Types of Leaves Preference by *Kalophrynus* palmatissimus in Two Forest Reserves

Muhammad Faris, A. A. *, Marina, M. T. *, **, Shamarina, S. *, Ab Ghani, N. I. *, Fletcher, C. ***

*Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. farisaziz930728@gmail.com; shamarina@upm.edu.my; nurul_izza@upm.edu.my

**Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. marinamohd@upm.edu.my
***Pasoh FRIM Research Station, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia. cdfletch@hotmail.com

Correspondence Author: marinamohd@upm.edu.my

DOI: 10.29322/IJSRP.9.10.2019.p9443 http://dx.doi.org/10.29322/IJSRP.9.10.2019.p9443

Abstract- A collection of leaves was carried out at each captured area of *Kalophrynus palmatissimus* in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan. *K. palmatissimus* is a leaf litter frog. Leaves or leaf litter provide microhabitat structures for leaf litter frogs. Leaves or leaf litter offer retreat sites for leaf litter frogs and shelters for their food sources (i.e. diversity of invertebrates). However, there have been little discussions about the types of leaves as the microhabitat structure of *K. palmatissimus*. The objective of this study was to investigate the types of leaves that were highly adapted by *K. palmatissimus* at both forest reserves. Thirty four and thirty one quadrats $(2m \times 2m)$ were established in AHFR and PFR respectively for a collection of leaves. A total of 53 and 85 leaves were recorded at AHFR and PFR respectively. Most of the leaves that were collected at both forest reserves were non-hairy/smooth leaves. The data collections in AHFR and PFR have significantly contribute to better understanding of types of leaves as the most suitable habitat and foraging sites for *K. palmatissimus*.

Index Terms- Kalophrynus palmatissimus, forest reserves, leaves, habitat, foraging site

INTRODUCTION

The morphology characteristics of leaves can be used to correctly assign the species of trees. Leaves can be collected almost year round, are easy to photograph and have well present shapes that make correct identification of tress species are possible [1]. In addition, the surface morphology of leaves can also be used to determine the present of leaf litter frogs. For an example, leaf litter frogs prefer *Eucalyptus* plantations; the leaves of *Eucalyptus* are non-hairy/smooth types of leaves [3]. Non-hairy/smooth leaves refer to leaves with hairless surface of leaves. [5] suggested that dense vegetation of leaves such as *Shorea leprosula* (Red Meranti) and *Shorea macroptera* (Light Red Meranti) on the forest floor are the ideal microhabitat structures for breeding by certain species of leaf litter frogs. *Shorea leprosula* and *S. macroptera* are also non-hairy/smooth types of leaves.

Kalophrynus palmatissimus (also commonly known as Lowland Grainy Frog) which is a leaf litter frog usually inhabits or habituates undisturbed lowland rainforests. [8] reported that *K. palmatissimus* was collected from forest floor of lowland dipterocarp forest at about 75 m above the sea level at Pasoh Forest Reserve (PFR), Negeri Sembilan. [9] in his study at Compartment 15, Ayer Hitam Forest Reserve (AHFR), Selangor mentioned that this species was recorded on the surface of forest litter at about 52 m above the sea level. As a leaf litter frog, *K. palmatissimus* prefers leaf litter as it microhabitat because it provides suitable breeding and forage sites. However, there have been little discussions about the preferable types of leaves for *K. palmatissimus* as their habitat and foraging sites. Therefore, the objective of this study was to identify the types of leaves that were highly adapted by *K. palmatissimus* at both Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan.

MATERIALS AND METHODS

Species Introduction

Kalophrynus palmatissimus is a leaf-litter frog species that can be found in forest litter on the forest floor of lowland forests [19]. This species is from the family Microhylidae. This species is endemic to Malaysia and is known to be present only in Pasoh Forest Reserve (PFR) at Negeri Sembilan, and Gombak Forest Reserve (GFR), FRIM, Templer's Park (Templer FR) [7] and Ayer Hitam Forest Reserve (AHFR) at Selangor [10]. Adult *K. palmatissimus* can be easily identified through it dorsal colour and a unique mark on it ventral. [8] reported that the dorsal colour of adult *K. palmatissimus* is light brown to reddish brown with darker brown blotch extending between eyes to posterior and breaking into patches at trunk.

