20°C. Wet leaves are required for infection. Spores can be spread by wind, rain, crop debris, irrigation water and, potentially, insects.



Phoma leaf spot (L Tesoriero NSW DPI)

### Powdery mildew

Erysiphe cruciferarum

#### **SYMPTOMS**

Irregularly shaped patches of white, powdery mould on the upper surface of leaves and stems, particularly older leaves. Occasionally also on the lower leaf surface.

#### **CROPS AFFECTED**

Asian leafy, rocket, kale, chard.

#### **FAVOURED BY**

Warm, dry conditions. Uncommon on babyleaf crops.





Powdery mildew on tatsoi (HJ Jee) and kale (L Tesoriero NSW DPI)

Pythium spp., Aphanomyces spp., Phytophthora spp., Fusarium spp.

#### **SYMPTOMS**

S

ш

E A S

S

Root rots are often caused by a complex of different organisms. The resulting symptoms are similar to damping off, but affecting mature plants. Wilting and collapse initially occurs in the older leaves, but eventually affects the whole plant. Sometimes the rot spreads into the basal area of the stem and becomes visible above ground.

#### **CROPS AFFECTED**

All. But spinach is particularly susceptible.

#### **FAVOURED BY**

A variety of conditions depending on the species complex present; some are favoured by dry conditions, others by wet.



#### Root rot on spinach (L Tesoriero NSW DPI)

### Root rot – black

Thielaviopsis basicola (syn. Chalara elegans)

#### **SYMPTOMS**

Long red to black lesions develop on the roots, resulting in stunted growth. Cutting across the leaf base reveals blackening in the vascular tissue.

#### **CROPS AFFECTED**

Lettuce, Asian leafy.

#### **FAVOURED BY**

Soil temperatures <20°C, soil pH >5.6. Reportedly spread by fungus gnats and shore flies within protected cropping environments. Associated with lack of crop rotation.





Black root rot (L Tesoriero NSW DPI (L), INRA)

#### **SYMPTOMS**

ES

S

**∀** 

S

Initial symptoms are wilting of the outer leaves. Small, sunken brown lesions appear on the midribs and areas in contact with the soil. These grow rapidly, spreading to internal leaves and stem tissue. Lesions may ooze brownish liquid. Secondary soft rots often develop causing the head to collapse.

#### **CROPS AFFECTED**

Lettuces, particularly early season and less upright varieties.

#### **FAVOURED BY**

Warm (>25°C), moist weather. The fungus can survive extended periods in fallow soil, so bottom rot is likely to reoccur in soils previously affected and/or which are high in organic matter. This fungus also causes damping off in seedlings.



#### Bottom rot of lettuce (L Tesoriero NSW DPI)

# Septoria leaf spot

Septoria lactucae

#### **SYMPTOMS**

Angular yellow leaf spots delimited by the veins, appearing first on the outer leaves. These turn brown and papery with tiny black dots (spores) scattered on the lesions.

#### **CROPS AFFECTED**

Lettuce.

#### **FAVOURED BY**

Cool, moist conditions. Usually spread in water but occasionally by seed. Spores can survive on crop debris and weed species.





Septoria spot on lettuce (L Tesoriero NSW DPI)

# Stemphylium leaf spot – spinach

Stemphylium botryosum f.sp. spinacia

#### **SYMPTOMS**

Small, circular to oval greygreen sunken spots. These enlarge, turn light brown in the centre and become papery as the disease progresses.

#### **CROPS AFFECTED**

Spinach.

#### **FAVOURED BY**

Warm (15-28°C) weather, combined with high humidity. Seedborne disease.





 $\textbf{Stemphylium leaf spot on spinach} \; (L\; Du\; Toit\; WSU, L\; Tesoriero\; NSW\; DPI)$ 

# Stemphylium leaf spot – lettuce

Stemphylium botryosum f.sp. lactucum

#### **SYMPTOMS**

Usually appears first on the outer leaves. Tiny, water soaked spots (1-2mm diameter) enlarge and multiply, becoming sunken and papery with a darker brown halo.

