

Fungal Spoilages in "Hot Fill and Inversion" Beverages and Juices

Yuqian Lou, Ph.D.

Process Authority Global Food Safety/Process Technology PepsiCo R&D

> March 1, 2018 IFTPS at San Antonio

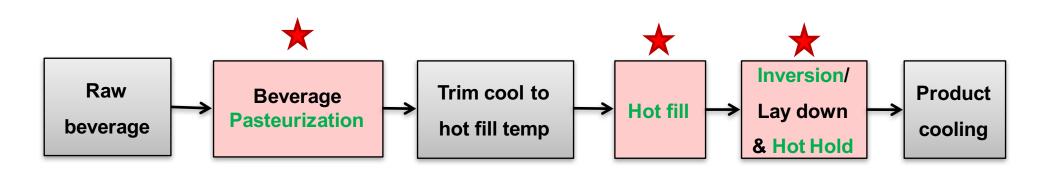
> > The views expressed in this presentation are those of the author and do not necessarily reflect the position or policy of PepsiCo Inc.

Presentation Outline

- 1. Types of fungi, their forms of existence, as well as their heat resistance
 - 2. Fungal dispersal & airborne mold
- 3. Mechanisms for fungal survival/stress resistance /Factors affecting fungal heat resistance
 - 4. How to control spoilages by fungi (focusing on HRM)
- ★ 5. Effectiveness of "Inversion"
 - 6. On-going monitoring of fungal spoilage

Fungal spoilage is a reality

H


Table 1

Incidence of bacterial and fungal spoilage and intervention strategies used in the production of fruit and vegetable juices. Results are reported as the percent of total respondents, excluding answers of "N/A" for product specific questions.

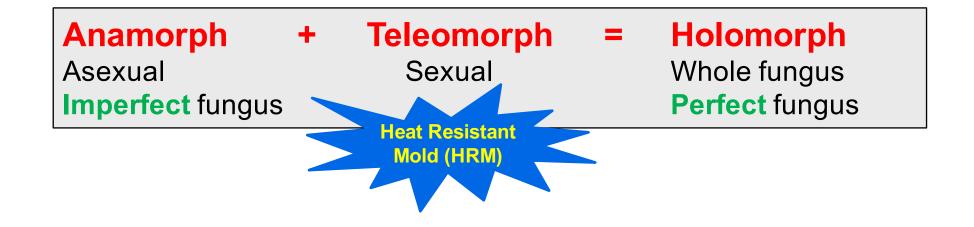
Survey Question	"Yes" Responses	"No" Responses
Is Alicyclobacillus contamination a concern for your company?	78%	22%
Have you ever experienced heat resistant mole in your finished product?	64% 75%	36%
Do you utilize ingredients or finished product testing for heat resistant molds?	75%	25%
If you manufacture apple juice products, have you had to discard ingredients or finished product to control patulin?	67%	33%
Have you had to discard ingredients or product due to spoilage in the past year?	69%	31%

Synder, A.B. and R. W. Worobo. 2018. The incidence and impact of microbial spoilage in the production of fruit and vegetable juices as reported by juice manufacturers. Food Control 85:144-150

"Hot Fill and Inversion" - Definition

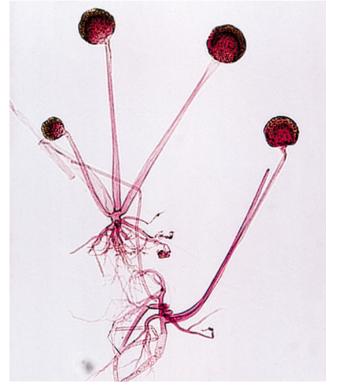
• Hot Fill & Inversion (scope of presentation):

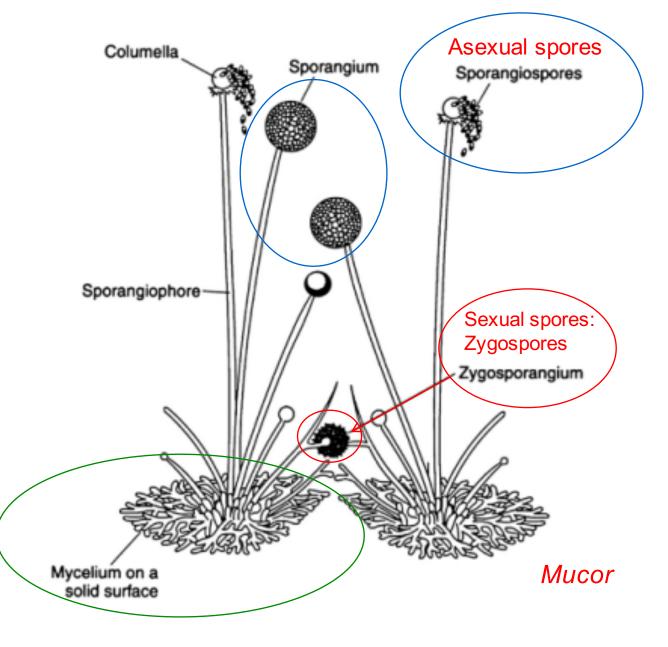
- Fill pasteurized (usually 85-95C for 15-60 sec) products hot (e.g., 80-95C) into empty packages and seal them.
- Invert (or lay down) (e.g., 1 to 30 sec) and then hot hold the packages for a short time (e.g., 30-120 sec) to inactivate the spoilage organisms that come from the bottle/caps or filling contamination, prior to cooling.



Types of fungi, their forms of existence & heat resistance

- Zygomycetes (Class), e.g., Mucor, Rhizopus
 - *"zygo"* = "joining" or "yoke"
- Ascomycetes, e.g., Saccharomyces cerevisiae, Talaromyces sp., Neosartorya sp., Byssochlamys sp.
 "asco" = "sac"
- **Deuteromycetes** (nonasexual /imperfect fungi, e.g., *Geotrichum* sp.




Different physiological states

Different resistance to stresses (e.g., heat)

Zygomycetes

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source of graph: Botha, A., & A. Botes. 2014. *Mucor*. Encyclopedia of Food Microbiology, 2nd ed. p834-840

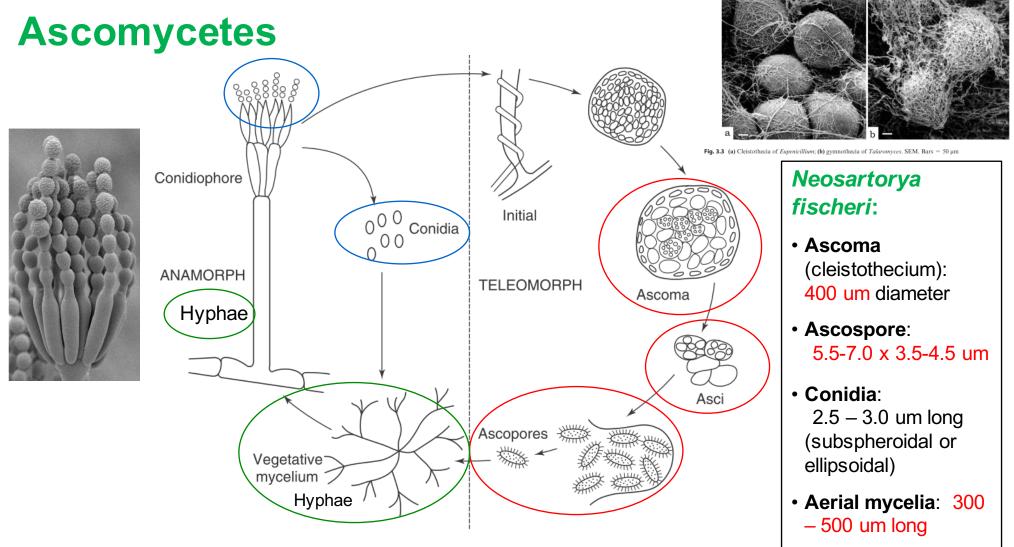
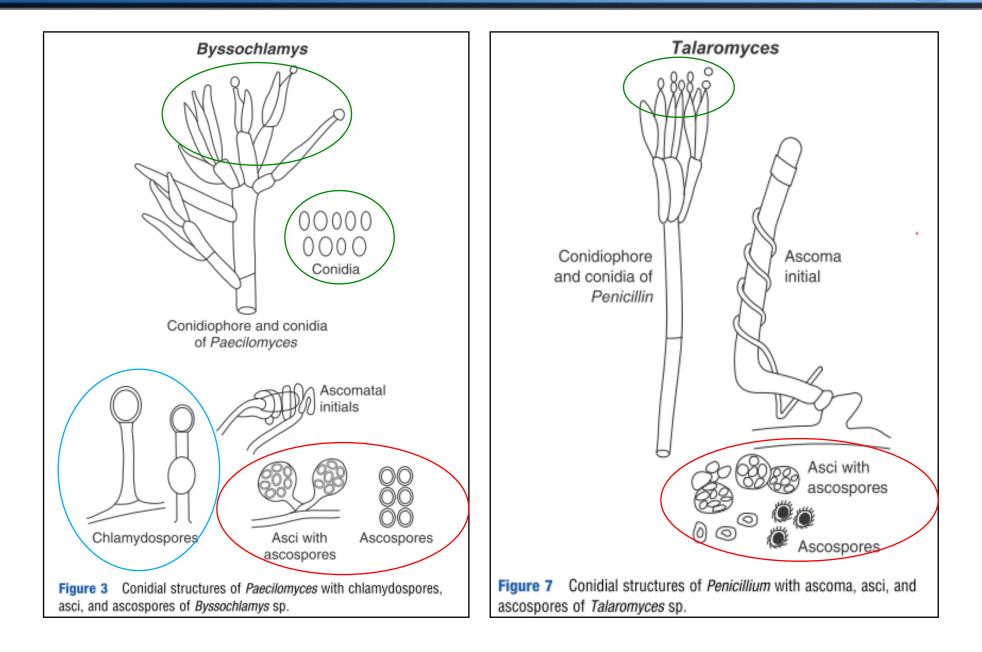


Figure 1 Ascomycete–Deuteromycete relationship showing anamorphic and teleomorphic stages.


Anamorph	+	Teleomorph	=	Holomorph	• Cousir
Asexual		Sexual		Whole fungus	Ascom • Tourna
Imperfect fungi				Perfect fungus	Food a

Cousin, M.A. 2014. Classification of the Eukaryotic

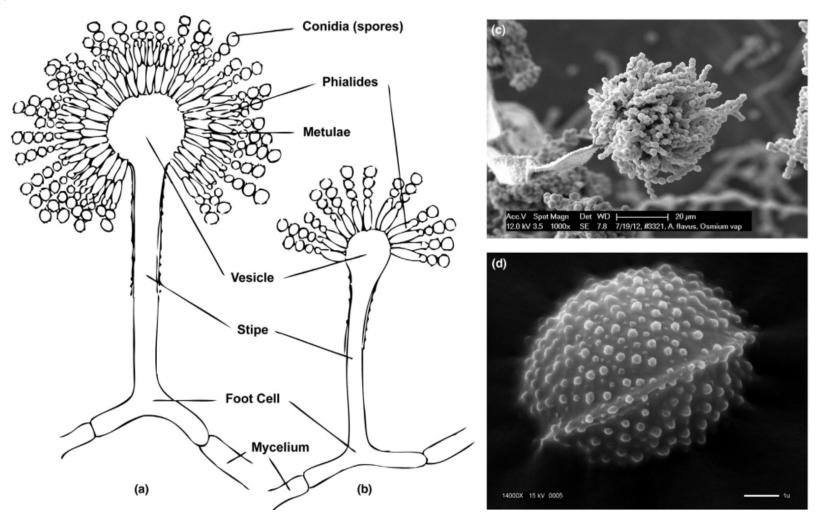
Ascomycetes. Encyclopedia of Food Microbiology. 2nd ed. • Tournas, V. 1994. Heat-Resistant Fungi of Importance to the

Food and Beverage Industry. Crit. Rev. Microbiol. 20:243-263

One fungus has different forms of existence

Ascomycetes

Aspergillus


- Produce enormous # of conidia: >10,000 conidia /conidiophore
- These asexual spores are among the most dominant fungal structures in the air
 More than 10 *A*.
 fumigatus spores/m³
 found in outdoor air

Spore-forming structures (conidiophores) of an *Aspergillus* species (*Eurotium*) originating from cured ham as observed by high-resolution stereomicroscopy. Rows of single-celled conidia are visible on the conidiophore.

