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Key words:
coleus contains a variety of important medicinal plants and culinary herbs. Over the past two decades, two pathogens,
downy mildew Peronospora belbahrii and Pe. salviae-officinalis have spread globally, impacting basil and common sage production,
multi-gene phylogeny respectively. In the original circumscription of Pe. belbahrii, the downy mildew of coleus (Plectranthus scutellarioides)
new host report
new taxa
Peronosporaceae

Abstract: The downy mildew species parasitic to Mentheae are of particular interest, as this tribe of Lamiaceae

was ascribed to this species in the broader sense, but subtle differences in morphological and molecular phylogenetic
analyses using two genes suggested that this pathogen would potentially need to be assigned to a species of its own.
In the present study, Peronospora species causing downy mildew on members of the Mentheae, including clary sage
(Salvia sclarea), meadow sage (S. pratensis), basil (Ocimum basilicum), ground ivy (Glechoma hederacea) and coleus
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P.W. Crous

(Plectranthus scutellarioides) were studied using light microscopy and molecular phylogenetic analyses based on six
loci (ITS rDNA, cox1, cox2, efla, hsp90 and B-tubulin) to clarify the species boundaries in the Pe. belbahrii species
complex. The downy mildew on Salvia pratensis is shown to be distinct from Pe. salviae-officinalis and closely related
to Pe. glechomae, and is herein described as a new species, Pe. salviae-pratensis. The downy mildew on S. sclarea
was found to be caused by Pe. salviae-officinalis. This is of phytopathological importance, because meadow sage thus
does not play a role as inoculum source for common sage in the natural habitat of the former in Europe and Asia,
while clary sage probably does. The multi-gene phylogeny revealed that the causal agent of downy mildew on coleus
is distinct from Pe. belbahrii on basil, and is herein described as a new taxon, Pe. choii.

Effectively published online: 3 March 2020.

INTRODUCTION this species concept is generally not appropriate for downy

mildews as demonstrated by several phylogenetic studies over

Over the past two decades several downy mildew diseases in
medicinal plants and culinary herbs have been newly reported
andledtoeconomiclosses. Prominent examples are Peronospora
somniferion opium poppy (Voglmayr et al. 2014), Pe. belbahrii on
basil (Thines et al. 2009) and Pe. salviae-officinalis on common
sage (Choi et al. 2009). The latter two species are closely related
and belong to a clade we refer to as the Pe. belbahrii species
complex. Apart from the two mentioned species, it is known
to contain Pe. elsholtziae and Pe. salviae-plebeiae (Choi et al.
2009). Of the species in the complex, especially Pe. belbahrii and
Pe. salviae-officinalis have proven to be destructive pathogens
in the production of the respective crops. When downy mildew
disease was first discovered on basil and common sage, it was
mostly considered to belong to Pe. lamii (McMillan 1993, Gamliel
& Yarden 1998, Plenk 2002, Hill et al. 2004, Belbahri et al. 2005,
Liberato et al. 2006, Humphreys-Jones et al. 2008, Choi et al.
2009), according to the broad species concept advocated by
Yerkes & Shaw (1959) for some downy mildew groups. However,

the past 20 years or so (for a review see Thines & Choi 2016).
Specifically, it had been shown that the taxon Pe. lamii should
be restricted to the downy mildew parasitizing Lamium spp. or
L. purpureum only (Choi et al. 2009, Thines et al. 2009).

Apart from the sage pathogens reported so far, several other
Salvia species were reported as hosts for Peronospora, such as
S. lanceolata, S. pratensis, S. reflexa and S. sclarea (Rabenhorst
1857, Ellis & Kellerman 1887, Gdumann 1923, USDA 1960,
Osipjan 1967, Kochman 1970, Stanjavicenie 1984). In checklists of
Peronosporaceae in Europe and the British Isles downy mildews on
S. sclarea (clary sage) and S. pratensis (meadow sage), have been
noted in addition to downy mildew on common sage (Gaponenko
1972, Dudka et al. 2004, Mulenko et al. 2008, Miller & Kokes
2008). The downy mildews on clary and meadow sage were usually
attributed to Pe. swinglei (Gaponenko 1972, Mulenko et al. 2008),
or Pe. lamii (Preece 2002, Dudka et al. 2004, Miiller & Kokes 2008),
respectively. While Pe. lamii is clearly not an appropriate species
name for downy mildews on sage (Choi et al. 2009, Thines et al.
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2009), the application of the name Pe. swinglei to downy mildew
pathogens of various species of sage seemed to be more plausible,
because this taxon was originally described from S. reflexa (Ellis
& Kellerman 1887, Constantinescu 1991). However, phylogenetic
investigations revealed a very high degree of specialisation in
Peronospora on Lamiaceae in general and on Salvia in particular
(Choi et al. 2009, Thines et al. 2009). These studies demonstrated
that Pe. swinglei was not only distinct from Pe. belbahrii but also
from the two downy mildews infecting S. officinalis and S. plebeia,
resulting in the description of Pe. salviae-plebeiae and Peronospora
salviae-officinalis (Choi et al. 2009). Thus, three individual
Peronospora taxa are currently reported from sages.