#### **CROPS AFFECTED**

Lettuce.

#### **FAVOURED BY**

Warm conditions (25–30°C), wet leaves and close to saturation humidity. The fungus cannot develop at less than 13°C.



Stemphylium leaf spot on lettuce (L Tesoriero NSW DPI)

### Virus – Mosaic

Alfalfa mosaic, Cucumber mosaic (CMV) Tomato spotted wilt virus (TSWV),

Lettuce mosaic virus (LMV), Lettuce necrotic yellows (LNYV) etc

#### **SYMPTOMS**

ES

S

EA

S

General mottling, mosaic or ring spots on leaves. Plants are stunted and young shoots can appear bunched and distorted. Plants may wilt and die, particularly when infected with TSWV and LNYV.

#### **CROPS AFFECTED**

Some viruses have specific hosts. Others (such as CMV

and TSWV) affect a wide range of crops and weeds.

#### **FAVOURED BY**

Often spread by aphids, except TSWV which is spread by thrips. LMV also spreads by infected seed. Populations of insect vectors commonly build up in weeds and move into crops during dry weather.



Lettuce necrotic yellows virus (L Tesoriero NSW DPI)



Tomato spotted wilt virus on lettuce (L Tesoriero NSW DPI)



Turnip mosaic virus on leafy brassicas (L Tesoriero NSW DPI)

### White blister / white rust

Albugo candida

ES

S

EA

S

92

#### **SYMPTOMS**

Raised white spots appear, mainly on the undersides of leaves. Initially smooth, lesions become powdery and blister-like and can

#### **CROPS AFFECTED**

Asian leafy, rocket, spinach.

#### **FAVOURED BY**

Humid weather. Will develop under a wide range of conditions.





White blister on spinach (J Damicone) and rocket

# White leaf spot

Pseudocercosporella capsellae

#### **SYMPTOMS**

Large numbers of pale, papery spots up to 1cm diameter on leaves. Seedlings may die; heavily infected leaves may yellow and drop off.

#### **CROPS AFFECTED**

Asian leafy, rocket, kale.

#### **FAVOURED BY**

Cool (10-15°C), wet conditions. Can be seed borne or spread by wind.



White leaf spot on buk choy seedling (L Tesoriero NSW DPI)



# Disorders

### Blindness

#### **SYMPTOMS**

S

Œ

۵

~

0

S

Usually visible on seedlings on the 3rd - 4th true leaf, which is thickened, stunted and distorted. Subsequent growth is reduced, with lettuce in summer rather than failing to develop hearting leaves or normal shape.

#### **CROPS AFFECTED**

Lettuce.

#### **CAUSED BY**

Unknown. Generally a more frequent problem in transplant lettuce than direct seeded crops and winter. May be caused by a combination of environmental and agronomic factors.





Blind lettuce seedling (ETubb)

# Calcium deficiency – tipburn

#### **SYMPTOMS**

Browning of the leaf margins, particularly the inner leaves, which become dry and papery. Affected leaves fail to develop properly and have a cupped appearance. Damaged areas are prone to other diseases and have shortened shelf life

#### **CROPS AFFECTED**

Lettuce.

#### **CAUSED BY**

Occasionally related to soil deficiency, but more often caused by the plant growing faster than calcium can move from the roots to the growing tips. Tipburn is most frequent during humid summer weather, when development is rapid but evaporation and, therefore, water movement through the plant is reduced. Particularly affects the inner leaves.



Tipburn in lettuce (S Grigg)

# **Cold damage**

#### **SYMPTOMS**

S

Œ

DE

~

0

S

Germination appears patchy, plants lack vigour and leaves may yellow or develop atypical colours. Symptoms may vary across a crop even when all other factors are the same, especially where plantings have been successive.