Study Sites

The project was conducted at two study sites which are Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan from 12th November 2016 until 13th September 2017. The AHFR is recognized as a research, educational and development centre that contributes to the growth of knowledge and reference for research in tropical forest [14, 17]. This forest is rich with flora and fauna such as algae, herbs, fern, mammals, birds, reptiles, amphibians and fish [14, 17]. The AHFR is divided into six compartments and three compartments were studied here, which are Compartments 12, 13 and 15 (Figure 1).

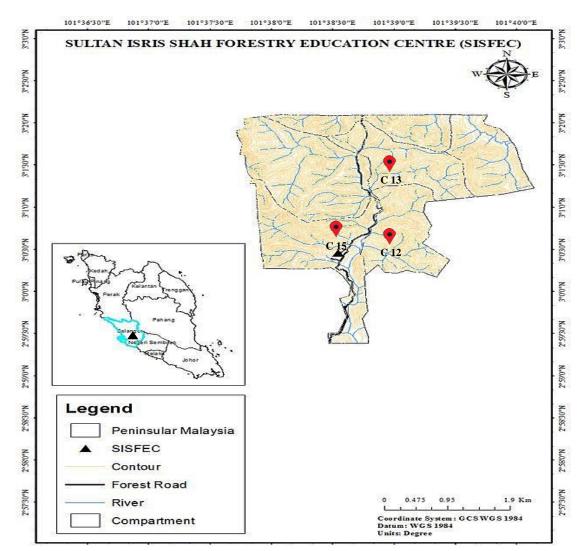


Figure 1: Location of Compartment 12 (03° 00' 792'' N, 100° 38' 821'' E), Compartment 13 (03° 00' 941'' N, 100° 38' 874''E) and Compartment 15 (03° 00' 351'' N, 101° 38' 424'' E), Ayer Hitam Forest Reserve (AHFR), Selangor. (Source: [11])

Meanwhile, the PFR has been a center for local and international field research for Asian tropical forest since 1970s with a joint research project and collaboration among Japanese, British and Malaysian research teams [12]. According to [13], more than 1,000 tree species have been recorded in this forest and it is a world famous forest for its bird fauna, and is also a home to 500 species of ants. The three compartments of PFR which were studied here are Compartments 21, 22 and 32 (Figure 2).

PASOH FOREST RESERVE, NEGERI SEMBILAN (PFR)

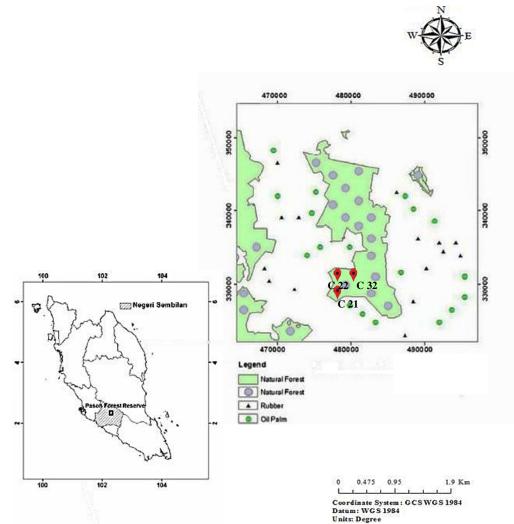


Figure 2: Location of Compartment 21 (02° 58' 137'' N, 102° 17' 567'' E), Compartment 22 (02° 58' 084'' N, 102° 17' 489'' E) and Compartment 32 (03° 00' 052'' N, 101° 42' 163'' E), Pasoh Forest Reserve (PFR), Negeri Sembilan. (Source: [18])

Leaves Collection

In this study, leaves were collected at each captured area of *Kalophrynus palmatissimus* based on the accessibility of the area. The leaves were collected in order to investigate the types of leaves that were highly selected by *K. palmatissimus* at both forest reserves. Thirty four and thirty one quadrats $(2m \times 2m)$ were established at each captured area of *K. palmatissimus* in Ayer Hitam Forest Reserve (AHFR) and Pasoh Forest Reserve (PFR) respectively. Most leaves were collected within the quadrats on the forest floor and some leaves were collected from the tree branches for identification purpose. The collected leaves were stored in individual plastic bags. All samples were identified by using reference book entitled 'A Guide to the Common Plants of Ayer Hitam Forest, Selangor, Peninsular Malaysia' [2].

