
© Copyright Khronos Group 2015 - Page 1

3D Graphics API State of the Union

SIGGRAPH 2015

© Copyright Khronos Group 2015 - Page 2

Outline

• The Khronos 3D Ecosystem

- Neil Trevett – Khronos president, NVIDIA VP Mobile Ecosystem

• Khronos data formats specification

- Andrew Garrard – Specification editor

• What’s new in OpenGL

- Barthold Lichtenbelt – OpenGL Working Group chair

• What’s new in Open GL ES

- Tom Olson – OpenGL ES Working Group chair

• Vulkan status report

- Working Group members

© Copyright Khronos Group 2015 - Page 3

The Khronos 3D Ecosystem

Neil Trevett | Khronos President
NVIDIA Vice President Mobile Ecosystem

© Copyright Khronos Group 2015 - Page 4

Khronos Connects Software to Silicon

Open Consortium creating

ROYALTY-FREE, OPEN STANDARD

APIs for hardware acceleration

Defining the roadmap for
low-level silicon interfaces

needed on every platform

Graphics, compute

and vision processing

Rigorous specifications AND

conformance tests for cross-

vendor portability

Acceleration APIs

BY the Industry

FOR the Industry

Well over a BILLION people use Khronos APIs

Every Day…

© Copyright Khronos Group 2015 - Page 5

Khronos Open Standards for Graphics and Compute

Portable intermediate representation

for graphics and parallel compute

High-efficiency GPU graphics and

compute for performance critical apps

Workhorse cross-platform professional 3D apps & gaming

Ubiquitous mobile gaming & graphics apps

Heterogeneous parallel compute

2000’s

2008

1990’s

2014

2015

Safety Critical Graphics 2005

New Extensions to enable latest

desktop graphics capabilities

OpenGL ES 3.2 released today to

bring AEP functionality to core

New Safety Critical Working

Group – Call for Participation

OpenCL 2.0 specification update

and C++ Headers released

Provisional Spec Update and

significant open source activity

Adopted by Android and other

platforms. Building ecosystem

SIGGRAPH NEWS

© Copyright Khronos Group 2015 - Page 6

Next Generation GPU APIs

One Platform

Vendor

One

OS

Cross

Platform

© Copyright Khronos Group 2015 - Page 7

No Compromise

Potential Performance Gain

Retains Traditional

Binding Model

Amount of work to port from traditional

OpenGL and OpenGL ES

© Copyright Khronos Group 2015 - Page 8

The Power of a Three Layer Ecosystem

Applications

can use Vulkan

directly for

maximum

flexibility and

control Utility libraries

and layers

Application

Games Engines

fully optimized

over Vulkan

Application uses
utility libraries to

speed

development

Rich Area for Innovation
• Many utilities and layers will be in open source

• Layers to ease transition from OpenGL

• Domain specific flexibility
Developers can choose at which level

to use the Vulkan Ecosystem

The industry’s leading games and

engine vendors are participating in

the Vulkan working group

The same ecosystem dynamic as WebGL
A widely pervasive, powerful, flexible foundation layer enables diverse middleware tools and libraries

© Copyright Khronos Group 2015 - Page 9

Developing Ecosystem and Spec in Parallel
• Open sourcing Vulkan test suite to enable developer feedback and contributions

• Khronos supplied loader and layered tools architecture

• Open source layered tools – Valve/LunarG are the first

• Flexible Windows System Integration – working with platform vendors

• Example code, documentation and course notes

• SPIR-V for language innovation

© Copyright Khronos Group 2015 - Page 10

SPIR-V Transforms the Language Ecosystem
• First multi-API, intermediate language for parallel compute and graphics

- Native representation for Vulkan shader and OpenCL kernel source languages

- https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

• Cross vendor intermediate representation

- Language front-ends can easily access multiple hardware run-times

- Acceleration hardware can leverage multiple language front-ends

- Encourages tools for program analysis and optimization in SPIR form

Diverse Languages

and Frameworks

Hardware

runtimes on

multiple architectures

Tools for

analysis and

optimization

 Standard

 Portable

 Intermediate

 Representation

Multiple Developer Advantages
Same front-end compiler for multiple platforms

Reduces runtime kernel compilation time

Don’t have to ship shader/kernel source code

Drivers are simpler and more reliable

https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

© Copyright Khronos Group 2015 - Page 11

Driving the SPIR-V Open Source Ecosystem

LLVM

Third party kernel and

shader Languages

SPIR-V
• 32-bit Word Stream

• Extensible and easily parsed

• Retains data object and control

flow information for effective

code generation and translation

OpenCL C++ OpenCL C

GLSL Khronos will open source

these tools and translators

IHV Driver

Runtimes

Other

Intermediate

Forms

SPIR-V Validator

SPIR-V Tools

SPIR-V (Dis)Assembler

SPIR-V Provisional spec (V31) updated today!

LLVM to SPIR-V

Bi-directional

Translator

© Copyright Khronos Group 2015 - Page 12

SPIR-V Open Source Community Activity
• Python byte code to SPIR-V Convertor

- Write shaders or kernels in Python, Encode and decode SPIR-V in Python

- Dis(Assembler) with high level human readable assembler syntax

• .NET IL to SPIR-V Convertor

- Write and debug shaders or kernels using C# , SPIR-V interpreter

• Shade SPIR-V virtual machine

- Test and debug SPIR-V binaries for binary correctness in human readable format

• Otherside SPIR-V virtual machine

- Academic software rasterizer project to produce C code from SPIR-V

• Rust (Dis)Assembler

- Encode and decode SPIR-V binaries in Rust

• Go (Dis)Assembler

- Encode and decode SPIR-V in Go, SPIR-V represented in Go data structures

• Haskell EDSL

- SPIR-V like language embedded in Haskell with significantly relaxed layout constraints

• Lisp SPIR-V Specification

- Lisp readable SPIR-V specification

• JSON SPIR-V specification

- Conversion of HTML SPIR-V specification to JSON format

• This is just the start….

© Copyright Khronos Group 2015 - Page 13

Roadmap Possibilities

1. C++ Shading Language

2. Single source C++

Programming from SYCL

3. OpenCL-class

Heterogeneous Compute to

Vulkan runtime

SPIR-V Ingestion for OpenGL and OpenGL

ES for shading language flexibility

Thin and

predictable

graphics and

compute for

safety critical

systems

© Copyright Khronos Group 2015 - Page 14

Safety Critical Working Group

New Generation API for

safety certifiable

graphics AND compute

2003

OpenGL ES 1.0

Fixed function graphics

2007

OpenGL ES 2/3

Programmable shader pipeline

2005

OpenGL SC 1.0

Fixed function graphics subset

2016 (planned)

OpenGL SC 2.0

Programmable shader pipeline subset

Call for participation to create OpenGL SC 2.0 and future safety critical APIs!