#### **CROPS AFFECTED**

Mainly spinach.

#### **CAUSED BY**

Cold temperatures during crop establishment and early growth. Soil temperatures of 10-20°C are optimum for spinach. During germination plants are highly sensitive to temperatures higher or lower than this and may fail to emerge or have reduced vigour.



Normal spinach (L) and cold-damaged plant (R) (M Titley)

# **Copper toxicity**

#### SYMPTOMS

Small, light brown spots appear, mainly along the leaf veins. These increase and darken as symptoms progress.

#### **CROPS AFFECTED**

Lettuce.

#### **CAUSED BY**

Copper sprays.



 $\textbf{Copper toxicity on lettuce} \ (S \ Grigg)$ 

# Fertiliser burn - lettuce

#### **SYMPTOMS**

S

œ

DE

~

0

DIS

Dark or blackened necrotic areas appear and expand in the leaf bases. Leaves can wilt, become chloritic and die.

#### **CROPS AFFECTED**

Lettuce.

#### **CAUSED BY**

Application of posttransplant fertiliser after more than 4 leaves have started to develop. Fertilser granules become trapped in the leaf bases, where they burn the plant tissue.



Fertiliser granules and burn on lettuce (S Grigg)

### Fertiliser burn – urea

#### SYMPTOMS

Bleached, papery areas develop on outer edges and exposed areas of leaves.

#### **CROPS AFFECTED**

All.

#### **CAUSED BY**

Application of foliar urea at too high a concentration or with incorrectly calibrated spray equipment.



Fertiliser burn caused by urea application to spinach (M Titley)

# Frost damage – permanent

#### **SYMPTOMS**

Leaves become bubbled and distorted and necrotic areas develop. Large water-soaked areas may appear if injury is severe.

#### **CROPS AFFECTED**

All.

#### **CAUSED BY**

Frost settling on leaves for an extended period tolerance varies between species and varieties.





Frost injury on rocket and butter lettuce (S Grigg)

# Frost damage – recoverable

#### SYMPTOMS

Smallish water-soaked spots and diffuse areas appear on leaves. If water-soaked areas affect larger, solid areas then plant may not recover.

#### **CROPS AFFECTED**

All.

#### **CAUSED BY**

Frost—symptoms generally dissipate within a few hours of damage ocurring.



Non-permanent frost damage on lettuce seedlings (S Grigg)

#### **SYMPTOMS**

S

Œ

ш ۵

~

0

S

104

Droplets of water (xylem sap) appear around the leaf edges. As these dry, tiny salt deposits are left. These tiny, white deposits can resemble insect eggs or fertiliser/ pesticide contamination.

#### **CROPS AFFECTED**

Mostly spinach.

#### **FAVOURED BY**

High soil moisture combined with high relative humidity. Guttation is the result of water pressure building up in the plant roots, usually overnight when stomata are closed This pressure forces xylem sap out through structures on the leaf edges (hydathodes), forming droplets.



Guttation on spinach leaf (S Grigg)

# Hail damage

#### **SYMPTOMS**

Physical scarring and spotting of leaves. Light hail damage can resemble a leaf spotting disease, but is non-progressive. Although edibility is unaffected, appearance is less attractive.

#### **CROPS AFFECTED**

All.

#### **CAUSED BY**

Light hail. Severe hail will result in complete crop loss.



Light hail damage on spinach (S Grigg)

107

# Herbicide damage

#### **SYMPTOMS**

S

Œ

ш

۵

~

0

S

Variable symptoms. Preemergent herbicide applications can cause the cotyledons to become thickened, twisted and distorted. Post-emergent applications can result in inrolling and distortion of the first true leaves. Other symptoms include the appearance of bleached, chlorotic patches on the leaves, especially on the leaf margins and stunted growth.

#### **CROPS AFFECTED**

All.