So far common sage is the only known host of Pe. salviae-
officinalis. From a phytopathological perspective it is important
to clarify whether other potential hosts do exist that could
serve as reservoirs of inoculum for the disease caused by Pe.
salviae-officinalis. Phylogenetic studies of Lamiaceae with a
special focus on Salvia showed that S. officinalis and S. sclarea
are closely related. Together with S. pratensis, they belong to
the “Clade I” within the mint family (Walker & Sytsma 2007, Will
& Classen-Bockhoff 2014). Because of their close phylogenetic
relationship, it seemed possible that these sage species could
be alternative hosts and could play a role in the infection of sage
fields. At the same time, the downy mildew pathogen of coleus
that also belongs to the Pe. belbahrii species complex seems still
have a restricted distribution (Daughtrey et al. 2006, Palmateer
et al. 2008, Denton et al. 2015, Ito et al. 2015, Gorayeb et al.
2019) suggesting that it is not conspecific with Pe. belbahrii and
thus representing another downy mildew pathogen posing a
potential economic risk.

It was the aim of the current study to better define species
boundaries in the Pe. belbahrii species complex by detailed
morphological and molecular phylogenetic investigations.

MATERIALS AND METHODS
Fungal specimens

The downy mildew specimens analysed in this study are given
in Table 1.

Morphological analysis

The morphology of the investigated specimens was studied
using a Zeiss Axioskop 2 plus compound microscope (Carl Zeiss
Microscopy GmbH, Jena, Germany) equipped with a Jenoptik
ProgRes® digital camera. Nomarski Differential Interference
Contrast (DIC) was used for observations, measurements and
pictures. Images were taken using CapturePro v. 2.8 software
(Jenoptik, Jena, Germany). Before measuring, herbarium
specimens were moistened with 70 % alcohol and then
transferred to 60 % lactic acid on a microscope slide. For all
samples 100 conidia and conidiophores and 20 conidiophore
stems were measured. All measurements are given in the
form (minimum —) border of 30 % — mean — border of 30 % (—
maximum) as suggested by Thines et al. (2009).

DNA extraction, PCR amplification, and sequencing

For DNA extraction about 1 mm? of infected plant tissue was
excised using a sterile razor blade, transferred to a 2 mL reaction

tube with three metal beads (3 mm diam, Qiagen), cooled down
in liquid nitrogen and disrupted using a mixer mill (Tissuelyser
LT, Qiagen, Hilden, Germany) by shaking the tubes twice at 50 Hz
for 90 s with an intervening cooling step. Genomic DNA was
extracted using the innuPREP Plant DNA Kit (Analytik Jena, Jena,
Germany). Four nuclear and two mitochondrial gene regions
were amplified by PCR using newly designed or published primer
pairs listed in Table 2. Initially amplification success was low for
efla, B-tubulin and hsp90. Therefore, new primers were designed
based on a draft genome of Peronospora salviae-officinalis (data
not published). Amplification reactions were carried out in 25 uL
including genomic DNA, 10 x Mango PCR Buffer, 1.5 U Mango Taq
Polymerase (Bioline GmbH, Luckenwalde, Germany), 0.2 mM
dNTPs, 2 mM MgCl, 0.4 uM forward and reverse primers. In
cases where only weak PCR amplification was obtained, PCR
was repeated using an ALLin Hot Start Tag Mastermix (HighQu
GmbH, Kraichtal, Germany). PCR conditions were as follows: an
initial denaturation step of 95 °C for 3 min, 40 cycles of 95 °C for
30 s, primer-specific annealing temperatures for 30 s (see Table
2), 72 °C extension for 90 s and final extension of 72°C for 10 min.
PCR products were purified using a DNA Clean & Concentrator
TM-5 Kit (Zymo Research Europe GmbH, Freiburg, Germany)
and amplicons were sequenced at Eurofins Genomics (Eurofins
Genomics GmbH, Ebersberg, Germany) using the primers that
were used for PCR.