- 1. Dijksterhuis, J. 2017. The fungal spore and food spoilage. Current Opinion in Food Science 17:68-74
- Teertstra, W.r., M. Tegelaar, J. Dijksterhuis, E. A. Golovina, R.A. Ohm, & H.A.B. Wosten. 2017. Maturation of conidia on conidiophores of *Aspergillus niger*. Fungal Genetics and Biology. 98:61-70

Ascomycetes

-

Aspergillus niger - different stages during growth

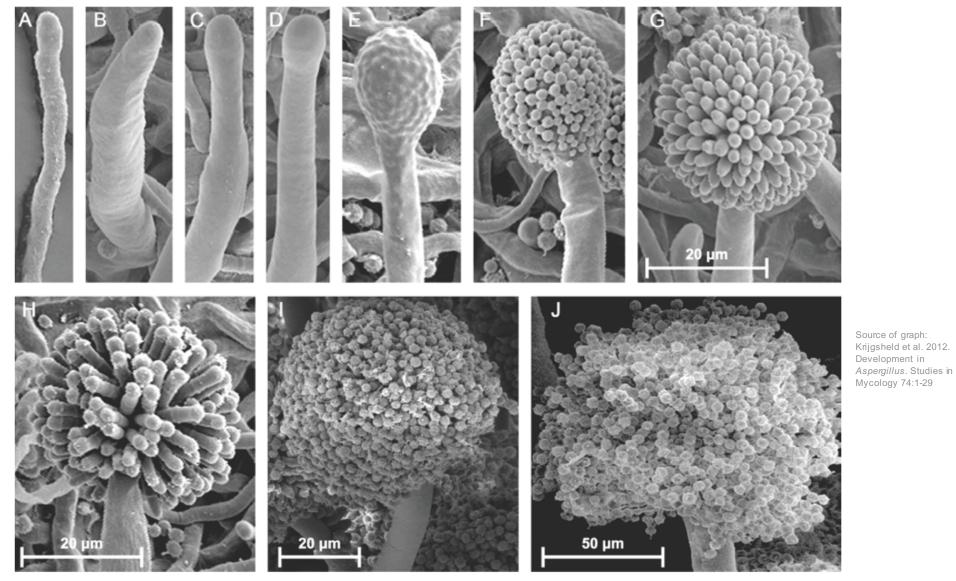
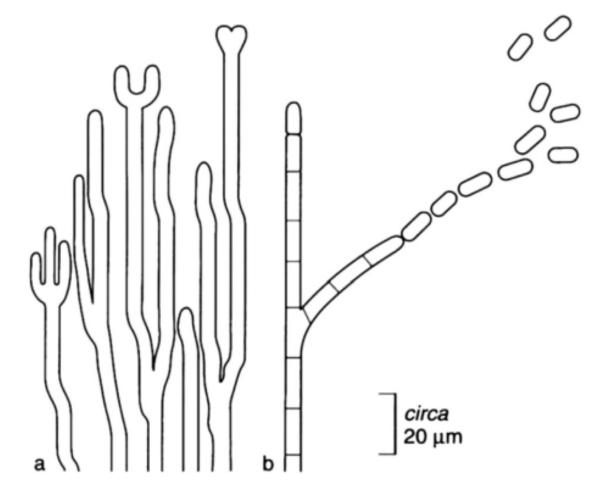


Fig. 3. Development of *A. niger* monitored by scanning electron microscopy. The vegetative mycelium forms two types of aerial hyphae. One type is similar to vegetative hyphae (A), while the other type is 2–3 times thicker (B). The tips of the latter aerial hyphae may swell to form a vesicle (C,D). Buds are formed on the vesicle (E) that develop into metulae (F, G). Phialides are formed on top of the metulae (H), which give rise to chains of conidia (I, J). The bar in G also holds for A–F.

Deuteromycetes

(nonsexual/imperfect fungi)

Geotrichum -"machinery mold"



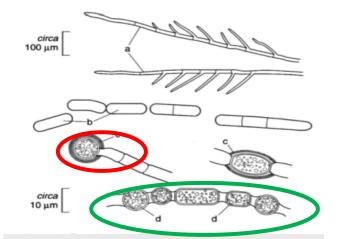
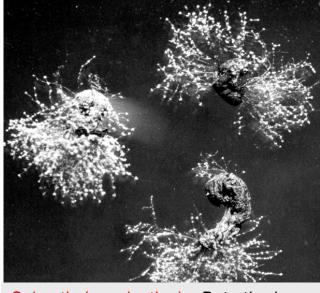


Figure 4 Typical structures formed by *Geotrichum candidum* (*Galactomyces candidus*) on general purpose media: (a) expanding hyphae during active growth; and (b) older hyphae tend to break up into arthric conidia.

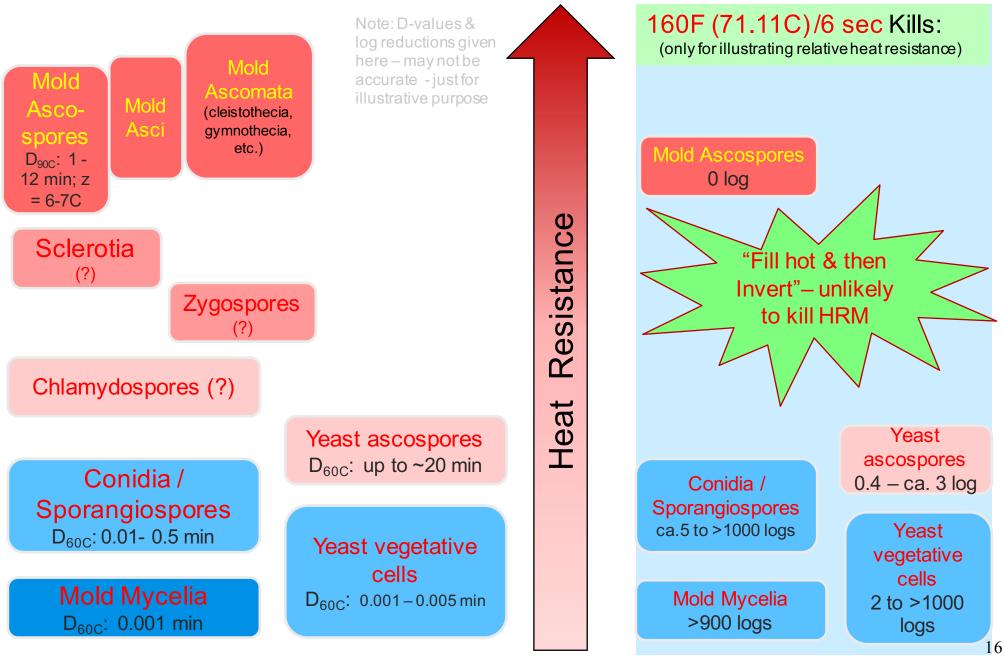
One fungus may have different forms of existence


Chlamydospore - Paecilomyces

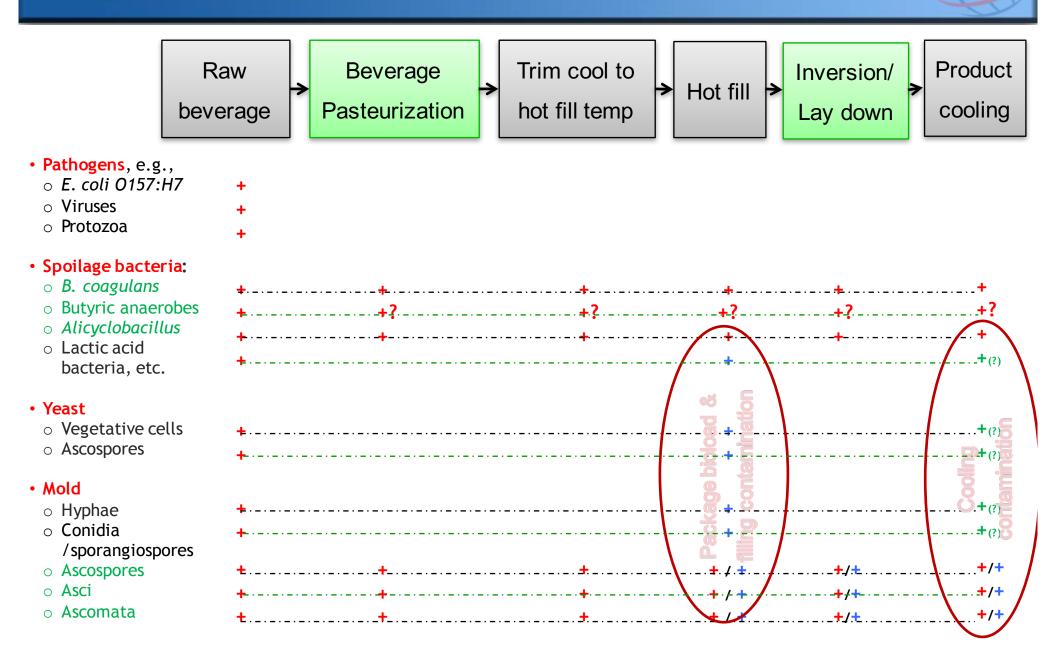
Chlamydospore & endospores – Geotrichum fragrans

Chlamydospore:

 Thick-walled, big resting spore, from asexual reproduction or sexual reproduction (rare)



Sclerotia (germinating) – Botrytis cinerea


Sclerotia:


 Hard compacted mass of mycelium

Different forms of mold have different heat resistance

Spoilage organisms of concern in "Hot Fill & Inversion

Yeast culture preparation: Heat resistance – different forms of fungal structures "Yeast were grown on Sabouraud dextrose agar for no longer than 4 days at 30C. Vegetative cells were harvested from Sabouraud • Vegetative cells of yeasts - isolated from spoiled acid/acidied products (1) dextrose agar with phosphatebuffered saline pH 7" • Spoilage Sacchromyces cevesiae vegetative cells were most heat-resistant Were some of the vegetative cells ascospores? among the spoilage yeasts, mold (conidia), and lactic acid bacteria tested 160F TABLE 1. Heat resistance of Saccharomyces cerevisiae in juice products^a (71.11C)/6 sec *D*-value (min) at temp ($^{\circ}C/^{\circ}F$) Inactivates: z-value $(^{\circ}C/^{\circ}F)$ Product pН 57/135 60/140 63/145 • 3.4 loq 5.2/9.4 4.5 15 ± 0.5 3.9 ± 0.3 1.1 ± 0.4 Tomato • 9.6 loq 16 ± 0.5 4.1 ± 1.2 0.64 ± 0.1 4.3/7.7 4.2 Tomato • 2.3 loq 3.3 9.3 ± 2.1 2.8 ± 0.9 0.98 ± 0.6 Grapefruit juice 6.1/11 • 28.5 log 9.1 ± 0.5 4.0/7.2Apple juice 3.9 2.1 ± 0.2 0.3 ± 0.1 • 2.1 loq 3.5 6.0/11 Apple juice 13 3.1 0.6 Calcium-fortified 3.9 6.9 apple juice 32 2.1 5.1/9.2 • 2.1 loq • 2.3 log Juice product 2.8 9.4 2.8 0.45.8/11^a Values with standard deviations are averages of three independent experiments. Values without standard deviations are results from a single trial with 10 recovery tubes per time interval. Z-values were calculated from the plots of the averages of the D-values. The rsquared values for z-value determination were 0.98 or greater.

• Vegetative cells of yeasts isolated from spoiled acid/acidified products (1)

1605

Organism	Experimental heating range (°C)	pH	D-value (min) at temp 60°C/140°F	<i>z</i> -value (°C/°F)	(71.11C) /6 sec kills
Penicillium citrinum	47.8-55.6	3.0	0.010	4.2/7.5	
	47.8-55.6	3.5	0.016	4.6/7.9	• 2125 log
	47.8-55.6	4.0	0.009	3.8/6.9	
Torulaspora delbrueckii	49.4–56.1	3.0	0.026	4.4/7.9	-
	50.0-57.2	3.5	0.033	4.4/7.4	• 1030
	50.0-57.2	4.0	0.018	3.8/6.3	
Rhodotorula mucilaginosa	52.8-59.4	3.0	0.120	4.7/8.5	
	52.8-59.4	3.5	0.159	4.6/8.2	• 141
	50.8-59.4	4.0	0.158	4.5/8.1	
Zygosaccharomyces rouxii	ND^{a}	3.0	ND^{a}	ND^{a}	
	51.7-58.9	3.5	0.039	3.3/6.0	• 5524
	53.3-58.9	4.0	0.008	2.1/4.3	
Penicillium roquefortii	52.8-61.1	3.0	0.201	4.0/7.2	Γ
	52.8-61.1	3.5	0.238	3.7/6.7	• 206
	54.9-61.1	4.0	0.290	3.6/6.5	
Aspergillus niger	54.4-61.7	3.0	0.451	3.7/6.7	-
	56.7-61.7	3.5	0.376	3.3/6.0	• 214
	54.4-61.7	4.0	0.449	3.6/6.6	
Saccharomyces cerevisiae	56.7-63.3	3.0	1.30	<mark>3.6/6.6</mark>	
	58.3-63.6	3.5	2.50	4.0/7.2	• 21
	57.8-62.8	4.0	2.80	3.5/6.4	

TABLE 2. Calculated heat resistance of molds and veasts in 0.1 M citrate buffer at various pH levels

^a ND, not determined; all values from single final determination following preliminary trials.