RESULTS

Types of leaves recorded

Table 1 shows the leaves recorded in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan. In total, 130 types of leaves were identified and recorded at both forest reserves, which comprise of 53 types of leaves (40.77 %) at AHFR and 85 types of leaves (65.38%) at PFR respectively. The total number of non-hairy/smooth leaves collected in AHFR was about one time higher than that of hairy leaves. In PFR, the total number of non-hairy/smooth leaves displayed about three times higher than that of hairy leaves. There were 34 (64.15 %) types of non-hairy/smooth leaves and 19 (35.85 %) hairy leaves at AHFR. Whereas, there were 64 (75.29 %) types of non-hairy/smooth leaves and 21 (24.71 %) hairy leaves in PFR. The highest number of tree family recorded was Dipterocarpaceae (31.48 %) while the least number of tree families recorded were Anisophylleaceae, Aquifoliaceae, Calophyllaceae, Celastraceae, Chrysobalanaceae, Clusiaceae, Connaraceae, Davalliaceae, Dilleniaceae, Elaeocarpaceae, Gleicheniaceae, Hanguanaceae, Ixonanthaceae, Lamiaceae, Lecythidaceae, Leguminosae, Marattiaceae, Solicaceae, Selaginellaceae, Thymelaeaceae, Ulmaceae, and Violaceae (1.85 %). Nine mutual tree families recorded at both forest reserves, namely *Campnosperma auriculatum, Clidemia hirta, Elaeocarpus* sp., *Mallotus* sp., *Ochanostachys amentacea, Palaquium gutta, Shorea leprosula, Shorea macroptera*, and Syzygium sp. Some types of leaves recorded at captured area of *K. palmatissimus* in AHFR and PFR were shown in Figure 3, Figure 4 and Figure 5.

Table 1: Types of leaves	recorded in Aver Hitam For	rest Reserve (AHFR).	Selangor and Pasoh Fore	est Reserve (PFR), Negeri Sembilan
J1	, , , , , , , , , , , , , , , , , , ,		8	,,

No.	Family	Name of plants	AHFR	PFR	Morphology of leaves
1	Anacardiaceae	Campnosperma auriculatum	+	+	Non hairy/Smooth
2	Anacardiaceae	Mangifera foetida	-	+	Non hairy/Smooth
3	Anacardiaceae	Parishia maingayi	-	+	Non hairy/Smooth
4	Annonaceae	Cyathocalyx havilandii	-	+	Non hairy/Smooth
5	Annonaceae	Enicosanthum fuscum	-	+	Hairy
6	Annonaceae	Fissistigma sp.	+	-	Non hairy/Smooth
7	Annonaceae	Goniothalamus sp.	-	+	Non hairy/Smooth
8	Annonaceae	Monocarpia marginalis	-	+	Non hairy/Smooth
9	Annonaceae	Polyalthia glauca	-	+	Non hairy/Smooth
10	Annonaceae	Polyalthia sp.	-	+	Non hairy/Smooth
11	Annonaceae	Popowia hirta	-	+	hairy
12	Annonaceae	Xylopia ferruginea	+	-	Non hairy/Smooth
13	Apocynaceae	Alstonia angustiloba	+	-	Non hairy/Smooth
14	Apocynaceae	Willughbeia sp.	-	+	Non hairy/Smooth
15	Aquifoliaceae	<i>Ilex</i> sp.	-	+	Non hairy/Smooth
16	Arecaceae	Calamus sp.	+	-	Non hairy/Smooth
17	Arecaceae	Iguanura wallichiana	+	-	Hairy

(Continue on next page)

Table 1. (Continued)