Phylogenetic analysis

In the phylogenetic analyses newly generated and already
published sequences were used (see Table 1). The newly
generated sequences were edited using the DNA Sequence
Analysis Software Sequencher v. 5.4.1 (Gene Codes Corporation,
Ann Arbor, Michigan, USA). DNA sequences were aligned with
the online version of MAFFT v. 7 (Katoh et al. 2017) using the
iterative refinement algorithms Q-INS-i for the ITS rDNA and
L-INS_i for all other gene regions. The start and end of the
alignments were cut manually in Se-Al v. 2.0 (Rambaut 1996) to
remove leading and trailing gaps. The final alignments obtained
were deposited (www.treebase.org) and are available under
accession no S25694 (http://purl.org/phylo/treebase/phylows/
study/TB2:525694).

Phylogenetic trees were inferred based on the alignments
using maximum parsimony (MP), Bayesian Metropolis coupled
Markov chain Monte Carlo analyses (MC3), maximum likelihood
(ML), and minimum evolution (ME). The MP and ME analysis
were carried out in MEGA v. 7 (Kumar et al. 2016) using default
settings. Support for internal nodes was estimated by 500 and
1 000 bootstrap replicates, respectively (Felsenstein 1985). The
MC? analysis was performed using MrBayes v. 3.2 (Ronquist &
Huelsenbeck 2003) applying GTR+1+G as the substitution model.
For Bayesian analyses 1 M generations were run for the multi-locus
tree and 2 M generations for the cox2-based tree, respectively,
and trees were sampled every 500 generations. The 50 % majority
rule consensus trees were computed and a posteriori probabilities
(pp) estimated from trees of the plateau using a 20 % burnin.
Maximum likelihood analyses were performed using RAxXML
v. 7.2.8 (Stamatakis 2014) as implemented in Geneious v. 8.1.2
(Biomatters Limited, Auckland, New Zealand) applying the general
time-reversible (GTR) substitution model with gamma model of
rate heterogeneity and 1 000 replicates of rapid bootstrapping.
The phylogenetic trees were visualised within MEGA v. 7 or using
FigTree v. 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree).
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Table 2. Primers used in this study.

Locus Primer Sequence (5" -> 3°) ™ Reference
Nuclear
ITS DC6 GAGGGACTTTTGGGTAATCA 57 (Cooke 2000)
LR-0 GCTTAAGTTCAGCGGGT (Moncalvo 1995)
EFla EFla Pso fd ACATTGCCCTGTGGAAGTTCGA 61 This study
EFla Pso rv AGTCTCAAGAATCTTACCCGAACGA This study
R-tub bTub Pso fd AATGAGGCTACAGGTGGACGTTA 58 This study
bTub Pso rv CACGCTTGAACATTTCTTGAATAGC This study
hsp90 HSP90 Pso fd GGTACTCATCGCTCACTGATG 54 This study
HSP90 Pso rv CAACGCCCTTTACAAATGACA This study
Mitochondrial
cox1 OomCox1-levup TCAWCWMGATGGCTTTTTTCAAC 42 (Robideau et al. 2011)
OomCox1-levlo CYTCHGGRTGWCCRAAAAACCAAA (Robideau et al. 2011)
cox2 cox2 forward GGCAAATGGGTTTTCAAGATCC 42,5 (Hudspeth et al. 2000)
cox2 reverse CCATGATTAATACCACAAATTTCACTAC (Hudspeth et al. 2000)
RESULTS a rounded base, whereas conidia of Pe. swinglei were often
tear-shaped and narrowing/tapering at the base. Conidia of
Morphology Pe. lamii were ovoidal to broadly ellipsoidal and often slightly

The Peronospora species on Pl. scutellarioides (coleus) differs
from Pe. belbahriion O. basilicum (basil) in various aspects (Table
3 and Fig. 1). Conidia on PI. scutellarioides were ellipsoid to
rounded and with a pale brown colouration, whereas conidia of
Pe. belbahrii were ovoid to long ellipsoid and with a dark brown
to olive colouration. Peronospora on coleus further differed
from Pe. belbahrii by a smaller conidial size: 19.9 x 18.7 um
in the former vs. 30.8 x 24.0 um in the latter. Additionally,
the mean length/width ratio from 1.13 to 1.16 of the former
was smaller than that of the latter (mean = 1.29). The downy
mildew on coleus differs from Pe. belbahrii also in the shape
of the ultimate branchlets. The shape of ultimate branchlets in
Peronospora on coleus was curved to almost straight, especially
the shorter branch was often straight, while in Pe. belbahrii both
were curved. In addition, the length of the ultimate branchlets
and the ratio of the length of the longer to the shorter ultimate
branchlet differed. The mean values of the longer branchlets of
Peronospora on coleus were shorter (15.6 um) than those of Pe.
belbahrii (20.6 um). With 9.2 and 9.8 um, respectively (type and
paratype) in the mean the shorter branchlets of Peronospora on
coleus have a similar length as Pe. belbahrii (measuring 9.8 um).
As a consequence, the ratio of the length of the longer to the
shorter ultimate branchlet was smaller for Peronospora on
coleus (1.72) than that of Pe. belbahrii (2.29).