Many future safety critical use

cases involve vision and

compute acceleration (e.g.

neural nets)

© Copyright Khronos Group 2015 - Page 15

Data Format Specification
SIGGRAPH, August 2015

Andrew Garrard | Spec. Editor
Senior Software Engineer, Samsung

© Copyright Khronos Group 2015 - Page 16

Should you ignore me?
• Are you writing a program?

• Does it work with images, textures, buffers, etc?

• Do you have that content in memory?

• Do you need to describe that content to anyone else?

• Do you have more than one type of content?

• Do you need to describe how hardware or software handles this stuff?

© Copyright Khronos Group 2015 - Page 17

This is about formats
• You’ve got some bits that correspond to a pixel, or buffer element

• What do they mean?

• “Oh, RGB, obviously…”

© Copyright Khronos Group 2015 - Page 18

When you said that…
• What RGB?

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

32bpp red, green, blue, alpha 8888

0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4

16bpp red, green, blue 565

0 1 2 3 0 1 2 3 0 1 2 3

16bpp red, green, blue, alpha 4444

0 1 2 3

© Copyright Khronos Group 2015 - Page 19

When you said that…
• What RGB?

• What order? (Which API’s convention?)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

32bpp red, green, blue, alpha 8888

0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4

16bpp red, green, blue 565

0 1 2 3 0 1 2 3 0 1 2 3

16bpp red, green, blue, alpha 4444

0 1 2 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

32bpp blue, green, red, alpha 8888

0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4

16bpp red, green, blue 565, swapped endian

© Copyright Khronos Group 2015 - Page 20

This is when…

© Copyright Khronos Group 2015 - Page 21

Ow. And then…
• Now we know which bit is which channel

• But what do the channels mean?

• “The obvious colors”

© Copyright Khronos Group 2015 - Page 22

Ow. And then…
• Now we know which bit is which channel

• But what do the channels mean?

• “The obvious colors”

• …range?

© Copyright Khronos Group 2015 - Page 23

Ow. And then…
• Now we know which bit is which channel

• But what do the channels mean?

• “The obvious colors”

• …range?

• …gamma?

• sRGB?

• TV output?

• Which TV output?

© Copyright Khronos Group 2015 - Page 24

And if you guess…

© Copyright Khronos Group 2015 - Page 25

Then you want to output to video
• Ooh, YUV

© Copyright Khronos Group 2015 - Page 26

Then you want to output to video
• Ooh, YUV

• …YUV

• …or used compressed formats

© Copyright Khronos Group 2015 - Page 27

And read from a camera
• Bayer!

• Metadata

• Etc…

© Copyright Khronos Group 2015 - Page 28

When you do have this right…
• You end up with a library that gets confused and data disappears

D

Middleware

Application code Output library

© Copyright Khronos Group 2015 - Page 29

Around this time…

© Copyright Khronos Group 2015 - Page 30

Nothing does this right…
• Describing a format is really easy when you know your problem space

• At some point, you’re using something that doesn’t

• Everyone rolls their own

• No problems until they have to work together

• Problem spaces aren’t as disjoint as you’d think

© Copyright Khronos Group 2015 - Page 31

The Khronos Data Format Specification
• Just released

• A really dull thing done right so you don’t have to think about it

• Descriptive

• Extensible

• Versioned

• Flexible

• Not big

• No conformance

• Not tied to any other Khronos spec

• The press don’t understand what it is

• www.khronos.org/dataformat/

http://www.khronos.org/dataformat/

© Copyright Khronos Group 2015 - Page 32

Fellow sufferers…

Acute qwertyitis: keyboard rash from impact damage

c.f. chronic qwertyitis, caused by keyboard-as-pillow

© Copyright Khronos Group 2015 - Page 33

Thank you

© Copyright Khronos Group 2015 - Page 34

Siggraph 2015
Barthold Lichtenbelt

OpenGL ARB chair

© Copyright Khronos Group 2015 - Page 35

Announcing 13 new OpenGL ARB extensions

•NEW graphics pipeline operation

•5 ARB extensions

•NEW texture mapping functionality

•3 ARB extensions

•NEW shader functionality

•6 ARB extensions

© Copyright Khronos Group 2015 - Page 36

OpenGL Driver Support since last year

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100% GF

GK

GK110

GM200

EG

N.I.

S.I.

C.I.

V.I.

IVB

HSW

BSW

Mesa

MacOS X

Mesa from OGL 3.3 to OGL 4.1 AMD from OpenGL 4.4 to 4.5

Intel added OGL 4.3 support for IVB

Significant progress on OGL 4.4

NVIDIA added support for 13 ARB extensions this week

Supported OpenGL 4.5 since Siggraph 2014

© Copyright Khronos Group 2015 - Page 37

Seventh Edition of the OpenGL SuperBible

© Copyright Khronos Group 2015 - Page 38

$ glslangValidator test.comp

ERROR: 0:3: 'local_size' : too large; see gl_MaxComputeWorkGroupSize

ERROR: 1 compilation errors. No code generated.

• Virtually all of ESSL 3.1 + AEP and most of GLSL 4.x

• Nearing completion of arrays of arrays

• SPIR-V translation, disassembly, compression

• Moved to github, seeing community

 involvement

•Increased portability, robustness,

 and performance

test.comp

#version 310 es

layout(local_size_z = 1000) in;

void main()

{

 barrier();

}

Glslang Reference Validator update

© Copyright Khronos Group 2015 - Page 39

OpenGL Conformance Tests

 Conformance submissions required for GL 4.4 and 4.5 implementations
 encouraged for earlier driver versions

 Continued improvements to the code
 Significant OpenGL 3.x and 4.x coverage added

 Shared codebase with OpenGL ES 3.2 CTS
 additional desktop-specific tests

© Copyright Khronos Group 2015 - Page 40

GLEW Support Available NOW

•GLEW = The OpenGL Extension Wrangler Library

- Open source library

- http://glew.sourceforge.net/

- Your one-stop-shop for API support for all OpenGL extension APIs

•GLEW 1.13.0 provides API support for all 13 extensions NOW

•Thanks to Nigel Stewart

http://glew.sourceforge.net/

© Copyright Khronos Group 2015 - Page 41

NEW Graphics Pipeline Operation

• Fragment shader interlock

- ARB_fragment_shader_interlock

• Programmable sample positions for rasterization

- ARB_sample_locations

• Post-depth coverage version of sample mask

- ARB_post_depth_coverage

• Vertex shader viewport & layer output

- ARB_shader_viewport_layer_array

• Tessellation bounding box

- ARB_ES3_2_compatibility

Details…

© Copyright Khronos Group 2015 - Page 42

Fragment Shader Interlock

•NEW extension: ARB_fragment_shader_interlock
- Provides reliable means to read/write fragment’s pixel state

within a fragment shader
- GPU managed, no explicit barriers needed

•Uses
- Custom blend modes
- Deferred shading algorithms

- E.g. screen space decals

•Adds GLSL functions to begin/end interlock
- void beginInvocationInterlockARB(void);
- void endInvocationInterlockARB(void);

•Why is a fragment shader interlock needed? ...