140	le I. (Continued)				
18	Burseraceae	Santiria denticulata	-	+	hairy
19	Burseraceae	Santiria sp.	-	+	hairy
20	Calophyllaceae	Mesua ferrea	-	+	Non hairy/Smooth
21	Celastraceae	Kokoona coriacea	-	+	Non hairy/Smooth
22	Chrysobalanaceae	Parinari costata	-	+	hairy
23	Clusiaceae	Garcinia sp.	+	-	Non hairy/Smooth
24	Connaraceae	Agelaea borneensis	+	-	Hairy
25	Davalliaceae	Davallia sp.	+	-	Non hairy/Smooth
26	Dilleniaceae	Tetracera indica	+	-	Hairy
27	Dipterocarpaceae	Dipterocarpus costulatus	+	-	Non hairy/Smooth
28	Dipterocarpaceae	Dipterocarpus crinitus	-	+	Hairy
29	Dipterocarpaceae	Dipterocarpus stellatus	-	+	Non hairy/Smooth
30	Dipterocarpaceae	Hopea nutans	-	+	Non hairy/Smooth
31	Dipterocarpaceae	Hopea odorata	-	+	Non hairy/Smooth
32	Dipterocarpaceae	Hopea sp.	-	+	Non hairy/Smooth
33	Dipterocarpaceae	Shorea dasyphylla	-	+	hairy
34	Dipterocarpaceae	Shorea ferruginea	-	+	hairy
35	Dipterocarpaceae	Shorea foxworthyi	-	+	Non hairy/Smooth
36	Dipterocarpaceae	Shorea leprosula	+	+	hairy
37	Dipterocarpaceae	Shorea macroptera	+	+	Non hairy/Smooth
38	Dipterocarpaceae	Shorea maxwelliana	-	+	Non hairy/Smooth
39	Dipterocarpaceae	Shorea multiflora	-	+	Non hairy/Smooth
40	Dipterocarpaceae	Shorea ovata	-	+	Non hairy/Smooth
41	Dipterocarpaceae	Shorea parvifolia	-	-	Non hairy/Smooth
42	Dipterocarpaceae	Shorea platycarpa	+	-	hairy
43	Dipterocarpaceae	Vatica micrantha	-	+	Non hairy/Smooth
44	Ebenaceae	Diospyros siamang	-	+	Non hairy/Smooth
45	Ebenaceae	Diospyros sp.	-	+	Non hairy/Smooth
46	Elaeocarpaceae	Elaeocarpus sp.	+	+	Non hairy/Smooth
47	Euphorbiaceae	Elateriospermum tapos	-	+	Non hairy/Smooth
48	Euphorbiaceae	Endospermum diadenum	+	-	Hairy
49	Euphorbiaceae	Mallotus penangensis	-	+	Hairy
50	Euphorbiaceae	Mallotus sp.	+	+	Hairy
51	Euphorbiaceae	Neoscortechinia philippinensis	-	+	Non hairy/Smooth
52	Fabaceae	Bauhinia integrifolia	+	-	Non hairy/Smooth
53	Fabaceae	Bauhinia ungulata	+	-	Non hairy/Smooth
54	Fabaceae	Spatholobus sp.	-	+	hairy
55	Fagaceae	Lithocarpus lucidus	+	_	Non hairy/Smooth
56	Fagaceae	Lithocarpus sp.	-	+	Non hairy/Smooth
57	Gleicheniaceae	Dicranopteris linearis	+	_	Hairy
58	Hanguanaceae	Hanguana malayana	+	-	Non hairy/Smooth
	0	0 2			,

International Journal of Scientific and Research Publications, Volume 9, Issue 10, October 2019	
ISSN 2250-3153	

59	Ixonanthaceae	Ixonanthes reticulata	+	- Non hairy/Smooth
				(Continue on next page)

Table 1. (Continued)

Table	1. (Continued)				
60	Lamiaceae	Teijsmanniodendron coriacea	-	+	Non hairy/Smooth
61	Lauraceae	Actinodaphne sp.	+	-	Non hairy/Smooth
62	Lauraceae	Cinnamomum sp.	-	+	Non hairy/Smooth
63	Lauraceae	Cryptocarya griffithiana	-	+	Hairy
64	Lauraceae	Litsea castanea	-	+	Non hairy/Smooth
65	Lauraceae	Litsea grandis	+	-	Non hairy/Smooth
66	Lauraceae	Litsea sp.	+	-	Non hairy/Smooth
67	Leguminosae	Parkia singularis	+	-	Non hairy/Smooth
68	Loganiaceae	Norrisia maior	-	+	Non hairy/Smooth
69	Loganiaceae	Strychnos ignatii	+	-	Non hairy/Smooth
70	Malvaceae	Brownlowia sp.	-	+	Non hairy/Smooth
71	Malvaceae	Durio griffithii	-	+	Non hairy/Smooth
72	Malvaceae	Pentace laxiflora	-	+	Non hairy/Smooth
73	Malvaceae	Schoutenia accrescens	-	+	hairy
74	Malvaceae	Sterculia sp.	+	-	hairy
75	Marattiaceae	Ptisana salicina	+	-	Non hairy/Smooth
76	Melastomataceae	Clidemia hirta	+	+	Hairy
77	Melastomataceae	Memecylon sp.	-	+	Non hairy/Smooth
78	Melastomataceae	Phyllagathis hispida	+	-	hairy
79	Melastomataceae	Pternandra azurea	-	+	hairy
80	Melastomataceae	Pternandra echinata	+	-	hairy
81	Meliaceae	Aglaia sp.	-	+	Hairy
82	Meliaceae	Walsura sp.	-	+	Non hairy/Smooth
83	Monimiaceae	Kibara coriacea	-	+	Non hairy/Smooth
84	Moraceae	Artocarpus dadah	-	+	Hairy
85	Moraceae	Artocarpus rigidus	-	+	Hairy
86	Moraceae	Artocarpus scortechinii	+	-	Hairy
87	Moraceae	Artocarpus sp.	+	-	Hairy
88	Moraceae	Ficus sp.	-	+	Non hairy/Smooth
89	Moraceae	Streblus elongatus	+	-	hairy
90	Myristicaceae	Knema intermedia	-	+	Non hairy/Smooth
91	Myristicaceae	Knema laurina	-	+	Non hairy/Smooth
92	Myrtaceae	Syzygium polyanthum	+	-	Non hairy/Smooth
93	Myrtaceae	Syzygium sp.	+	+	Non hairy/Smooth
94	Olacaceae	Ochanostachys amentacea	+	+	Non hairy/Smooth
95	Oleaceae	Linociera sp.	-	+	Non hairy/Smooth
96	Pentaphylacaceae	Eurya sp.	-	+	Non hairy/Smooth
97	Phyllanthaceae	Cleistanthus sp.	-	+	Non hairy/Smooth
98	Phyllanthaceae	Glochidion sp.	-	+	Non hairy/Smooth
99	Phyllanthaceae	Phyllanthus sp.	+	-	Non hairy/Smooth
100	Piperaceae	Piper sp.	+	-	Non hairy/Smooth