Conidial size and shape and conidiophore size and shape
of the Peronospora species on S. pratensis were similar in
all six sampling sites (measurements are only shown for two
specimens, Table 4 and Fig. 2). The pathogen on S. pratensis
differs from Pe. swinglei on S. reflexa and from Pe. lamii on L.
purpureum. Conidia on S. pratensis were ovoid and showed

narrowing at the base with a short pedicel. Peronospora on S.
pratensis differed from Pe. swinglei and Pe. lamii by smaller
conidial size: 21.0 x 18.3 um in the former vs. 23.6 x 20.6 um
and 23.4 x 19.7 um in the latter, respectively. Additionally, the
mean length/width ratio from 1.15 of P. sp. on Salvia pratensis
was smaller than that of Pe. lamii (mean = 1.19). Furthermore,
conidia of Peronospora on S. pratensis differed from those of
Pe. glechomae on Glechoma hederacea. With 22.6 x 17.2 um
and a mean length/width ratio of 1.31, conidia of Pe. glechomae
were longer but narrower than those of Peronospora on S.
pratensis. The conidial colour of Peronospora on S. pratensis
was light greyish with a pale brownish hue whereas conidia from
Pe. glechomae were vibrant brown. The ovoidal to ellipsoidal
conidia of the Peronospora species on S. pratensis differed in
their shape from the conidia of Pe. salviae-officinalis, which
were ellipsoidal to broadly ellipsoidal. No differences were
observed in mean conidial length, width and the mean length/
width between these two species. The pathogen on Salvia
pratensis differs from Pe. swinglei and Pe. lamii also in the shape
of the ultimate branchlets. The shape of the ultimate branchlets
in Peronospora on S. pratensis was slightly curved to almost
straight, while in the latter two species it was straight or almost
so. Also, the length of the ultimate branchlets and the ratio of
the longer to the shorter ultimate branchlet differed. The longer
branchlets of Peronospora on S. pratensis were longer (13.3 um)
than those of Pe. swinglei (11.6 um) and Pe. lamii (12.3 um),
respectively. With 7.5 um in the mean the shorter branchlets
of Peronospora on S. pratensis were longer than those of Pe.
swinglei (measuring 7.1 um) but shorter than those of Pe. lamii
(8.3 um). Although the ultimate branchlets of the Peronospora
species on S. pratensis and those of Pe. salviae-officinalis did not
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differ significantly in morphometric measurements, they tended
to be rather rounded in Peronospora on S. pratensis in contrast
to subacute in Peronospora salviae-officinalis.

Conidia of Peronospora on S. sclarea are highly similar to
those of Pe. salviae-officinalis on S. officinalis: They measure
21.5 x 18.4 um in the former and 21.1 x 18.0 um in the latter
(type), and the 1.16 length/width ratio of the conidia was nearly
the same as compared to the type of Pe. salviae-officinalis
(mean = 1.17). The shape and length of the ultimate branchlets
and the ratio of the longer to the shorter ultimate branchlet of
Peronospora on S. sclarea, were similar to those of Pe. salviae-
officinalis (Table 4 and Fig. 3).

Phylogenetic analysis

Phylogenetic relationships inferred using MP, ME, ML and MC?
analyses based on the alignment of cox2 only are presented
in Fig. 4, and the phylogenetic relationships calculated from
the concatenated alignment of four nuclear (ITS, efla, hsp90,
B-tubulin) and two mitochondrial (cox1, cox2) loci are presented
in Fig. 5. The cox2-only alignment had 419 characters. The
concatenated alignment comprised 4 049 characters: i.e.
cox1 (527), cox2 (487), ITS (927), efla (677), hsp90 (804) and
B-tubulin (627). Since no conflicts in supported groupings were
found between the tree topologies of the MP, ME, ML and MC3
analyses, only the topology of the MP tree is shown for the
cox2 analysis in Fig. 4 and for the multi loci analysis in Fig. 5,
with addition of the support values of the other analyses. Two
most parsimonious trees were found in the MP analysis of the
cox2-data set and six in the combined data set, respectively with
minor differences in the topology of unsupported groupings.
One of these trees each was selected for presentation.