Image credit: David Bookout (Intel),

Programmable Blend with Pixel

Shader Ordering

Shared exponent (rgb9e5)

format blending via

fragment shader interlock

© Copyright Khronos Group 2015 - Page 43

Pixel Update Preserves Primitive Rasterization Order

Same Pixel—covered by 3 overlapping primitives

OpenGL requires stencil/depth/blend operations

be observed to match rendering order, so:

Primitive

rasterization

order

, ,

© Copyright Khronos Group 2015 - Page 44

Yet Fragment Shading is Massively Parallel

+ 1000’s of other fragments

GPU Fragment Shading: parallel execution of fragment shader threads

 scores of

+ other

 primitives

Conventional Approach

Batch as many fragments

in parallel as possible,

maximum efficiency

© Copyright Khronos Group 2015 - Page 45

Post-Shader Pixel Updates Respect Rasterization Order

+ 1000’s of other fragments

Fragment Shading: parallel execution of fragment shader threads

1st blend

2nd blend

3rd blend

Shader results feed fixed-function Pixel Update (stencil test, depth test, & blend)

© Copyright Khronos Group 2015 - Page 46

However, Shader Access to Framebuffer Unsafe!

+ 1000’s of other fragments

GPU Fragment Shading: parallel execution of fragment shader threads

Pixel updates by fragment

shader instances

executing in parallel

cannot guarantee

primitive rasterization

order!

Exact behavior varies by GPU and timing

dependent for any particular GPU—so both

undefined & unreliable

© Copyright Khronos Group 2015 - Page 47

Interlock Guarantees Pixel Ordering of Shading

+ ….

GPU Fragment Shading: parallel execution of fragment shader threads

 scores of

+ other

 primitives

Interlock Approach

Batch but disallow

fragments for same pixel

in parallel execution of

fragment shader interlock

+ …. + ….

© Copyright Khronos Group 2015 - Page 48

Screen Space Decal Approach Visualized
“Normal image”

before blended

normal decals

 Final shaded color result

Bunny shading

includes brick pattern

“Normal image”

after blended

normal decals

Visualization of decal

boxes overlaid on scene

Brick pattern

normal map decals

applied to decal

boxes

© Copyright Khronos Group 2015 - Page 49

Motivation: Bullet holes and dynamic scuffs
• Desire: Dynamically add apparently geometric details as “after effects”

Without screen-space decals With screen-space decals

Normal Map Normal Map
Shaded color result Shaded color result

Image credit: Pope Kim, Screen Space Decals in Warhammer 40,000: Space Marine

© Copyright Khronos Group 2015 - Page 50

GLSL Fragment Interlock Usage
• Fragment interlock portion of surface space decal GLSL fragment shader

beginInvocationInterlockARB(); {

 // Read “normal image” framebuffer's world space normal
 vec3 destNormalWS = normalize(imageLoad(uNormalImage, ivec2(gl_FragCoord.xy)).xyz);
 // Read decal's tangent space normal
 vec3 decalNormalTS = normalize(textureLod(uDecalNormalTex, uv, 0.0).xyz * 2 - 1);
 // Rotate decal's normal from tangent space to world space
 vec3 tangentWS = vec3(1, 0, 0);
 vec3 newNormalWS = normalize(mat3x3(tangentWS,
 cross(destNormalWS, tangentWS),
 destNormalWS) * decalNormalTS);
 // Blend world space normal vectors
 vec3 destNewNormalWS = normalize(mix(newNormalWS, destNormalWS, uBlendWeight));
 // Write new blended normal into “normal image” framebuffer
 imageStore(uNormalImage, ivec2(gl_FragCoord.xy), vec4(destNewNormalWS,0));

} endInvocationInterlockARB();

© Copyright Khronos Group 2015 - Page 51

Programmable Sample Positions
• Conventional OpenGL

- Multisample rasterization has fixed sample positions

• NEW ARB_sample_locations extension

- glFramebufferSampleLocationsfvARB specifies sample positions on sub-pixel grid

Default 8x

multisample pattern
Application-specified 8x

multisample pattern,

oriented for horizontal sampling

Same triangle

but covers

sample

patterns

differently

© Copyright Khronos Group 2015 - Page 52

Application: Temporal Antialiasing
• Reprogram samples different every frame and render continuously

• Done well, can double effective antialiasing quality “for free”

- Needs vertical refresh synchronization

- And app must render at rate matching refresh rate (e.g. 60 Hz)

Default 2x

multisample

pattern

Alternative 2x

multisample

pattern

Temporal virtual 4x antialiasing

© Copyright Khronos Group 2015 - Page 53

Vertex Shader Viewport & Layer Output
• NEW extension ARB_shader_viewport_layer_array

• Previously geometry shader needed to write viewport index and layer

- Forced layered rendering to use geometry shaders

- Even if a geometry shader wasn’t otherwise needed

• New vertex shader (or tessellation evaluation shader) outputs

- out int gl_ViewportIndex

- out int gl_Layer

© Copyright Khronos Group 2015 - Page 54

Early Fragment Tests & Post Depth Coverage

rasterizer

fragment

shader

stencil test

depth test

color blending

gl_SampleMaskIn

• Late stencil-depth tests

• Rasterizer determines

sample mask

Default behavior

rasterizer

fragment

shader

stencil test

depth test

color blending

gl_SampleMaskIn

• Early stencil-depth tests

• Rasterizer determines

sample mask

layout(early_fragment_tests) in;

rasterizer

fragment

shader

stencil test

depth test

color blending

gl_SampleMaskIn

• NEW ARB_post_depth_coverage
• Early stencil-depth tests

• Post-depth coverage determines mask

layout(early_fragment_tests) in;

layout(post_depth_coverage) in;

© Copyright Khronos Group 2015 - Page 55

ES 3.2 Compatibility (tessellation, queries)
• NEW extension ARB_ES3_2_compatibility

• Adds Command to specify bounding box for evaluated tessellated vertices in Normalized
Device Coordinate (NDC) space
- glPrimitiveBoundingBoxARB(float minX, float minY, float minZ,

 float maxX, float maxY, float maxZ)
- Initial space accepts entirety of NDC space (effectively not limiting tessellation)
- Implementations may be able to optimize performance, assuming accurate bounds
- ES 3.2 added this to make tessellation more friendly to mobile use cases