- Sacchromyces cevesiae (ascospore) isolated from heated juice (1)
 - Ascospore: $D_{55C} = 106 \text{ min}; D_{60C} = 6.1 \text{ min}, \text{ z-value} = 3.8C^{\circ}$ in apple juice
 - Vegetative cells: $D_{55C} = 0.90$ min
 - Ascospores were over 100 times heat-resistant than the vegetative cells

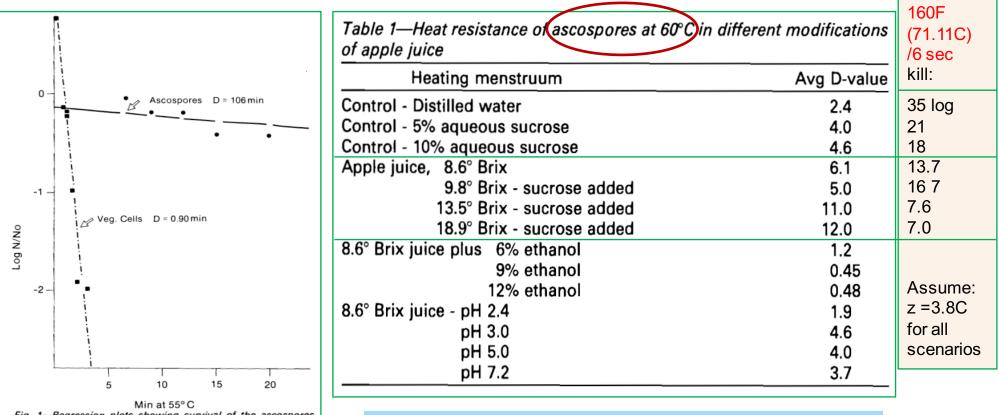


Fig. 1—Regression plots showing survival of the ascospores and vegetative cells of Saccharomyces cerevisiae when heated in an 8.6° Brix apple juice.

Impact of heating medium composition

- Ethanol impact on yeast ascospore heat resistance:
 - Saccharomyces spp. ascospores in Beer (4% v/v ethanol) (1):
 D_{60C} = 6.0 11.2 min z-value = 11.7 14.3C

D-value \pm SE	(min)			
Temperature (°C)	Saccharomyces cerevisiae DSMZ 1848	Saccharomyces cerevisiae DSMZ 70487	Saccharomyces pastorianus ATCC 9080	Saccharomyces cerevisiae Ethanol Red®
50	62.0 ± 4.51	35.1 ± 1.27	31.3 ± 2.7	34.5 ± 2.97
Adj R ²	0.920	0.983	0.883	0.870
MSE	0.014	0.014	0.065	0.101
55	28.0 ± 3.14	25.7 ± 2.11	17.3 ± 1.36	19.5 ± 0.43
Adj R ²	0.785	0.898	0.994	0.900
MSE	0.080	0.051	0.006	0.102
60	11.2 ± 0.57	7.5 ± 0.14	4.6 ± 0.10	6.0 ± 0.54
Adj R ²	0.961	0.993	0.896	0.993
MSE	0.025	0.005	0.080	0.007
65	3.2 ± 0.55	3.6 ± 0.55	2.2 ± 0.15	2.5 ± 0.07
Adj R ²	0.577	0.706	0.946	0.941
MSE	0.025	0.463	0.077	0.118
z-value ± SE (°C) Adj R ²	11.7 ± 1.25 0.966	14.3 ± 3.01 0.878	12.4 ± 1.81 0.937	12.7 ± 1.59 0.953
MSE	0.005	0.013	0.008	0.006

>z-value was much higher than ca. 4.0-6.5C as indicated in the previous slides

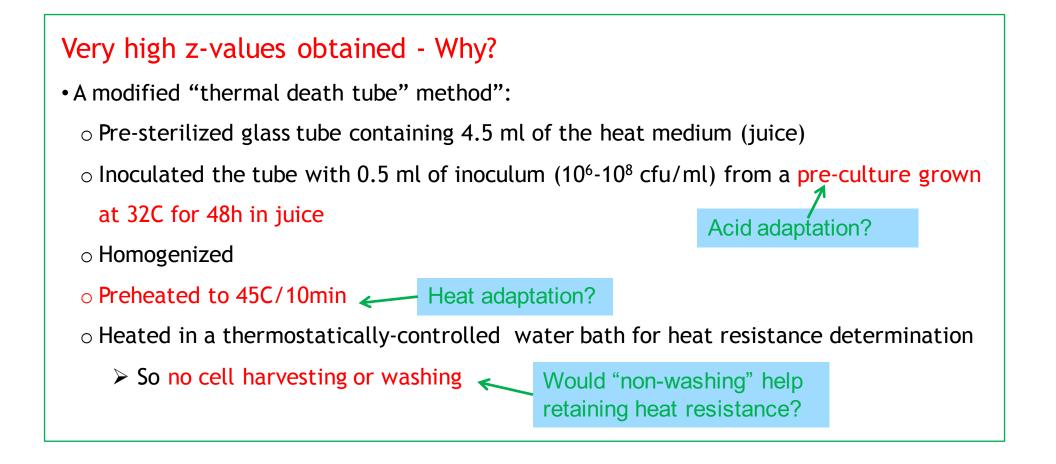
^a Values in italic are model performance indices for the parameter estimated. Adjusted R² close to 1.0 and low mean square errors (MSE) indicates the goodness of fit.

160F (71.11C)	0.08	0.08	0.17	0.12 logs
/6 sec				
Inactivates:				

Source:

1. Milani et al.2005. Thermal resistance of Saccharomyces yeast ascosopores in beers. Int. J. Food Microbiol. 2016:75-80

Candida pelliculosa & Kloeckera apis - isolated from fermented pasteurizaed pineapple


juice, guava, and passion fruit nectars (1)

Veg. cells or ascospores –not reported

Yeast	Culture media		$D_{ m T}$ in mi	inutes at each i	indicated temp	erature ^a		<mark>∠(°C)</mark> ⁰	/6 sec Inactivate
		55°C	58°C	60°C	65°C	70°C	75°C		
C. pelliculosa	Pineapple juice (pH 3·95)	nd ^c	nd	$\frac{4.90}{(t^2=0.98)}$	3.20 ± 0.01 ($r^2=0.999$)	$\frac{3.09}{(r^2=0.99)}$	$\frac{1.50}{(r^2=0.99)}$	$\begin{array}{c} 31.75 \pm 0.03 \\ (r^2 = 0.91) \\ \end{array}$	• 0.05 log
	Guava nectar (pH 3·15)	nd	nd	3.62 ± 0.01 ($r^2=0.98$)	2.49 ± 0.01 ($r^2=0.98$)	1.87 ± 0.02 ($r^2=0.94$)	nd	$\frac{34.84}{(r^2=0.998)}$	• 0.06
	Passion fruit nectar (pH 3·03)	nd	nd	3.70 ± 0.01 ($r^2=0.98$)	3.09 ± 0.01 ($r^2=0.998$)	2.25 ± 0.01 ($r^2=0.98$)	1.03 ± 0.02 ($r^2=0.99$)	$\frac{27.70\pm0.04}{(r^2=0.90)}$	• 0.07
	Tartaric buffer (pH 2·65)	nd	nd	1.81 ± 0.02 ($r^2=0.99$)	nd	nd	nd	nd	
K. apis	Pineapple juice (pH 3·95)	2·49±0·01 (<i>r</i> ² =0·99)	1.91 ± 0.01 ($r^2=0.99$)	1·46±0·01 (<i>r</i> ² =0·999)	nd	nd	nd	$\frac{21.88\pm0.07}{(r^2=0.97)}$	• 0.22
	Guava nectar (pH 3·15)	2.35 ± 0.01 ($r^2=0.997$)	1.79 ± 0.01 ($r^2=0.999$)	1.41 ± 0.02 ($r^2=0.99$)	nd	nd	nd	$\frac{22.73\pm0.04}{(r^2=0.99)}$	• 0.22
	Passion fruit nectar (pH 3·03)	2.38 ± 0.01 ($r^2=0.996$)	1.89 ± 0.01 ($r^2=0.997$)	1.60 ± 0.01 ($r^2=0.999$)	nd	nd	nd	$\frac{29.07\pm0.01}{(r^2=0.999)}$	• 0.15
	Tartaric buffer (pH 2·65)	nd	nd	0.47 ± 0.10 ($r^2=0.95$)	nd	nd	nd		

1. Tchango, J.T., R. Tailliez, P. Eb, T. Njine, & J.P. Homez. 1997. Heat resistance of the spoilage yeasts *Candida pelliculosa* and *Kloeckera apis* and pasteurization values from some tropical fruit juices and nectars. Food Microbiol. 14:93-99.

Candida pelliculosa & Kloeckera apis - isolated from fermented pasteurizaed pineapple juice, guava, and passion fruit nectars (1)

- Mold Conidia Aspergillus flavus & A. parasiticus heated in a buffer soln (pH 7.0) (1)
 - \circ D_{60C} = 7.7 58.8 sec, z-value = 3.3 4.1C°

		D value	at			160F (71.11C /6 sec
Strain	45 C (h)	50 C (min)	55 C (min)	60 C (sec)	z value (C)	Inactivates:
NRRL 3353	13.97	16.2	3.1	7.7	4.0	
NRRL 3161	14.65	34.8	3.8	9.8	4,1	
NRRL 3315	52.62	98.2	6.3	19.9	3.8	
NRRL 2999	67.28	155.6	8.4	34.8	3.9	• 166 logs
NRRL 3251	69.11	188.8	9.5	42.0	4.0	• 100 logs
NRRL 482	>161	986.8	28.9	<mark>58.8</mark>	3.3	• 252 logs

• Mold Conidia - Aspergillus flavus & A. parasiticus heated in a buffer soln (pH 7.0) (1)

TABLE 3. D values determined at 55 C for 7-, 10-, 15-, and 20-dayold conidiospores produced on Moyer's medium by selected strains of A. flavus and A. parasiticus

	D Valu	e (mín) for conidi	ospores of differe	ent ages
Strain	7 days	10 days	15 days	20 days
NRRL 3353	2.8	3.1	2.8	2.4
NRRL 3315	4.1	6.3	2.5	1.5
NRRL 2999	9.0	8.4	7.2	4.1

TABLE 4. D values at 55 C for 10-day-old condiospores produced on various media by A. flavus and A. parasiticus

	D values (min) of conidia produced on				
Strain	Mycological	Czapek's	Moyer's	Y-M	PDA
NRRL 3353	1.0	2.6	3.1	1.8	2.9
NRRL 3315	1.3	5.1	6.3	1.4	2.3
NRRL 2999	4.1	4.8	8.4	3.3	5.6

As conidia got older, the heat resistance decreased

"Moyer's medium is a very nutritious substrate"

- Conidia produced on "a medium with a substantial amount of sugar were more heat resistant than those formed when the amounts of sugar was less"
- "Conidia produced on media that contained a relatively large amount of protein and amino acids were less heat resistant than those produced without any or with much smaller amounts od exogenous protein present in the medium"

• Mold Conidia - Aspergillus flavus & A. parasiticus heated in a buffer soln (pH 7.0) (1)

TABLE 4. D-values of 55 C for 10-day old conidiospores of A. flavus and A. parasiticus produced on Moyer's medium and heated at different pH values achieved by several buffers