#### **CAUSED BY**

Potential causes include contamination of the spray tank due to insufficient cleaning, inappropriate herbicide selection and application of a normally non-damaging herbicide to a crop previously treated with a wetting agent.



Herbicide damage to rocket (S Grigg)





Herbicide damage to spinach and beet cotyledons (S  $\mathsf{Grigg})$  and below, stunting of spinach seedling (R) compared to normal plant (L)  $(\mathsf{MTitley})$ 







Herbicide damage to pak choy (above) (S Grigg) and lettuce (L) (J Ekman)

106

# **Nitrogen Deficiency**

#### **SYMPTOMS**

S

œ

ш

۵

~

0

S

Plants are pale and chloritic and growth is reduced. Older leaves in particular may yellow and die off prematurely. Red or purplish colours can develop in the paler than normal leaves.

soil. Incorporation of high carbon soil amendments such as straw can lock up available nitrogen in the soil.

#### **CAUSED BY**

Nitrogen is required in relatively large amounts for maximum growth. However, it is easily leached, especially from sandy soils low in organic matter. Waterlogging and surface fertiliser application promote release of nitrogen as gas, removing it from the





Nitrogen deficiency on pak choy and tatsoi (S Parks NSW DPI)

### Oedema

#### SYMPTOMS

Blistering on the underside of the leaf develops into small, brown, corky growths. These darken and harden with age, sometimes spreading to petioles and stems.

#### **CROPS AFFECTED**

Asian leafy, spinach.

#### **CAUSED BY**

Excess water in the root zone combined with high humidity and low air temperatures. Pressure builds up inside the internal cells, eventually causing them to blister and burst.



Blistering caused by oedemas on spinach (L Tesoriero, NSW DPI)

### Old seed

#### **SYMPTOMS**

Œ

DE

~

0

S

Seeds germinate but cotyledons fail to develop normally, with variable rates of germination and growth through the crop. Seedlings lack vigour and are slow to grow past the cotyledon stage.

#### **CROPS AFFECTED**

Spinach, chard.

#### **FAVOURED BY**

Seeds have been stored too long before use, with the result that their carbohydrate reserves are reduced.



Patchy growth due to old seed being used in tatsoi (M Titley)

# Pesticide damage

#### SYMPTOMS

Older seedling leaves have bleached or yellowed margins. New growth is fully green.

#### **CROPS AFFECTED**

All.

#### **CAUSED BY**

Seedlings which have been drenched in pre-planting systemic pesticide have remained for an extended period in their seedling trays before planting. New growth recovers and is normal.



Pesticide drench damage due to delayed transplanting

# Phosphorus deficiency

#### **SYMPTOMS**

Poor growth, older leaves (or cotyledons in seedlings) turn bluish green or purple. Stems thin, liable to breakage.

#### **CROPS AFFECTED**

Rocket, Asian leafy.

#### **CAUSED BY**

Cold weather, which limits phosphorus uptake by the plant, especially if combined with low pH and low levels of available phosphorus in the soil.



Phosphorus deficiency (S Grigg)

# Waterlogging

#### SYMPTOMS

Roots develop on the tops of beds. Leaves become yellow due to inhibition of nitrogen uptake. Plants can become red or purplish.

#### **CROPS AFFECTED**

All.

#### **FAVOURED BY**

Heavy soils, prolonged rainfall, poor drainage.



Poor development associated with waterlogged soil (J Ekman)

# Wind damage – lettuce

#### **SYMPTOMS**

Plants are stunted and wilt during the day; eventually they may fall over and die.

#### **CROPS AFFECTED**

Mainly transplanted lettuce seedlings, such as cos.

#### **CAUSED BY**

Strong winds which whip the plant around, abrading the crown. The plant becomes pinched and collapses near the junction with the soil surface. In some cases it will be completely "ringbarked" and will die. Abrasion also creates a potential entry point for soil pathogens.





Wind damaged lettuce (S Grigg)