The single gene analysis based on cox2 sequences showed
sufficient resolution to distinguish between Peronospora from
coleus, basil, and the different sage species (Fig. 4), respectively
(except for the pathogens on clary and common sage). It also
again showed that Pe. lamii s. str. on Lamium purpureum and
Pe. swinglei s. str. on Salvia reflexa are only distantly related to
each other (compare Choi et al. 2009, Thines et al. 2009) and to
the here newly sampled downy mildews on clary and meadow
sage. The combined six-gene analysis showed a more resolved
and better supported tree topology (Fig. 5). The monophyly of
lineages parasitic to specific host species received mostly high
to maximum support values in the multi gene analyses, except
for the two specimens of Pe. glechomae, which did not receive
any significant support in the analyses. The downy mildew
pathogens of meadow sage formed two distinct and each well-
supported clades that grouped together with moderate to strong
support. The monophyly of Pe. belbahrii and coleus downy
mildew pathogens, respectively, received maximum support in all
analyses in the phylogenetic tree based on six loci. In contrast to
Pe. belbahrii on basil, which showed intraspecific variability, the
downy mildews specimens from coleus were identical in all six
gene regions studied. The downy mildew pathogens on common
and clary sage grouped together with mostly strong support in
both the cox2 and in the reconstruction based on six loci.

Taxonomy

Due to differences in morphology and on the basis of
molecular phylogenetic reconstructions, it is concluded that
the Peronospora specimens studied from PI. scutellarioides and
S. pratensis are sufficiently distinct from other Peronospora
species on Mentheae to propose them as new species.

Peronospora choii Hoffmeister, W. Maier & Thines, sp. nov.
MycoBank MB834424. Fig. 1A—K.

Etymology: The species is dedicated to Young-Joon Choi for
his significant contributions to the phylogeny and taxonomy of
downy mildews.

Typus: USA, Tennessee, on living leaves of Plectranthus
scutellarioides, Aug. 2015, A. Windham (holotype BPI 893223).

Habitat: On living leaves of Plectranthus scutellarioides
(syn.: Solenostemon scutellarioides, Coleus scutellarioides;
Lamiaceae).

Straminipila, Peronosporomycetes, Peronosporales, Perono-
sporaceae. Hyphae intercellular, haustoria intracellular. Down
dainty floccose, greyish to brownish. Conidiophores emerging
from stomata, hyaline, slender, length 351-831 um; trunk erect,
straight or slightly curved, 222-533 um long, 10-21 um broad
below the first branch, basal end often slightly swollen, 814 um
broad, sometimes constricted at middle height, callose plugs not
observed; branching submonopodial, branched 4-6(-7) times,
branches slightly curved, arborescent. Ultimate branchlets
slightly curved to almost straight, obtuse, in pairs with different
lengths, the longer being usually (8.2—) 12.7-15.6-17.2(-
27.4) umlong, the shorter (4.2-)7.9-9.2-10.3(—14.9) um, longer/
shorter branch ratio (1.01-)1.53-1.72-1.83(—3.12). Conidia light
greyish to pale brownish, ovoidal to ellipsoidal, (14.6—)17.9—
19.9-21.4(-27.3) um long, (12.8-)15.9-17.8-18.9(-24.9) um
broad, length/breadth ratio (1.02-)1.08-1.13-1.16(-1.33), tip
and base rounded; wall ornamentation obscure; pedicel absent.
Oospores not seen.

Additional material examined: USA, Tennessee, on living leaves of
Plectranthus scutellarioides, Aug. 2015, A. Windham (paratype BPI
893222).

Notes: Infected leaves show discoloured, chlorotic to necrotic
spots as seen from the upper surface. On the lower surface of
the leaves a grey to brown down of conidiophores with conidia
is formed in the lesions.

Peronospora salviae-pratensis Hoffmeister, W. Maier & Thines,
sp. nov. MycoBank MB834425. Fig. 2A-I.

Etymology: “salviae-pratensis”refers to the Latin species name
of the host plant.