		D val	ie (min) for s	trains
Buffer	pН	NRRL 3353	NRRL 3315	NRRL 2999
KH ₂ PO ₄ and NaOH	7.0	3.1	6.4	8.4
Na acetate and acetic acid	3.5	0.9	1.3	5.8
	4.5	2.4	6.1	6.5
	5.5	2.6	6.0	7.8
Citric acid and	3.5	3.0	6.7	17.7
$Na_2HPO_4 \bullet 2H_2O$	4.5	3.7	4.2	14.4
	5.5	2.9	3.7	10.6
	6.0	a		7.5
KHP-HCl and KHP-NaOH	3.5	3.3	3.9	8.6
	4.5	3.5	3.9	5.9
	5.5	1.9	3.6	5.2

Impact of pH, Sucrose, & NaCI levels

TABLE 6. D-values at 55 C for 10-day old conidiospores of A. flavus and A. parasiticus produced on Moyer's medium and heated when various amounts of sucrose were in the heating menstruum

Concentration (w/w, %)	D	value (min) for strai	ns
	NRRL 3353	NRRL 3315	NRRL 2999
0.0	3.1	6.3	8.4
10.0	3.7	6.4	12.2
30.0	4.6	10.0	25.2
45.0	14.5	28.7	63.4
60.0	65.7	84.2	199.0

TABLE 7. D-values of 55 C for 10-day old conidiospores of A. flavus and A. parasiticus produced on Moyer's medium and heated when various amounts of glucose were in the heating menstruum

Concentration (w/w, %)	D value (min) for strains				
	NRRL 3353	NRRL 3315	NRRL 2999		
0.0	3.1	6.3	8.4		
10.0	5.1	7.0	14.5		
30.0	9.9	24.2	39.2		
45.0	24.4	57.6	95.9		
60.0	66.2	117.9	213.9		

1. Doyle, M.P.& E.H. Marth, 1975. Thermal Inactivation of Conidia from Aspergillus flavus and Aspergillus parasiticus. II. Effects of pH and buffers, glucose, sucrose, and sodium chloride. J. Milk Food Technol. 12:750-758.

• Mold Conidia - Penicillium citrinum, P. roqueforti, Aspergillus niger

- Heated in citrate buffer (pH 3.0, 3.5, 4.0) (1)
- z-value not reported

Organism	Experimental heating range (°C) pH		D-value (min) at temp 60°C/140°F	<mark>/6 sec</mark> kills		
Penicillium citrinum	47.8–55.6	3.0	0.010	4.2/7.5	0405	
	47.8-55.6	3.5	0.016	4.6/7.9	• 2125 lo	
	47.8-55.6	4.0	0.009	3.8/6.9		
Torulaspora delbrueckii Veg cells	49.4-56.1	3.0	0.026	4.4/7.9	• 1030	
	50.0-57.2	3.5	0.033	4.4/7.4	1000	
	50.0-57.2	4.0	0.018	3.8/6.3		
Rhodotorula mucilaginosa	52.8-59.4	3.0	0.120	4.7/8.5	• 141	
	52.8-59.4	3.5	0.159	4.6/8.2		
	50.8-59.4	4.0	0.158	4.5/8.1		
Zygosaccharomyces rouxii Veg cells	ND^{a}	3.0	ND^a	ND^{a}	• 5524	
-	51.7-58.9	3.5	0.039	3.3/6.0		
	53.3-58.9	4.0	0.008	2.1/4.3		
Penicillium roquefortii	52.8-61.1	3.0	0.201	4.0/7.2	• 206	
	52.8-61.1	3.5	0.238	3.7/6.7	200	
	54.9-61.1	4.0	0.290	3.6/6.5		
Aspergillus niger	54.4-61.7	3.0	0.451	3.7/6.7	• 214	
	56.7-61.7	3.5	0.376	3.3/6.0		
	54.4-61.7	4.0	0.449	3.6/6.6		
<u>Saccharomyces cerevisiae</u> Veg cells	56.7-63.3	3.0	1.30	3.6/6.6	• 21	
	58.3-63.6	3.5	2.50	4.0/7.2		
	57.8-62.8	4.0	2.80	3.5/6.4		

^a ND, not determined; all values from single final determination following preliminary trials.

1. Shearer, A.E.H., A.S. Mazzotta, R. Chuyate, & D.E. Gombas. 2002. Heat resistance of juice spoilage microorganisms, J. Food Prot. 8:1271-1275

Mold Conidia - Penicillium expansum heated in a apple juice (pH 3.25, 12.2 brix) (1)
z = 7.57C

<i>T</i> (°C)	D (min)
50	10.68
52	6.64
54	3.32
56	1.14
60	0.61
• z = 7.57C	

160F (71.11C) /6sec Inactivates:

• 5.5 log

• Mold Conidia - Botrytis cinerea heated in strawberry puree (pH 3.87, Brix 9, aw 0.985) (1)

Table 2

Calculated *D* values of the first order kinetics equation for the thermal inactivation of *B. cinerea* conidia in a sterile strawberry puree (SSP), and in a synthetic medium (SM).

Medium	First order	First order kinetics						
	<i>T</i> (°C)	$D (\min)^* R^2$		z-value	/6sec Inactivates:			
Sterile strawberry puree (SSP)	42	44.9 ± 5.8	0.98					
	44	13.8 ± 3.6	0.99					
	46	4.7 ± 0.7	0.99	4.15C	1197 logs			
	48	1.7 ± 0.5	0.91					
Synthetic medium (SM)	42	22 ± 5.8	0.99					
	44	8.5 ± 2.3	0.95					
	46	4.1 ± 0.2	0.98	5.08C				
	48	1.4 ± 0.1	0.97					

 * Means \pm standard deviation from three replicates.

^{1.} Villa-Rojas, R., M.E. Sosa-Morales, A. Lopez-Malo, & J. Tang. 2012. Thermal inactivation of *Botrytis cine rea* conidia in synthetic medium and strawberry puree_2012, Int. J. Food Microbial 45:260.272

Heat resistance comparison – different fungal forms of existence

• Mold Conidia - Botrytis cinerea and Monilinia fructigena heated in a phosphate buffer (pH

Table 1 The <i>D</i> values for <i>B</i> . <i>cinerea</i> at diffe		140F (60C) /6sec	
Temperature (°C)	D value (min)	z-value	Inactivates:
40 43 45 48	29.959 6.782 2.559 0.607	4.65C	• 66 logs
Table 2 The <i>D</i> values for <i>M</i> . <i>fructigena</i> at di Temperature (°C)	ifferent temperatures D value (min)	z-value	
39 41 43 45	21.697 7.302 2.492 0.862	4.17C	• 500 logs

1. Marquenie, D., J. Lammertyn, A.H. Geeraerd, C. Soontjens, J.F. Van Impe, B.M. Nicolai, & C.W. Michiels. 2002. Inactivation of conidia of *Botrytis cinerea* and *Monilinia fructigena* using UV-C and heat treatment. Int. J. Food Microbiol. 74:27-35

Heat resistance comparison – different fungal forms of existence

- Mold Conidia Penicillium puberulum, Aspergillus flavus, and Geotrichum candidum
 - \circ Heated in a phosphate-Tween buffer (1)

			Decimal reduction times (min) at various pH values ^a							
Organism	Preservative	Concentration (ppm)	2.5	3.0	3.5	4.0	4.5	which D- values w obtainec	vei	
P. puberulum	Control	0	28.7 efgh	29.6 cdef	29.5 cdef	30.8 bcde	<mark>32.8</mark> a			
	Potassium sorbate	50	29.3 cdefg	29.0 defgh	29.4 cdefg	30.6 cde	32.6 ab	49C		
		100	22.6 j	24.9 i	28.8 defgh	30.1 cdef	31.4 abc			
	Sodium benzoate	50	20.7 k	23.8 ij	28.6 fgh	30.4 cdef	30.9 abcd			
		100	9.0 n	12.8 m	17.71	27.5 gh	27.4 h			
A. flavus	Control	0	40.8 bc	41.7 abc	43.2 ab	44.4 a	<mark>44.7 a</mark>		_	
	Potassium sorbate	50	20.8 h	27.5 f	36.6 d	40.8 bc	43.2 ab			
		100	18.9 hi	25.9 fg	30.9 de	39.9 c	42.6 abc	52C		
	Sodium benzoate	50	15.2 jk	24.1 g	33.2 e	34.2 de	34.9 de			
		100	8.11	9.51	14.4 k	17.6 ij	20.9 h			
G. candidum	Control	0	6.7 gf	23.0 ь	28.7 a	30.8 a	31.2 a			
	Potassium sorbate	50	6.2 gf	6.7 gf	12.5 e	15.8 d	19.2 c	52C		
		100	5.2 g	5.5 g	9.0 f	13.8 de	14.0 de			

• *Mucor circinelloides* (dimorphoric) - heated in skim milk (1)

- Mold hyphae/sporangiospores
- Yeast-like cells

The <i>D</i> - and <i>z</i> -values for hyphal phase and yeast-like phase <i>Mucor circinelloides</i> yogurt spoilage isolate in skim milk.								
	D-value (min)	<i>z</i> -value (°C)	<mark>/6 sec</mark> Kills					
Hyphal phase								
58 °C	0.94 ± 0.53	3.09	• 900 log					
56 °C	10.17 ± 0.28	•						
54 °C	38.31 ± 0.02							
Yeast-like phase								
55 °C	2.44 ± 0.35	0.34						
53 °C	6.87 ± 1.19							
51 °C	14.25 ± 0.12							

The mold can exist as resting asexual chlamydospores and arthrospores, as well as sexual zygospores

1. Snyder, A.B., J.J. Churey, & R.W. Worobo. 2016. Characterization and control of Mucor circinelloides spoilage in yogurt. Int. J. Food Microbiol. 228:14-21

• Chlamydospores / Scalerotia: Asexual, resting spores/cells

- $\,\circ\,$ No actual heat resistance values reported
- $\,\circ\,$ Expert view: more heat resistant than vegetative cells or conidia
- Mucor / Amylomyces / Paecilomyces, etc. can form many chlamydospores

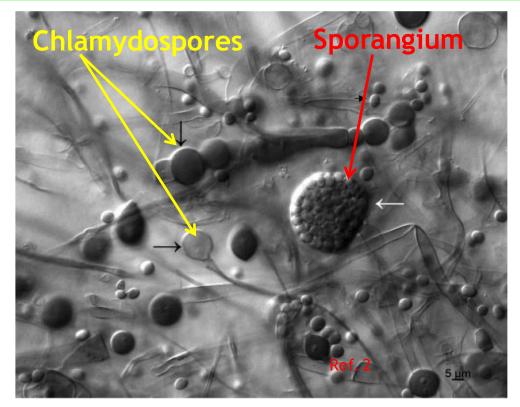


FIG. 2. Microscopic morphology of *Mucor circinelloides* on PDA after 6 days at 30°C, showing sporangium (white arrow), sporangio-spores (black arrowhead), and chlamydospores produced singly and in short chains (black arrows). Nomarski optics were used. Bar, 5 μ m.

1. Hesseltine, C.w. and C. K. Featherston. 1985. Anaerobic growth of molds isolated from fermentation starters used for foods in Asian countries. Mycologia 77:390-4000

- 2. Iwen, P.C., LL. Sigler, R.K. Noel, and A.G. Freifeld. 2007. Mucor circinelloides was identified by molecular methods as a cause of primary cutaneous Zygomycosis. J. Clin. Microbiol. 45:636-640
- 3. Ruyle, E.H., W.E. Pearce & G. L. Hays. 1946. Prevention of mold in kettled blueberries in no. 10 cans. J. Food Sci. 11:274-279
- 4. Y. Kikoku, N. Tagashira, & H. Nakano. 2008. Heat resistance of fungi Isolated from frozen blueberries. 71:2030-2035.