- Hint: Expect today’s desktop GPUs are likely to simply ignore this but API matches ES 3.2

• Adds two implementation-dependent constants related to multisample line rasterization
- GL_MULTISAMPLE_LINE_WIDTH_RANGE_ARB
- GL_MULTISAMPLE_LINE_WIDTH_GRANULARITY_ARB
- Same toke values as ES 3.2

• Adds support for OpenGL ES 3.20 shading language

© Copyright Khronos Group 2015 - Page 56

NEW Texture Mapping Functionality

• Texture Reduction Modes: Min/Max

- ARB_texture_filter_minmax

• Sparse Textures, done right

- ARB_sparse_texture2

• Sparse Texture Clamping

- ARB_sparse_texture_clamp

Details…

© Copyright Khronos Group 2015 - Page 57

New Texture Reduction Modes: Min/Max
•NEW extension: ARB_texture_filter_minmax

- Texture fetch result = minimum or maximum of all sampled texel values

•Adds NEW “reduction mode” for texture parameter

- Choices: GL_WEIGHTED_AVERAGE_ARB (initial state), GL_MIN, or GL_MAX

- Use with glTexParameteri, glSamplerPatameteri, etc.

•Example applications

- Estimating variance or range when sampling data in textures

- Conservative texture sampling

- E.g. Maximum Intensity Projection for medical imaging

© Copyright Khronos Group 2015 - Page 58

Application: Maximum Intensity Projection

• Radiologist interpret 3D visualizations

of CT scans

• Volume rendering simulates opacity

attenuated ray casting

- Good for visualizing 3D structure

• Maximum Intensity Projection (MIP)

rendering shows maximum intensity along

any ray

- Good for highlighting features without

regard to occlusion

- Avoids missing significant features

Volume

rendering

Maximum

Intensity

Projection

Texture

reduction mode

GL_WEIGHTED_AVERAGE_ARB

Texture

reduction mode

GL_MAX

Image credit: Fishman et al. Volume Rendering versus Maximum Intensity

Projection in CT Angiography: What Works Best, When, and Why

© Copyright Khronos Group 2015 - Page 59

Maximum Intensity Projection vs.

Volume Rendering Visualized

Axial view of human middle torso

Volume Rendering Maximum Intensity Projection

Good at mapping arterial structure,

despite occlusion

Provides more 3D feel by

accounting for occlusion

Image credit: Fishman et al. Volume Rendering versus Maximum Intensity

Projection in CT Angiography: What Works Best, When, and Why

© Copyright Khronos Group 2015 - Page 60

Sparse Textures Visualized
• Textures can be HUGE

- Think of satellite data

- Or all the terrain in a huge game level

- Or medical or seismic imaging

• We don’t never expect to be looking at

everything at once!

- When textures are huge, can we just

make resident what we need?

- YES, that’s sparse texture

• ARB_sparse_texture standardized in 2013

- Reflected limitations of original sparse

texture hardware implementations

- Now we can do better…

Mipmap chain of a sparse texture
Only limited number of pages are resident

Image credit: AMD

© Copyright Khronos Group 2015 - Page 61

Sparse Textures, done right
• NEW extension ARB_sparse_texture2

- Builds on prior ARB_sparse_texture (2013) extension

- Limitation:

- Fetching non-resident data returned undefined results without indication

- So no way to know if non-resident data was fetched

- This reflected hardware limitations of the time, fixed in newer hardware

• Sparse Texture version 2 detects non-resident access

- Fetch of non-resident data now returns zero

- spareTexture*ARB GLSL texture fetch functions return residency information integer

- sparseTexelsResidentARB GLSL function maps returned integer as Boolean residency

- Now supports sparse multisample and multisample texture arrays

© Copyright Khronos Group 2015 - Page 62

Sparse Texture, done even better
• NEW extension ARB_sparse_texture_clamp

• Adds new GLSL texture fetch variant functions
- Includes additional level-of-detail (LOD) parameter to provide a per-fetch floor on

the hardware-computed LOD
- Sparse texture variants

- sparseTextureClampARB, sparseTextureOffsetClampARB,
sparseTextureGradClampARB, sparseTextureGradOffsetClampARB

- Non-sparse texture versions too
- textureClampARB, textureOffsetClampARB, textureGradClampARB,

textureGradOffsetClampARB

• Benefit for sparse texture fetches
- Shaders can avoid accessing unpopulated portions of high-resolution levels of detail
- when knowing texture detail is unpopulated

- Either from a priori knowledge
- Or feedback from previously executed "sparse" texture lookup functions

© Copyright Khronos Group 2015 - Page 63

Sparse Texture Clamp Example
• Naively fetch sparse texture until you get a valid texel

vec4 texel;
int code = sparseTextureARB(spare_texture,
 uv, texel);
float minLodClamp = 1;
while (!sparseTexelsResidentARB(code)) {
 code = sparseTextureClampARB(sparseTexture,
 uv, texel,
 minLodClamp);
 minLodClamp += 1.0f;
}

1 fetch

2 fetches, 1 missed

3 fetches, 2 missed

© Copyright Khronos Group 2015 - Page 64

NEW Shader Functionality

• OpenGL ES 3.2 Shading Language Compatibility

- ARB_ES3_2_compatibility

• Parallel Compile & Link of GLSL

- ARB_parallel_shader_compile

• 64-bit Integers Data Types

- ARB_gpu_shader_int64

• Shader Atomic Counter Operations

- ARB_shader_atomic_counter_ops

• Query Clock Counter

- ARB_shader_clock

• Shader Ballot and Broadcast

- ARB_shader_ballot

Details…

© Copyright Khronos Group 2015 - Page 65

ES 3.2 Compatibility (shader support)
• NEW extension ARB_ES3_2_compatibility

• Just say #version 320 es in your GLSL shader
- Develop and use OpenGL ES 3.2’s GLSL dialect from regular OpenGL
- Helps desktop developers target mobile and embedded devices

• ES 3.2 GLSL adds functionality already in OpenGL
- KHR_blend_equation_advanced, OES_sample_variables,

OES_shader_image_atomic, OES_shader_multisample_interpolation,
OES_texture_storage_multisample_2d_array, OES_geometry_shader,
OES_gpu_shader5, OES_primitive_bounding_box,
OES_shader_io_blocks, OES_tessellation_shader,
OES_texture_buffer, OES_texture_cube_map_array,
KHR_robustness

- Notably Shader Model 5.0, geometry & tessellation shaders

© Copyright Khronos Group 2015 - Page 66

Parallel Compile & Link of GLSL
• NEW extension ARB_parallel_shader_compile

- Facilitates OpenGL implementations to distribute GLSL shader compilation and program
linking to multiple CPU threads to speed compilation throughput

- Allows apps to better manage GLSL compilation overheads
- Benefit: Faster load time for new shaders and programs on multi-core CPU systems

• Part 1: Tells OpenGL’s GLSL compiler how many CPU threads to use for parallel compilation
- void glMaxShaderCompilerThreadsARB(GLuint threadCount)
- Initially allows implementation-dependent maximum (initial value 0xFFFFFFFF)

• Part 2: Shader and program query if compile or link is complete
- Call glGetShaderiv or glGetProgramiv on GL_COMPLETION_STATUS_ARB parameter
- Returns true when compile is complete, false if still compiling
- Unlike other queries, will not block for compilation to complete.