101	Plantaginaceae	Brookea tomentosa	-	+	Hairy
				(C	ontinue on next page)

Table 1. (Continued)

Tuore	n (continued)				
102	Poaceae	Oplismenus burmannii	+	-	Non hairy/Smooth
103	Polygalaceae	Xanthophyllum amoenum	-	+	Non hairy/Smooth
104	Polygalaceae	Xanthophyllum sp.	-	+	Non hairy/Smooth
105	Primulaceae	Ardisia elliptica	-	+	Non hairy/Smooth
106	Primulaceae	Ardisia sp.	-	+	Non hairy/Smooth
107	Rhizophoraceae	Pellacalyx axillaris	+	-	Non hairy/Smooth
108	Rubiaceae	Anisophylla beccariana	-	+	Non hairy/Smooth
109	Rubiaceae	Canthium sp.	-	+	Non hairy/Smooth
110	Rubiaceae	Chassalia chartacea craib	+	-	Non hairy/Smooth
111	Rubiaceae	Gaertnera sp.	-	+	Non hairy/Smooth
112	Rubiaceae	Gaertnera vaginan	-	+	Non hairy/Smooth
113	Rubiaceae	Ixora javanica	-	+	Non hairy/Smooth
114	Rubiaceae	Ixora sp.	+	-	Non hairy/Smooth
115	Rubiaceae	Lasianthus sp.	-	+	Non hairy/Smooth
116	Rubiaceae	Porterandia anisophylla	-	+	hairy
117	Rubiaceae	Psychotria sp.	-	+	Non hairy/Smooth
118	Rubiaceae	Timonius wallichianus	+	-	Non hairy/Smooth
119	Rubiaceae	Uncaria sp.	-	+	Non hairy/Smooth
120	Salicaceae	Flacourtia rukam	-	+	Non hairy/Smooth
121	Sapindaceae	Nephelium sp.	-	+	Non hairy/Smooth
122	Sapotaceae	Barringtonia macrophylla	+	-	Non hairy/Smooth
123	Sapotaceae	Madhuca utilis	+	-	Non hairy/Smooth
124	Sapotaceae	Palaquium gutta	+	+	Non hairy/Smooth
125	Sapotaceae	Payena sp.	-	+	Non hairy/Smooth
126	Sapotaceae	Pouteria malaccensis	+	-	hairy
127	Selaginellaceae	Selaginella intermedia	+	-	hairy
128	Thymelaeaceae	Aquilaria microcarpa	-	+	Non hairy/Smooth
129	Ulmaceae	Gironniera nervosa	+	-	Hairy
130	Violaceae	Rinorea anguifera	+	-	hairy
		Total	53	85	