•1938 Canned (#10) Blueberry Spoilage Isolates:

• Formed sclerotia (called "Sclerotia" strain) (3)

Temperature		°C. 5°F.)		3°C. 1°F.)		°C. .8°F.)		°C. 5°F.)		5°C. 5°F.)		3°C. 0°F.)		0°C. 2°F.)
	+	1	+		+		+		+		+		+	
Ascospores,		z = 10	.6F											
160,000														
per ml	<mark>210′</mark>	240'	65′	<mark>70′</mark>	10'	15'								
Sclerotia,								7	= 10.	3F	ļ			
86,000								~						
per ml							270'	3 00′	<mark>30′</mark>	40'	<mark>9'</mark>	10'	0	1'

Heat Resistance of Ascospores and Sclerotia

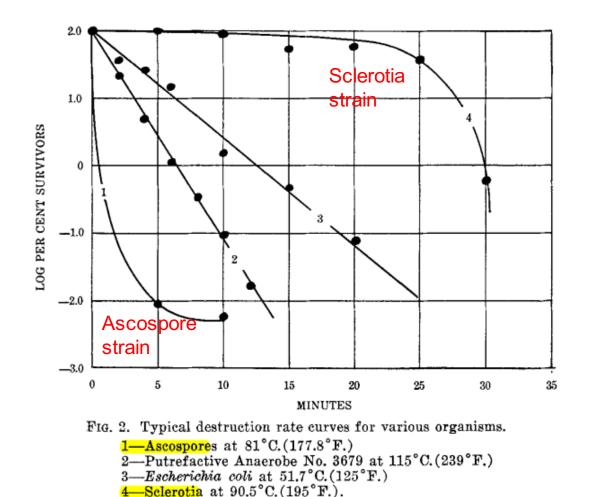
¹The + sign means growth and the — sign means no growth when heated for the number of minutes shown at the temperature indicated.

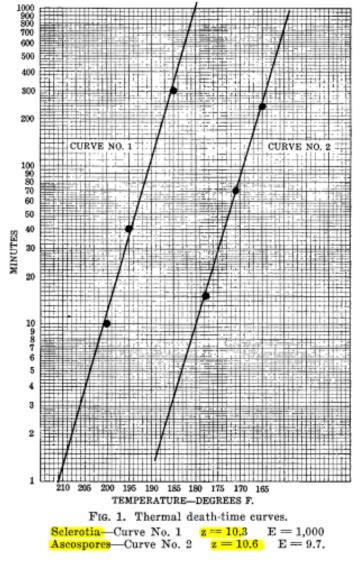
- 2. Kikoku Y., N. Tagashira, & H. Nakano. 2008. Heat resistance of fungi Isolated from frozen blueberries. 71:2030-2035.
- 3. Williams, C.C., E.J. Cameron, & O.B. Williams. 1941. A FACULTATIVELY ANAEROBIC MOLD OF IJNUSUAL HEAT RESISTANCE. J. Food Sci. 6:69-73

^{1.} Ruyle, E.H., W.E. Pearce & G. L. Hays. 1946. Prevention of mold in kettled blueberries in no. 10 cans. J. Food Sci. 11:274-279

- 1938 Canned (#10) Blueberry Spoilage Isolates:
 - Formed sclerotia (called "Sclerotia" strain) (3)

- The canned blueberry spoilage mold isolates grew:
 - \circ Only on surface inside the can
 - o Only in enamel-lined cans
 - \rightarrow Not in plain cans headspace O2 was consumed via reacting with can metal (3)
 - \circ Can grow under 0.5% O₂ (1)
- Two strains (Penicillium) were isolated (3)
 - One produced ascospores
 - Another produced sclerotia
 - Sclerotia strain much more heat resistant
- "The mold sclerotia may survive a temperature of 85C (185F) for a few hours and 87.8C (190F) for about one hour" (1)

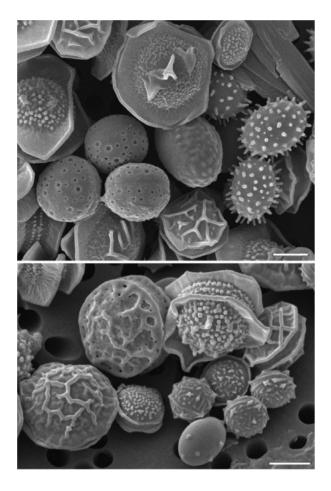

2. Kikoku Y., N. Tagashira, & H. Nakano. 2008. Heat resistance of fungi Isolated from frozen blueberries. 71:2030-2035.

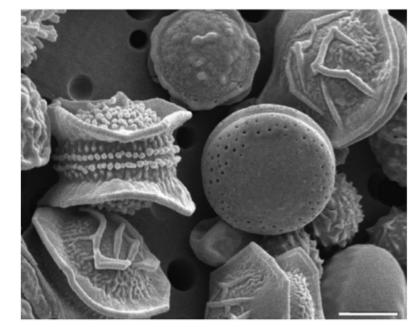

^{1.} Ruyle, E.H., W.E. Pearce & G. L. Hays. 1946. Prevention of mold in kettled blueberries in no. 10 cans. J. Food Sci. 11:274-279

^{3.} Williams, C.C., E.J. Cameron, & O.B. Williams. 1941. A FACULTATIVELY ANAEROBIC MOLD OF IJNUSUAL HEAT RESISTANCE. J. Food Sci. 6:69-73

Heat resistance – different forms of fungal structures

• 1938 Canned (#10) Blueberry Spoilage Isolates:

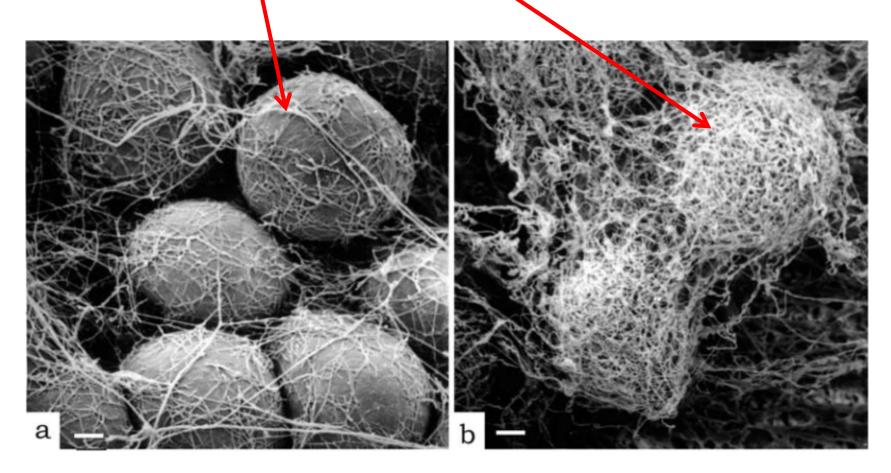

2. Williams, C.C., E.J. Cameron, & O.B. Williams. 1941. A FACULTATIVELY ANAEROBIC MOLD OF IJNUSUAL HEAT RESISTANCE. J. Food Sci. 6:69-73


Heat resistance – different forms of fungal structures: - Mold Ascospores

Mold Ascospores: Sexual spores

 \circ Very high heat resistance: D_{90C} ranges from 1 to 12 min, with z- value 6-7C (1)

Caused a lot of spoilages in thermally processed juices or beverages


Figure 2.7 cryoSEM micrographs illustrating the variability in morphology in a mixture of ascospores of 25 fungal species belonging to the genera *Neosartorya*, *Eurotium*, *Talaromyces*, and *Thermoascus*. Bars are 2 µm.

- 1. Pitt, J.I. & A.D. Hocking. 2009. Chapter 2. The Ecology of Fungal Food Spoilage (page 3-9). In "Fungi and Food Spoilage," by J.I. Pitt & A.D. Hocking. 3rd ed. Springer Science.
- Source of graph Wyatt, T.T., H.A.B. Wosten, J. Dijksterhuis. Fungal spores for dispersion in space and time. Adv. Appl. Microbiol. 85:43-91.

Heat resistance – different forms of fungal structures: - Mold Ascospores

Ascospores inside Asci, which are inside Ascomata

• Ascomata: Cleistothecia or Gymnothecia

Fig. 3.3 (a) Cleistothecia of *Eupenicillium*; (b) gymnothecia of *Talaromyces*. SEM. Bars = $50 \mu m$

Heat resistance – different forms of fungal structures: - Mold Ascospores

Ascospores heat resistance

• A lot of studies (see the listed references)

Heat resistance of Ryssochlamys fulva Ryssochlamys nivea and Ryssochlamys spectabilis ascospores

Species	Heating medium	Heat resistance
Byssochlamys fulva	Glucose (16° Brix), tartaric acid (33 mM), pH 3.6 and 5.0	90 °C, 1.2–46 min 3 log ₁₀ inactivation time
	Tomato juice	90 °C, 8.1 min 1 log ₁₀ inactivation time
	Grape juice	D _{87.8 °C} , 11.3 min
Byssochlamys nivea	Grape juice	88 °C, survived 60 min
	Apple juice	99 °C, survived in juice containing 4.7% sucros
	Cream (10% w/w fat)	D _{92 ℃C} , 1.6–19 s
	Tomato juice	90 °C, 1.5 min 1 log ₁₀ inactivation time
Byssochlamys spectabilis	ACES ^a buffer (10 mM), pH 6.8	D _{85 °C} , 47−75 min

(rof 5)

"ACES: N-[2-acetamido]-2-aminoethane-sulfonic acid.

Table 2

- 1. Frac, M., S. Jezierska-Tys, & T. Yaguchi. 2015. Occurrence, detection, and molecular and metabolic characterization of heat resistant fungi in soils and plants and their risk to human health. Adv. In Agronomy. 132:161-204
- 2. Dijksterhuis, J. 2007. Chapter 5 Heat-resistant ascospore, in "Food Mycology A Multifaceted Approach to Fungi and Food," J. Dijksterhuis & R. A. Samson (editors). CRC Press. pp.101-117
- 3. Dijksterhuis, J. 2017. The fungal spore and food spoilage. Current Opinion in Food Sci. 17:68-74
- 4. Tournas, V. 1994. Heat-Resistant Fungi of Importance to the Food and Beverage Industry. Crit. Rev. Microbiol. 20:243-263
- 5. Kotzkidou. 2014. Byssochlamys. Encyclopedia of Food Microbiology, 3nd ed. pp. 344 350
- 6. Wyatt, T.T., H.A.B. Wosten, J. Dijksterhuis. Fungal spores for dispersion in space and time. Adv. Appl. Microbiol. 85:43-91.

Heat resistant molds (HRM) important to beverage spoilage

Teleomorph	Anamorph
Byssochlamys fulva	Paecilomyces fulvus
Byssochlamys nivea	Paecilomyces niveus
Byssochlamys spectabilis	Paecilomyce variotii
Neosartorya fischeri var. fischeri	Aspergillus fischerianus
Neosartorya fischeri var. globra	Aspergillus fischeri var. glaber
Neosartorya fischeri var. spinosa	
Neosartorya fumigata	Aspergillus fumigatus
Petromyces parasiticus	Aspergillus parasiticus
Emericella nidulans	Aspergillus nidulans
Petromyces flavus	Aspergillus flavus
Talaromyces flavus	Penicillum dangeardii
Talaromyces macrosporus	Penicillum macrosporum
Talaromyces bacillisporus	Geosmithia swiftii
Talaromyces trachyspermus	Penicillum lehmannii

Teleomorph	Anamorph
Eupenicillium brefeldianum	Penicillium dodgei
Eupenicillium cinnamonpurpureum	Penicillium phoeniceum
Eupenicillium hirayamae	Penicillium hirayamae
Eupenicillium javanicum	Penicillium indonesiae
Eupenicillium orchrosalmoneum	Penicillium orchrosalmoneum
Eurotium	Aspergillus
Eurotium herbariorum	Aspergillus
Eurotium rubrum	Aspergillus rubrobrunneus
Eurotium chevalieri	Aspergillus chevalieri
Emericella nidulans	Aspergillus nidulans
Monascus	Basipetospora
Monascus ruber	Basipetospora rubra
Thermoascus	Paecilomyces
Thermoascus crustaceus	
Hamigera striatus	
Chaetomium	Botryotrichum