© Copyright Khronos Group 2015 - Page 67

64-bit Integer Data Types in GLSL
• NEW extension ARB_gpu_shader_int64

- adds 64-bit integers

• New data types
- Signed: int64_t, i64vec2, i64vec3, i64vec4,
- Unsigned: uint64_t, u64vec2, u64vec3, u64vec4
- Supported for uniforms, buffers, transform feedback, and shader input/outputs

• Standard library extended to 64-bit integers

• Programming interface
- Uniform setting

- glUniform{1,2,3,4}i{,v}64ARB
- glUniform{1,2,3,4}ui{,v}64ARB

- Direct state access (DSA) variants as well
- glProgramlUniform{1,2,3,4}i{,v}64ARB
- glProgramlUniform{1,2,3,4}ui{,v}64ARB

- Queries for 64-bit uniform integer data

© Copyright Khronos Group 2015 - Page 68

Shader Ballot and Broadcast
• NEW extension ARB_shader_ballot

- Assumes 64-bit integers

• Concept
- Group of invocations (shader threads) which execute in lockstep can do a limited

forms of cross-invocation communication via a group broadcast of a invocation
value, or broadcast of a bitarray representing a predicate value from each
invocation in the group

- Allows efficient collective decisions within a group of invocations

• New built-in data types
- Uniform: gl_SubGroupSizeARB
- Integer input: gl_SubGroupInvocationARB
- Mask input: gl_SubGroupEqMaskARB, gl_SubGroupGeMaskARB,

gl_SubGroupGtMaskARB, gl_SubGroupLeMaskARB, gl_SubGroupLtMaskARB

• New GLSL functions
- uint64_t ballotARB(bool value)

© Copyright Khronos Group 2015 - Page 69

Shader Atomic Counter Operations in GLSL
• NEW extension ARB_shader_atomic_counter_ops

- Builds on ARB_shader_atomic_counters extension (2011, OpenGL 4.2)

- Original atomic counters quite limited

- Could only increment, decrement, and query

• New operations supported on counters

- Addition and subtraction: atomicCounterAddARB, atomicCounterSubtractARB

- Minimum and maximum: atomicCounterMinARB, atomicCounterMaxARB

- Bitwise operators (AND, OR, XOR, etc.)

- atomicCounterAndARB, atomicCounterOrARB, atomicCounterXorARB

- Exchange: atomicCounterExchangeARB

- Compare and Exchange: atomicCounterCompSwapARB

© Copyright Khronos Group 2015 - Page 70

Query Clock Counter in GLSL
• NEW extension ARB_shader_clock

• New functions query a free-running “clock”

- 64-bit monotonically incrementing shader counter

- uint64_t clockARB(void)

- uvec2 clock2x32ARB(void)

- Avoids requiring 64-bit integers, instead returns two 32-bit unsigned integers

• Similar to Win32’s QueryPerformanceCounter

- But within the GPU shader complex

• Can allow shaders to monitor their performance

- Details implementation-dependent

© Copyright Khronos Group 2015 - Page 71

Thanks

•Multi-vendor effort!

•Particular thanks to specification leads

- Pat Brown (NVIDIA)

- Piers Daniell (NVIDIA)

- Slawomir Grajewski (Intel)

- Daniel Koch (NVIDIA)

- Jon Leech (Khronos)

- Timothy Lottes (AMD)

- Daniel Rakos (AMD)

- Graham Sellers (AMD)

- Eric Werness (NVIDIA)

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

OPENGL SUPPORT
IN UNITY 5.3

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Text Styles

Use the TAB key to switch

between levels

Level 1 = Bullet 24 pt.

Level 2 = Bullet 24 pt.

Level 3 = Bullet 20 pt.

Level 4 = Bullet 18 pt.

Level 5 = Bullet 16 pt.

To get bullet / plain text

again, use SHIFT + TAB

Alternatively,

Increase and Decrease list

level is used instead

KHRONOS API SUPPORT

• OpenGL core profile 3.2 to 4.5 (desktop)

• OpenGL ES 2.0 to 3.1aep (desktop & mobile)

• WebGL 1.0 and 2.0 (desktop)

• Feature parity with Direct3D11

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

• Why OpenGL ES on desktop?

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Text Styles

Use the TAB key to switch

between levels

Level 1 = Bullet 24 pt.

Level 2 = Bullet 24 pt.

Level 3 = Bullet 20 pt.

Level 4 = Bullet 18 pt.

Level 5 = Bullet 16 pt.

To get bullet / plain text

again, use SHIFT + TAB

Alternatively,

Increase and Decrease list

level is used instead

OPEN PROBLEMS IN REAL-TIME
RENDERING
 • Siggraph 2015 course

• Panel: Production Cost in Games: What Technology

is Needed?

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

Text Styles

Use the TAB key to switch

between levels

Level 1 = Bullet 24 pt.

Level 2 = Bullet 24 pt.

Level 3 = Bullet 20 pt.

Level 4 = Bullet 18 pt.

Level 5 = Bullet 16 pt.

To get bullet / plain text

again, use SHIFT + TAB

Alternatively,

Increase and Decrease list

level is used instead

OPEN PROBLEMS IN REAL-TIME
RENDERING
 • Siggraph 2015 course

• Panel: Production Cost in Games: What Technology

is Needed?

Why OpenGL ES on desktop?