Note: +: Species recorded, -: None species recorded

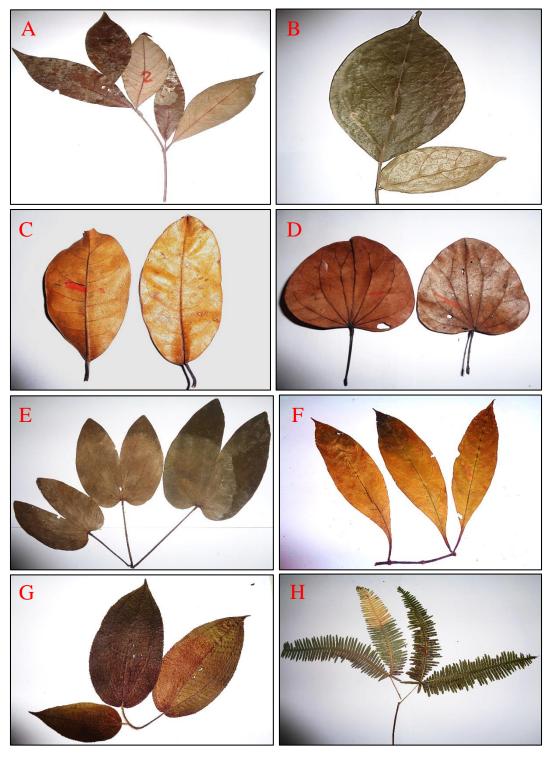


Figure 3: Examples of leaf collected. (A) *Actinodaphne* sp., (B) *Agelaea borneensis*, (C) *Artocarpus* sp., (D) *Bauhinia integrifolia*, (E) *Bauhinia ungulata*, (F) *Chassalia chartacea craib*, (G) *Clidemia hirta* and (H) *Dicranopteris linearis*

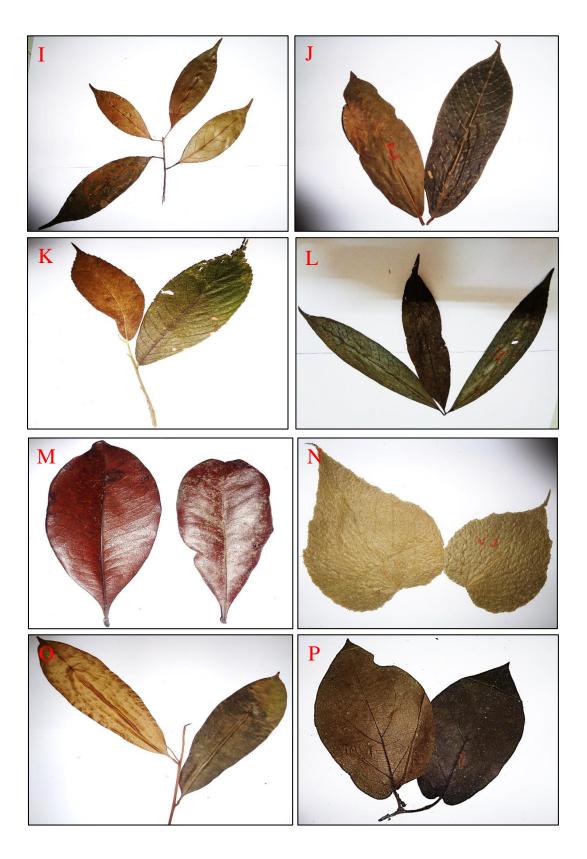


Figure 4: Examples of leaf collected. (I) *Elaeocarpus* sp., (J) *Fissistigma* sp., (K) *Gironniera nervosa*, (L) *Ixora* sp., (M) *Lithocarpus lucidus*, (N) *Mallotus* sp., (O) *Palaquium gutta* and (P) *Piper* sp.

Figure 5: Examples of leaf collected. (Q) *Phyllanthus* sp., (R) *Pternandra echinata*, (S) *Rinorea anguifera*, (T) *Selaginella intermedia*, (U) *Streblus elongatus*, (V) *Tetracera indica*, (W) *Timonius wallichianus* and (X) *Xylopia ferruginea*.