Heat resistance		Tabel 1. Heat-resistance of ascospores at different temperatures and medium composition.					
		Fungal species	Т	D-value	Medium	Reference	
- Ascospores		Byssochlamys fulva	86° 90°	13-14 4-36*	Grape Juice Buffer pH 3.6 and 5.0, 16°Brix	1 2	
		B. nivea	85°	8 1,3-4,5 34,6	Tomato juice Buffer pH 3.5 15º Brix Strawberry pulp	3 4 5	
			88° 90°	8-9 sec 1,5	Ringer solution Tomato juice	6	
		B. spectabilis	85°	ca. 70	Buffer, pH 6,8	7	
		Eurotium herbariorum	70°	1,1 - 4,6	Grape Juice, 65°Brix	8	
		Eupenicillium javanicum	85°	3,7	15º Brix Strawberry pulp	5	
		Monascus ruber	80°	1,7 – 2,0 0,9 – 1,0	Buffers (pH 3,0 ; pH 7,0) In brine	9	
	. Doguiroo bigh	Neosartorya fischeri	85°	13,2	Apple Juice	10	
	 Requires high 			10,1	Grape Juice	10	
	heat to inactivate			10-60	In ACES-buffer, 10 mM, pH 6.8	11	
	near to mactivate			10,4	Buffer pH 7.0	10	
	HRM in products			14,5	15º Brix Strawberry pulp	5	
				15,1	15º Brix Apple Juice	12	
				19,6 – 29,5	Dionized water, pineapple juice and concentrate	13	
				35,3	Buffer pH 7.0	14	
	Controlling HRM		88°	1,4	Apple Juice	15	
				4,2-16,2	Heated fruit fillings	16	
	by heat may			12,4 – 17,0	Dionized water, pineapple juice and concentrate	13	
			90°	4,4-6,6	Tomato Juice	3	
	negatively impact		91°	<2	Heated fruit fillings	16	
		N. pseudofischeri	95°	20 sec		7	
	product sensory?	Talaromyces flavus	85°	3,3	15º Brix Strawberry pulp	5	
		(macrosporus)	85°	39	Buffer pH 5.0, glucose, 16º	17	
				20-26	Buffer pH 5.0, glucose	18	
			88°	7,8	Apple Juice	15	
			000	7,1 – 22,3	Heated fruit fillings	16	
			90°	2-8	Buffer pH 5.0, glucose	18	
				6,2	Buffer pH 5.0, glucose	10	
				6,0	Buffer pH 5.0, glucose. Slug flow heat exchanger	10 19	
				2,7 - 4,1	Organic acids	19	
				2,5 – 11,1 5,2 – 7,1	Sugar content (0-60 ² Brix) PH 3.6-6.6	19	
			91°	2,1 – 11,7	Heated fruit fillings	19	
		T. helicus	70°	2,1 – 11,7 ca. 20	ricated nutrinings	20	
1.	Dijksterhuis, J. 2007. Heat-resistant ascospore. In	T macrosporus	85°	30-100	In ACES-buffer, 10 mM, pH 6.8	20	
"Food Mycology – A Multifaceted Approach to Fungi and Food," J. Dijksterhuis & R. A. Samson (editors). CRC Press. pp.101-117			72°	ca. 85	arread build, to hist, piroto	20	
		T. trachyspermus	85°	45 sec		17	
			00.00	10 300		a 42	

82.2°

Xeromyces bisporus

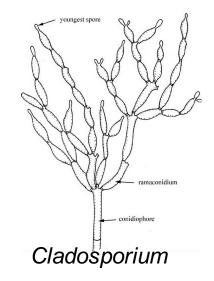
2,3

 $^{17}_{22}42$

Fungal dispersal & airborne mold

(A way to understand airborne fungi)

Fungal dispersal & airborne mold


Understand sources of fungi based on their dispersal

- (Air dispersal) e.g., Aspergillus, Penicillium, Cladosporium
 - 1. Exposing dry spores masses to air current
 - 2. Shooting spores into air via water pressure
 - 3. Carried by tiny water droplets in the air (foggy)
 - Aspergillus, Penicillium, Cladosporium dominating fungal species in plant/indoor/outdoor air
 - Aspergillus produces large quantities of conidia: >10,000 conidia/conidiophore
 - > Outdoor air: Over 10 Aspergillus fumigatus spores/m³
- Water dispersal: Fusarium, Verticillium
- Insect dispersal
- Decaying plants
 - Tremendous mold activity in the fall due to death of many plants

Spore-forming structures (conidiophores) produced by *Penicillium van oranjei* as visualized by cryo-SEM. Long stipes lift specialized cells into the air that produce rows of airborne conidia. Through multiplication of growing apices, more rows can be formed simultaneously.

Dijksterhuis, J. 2017. The fungal spore and food spoilage. Curr. Opinion in Food Sci. 17:68-74

Fungal survival /stress resistance mechanisms

Fungal survival /stress resistance mechanisms

- Accumulation of compatible solutes, such as polyols, e.g., mannitol and glycerol, trehalose, etc.
 - Compatible solutes can reduce cytoplasmic Aw and stabilize cytoplasmic structures
 - \circ Decreased cytoplasmic Aw may result in increased heat resistance
 - *Neosartorya fischeri* ascospores trehalose-based oligosaccharide (a novel compatible solute)
- Produce stress adaptation proteins, such as heat shock proteins
- Dormant /resting state: Conidia, Chlamydospores, Sclerotia, Ascospores
 - Low or absence of metabolic activities; Lower intracellular aw
 - Thick cell walls
 - o Pigmented cell wall
 - These dormant structures may still change over time
 - Extremely stress-resistance ascospores *Talaromyces macrosporus* survived 17 yrs in dark at RT
 - If fungi meet periods of very low nutrients or conditions that surpass the limits of growth, they
 produce stabilized cells for survival without growth
 - Stabilization is characterized by: lowering of metabolic activity, absence of cellular extension, increase of stress resistance
 - Stabilized cells in a state of dormancy

•Ways to break "dormant" fungal ascospores (i.e., "activation")

→ e.g., 75-80° C for 10-30 min
 → Heat Shock - the temp, duration, and heat shock

- Exposure to chemicals, e.g., sanitizers
- High pressure treatment

Beverage pasteurization = heat shock HRM

 \circ Varies among different fungal species

Factors affecting heat resistance

A question to consider:

• Will the heat resistance data obtained in lab really reflect what the fungi are in their natural states?

•History of spore formation accounts: Conditions of spore formation affect properties of spores

• Growth media - composition of growth media, Brix/high sugar, pH, Aw

o Growth temperature

Conidia of A. fumigatus grown at 25, 27, and 45C, show clear difference in resistance to UV / H₂O₂ /heat, trehalose accumulation, formation of mycotoxin

•Age:

• Heat resistance of conidia or ascospores may increase with age

Factors affecting fungal heat resistance

- Lab-cultured spores may not have the same physiological state as those naturally existed in environment
 - Sporulation and post-sporulation conditions
 - ➤ Rehydration
 - Exposure to light
 - Fluctuating moisture and temp
 - Interaction between fungi and environment or between fungi and other organisms
- Natural state: Ascomata, asci, ascospores
 - Many heat resistance studies break open (e.g., with French press) ascomata/asci to obtain free ascospore suspension

A question to ask yourself: Does a heat resistance study really provide the data that you can use to design a process? How to prepare the culture / design the test - critical

Factors affecting fungal heat resistance

- Natural dry state vs rehydrated state (e.g., in heat resistance studies)
 - Harvesting P. digitatum conidia (grown on PDA agar) by dry collection (on lid) (i.e., non-hydrated conidia) vs water flush conidia off agar (i.e., rehydrated conidia):
 - The former survives 0.30 kPa ethanol vapor pressure for 24 and 48h, while the latter showed 3.8 log decrease.
 - Possible loss of compatible solutes from fungal spores when exposed to an environment of a water potential higher than that inside their cells.
 - > Conidia of Aspergillus fumigatus:
 - Dry harvesting from dried-out agar showed nearly unchanged germination behavior when stored at ambient temp
 - When stored in water, the conidia showed 25% less outgrowth after ten days of storage
 - > Ascospores or conidia in nature may have sufficient periods of aging
 - Nature/soil may harbor the most heat resistant ascospores
 - > Laboratory growing & harvesting conditions, such as aw (for xerophiles), washing (isotonic or not),

etc., can affect fungal crop physiological states, and thus heat resistance

Stress adaptation during growth

 \circ Stress adaptation can enhance resistance to heat or other stresses

Nonhydrated scenario: Bottle airrinsed before hot fill

How to control spoilage by fungi (focusing on HRM)?

Mold spoilage cues & potential food safety implications

• Cues of mold spoilage in beverages and juices

- Mold colonies on product surface
- Floating mycelia may like cotton ball
- Product clarification / fruit disintegration (due to

pectinolytic enzymes)

○ Swollen package – Some HRM produce CO₂

• Mold growth may raise pH (1)

 $_{\odot}$ 58 species of 21 genera of molds grown on tomato

juice for 35 days

- o "All molds except two raised the pH from the initial pH
 - 4.1 to a range from 4.9 to greater than 9.0"
- "Thirty-three of the Fungi Imperfecti (53%) raised the

pH to values above 7.0"

Note: There are multiple studies (2,3) that co-inoculating *C. botulinum* and molds showed *C. botulinum* toxin production

^{1.} Mundt, J.O. 1978. Effect of mold growth on the pH of tomato juice. J. Food Prot. 41:267-268.

^{2.} Draughon, F.A., S. Chen, & J.O. 1988. Mundt. Metabiotic association of Fusarium, Alternaria, and Rhizoctonia with Clostridium botulinum in fresh tomatoes. J. Food Sc. 53:120-123

^{3.} Odlaug, T.E & I.J. Pflug. 1979. Clostridium botulinum growth and toxin production in tomato juice containing Aspergillus gracilis. Appl. Environ. Microbiol. 37:496.

Heat resistant molds (HRM) important to beverage spoilage

• Definition of HRM?

- $\circ~$ Not see official definition
- Usually survive heat shock of 75C/30min
- HRM important to thermally processed beverages/foods
 - Byssochlamys,
 Neosartorya, Talaromyces
 common
 - Eupenicillium, Eurotium, Hamigera, Thermoascus, Rasamsonia, Monoscus – less common
 - Species in *Hamigera* and *Thermoascus* form highly heat resistant ascospore

• Why HRM is so big a challenge?

- Very heat resistant and can survive common beverage pasteurization processes
 - Most heat resistant ascospore may exist in nature (not in laboratory)
 - Product quality may suffer if increasing pasteurization temp to fully destroy HRM

Grow at acidic pHs

- Byssochiamys can grow between 2.0 and 9.0.
- *N. fischeri* grew well at pH 3.0-7.95.
- Some HRM growth under very low oxygen tension (microaerophilic)
 - *B. fulva, B. nivea, B. spectabilis* can grow at very low O₂ tensions, producing CO₂.
 - A small amount of O₂ in headspace or slow leakage of O₂ through package can provide sufficient O₂ for growth
 - Production of CO₂ may cause swelling

Not fastidious in nutrient requirement

- Produce enzymes (e.g., pectinolytic enzymes) that can destroy product quality
- **Produce mycotoxin,** e.g., Patulin, byssochlamic acid, byssotoxina A, etc, by B. *fulva* or *B. nivea*

How to control fungal, including HRM, spoilage?

Control Ingredients HRM load

Ingredients contaminated with soil

- Soil, esp. orchard soil harboring all kind of microorganisms, esp. heat resistant mold (HRM)
- Detected HRM in plantation soils palm, sugar cane, rice, cotton, barley, banana, etc.
- Ingredients that could be sources of HRM:
 - Fruits /fruit juices or puree from fruits on or near ground
 - Liquid sweeteners (sucrose, HFCS): Mold can grow during storage; Known source of heat resistant mold
 - Dry sugar
 - Pectin: Known source of heat resistant mold
 - Tea leaves: Known source of heat resistant mold
 - Root powders / coconut water
 - Spices
 - Honey both HRM and butyric anaerobes detected

- HRM in soil: 10 100 CFU/10g
- HRM on fruits prior to processing: 10 CFU/100g

Better to control HRM via ingredient control

because normal pasteurization unlikely inactivates all HRM

- *Byssochlamys* sp.: 5 CFU/100g or even lower could cause spoilage
- Often see ingredient spec on HRM: <1 CFU/100g

Frac, M., S. Jezierska-Tys, & T. Yaguchi. 2015. Occurrence, detection, and molecular and metabolic characterization of heat resistant fungi in soils and plants and their risk to human health. Adv. In Agronomy. 132:161-204
 Rico-Munoz, E. 2017. Heat resistance molds in foods and beverages: recent advances on assessment and prevention. Curr. Opinion in Food Sci. 17:75-83

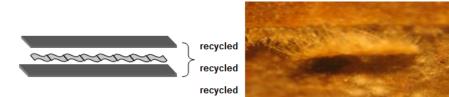
How to control fungal, including HRM, spoilage?