Fig. 1. A—K. Peronospora choii on Plectranthus scutellarioides (BPI 893223). L=S. Peronospora belbahrii on Ocimum basilicum. A-C. Conidiophores.
D, E, L-0. Ultimate branchlets of conidiophores. F, G. Ultimate branchlets of conidiophores with developing conidia. H-K, P=S. Mature conidia. Scale

bars: A =100 um; B, C =50 um; D-S = 20 um.
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Typus: Germany, Baden-Wuerttemberg, Ladenburg, Waldpark 30 Apr. 2016, M. Hoffmeister (holotype GLM-F117783).
(49°28’15.2"’N 8°37°'04.2E), on living leaves of Salvia pratensis,

Fig. 2. A-l. Peronospora salvia-pratensis on Salvia pratensis. J-Q. Peronospora glechomae on Glechoma hederacea. A, Q. Conidiophore. B—E, J-M.
Conidia. F-I, N-P. Ultimate branchlets. Scale bars: A =200 um; B—P =20 pm; Q = 100 um.
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Habitat: On living leaves of Salvia pratensis (Lamiaceae).

Straminipila, Peronosporomycetes, Peronosporales, Perono-
sporaceae. Hyphae intercellular, haustoria intracellular, mostly
limited to one haustorium per host cell, lobate to globose. Down
dainty floccose, whitish to cream. Conidiophores emerging from
stomata, hyaline, slender, length overall 185-541 um; trunk erect,
straight or slightly curved, 85-380 um long, 8—14 um wide below
the first branch, basal end not differentiated to slightly swollen,
7-12 um wide at the base, callose plugs absent; branching

monopodial to subdichotomous, branched 4-6(—7) times,
branches slightly curved, arborescent. Ultimate branchlets slightly
curved to almost straight, obtuse, in pairs with different lengths,
the longer being usually (7.5-)11.8-13.3-14.7(-22.1) um long,
the shorter (4.4-)6.5-7.5-8.4(-11.7) um, longer/shorter branch
ratio (1.18-)1.63-1.78-1.91(-2.66). Conidia light greyish to pale
brownish, ovoidal to ellipsoidal, (18.3-)20.2—21.0-21.5(—25.3) um
long, (15.7-)17.8-18.3-18.6(-21.8) um broad, length/breadth
ratio (1.04-)1.11-1.15-1.17(-1.25), tip and base rounded; wall
ornamentation obscure; pedicel absent. Oospores not seen.

Fig. 3. A—G. Peronospora salviae-officinalis on Salvia sclarea. H=K. Peronospora salviae-officinalis on S. officinalis. L=0. Peronospora lamii on Lamium
purpureum. A, E, H. Conidiophores. B-D, J-N. Conidia. F, G, |, O. Ultimate branchlets. Scale bars: A =200 um; B-D, E, G, I-O = 20 um; E =50 um; H =

100 pm.
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L ex Lamium purpureum FR-0162882

ex Salvia officinalis GLM-F117794

ex Salvia sclarea FR-0162876

ex Salvia sclarea GLM-F117790

ex Salvia officinalis GLM-F117795

ex Salvia sclarea FR-0162877

ex Salvia officinalis GLM-F117793

ex Salvia officinalis GLM-F117791

ex Salvia sclarea GLM-F117789

ex Salvia officinalis GLM-F117792

ex Glechoma hederacea GLM-F73803

ex Glechoma hederacea BUCM125616
ex Salvia pratensis GLM-F117788

92/74/79/0.94 ‘{ ex Salvia pratensis GLM-F117783
ex Salvia pratensis GLM-F117787

ex Salvia pratensis GLM-F117786

ex Salvia pratensis GLM-F117785

ex Salvia pratensis GLM-F117784

ex Elsholtzia ciliata KUS-F20252

— ex Salvia plebeia KJ654299

ex Plectranthus scutellarioides BP1 893223 (Genbank)

ex Plectranthus scutellarioides BP1 893222

ex Plectranthus scutellarioides HOH HUH946

100/100/99/1| ex Plectranthus scutellarioides HOH HUH947

ex Plectranthus scutellarioides BP1 893223

ex Plectranthus scutellarioides PsC3 (DNA only)

ex Plectranthus scutellarioides HOH HUH945
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ex Ocimum basilicum FR-0162878
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Peronospora salviae-officinalis

Peronospora glechomae

Peronospora salviae-pratensis s. I.