To improve Unity developers interaction cycle

COPYRIGHT 2014 @ UNITY TECHNOLOGIES

OPENGL SUPPORT
IN UNITY 5.3

• December 8th 2015

© Copyright Khronos Group 2015 - Page 78

OpenGL demo

Christophe Riccio, Unity

© Copyright Khronos Group 2015 - Page 79

What’s new in OpenGL ES

Tom Olson, ARM
OpenGL ES Working Group chair

© Copyright Khronos Group 2015 - Page 80

Outline

• Introduction and status

• OpenGL ES 3.2 overview

• Open sourcing the OpenGL ES conformance test

• What the future holds

• Member news

- NVIDIA – Piers Daniell

- Imagination Technologies – Tobias Hector

- Kishonti Informatics – Zoltan Hortsin

© Copyright Khronos Group 2015 - Page 81

OpenGL ES today

• The most widely deployed 3D graphics API in history

- Industry will ship >1.7 billion devices in 2015

• ES 2.0 is still shipping in large volumes

- Entry level phones / tablets, smart TV, automotive…

- Being adopted rapidly in new ultra-low-power form factors

- Basis for WebGL, possibly OpenGL ES SC

• ES 3.x is gaining share

- de facto standard for high-end smartphones

- 40% share in latest Unity mobile device stats

http://hwstats.unity3d.com/mobile/gpu.html

ES 2.0

ES 3.x

© Copyright Khronos Group 2015 - Page 82

The evolution continues…

• What’s new

- OpenGL ES 3.2 released this week

- Conformance test and ecosystem updates

2003

1.0

2004

1.1

2007

2.0

2012

3.0

2014 (GDC)

3.1

2015

3.2

© Copyright Khronos Group 2015 - Page 83

Introducing OpenGL ES 3.2

• Goals

- Absorb Android Extension Pack (AEP) into core

- Add other useful features IF universally supported

- Minimize effort – don’t impact Vulkan development schedule

• What is AEP?

- A ‘meta-extension’ rolling up 20 EXT/OES extensions and features

EXT_draw_buffers_indexed

EXT_geometry_shader

EXT_gpu_shader5

EXT_primitive_bounding_box

EXT_shader_io_blocks

EXT_tessellation_shader

EXT_texture_border_clamp

EXT_texture_buffer

EXT_texture_cube_map_array

EXT_texture_sRGB_decode

KHR_debug

KHR_texture_compression_astc_ldr

KHR_blend_equation_advanced

OES_sample_shading

OES_sample_variables

OES_shader_image_atomic

OES_shader_multisample_interpolation

OES_texture_stencil8

OES_texture_storage_multisample_2d_array

EXT_copy_image

© Copyright Khronos Group 2015 - Page 84

OpenGL ES 3.2 features

• New pipeline stages: Tessellation and Geometry

- OES_tessellation_shader

- OES_geometry_shader

- OES_shader_io_blocks

- OES_primitive_bounding_box

• Extended compute functionality

- OES_shader_image_atomic

- Compute operations in fragment shader

• Per-sample processing

- OES_sample_shading

- OES_sample_variables

- OES_shader_multisample_interpolation

© Copyright Khronos Group 2015 - Page 85

OpenGL ES 3.2 features continued…
• Extended blending operations

- OES_draw_buffers_indexed

- KHR_blend_equation_advanced

• Ease of getting your code working

- KHR_debug

• Texturing functionality

- KHR_texture_compression_astc_ldr

- OES_texture_cube_map_array

- OES_texture_buffer

- OES_texture_border_clamp

- OES_texture_stencil8

- OES_texture_storage_multisample_2d_array

- EXT_texture_sRGB_decode

© Copyright Khronos Group 2015 - Page 86

OpenGL ES 3.2 features continued…
• Extended blending operations

- OES_draw_buffers_indexed

- KHR_blend_equation_advanced

• Ease of getting your code working

- KHR_debug

• Texturing functionality

- KHR_texture_compression_astc_ldr

- OES_texture_cube_map_array

- OES_texture_buffer

- OES_texture_border_clamp

- OES_texture_stencil8

- OES_texture_storage_multisample_2d_array

- EXT_texture_sRGB_decode

© Copyright Khronos Group 2015 - Page 87

Other new features

• KHR_robustness

- Safe queries (no buffer overrun)

- Enable ‘graceful’ recovery from GPU reset

- Deterministic behavior on out-of-range index accesses

• OES_draw_elements_base_vertex

- Add an offset to every index in an indexed draw call

• EXT_color_buffer_float

- Required support for 16F and 32F render targets: R, RG, RGBA

- Required support for R11F_G11F_B10F render targets

© Copyright Khronos Group 2015 - Page 88

OpenGL ES 3.2 status
• Specifications released on Monday

- API specification editor – Jon Leech (Khronos)

- GLSL ES specification editor – Rob Simpson (Qualcomm)

• Man pages available

- Man page editor – Ben Bowman (Imagination Technologies)

• GLSLang reference compiler in progress

- John Kessenich (LunarG)

- Currently almost complete for AEP

• Conformance test in progress

- Contractor selection underway

- Will be managed as an open source project starting later in 2015

© Copyright Khronos Group 2015 - Page 89

Why open source conformance?

• Why not?

- Seems like the right thing to do

• Broaden range of contributors

- Enable contributions based on real applications

• Share code with the community

- dEQP CTS (AOSP)

- Piglit?

• Issues

- Khronos gitlab vs github

- Need to factor out components that can’t be open-sourced

© Copyright Khronos Group 2015 - Page 90

What does the future hold? (my view…)

• Especially performance- or latency-sensitive apps will migrate to Vulkan

- Better control of frame rate and latency

- Easier to max out the hardware

• OpenGL ES will continue to be the API of choice for a wide range of applications

- Shortest path to a functionally correct application

- Reaches the widest range of platforms / largest number of eyeballs

• OpenGL ES technical evolution will go on as long as needed

- Will continue to expose new hardware capabilities

© Copyright Khronos Group 2015 - Page 91

OpenGL ES – Member News

OpenGL ES Working Group members

NVIDIA OpenGL ES Update

93

OpenGL ES 3.2 Driver
Available today

OpenGL ES 3.2 driver for Windows and Linux *

https://developer.nvidia.com/opengl-driver

Supported by GeForce 4xx series (Fermi) and up

Develop your OpenGL ES 3.2 content on desktop now

Deploy on mobile when available

OpenGL ES 3.2 for Shield Android TV coming soon via OTA update

Shield Tablet later
* Product is based on a published Khronos specification and is expected pass

the Khronos Conformance Process when available. Current conformance
status can be found at www.khronos.org/conformance.

https://developer.nvidia.com/opengl-driver
https://developer.nvidia.com/opengl-driver
https://developer.nvidia.com/opengl-driver
https://developer.nvidia.com/opengl-driver
http://www.khronos.org/conformance

 © Imagination Technologies p94
www.imgtec.com

OpenGL ES 3.2 Update

 © Imagination Technologies p95

OpenGL ES 3.2

 Supported by Series6XT Cores onwards

 AEP in current drivers

 ES 3.2 available shortly*

 Great new features!