Packaging:

• Caps

- \circ Generally low bioload
- $\circ\,$ Not aware of HRM on caps

• PET bottles:


- $_{\odot}$ Could harbor yeast, mold, lactic acid bacteria, etc.
- $_{\odot}$ HRM could be present, but usually low
 - > So usually test a large # of bottles for HRM
- Merchant bottles coming on pallets vs on-site blown bottles

• Bottle pallet tiersheets:

- Known source of mold, including HRM
- \circ Recycled cardboard tier-sheets esp. worse
- Cardboard tier-sheets generate dust source of cross-contamination during bottle handling

Paperboard for primary packaging:

Reported: *Penicillium variotii* & *Talaromyces flavus* = 0.71 – 0.35 CFU/100cm² & 1 CFU/100cm², respectively (1)

Controlling mold (& HRM) contamination from environment via good GMP can be challenging since so many steps could go wrong

How to control fungal, including HRM, spoilage?

Processing environment:

• Empty bottle receiving /depalletizing /conveying areas

 \circ "Dusty" - Controlling "dust" via GMP is challenging

• Bottle rinse

- $_{\odot}$ Air rinse, if not done correctly, could further contaminate the bottles
- $_{\odot}$ Water rinse with good quality water and in right spray pattern

Wood pallets

- $_{\odot}$ Difficult to clean. Could harbor mold and HRM.
- Cap boxes
- Dry ingredient storage area
- Dry clean areas
- Filling environment: Micro buildup during long run time, unsanitary design
- Product cooling water microbial quality
- Plant air quality & flow pattern

How to control fungal spoilage, esp. HRM?

Processing:

- Using low HRM ingredients
- Right sanitation program
- Line hygienic design
- Increase product pasteurization lethality to control HRM but need to mind product quality
- Chilled storage and distribution for HRM control
- Incorporation of anti-mold preservatives, e.g., sorbate, etc.
- Effective "Inversion"

Effectiveness of "Inversion"

Efficacy of "Inversion" of "Hot Fill & Inversion" Process

• Purpose of inversion:

- To inactivate any spoilage microorganisms coming from bottles/caps and filling contamination
- Likely to inactivate:
 - Yeast vegetative cells
 - Yeast ascospores
 - > Mold hyphae
 - Mold conidia
 - Chlamydospores (?)

Note: Heat resistance varies with physiological state/age

- Very unlikely to inactivate
 - Mold Ascospores (asci, ascomata)

- "Inversion" types
 - o Laydown
 - \circ Carmel hump
 - "Twister"
 - "Bumpers" during laydown
 - "Squeezer" for flexible packaging

• Filling temperature:

- Around 175-185F for PET bottles and higher for glass
- Inversion time:
 - Varies from several seconds to several minutes depending on line design & package heat tolerance

Note:

- Heat resistance studies usually done with rehydrated conidia
- Mold to be inactivated with "inversion:" could be in dry state actual heat resistance unknown

Bioload from packages & filling contamination

Packaging & Filling /Capping Environment

- Contaminated packaging materials • Bottles, caps
- Packaging handling equipment
 - \circ Depallitizer
 - \circ Bottle conveyors
 - \circ Air rinser
 - \circ Cap handling
- Air quality of plant

• Filling/capping environment

- Is filling/capping inside an enclosure?
- $\,\circ\,$ Is air inside the enclosure HEPA filtered?
- Enclosure overpressure / air flow pattern?
- Can the enclosure be thoroughly sanitized?
- $\circ\,$ Any dead ends?
- Run time too long & allow microbial buildup

GMP (sanitation /cleaning) is critical, but tough to do

Bottle bioload

Bottle rinse/decontamination

\circ Air

- > For foreign material removal
- Can it effectively remove organisms?

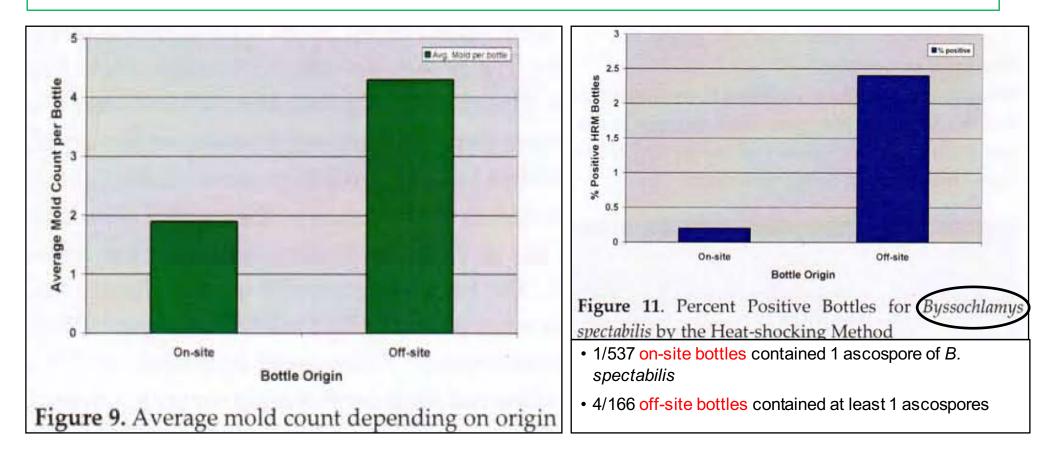
○ Water

Water rinsing with optimized flow and spray pattern may allow effective micro. removal

\circ PAA rinse

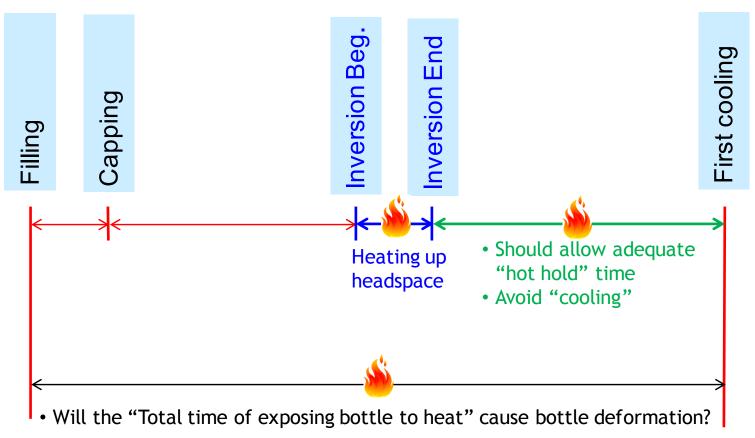
- Inactivate/reduce bottle/cap bioload
- Pre-decontamination of bottles/caps with other means
 UV treatment

Source of bottles:

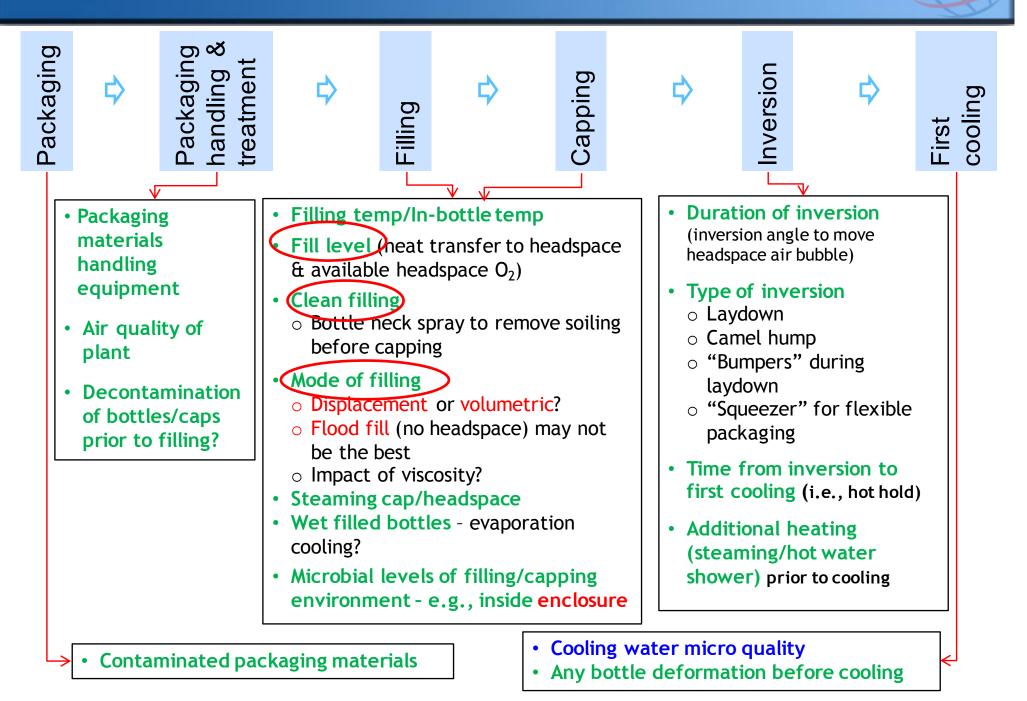

Merchant bottles vs. Blowing bottles onsite
 Tightly couple bottle blowing & filling

 $_{\odot}$ Does blowing process reduce bottle bioload? - probably so

Bottle mold bioload study (1):


Bottles blown on-site vs bottle made from off-site plant

^{1.} Rico, E., S. Johnson, J. Houbraken, & R. Samson. 2007. Sweetners and PET bottles as a source of fungal spoilage of beverage. In "Food Mycology 2007: Emerging Mold Problems and Spoilage in Food and Beverage." By R.A. Samson, J. Dijksterhuis, J. Houbraken, E. Rico, and S. Johnson. Proceedings of Food Mycology, June 7-8, 2007, Key West, USA.



• Important times to consider:

- Spoilage is likely to occur with deformed bottles
 - Balance between bottle decontamination vs. deformation

Factors affecting "hot fill & Inversion" efficacy

Other factors affecting "Hot Fill & Inversion" efficacy

Product properties:

- \circ Brix
- Viscosity may significantly affect heat transfer to headspace
- $_{\odot}$ pH / Acidulents
- \circ Preservatives
- \circ Fat level
- Specific heat capacity

• Bottle design

- Bottle temp tolerance (e.g., PET crystallinity)
- Surface/volume ratio
- Bottle size/dimensions: Challenge with small bottles
 - Short vs tall bottles
 - \circ Short vs. long neck
 - Small vs. big opening
- o "Cold spot" may not always at cap/headspace?

Cap design

Size of cap: challenge with small caps
Any heat "shielding"?

• Plant/line environment:

- Surrounding air temp
- Strong air blow toward bottles
- Transfer conveyor temp / wetness

Methodology – Determine "Hot Fill & Inversion" log reductions

NFPA report (2000): Optimization of hot-fill-hold processes for juices packaged in PET and glass containers (can be found by "google")

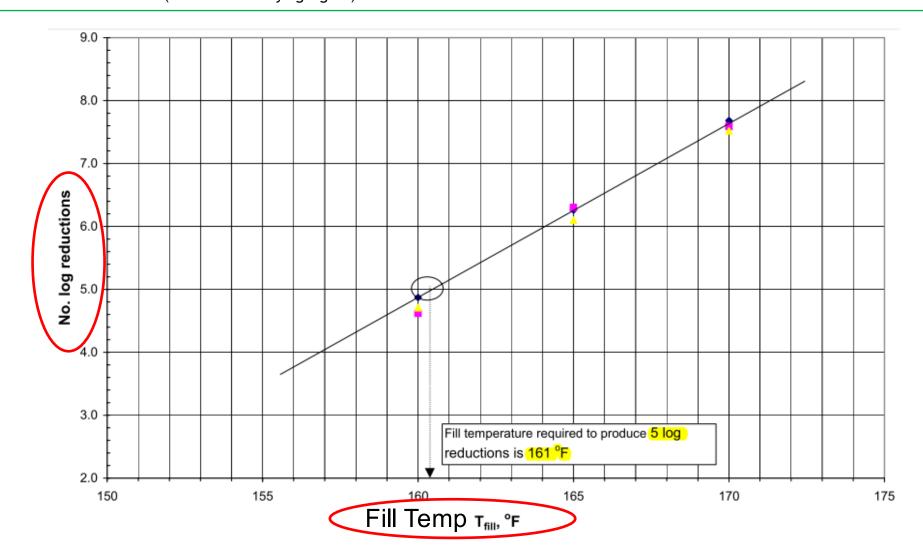


Fig. 4: Example of a fill temperature calculation. The temperature data used was obtained in 1.75 L PET containers held at Horizontal- in-Air condition for a 2 minute hold. *S. cerevisiae* D- and z-values were obtained in grapefruit juice.