Peronospora salviae-pratensis

Peronospora elsholtziae
Peronospora salviae-plebeiae

Peronospora choii

Peronospora belbahrii

Peronospora teucrii
Peronospora saturejae-hortensis
Peronospora swinglei
Peronospora viciae

Peronospora lamii

87/85/73/1 _I
96/82/88/0.97 ex Ocimum basilicum FR-0162879
82)—ff— ex Ocimum basilicum FR-0162881
ex Teucrium botrys GLM-F62880
ex Satureja hortensis GLM-F67681
ex Salvia reflexa FJ394338
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100/100/100/1
|
5

Fig. 4. Phylogenetic reconstruction in MP inferred from a cox2 alignment. MP, ME and ML bootstrap support values above 50 %, and a posteriori
probabilities above 0.9 are given at first, second, third, and fourth positions at the branches, respectively. A minus sign denotes lacking support for

the present or an alternate topology. No conflicting support was observed.

Additional materials examined: Germany, Lower Saxony, Evessen,
quarry (52°11’53.9”N 10°43’19.8”E), 21 Jul. 2017, M. Hoffmeister
& W. Maier (GLM-F117785); Rhineland-Palatinate, Mainz,
Botanical Garden (49°59'28.6”N 8°14'27.8"), 27 Apr. 2018 (DE-
0-MJG-200809901/1), M.  Hoffmeister =~ (GLM-F117786); Lower
Saxony, Braunschweig (52°16’32.2"’N; 10°34'04.1”E), 2 May 2018,
M. Hoffmeister (GLM-F117784); Baden-Wirttemberg, Mannheim,
Dossenwald (49°26°34.8"’N 8°32729.9"E), 10 May 2018, M. Hoffmeister
(GLM-F117787); Baden-Wuerttemberg, Nussloch, meadow near
quarry (49°19°01.2”N 8°43’01.5”), 13 May 2018, M. Hoffmeister
(GLM-F117788).

Notes: Infected leaves show discoloured, yellowed and chlorotic
to necrotic, polyangular, clearly vein-limited spots, as seen from
the upper surface. On the lower surface of the leaves a pale
brown down of conidiophores with conidia is formed in the
lesions, which darkens with age.

DISCUSSION

Even though more than 400 species have already been described
in Peronosporaceae, the vast majority of species in this genus
remains to be discovered (Thines & Choi 2016). Especially the
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Fig. 5. Phylogenetic reconstruction in MP inferred from the concatenated alignment of six genes (ITS, efla, hsp90, Btub, cox1, cox2). MP, ME and ML
bootstrap support values above 50 %, and a posteriori probabilities above 0.9 are given at first, second, third, and fourth positions at the branches,
respectively. A minus sign denotes lacking support for the present or an alternate topology.

downy mildews of Fabaceae (Garcia-Blazquez et al. 2008) and
Amaranthaceae (Choi et al. 2015a) seem to be highly diverse,
but also for the Lamiaceae, several dozens of hosts have been
reported (Constantinescu 1991, Dick 2001). Considering the
high degree of host specialisation of members of the genus
Peronospora (Thines & Choi 2016), it seems likely that this family
harbours several undescribed downy mildew agents. Within
Lamiaceae, the tribe Mentheae contains several Peronospora
species occurring on culinary herbs and medicinal plants (Dick
2001). Two species belonging to the Peronospora belbahrii
species complex, Pe. belbahrii and Pe. salviae-officinalis, have
proven to be particularly destructive as emerging pathogens in
basil and common sage production, respectively. In this study
phylogenetic analyses of downy mildews on Lamiaceae were
performed using six loci. The combined use of nuclear and
mitochondrial gene regions resulted in generally highly-resolved
clades and no supported discordance between mitochondrial
and nuclear loci was observed, which is in line with previous
studies (Choi & Thines 2015, Choi et al. 2015a), and in contrast
to the findings of a recent study on Peronosporaceae (Bourret
et al. 2018). As previously shown, ITS data were highly similar
for closely related species of Peronospora (Thines et al. 2009,
Voglmayr et al. 2014, Choi et al. 2015b). In contrast, cox2
resolved most of the lineages that were found by the six-gene

phylogeny and thus qualified as a suitable barcoding marker
for Peronospora species (Choi et al. 2015b). In addition, DNA
extracted from older fungarium samples can be successfully
used for amplification of the cox2 gene (Telle & Thines 2008,
Choi et al. 2015b). The cox1, efla, hsp90 and B-tubulin genes
also performed well in terms of phylogenetic resolution, and,
after primer optimisation (Table 2), could also be amplified
reliably.