DISCUSSION

In this study, the non-hairy/smooth leaves were preferred by *Kalophrynus palmatissimus* than hairy leaves at Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan. Most of the leaves that were collected at both forest reserves were non-hairy/smooth leaves. This view is supported by [3] who indicated that the leaf litter species of frogs like *Brachycephalus* sp., *Ischnocnema* sp. (aff. *parva*) 1, and *Ischnocnema* sp. (aff. *parva*) 2 are highly favoured leaves with smooth type of morphology as their breeding and reproduction habitats. This is because the smooth type of leaf morphology provides regular adaptations for habitat and to forage for food to ensure the development and survival of leaf litter frog like *K. palmatissimus*. [3] reported that leaf litter frog species primarily used non-hairy *Eucalyptus grandis* for breeding habitat requirement. According to [4], the anurans survival depend on their ability to reproduce. Therefore, the suitable microhabitats are very important for ground litter frogs to complete their life cycle. In the lower montane forest and immediate vicinity of Mt. Kalatungan, Bukidnon, Philippines, [20] reported that the microhabitat preference for *Megophrys stejnegeri* and *Polypedates leucomystax* is leaf litters. They also reported that *Staurois natator* prefer *Alocacia sp.*, which has smooth leaf morphology as their microhabitat. According to [15], non-hairy fern leaves were found to provide sitting position for leaf litter frogs to rest on and hiding from predators.

There were nine similar types of leaves that were recorded at both AHFR and PFR which are *Campnosperma auriculatum*, *Clidemia hirta, Elaeocarpus* sp., *Mallotus* sp., *Ochanostachys amentacea, Palaquium gutta, Shorea leprosula, Shorea macroptera*, and *Syzygium* sp. Those collected nine types of leaves are common species that can be found in lowland dipterocarp forest [2]. Both AHFR and PFR are lowland dipterocarp forest. This suggests that those leaves are highly preferred by *K. palmatissimus* at AHFR and PFR as their most suitable breeding and foraging sites. [16] mentioned that *Limnonectes blythii* were recorded from lowland dipterocarp forest dominates by *Shorea leprosula* (meranti tembaga) in Beris Valley, Kedah.

CONCLUSION

It was suggested that *Kalophrynus palmatissimus* favoured non-hairy/smooth leaves as their most suitable microhabitat structure. Therefore, this preliminary information can be used as reference to search for the presence of *K. palmatissimus* and future studies to better understand the relationship between non-hairy/smooth leaves and *K. palmatissimus* should be conducted. In addition, this study provides a supportive justification to protect those described tree species at the two forest reserves, because protecting those tree species will indirectly protect *K. palmatissimus* and perhaps other anurans in Peninsular Malaysia.

ACKNOWLEDGMENT

We would like to thank the Faculty of Forestry, Universiti Putra Malaysia, Sultan Idris Shah Forestry Education Centre (SISFEC), Forest Research Institute Malaysia (FRIM), Kepong and Pasoh Forest Reserve (PFR) for the permission to conduct this study. Special thank also go to all the staffs of SISFEC, PFR and Universiti Putra Malaysia (Kampus Bintulu) especially to Mr. Mohd Naeem Abdul Hafiz Bin Mohd Hafiz, Mrs. Siti Zurina Binti Zakaria, Mr. Mohd Fairuznizam Bin Ibrahim and Mr. Muaish Bin Sait for their assistance and spiritual support during the sampling periods. This research was approved by Institutional Animal Care and Use Committee (IACUC) (Reference no: UPM/IACUC/AUP-R007/2018) of Universiti Putra Malaysia and Department of Wildlife and National Parks Peninsular Malaysia (PERHILITAN) (Permit no: HQ-00131-15-70) ethical license and funded by Research Grant GP-IPS/2017/9541200 of Universiti Putra Malaysia, Serdang, Selangor.

REFERENCES

[1]

Cerutti, G., Tougne, L., Mille, J., Vacavant, A., & Coquin, D. (2013). Understanding Leaves in Natural Images – A Model-Based Approach for Tree Species Identification. Computer Vision and Image Understanding. *Elsevier*, 117(10), 1482-1501.