- Contraction of the second se

NFPA report (2000): Optimization of hot-fill-hold processes for juices packaged in PET and glass containers

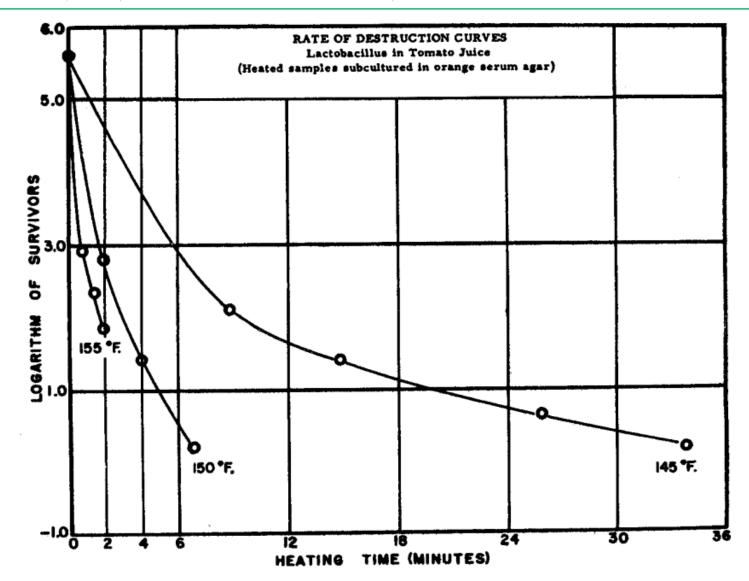
Steps:

- 1. Identify the target organism & log reduction 5 logs of Saccharomyces cerevisiae NFPA N-3083 strain was used in the study
- 2. Conduct TDT study to obtain D and z-values of the target organism
- 3. Map cold spot inside bottle
- 4. Calculate cold spot accumulative lethality (log reduction) at different hold times via General method
- 5. Plot log reductions (cold spot) (at the chosen hot hold time) vs fill temp to get a "log reduction vs fill temp curve"
- 6. From the curve, get the minimum fill temp (at the chosen hot hold time) required to get the target log kill
- 7. Conduct challenge study with the chosen target organism to verify adequacy of chosen hot fill/hold process
 Table 1: Heat resistance of Saccharomyces cerevisiae

	D-value (min) at temp (°F) of			z-value	D	5D
Product	135	140	145	(°F)	D _{150°F} (minutes)	5D _{150°F} (minutes)
Grapefruit juice	10.2	1.9	1.2	11.7	0.68	3.4
Apple juice	13.0	3.1	1.3	10.8	0.72	3.6
Juice product	9.4	2.8	0.9	10.5	0.52	2.6

Methodology – Determine what "Hot Fill & Inversion" is adequate

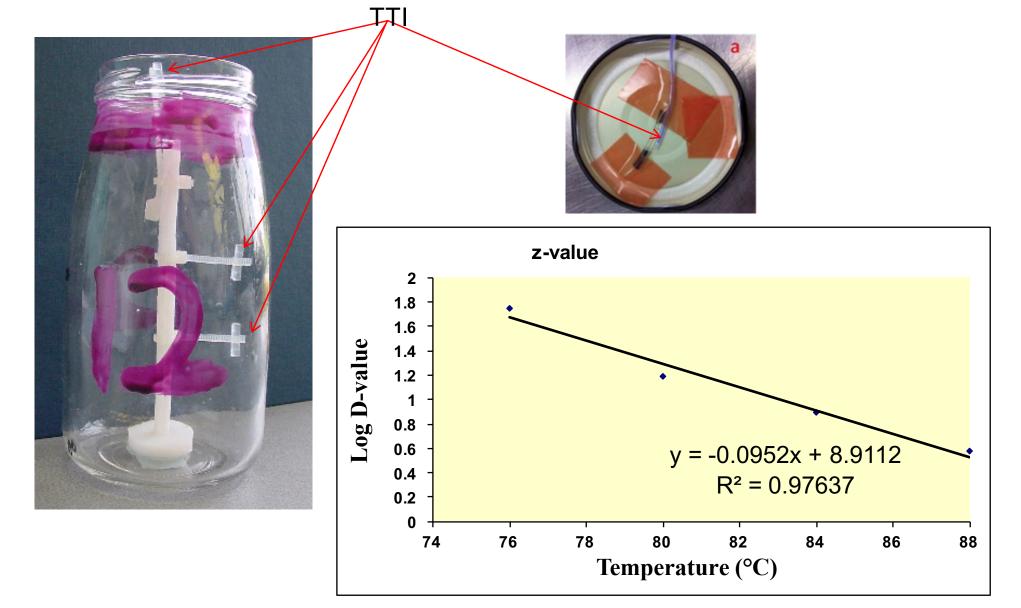
Collier, C.P. & C.T. Townsend. 1954. Container sterilization for acid products by Hot Fill-Hold-Cool Procedures. Proceedings of the Technical Sessions at the 47th Annual Convention of the National Canners Association, Jan 23-27, 1954 (or NCA Information Letter No. 1472)


- Studied 16 lactobacilli & 1 yeast (isolated from spoiled acid products mainly tomatoes)
- Yeast & lactobacilli in tomato juice & paste:
 - z=10F, F150F = 6.3
 Destroy "100,000 to 1,000,000"

•For organisms "adhering to the inside surface of the can or cover," "they may not come in contact with the product and resistance might be better characterized by that for the phosphate buffer, namely more than 19 min at 150F."

• One can use F150F = 20 min and z=16F to extrapolate the one of the GMA hot fill inversion tables

Methodology - "Hot Fill & Inversion" log reductions


Collier, C.P. & C.T. Townsend. 1954. Container sterilization for acid products by Hot Fill-Hold-Cool Procedures. Proceedings of the Technical Sessions at the 47th Annual Convention of the National Canners Association, Jan 23-27, 1954 (or NCA Information Letter No. 1472)

Methodology - "Hot Fill & Inversion" log reductions

Time-Temperature Indicators (TTI) based on α-Amylase inactivation

- Campden & Chorleywood Food Research Association (CCFRA) published a serious of papers on this

E

Unclean filling:

- Splash / spill
- Foaming
- Overfilling
- Soiling Seal/Thread Area

could result in:

- "Caked-on"
- Weakened Seal
- Safety button raised
- Loose cap
- Leak
- Low headspace (esp. with overfill)
 - Low vacuum (safety button pop)
 - $_{\circ}$ Loss of vacuum during storage
 - Spoilage

Other factors affecting "Hot Fill & Inversion" efficacy

-

Unclean filling could lead to a variety of consumer complaints

Some of the following complaints could be due to unclean filling

Complaints:

- "Smoke came out upon opening"
- "Materials resembling flesh"
 "Snail"
- o "Jelly like white blob"
- o "Bug under lid"
- o "Worm in threads"
- o "Maggot in the jar"

 Insects under cap: "larva" / "live eggs" / "lady bug" / "ant" / "Roaches" / "egg nest" / "fly" / "beetles"

E

Unclean filling could lead to a variety of consumer complaints

- Mold or other microorganisms growing outside seal
 - Feeding on sauce residues on bottle thread/cap area
- Mold (that growing on product residues in bottle cap area) could traverse seal and get inside bottle
 - FM material complaint (with the FM being mold biomass)
 - "Dead animal" complaint
 - Illness complaints
- Also spoilage of sauce by bacteria/yeast
 - Gassing, fermentation, bubbling/carbonated, wine smell, curdling, etc.
 - Bottle explosion personal injury

- Insects feeding on sauce residues in thread/cap area
- Bad taste, odor, color, texture
- Bottles/jars hard to open

• Cooling water microbial quality (1): • APC < 100 CFU/ml

 $\circ\,$ See the referenced paper for more info on importance of cooling water microbial quality

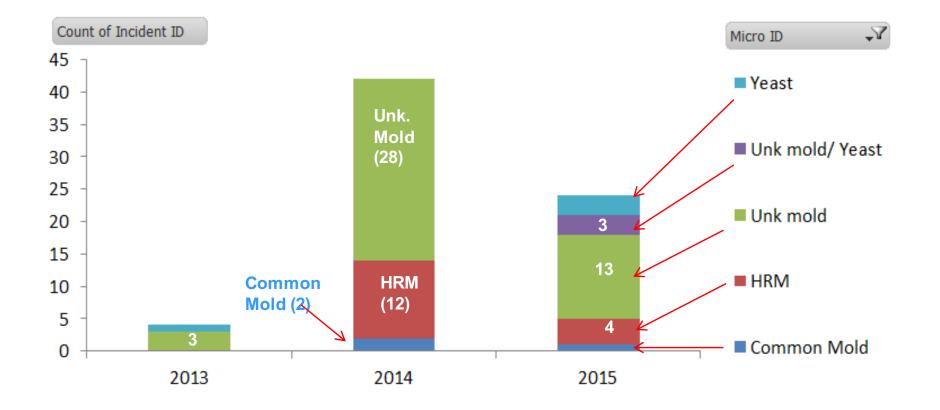
On-going monitoring - fungal spoilage

Monitor consumer spoilage complaints

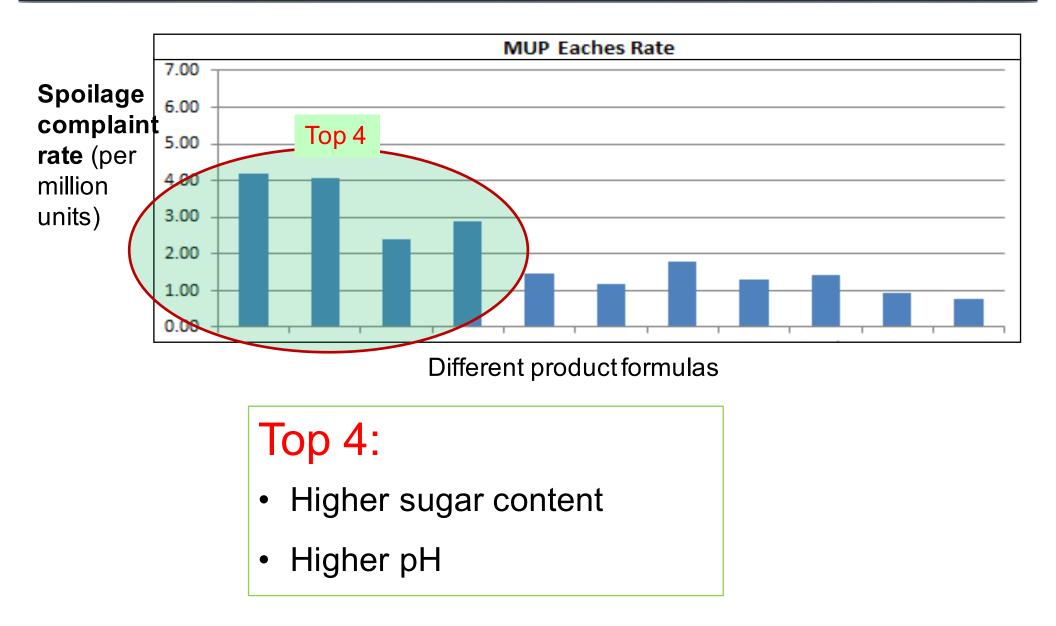
- On-going monitoring of fungal spoilage & continuous improvement
 - Consumer spoilage complaints (micro ID
 - Consumer spoilage complaint rate
 - Plot data based on date of complaint received vs spoilage sample manufacturing dates
 - > Monthly plot
 - Plot based on plants / lines / product flavor, etc.

Spoilage episodes e.g., spoiled lots, market withdrawal)

Ex. spoilage in warehouse / mass spoilage on market


- Out-of-spec ingredient
- Out-of-spec air micro, GMP, sanitation, etc.

Micro ID data - spoilage samples retrieved from consumers


• HRM isolated:

- Byssochlamys spectabilis /Paecilomyces variotii
- Byssolchlamys lagunculariae
- Byssochloamys sp.
- Unidentified HRM

- Common mold:
 - Penicillium spp.
 - Aspergillus niger
 - Un-named common mold

Spoilage Consumer Complaint Rates – Impact of product pH & sugar level

Summary

- E Contraction
- One fungus may assume different forms of existence, which may have different resistance to stresses.
- Fungi deal with stresses by accumulation of compatible solutes, stress proteins, and forming resting cells.
- By understanding ways of fungal dispersal, we can better understand airborne fungi, etc.
- Ways to control spoilages caused by fungi, esp. HRM, are discussed.
- Effectiveness of "Inversion" are affected by many factors.
- On-going monitoring of fungal spoilage is critical to drive process control and improvement.

Yuqian.lou@pepsico.com