In the present study, it was shown that the Peronospora
species on Pl. scutellarioides and Pe. belbahrii can be reliably
distinguished by differences in conidial shape, size and
colouration, as well as by the shape of the ultimate branchlets of
the conidiophores. In addition, phylogenetic analyses using four
nuclear and two mitochondrial gene regions clearly resolved the
downy mildew affecting PI. scutellarioides as a highly supported
monophyletic group, and, thus, it is described as Pe. choii in this
study. The downy mildew disease of coleus had initially been
lumped within Pe. lamii (Daughtrey et al. 2006, Palmateer et
al. 2008), but was then relegated to Peronospora belbabhrii s. |.
(Thines et al. 2009). In that study it was already suggested that
it might represent a species of its own, which is confirmed by
the present study. It can therefore be assumed that in nature
coleus downy mildew does not serve as inoculum source for
basil downy mildew and vice versa although limited artificial
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infection of basil by Pe. choii had been demonstrated (Palmateer
et al. 2008). This is in line with infection studies of other downy
mildews in which broader potential host ranges than commonly
present in nature could be observed under laboratory conditions
(e.g. Runge & Thines 2008, Runge et al. 2012). Considering this
and the fact that Pe. choii was so far only reported for Japan (Ito
et al. 2015), UK (Denton et al. 2015), the USA (Daughtrey et al.
2006, Palmateer et al. 2008), and recently from Brazil (Gorayeb
et al. 2019), but itis not yet as widely distributed as Pe. belbahrii,
guarantine measures might still be useful to prevent the further
spread of this disease throughout the world.

Based on phylogenetic inferences the downy mildews
parasitizing S. sclarea and S. pratensis, respectively, were clearly
distinct from Pe. lamii, but also from Pe. swinglei. Phylogenetic
as well as the morphological investigations strongly support that
the downy mildew on S. sclarea is conspecific with Pe. salviae-
officinalis, thus this host has to be added to the host range of
this species.

Salvia sclarea and S. officinalis are closely related and also
have an overlapping natural geographical distribution. Whether
one of the two host species was initially colonised by a host
jump from the other host can only be speculated at this stage.

From a phytopathological point of view, the results from
this study showed that the wild sage species S. pratensis most
likely does not play any role as primary inoculum for downy
mildew epidemics in cultivated common sage as it only seems
to host a specific downy mildew species. In contrast, clary sage,
which is closely related to common sage and is also cultivated
as a medicinal plant, likely acts as alternative host for Pe.
salviae-officinalis and is a potential inoculum source for the
dissemination of this disease.

The Peronospora accessions from S. pratensis are very closely
related to Pe. glechomae and together they form a sister group to
Peronospora salviae-officinalis. The morphological and molecular
phylogenetic differences between the samples of Peronospora
found on meadow sage and those from Pe. glechomae are subtle.
Nevertheless, is seems justified to consider the downy mildew
on S. pratensis as a species of its own, Pe. salviae-pratensis, and
not as conspecific with Pe. glechomae, described from Glechoma
hederacea (Oescu & Radulescu 1939). Interestingly, Pe. glechomae
was reported only a few times since it was first described as a
new species from Romania (Oescu & Radulescu 1939, Miller
& Kokes 2008). Despite significant efforts we could not find Pe.
glechomae over a period of three years, whereas downy mildew
on S. pratensis was easily found at different locations in Germany
where S. pratensis populations were screened. This is in line with
the numerous reports of downy mildew on meadow sage by
other authors (Gaponenko 1972, Preece 2002, Dudka et al. 2004,
Brandenburger & Hagedorn 2006, Mulenko et al. 2008, Mdller
& Kokes 2008). In contrast to the rare observations of downy
mildew on ground ivy, the host plant itself is a very frequent
perennial Lamiaceae, naturally distributed over large parts of
Europe and west-northern Asia, and has also been introduced
into North America (Meusel 1994). Considering that the sister
group-relationship of the other sage-downy mildew accessions
included in the multilocus analyses received maximum support
in all analyses, it could be speculated that Pe. glechomae in
fact is an incidental host and the few collections resulted from
accidental observations of rare host jumps of a downy mildew
species originating from meadow sage, for which the original
host has not been included in molecular phylogenies, so far. It
is also noteworthy that Pe. salviae-pratensis accessions from

S. pratensis formed two distinct clades. It will be interesting to
see, if with the addition of more specimens from S. pratensis
this separation would still be found, suggesting independently
evolved populations now both being present in Europe, similar
to the situation in Pseudoperonospora cubensis (Runge et al.
2011), or if intermediate lineages will be observed, which would
be suggestive of a diversified gene pool, similar to the situation
observed in Albugo candida (Ploch et al. 2010). In any case, it
seems that the Pe. belbahrii species complex is still in the phase of
active radiation, rendering the discovery of new hosts for some of
the species likely, especially if outside their native ranges (Thines
2019).
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