- [2] Faridah Hanum, I., & Shamsul, K. (2004). A guide to the common plants of Ayer Hitam Forest, Selangor, Peninsular Malaysia. Universiti Putra Malaysia Press.
- [3] Ferreira, R. B., Beard, K. H., & Crump, M. L. (2016). Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest. *PLos One*, *11*(6), e0156781.
- [4] Haas, A., Das, I., Hertwig, S., Min, P. Y., & Jonkowski, D. B. A. (2013). Frogs of Borneo. Retrieved from http://frogsofborneo.org/index.html.
- [5] Ibrahim, J., Nur Hafizah, I., Nurul Dalila, A. R., Choimmber, T., & Mohd Abdul Muin, M. A. (2012). Amphibian Biodiversity of Gunung Inas Forest Reserve, Kedah,
- [6] Malaysia. Pertanika Journal of Tropical Agricultural Science, 35(2), 249 256.
- [7] IUCN. (2017). IUCN Red List of Threatened Species: Version 2017-3. Retrieved from http://www.iucnredlist.org.
- [8] Kiew, B. H. (1984). A new species of sticky frog (Kalophrynus palmatissimus n. sp.) from Peninsular Malaysia. Malayan Nature Journal, 37, 145-152.
- [9] Muhammad Faris, A. A. (2016). Frog Species Diversity and Distribution in Ayer Hitam Forest Reserve, Puchong, Selangor. (Unpublished undergraduate thesis). Universiti Putra Malaysia, Malaysia.
- [10] Muhammad Faris, A. A., Mohammad Nur Firdaus, M., Shamarina, S., & Marina, M. T (2016). Frog Biodiversity in Ayer Hitam Forest Reserve, Puchong, Selangor, Malaysia. Acta Biologica Malaysiana, 5(2&3), 53-60.
- [11] Nyan, S., Norizah, K., Zulfa, A. W., & Mohdhafizal, I. (2018). Mobile phone and tablet assisted positioning device for trekkers: The case for sultan Idris shah forestry education centre (SISFEC). *Malaysian Forester*, 81(2), 174-182.
- [12] Okuda, T., Kachi, N., Yap, S. K., & Manokaran, N. (1997). Tree distribution pattern and fate of juveniles in a lowland tropical rain forest implications for regeneration and maintenance of species diversity. *Plant Ecology*, 131, 155-171.
- [13] Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S.C., & Ashton, P. S. (2003). *Pasoh: Ecology of a Lowland Rain Forest in Southeast Asia*. Verlag Tokyo Berlin Heidelberg New York: Springer.
- [14] Paiman, B., & Amat Ramsa, Y. (2007). *Hutan Simpan Ayer Hitam: Warisan komuniti koridor raya multimedia*. Faculty of Forestry, Universiti Putra Malaysia. Serdang, Selangor.
- [15] Scott-Manga, J., & Beeuwkes, J. (2005). Vegetation and height preference of juvenile frogs (Hyperolius) in the Amani pond, Amani Nature Reserve, Tanzania. *Herpetofauna*, 1-12.
- [16] Shahriza, S., Ibrahim, J., Nurul Dalila, A. R., & Mohd Abdul Muin, M. A. (2011). An Annotated Checklist of the Herpetofauna of Beris Valley, Kedah, Malaysia. *Tropical Life Sciences Research*, 22(1), 13-24.
- [17] Shamsudin, I., Mohd Farhan, S., & Kamarulizwan, K. (2015). *Rancangan Pengurusan dan Pembangunan Hutan Simpan Ayer Hitam*. (Unpublished reports). Universiti Putra Malaysia, Malaysia.
- [18] Sheriza, M. R., Marin, A., Nuruddin, A. A., Hazandy, A. H., & Helmi, S. (2015). Monitoring vegetation droungth using MODIS remote sensing indices for natural forest and plantation areas. *Journal of Spatial Science*, Doi: <u>10.1080/14498596.2015.1084247</u>.
- [19] Sukumaran, J. (2004). Frogs of the Malay Peninsular. Retrieved from http:// www.Frogweb.org/ speciesaccount.aspx. Systematic Biology, 65, 146–160.
- [20] Warguez, D. A., Mondejar, E. P., & Demayo, C. G. (2013). Frogs and their Microhabitat Preferences in the Agricultural and Secondary Forest areas in the Vicinity of Mt. Kalatungan Mountain, Bukidnon, Philippines. *International Research Journal of Biological Sciences*, 2(10), 51-63.

AUTHORS

First Author – Muhammad Faris Bin Abdul Aziz, Degree Level, Universiti Putra Malaysia, Malaysia, farisaziz930728@gmail.com. **Second Author** – Marina Binti Mohd. Top @ Mohd. Tah, PhD, Universiti Putra Malaysia, Malaysia, marinamohd@upm.edu.my. **Third Author** – Shamarina Binti Shohaimi, PhD, Universiti Putra Malaysia, Malaysia, shamarina@upm.edu.my. **Fourth Author** – Nurul Izza Ab Ghani, PhD, Universiti Putra Malaysia, Malaysia, nurul_izza@upm.edu.my.

Correspondence Author – Marina Binti Mohd. Top @ Mohd. Tah, marinamohd@upm.edu.my, +6012-6232060.

International Journal of Scientific and Research Publications, Volume 9, Issue 10, October 2019 ISSN 2250-3153