 Floating Point Rendering

 Debugging

 More blend modes

 Dynamic indexing

* Product is based on a published Khronos specification and is expected pass the Khronos Conformance Process when available.
Current conformance status can be found at www.khronos.org/conformance.

http://www.khronos.org/conformance

© Copyright Khronos Group 2015 - Page 96

Vulkan Update
SIGGRAPH 2015

© Copyright Khronos Group 2015 - Page 97

Outline

• Introduction and status

- Tom Olson (ARM), Vulkan WG chair

• Working Group progress report

- Loaders and Layers: Vulkan SDK – Jens Owen (LunarG / Valve)

- Window system integration – Alon Or-bach (Samsung), Vulkan WSI chair

- Vulkan API changes since GDC – Jesse Barker (ARM)

• Why Vulkan is great

- Tobias Hector (Imagination Technologies)

• Bringing Vulkan to the 3D ecosystem

- WG members

© Copyright Khronos Group 2015 - Page 98

A Vulkan project timeline
• 2014 July – Project launch

• 2014 August – Plan disclosed at SIGGRAPH

• 2015 January – Most technical issues closed

• 2015 March – Disclosure at GDC

- Discussions / feedback cycles with external developer community under NDA

- Thanks guys!

• 2015 June – Internal “soft freeze”

- Spec writing

- SDK construction

- Conformance test work

- Continued discussion and refinement

© Copyright Khronos Group 2015 - Page 99

Project status

• On track to deliver a specification by e/o 2015

• Specification writing is the critical path

- Thanks to our heroic editors:
- Graham Sellers, AMD

- Bill Licea-Kane, Qualcomm

- Jon Leech, Khronos / Valve

- …plus working group members

• Conformance test creation is staffed, planned, and well under way

- Thanks to
- Pyry Haulos, Google – CTS project manager / tech lead

- Code contributions from Imagination Technologies, Intel, Qualcomm, Samsung

© Copyright Khronos Group 2015 - Page 100

Loaders and Layers: Vulkan SDK

Jens Owen and Courtney Goeltzenleuchter
LunarG

Introduction to the LunarG SDK

• Valve funding LunarG to support Vulkan ecosystem

- Cross platform tools will be made available as open source
- LunarG providing SDK and support to developers via LunarXchange

- Subscribe for updates at http://lunarg.com/vulkan

http://lunarg.com/vulkan
http://lunarg.com/vulkan
http://lunarg.com/vulkan
http://lunarg.com/vulkan

sign up: http://LunarG.com/Vulkan/

Introduction to the Vulkan Loader

• Common Loader used to enable use of layers
• Add layers without affecting the app or the ICD
• Provides a plug-n-play experience –

• i.e. multiple Vulkan devices can coexist on a system peacefully
• Aggregates drivers from multiple vendors

• Handler of…
• Driver management
• Layer libraries
• Instance extensions

Vulkan Loader
• Loader ensures only supported layers and extensions are enabled at creation

• Layers can be activated (enabled) either explicitly or implicitly

• Loader controls the layer call sequence
• Chaining layers together in the proper sequence

• Helps each layer determine where it needs to jump to next

• Aggregates various device queries

• For IHVs, the loader:
• Provides a helpful way to capture/debug app behavior
• Reduces bloat from unnecessary error checking in the driver

Vulkan’s Common

 Loader

Validation Layer

Validation Layer

Validation Layer

Vulkan Tools Architecture for Layers

•Layered design for cross-vendor tools innovation and flexibility

• IHVs plug into a common, extensible architecture for code validation,
debugging and profiling during development without impacting production
performance

Vulkan-based Title

IHV’s Installable Client

Driver

Vulkan’s Common Loader

Production Path

(Performance) Debug Layers can be

installed during Development

Validation Layers

Debug Layers

Debug information via

standardized API calls

Vulkan Validation Layers
•Validation above driver

• Drivers generally will not include much error checking
• Generic layers validate correct use of Vulkan across devices
• Drivers may include multiple layers to validate vendor-specific behavior

•Vulkan supports intercepting or hooking API entry points
• Built into the framework
• Layers can intercept a subset of, or all, Vulkan API entry points
• Multiple layers may be chained together to cascade their functionality

and appear as a single, larger layer

LunarG Vulkan SDK Layers
Layer Name Description

APIDump Print API calls and their parameters and values

DrawState Validate the descriptor set, pipeline state and dynamic state

Image Validate texture formats and render target formats

MemTracker Track & validate GPU memory, its binding to objects & command buffers

ObjectTracker Track all Vulkan objects and flag invalid objects and object memory leaks

ParamChecker Validate API parameter values

ShaderTracker Validate the interfaces between SPIR-V modules and the graphics pipeline

Threading Check validity of multi-threaded API usage

© Copyright Khronos Group 2015 - Page 14

Vulkan Feature Sets
• Vulkan supports hardware with a wide range of hardware capabilities

- Mobile OpenGL ES 3.1 up to desktop OpenGL 4.5 and beyond

• One unified API for desktop, mobile, console, and embedded
- No "Vulkan ES" or "Vulkan Desktop"

• Vulkan precisely defines a set of "fine-grained features"
- Features are specifically enabled at device creation time (similar to extensions)

• Vulkan provides the mechanism but does not mandate policy
- Market or platform specific profiles can be defined by Khronos, platform vendors,

or other interested parties

© Copyright Khronos Group 2015 - Page 108

Vulkan Window System Integration
Overview

SIGGRAPH, Khronos BoF, August 2015

Alon Or-bach, Samsung Electronics
Chair, Vulkan WSI Technical Sub-Group

© Copyright Khronos Group 2015 - Page 109

Vulkan Window System Integration (WSI)
• Explicit control for acquisition and presentation of images

- Designed to fit the Vulkan API and today’s compositing window systems

• Standardized extensions - unified API for multiple window systems

- Works across Android, Mir, Windows (Vista and up), Wayland and X (with DRI3)

• Platforms can extend functionality, define custom WSI stack, or have no display at all

- Cleanly separates device creation from window system

- Decoupled from main API – allows progress at a different pace

Custom

WSI

Extension

Platform

WSI

Extension

Vulkan WSI

Standardized

Extensions

© Copyright Khronos Group 2015 - Page 110

Vulkan WSI: Key Concepts
• Platform

- Our terminology for an OS / window system

- e.g. Android, Windows, Wayland, X11 via XCB

• Physical Device (VkPhysicalDevice)

- Exposes which Queues support presentation

and which Platform(s) they support

• Presentation Engine

- The Platform’s compositor or display engine

• Surface

- Abstraction for a Platform’s window or other consumer

• Presentable Image

- A VkImage created by the Platform

- Most likely by the Presentation Engine

• Swapchain

- Array of Presentable Images associated with a Surface

VkPhysical

Device

Platform

VkQueue
VkQueue

Swapchain

Surface

VkImage
VkImage

VkImage

Platform
Platform

© Copyright Khronos Group 2015 - Page 111

Vulkan WSI: Allocation Model
• Several different allocation models considered

- Wanted a good fit with Vulkan API – upfront Command Buffer creation

- Accommodate design of OS platforms compositors

- Encourage greater control of swap chain where platforms support permits

• Upfront allocation of Presentable Images

- Avoid last-minute surprise of which image is the render target

- Application decides minimum number of images to request

- Platform must allocate at least the number of images requested

• Application has control over the order in which images are presented

- Any presentable image the application owns can be presented – once acquired!

- Content of image preserved between presents

• Clean mechanism to relay if desirable or necessary to recreate a Swapchain

- No surprising application with a changed image size

- Platform informs application if current Swapchain no longer useable, or not optimal

- Application is responsible to create a new Swapchain

© Copyright Khronos Group 2015 - Page 112

Vulkan WSI: Ownership
• Each presentable image is either owned by the application or the presentation engine

- This is always the case, with a clear transition of ownership. Never both simultaneously!

- Application must only modify Presentable Images it owns

- Presentation Engine must only display Presentable Images it owns

• Presenting and acquiring are separate operations

- Presenting transfers ownership of a Presentable Image to the Presentation Engine

- Acquiring transfers ownership of a Presentable Image to the application

Time

Presentation Engine

Image

X

Image

X

Image

Y

Image

Y

Transition

to Present

Present

Acquire

Transition

to Present

Present

Acquire

Image X owned by Presentation Engine

Image X owned by

application

Image X owned by

application

Transition

to Render

Transition

to Render

© Copyright Khronos Group 2015 - Page 113

Vulkan: API Changes Since GDC
SIGGRAPH BoF, August 12, 2015

Jesse Barker | Principal Software Engineer
ARM

© Copyright Khronos Group 2015 - Page 114

Overview
•Developer Support

- Compile-Time Help for the Programmer

- Heaps of Memory

•Enhanced Features

- Pipeline Caches

- Command Buffer Management

- Multi-pass Render Passes

© Copyright Khronos Group 2015 - Page 115

Developer Support
•Focus on type safety and const-ness

•Memory heaps are back

© Copyright Khronos Group 2015 - Page 116

Pipeline Caches
•Supports efficient pipeline creation and switching

•Enables pipelines to share components

•“Save and restore” your favorites

© Copyright Khronos Group 2015 - Page 117

Command Buffer Management
•Command Pools

- Efficient command buffer building

- Supports multiple usage models

•2-Level Command Buffers

- Enables flexible command organization

- Use a single level: command structure is flat

- Use both levels: call commands in groups

© Copyright Khronos Group 2015 - Page 118

Multi-pass Render Passes
•Extends the efficiency of the render pass

•Leverages two-level command buffers

•Leverages pixel locality

•What can I do with this?

© Copyright Khronos Group 2015 - Page 119

Why Vulkan is Great
SIGGRAPH, Khronos BoF, August 2015

Tobias Hector
Imagination Technologies

© Copyright Khronos Group 2015 - Page 120

• One API

- Vulkan is one API for all platforms

• Efficient

- More efficient, CPU should not be the bottleneck

• Parallelizable

- Distribute workloads, don’t overload a single core

• Explicit

- Tell the driver what to do - no more heuristics and

guesswork

• Architecture Positive

- Allow all architectures to expose their strengths

Introduction - Topics

© Copyright Khronos Group 2015 - Page 121

Introduction - Demo
• Presenting with a demo

- OpenGL ES and Vulkan

- Core API only

• Aim to highlight Vulkan’s advantages

- Many (simple) workloads to emphasize

• Platform is a Nexus Player

- Android 5.1 (AOSP)

- Mobile-class CPU/GPU

- Will hit thermal limits

© Copyright Khronos Group 2015 - Page 122

One API
• All Platforms, All Architectures

- A single base API

- Designed for modern systems

• Capability Flags

- Minimum maximums, optional feature support

• Extensions

- Vendor, Multi-Vendor, Khronos ratified

• Feature Sets

- A range of HW exists today

- Feature sets define functionality levels

© Copyright Khronos Group 2015 - Page 123

Efficient – Why it’s Important
• GPU should not have to wait for the CPU

- Reduce the cost of the critical path

• Less CPU = More GPU

- An SoC will have more thermal headroom

• Increased Battery Life

- Less CPU usage = longer battery life!

© Copyright Khronos Group 2015 - Page 124

Efficient – Command Buffer Re-Use
• Static content doesn’t need to be recalculated

- Just resubmit the same work

• Commands baked into Command Buffers

- Can be re-used after submission

- Can update resources

• Cost of Queue Submission is low

© Copyright Khronos Group 2015 - Page 125

Efficient – Demo!

© Copyright Khronos Group 2015 - Page 126

Parallelizable
• Modern CPUs are multi-core

- Applications use multiple threads

• Distribute workloads to multiple threads

- Application-managed threading

- No global state

- Separate command generation/submission

© Copyright Khronos Group 2015 - Page 127

Parallelizable – Demo!

© Copyright Khronos Group 2015 - Page 128

Explicit – Queue Submission
• Explicit work submission

- Only Queue submission leads to GPU work

- Command generation is separated

• Application has the choice

- No heuristics or internal decisions about submission

- Predictable results!

© Copyright Khronos Group 2015 - Page 129

Explicit – Resource Management
• Full explicit resource creation

- Ready to use when app decides

• Resources - B.Y.O.M

- Explicitly allocate your own memory

- Multiple heaps/types to allow informed choices

• Allocation mapping to resources is a user choice

- Multiple resources can alias the same memory

- Sparse features give even finer control

© Copyright Khronos Group 2015 - Page 130

Architecture Positive
• Designed for all architectures

- Emphasis on exposing each architecture’s strengths

• An example: Render Passes

- Makes render target loads/stores explicit

• Sub-passes

- Multiple chained passes

- Communicate via Pixel Local data

© Copyright Khronos Group 2015 - Page 131

Architecture Positive – PLS!
• Designed for all architectures

- Emphasis on exposing each architecture’s strengths

• An example: Render Passes

- Makes render target loads/stores explicit

• Sub-passes

- Multiple chained passes

- Communicate via Pixel Local data

• Pixel Local Storage in the Core API!

© Copyright Khronos Group 2015 - Page 132

Architecture Positive – Demo!

© Copyright Khronos Group 2015 - Page 133

Summary
• Vulkan gives us a lot of control

- At much greater efficiency

• One API for all

- Architectures, Platforms

• Come see the demo afterwards

• More Information

- khronos.org/vulkan

- blog.imgtec.com

- @tobskihectov

• Questions?

mailto:ntrevett@nvidia.com
http://khronos.org/vulkan
http://khronos.org/vulkan
http://blog.imgtec.com/
http://blog.imgtec.com/
https://twitter.com/tobskihectov
https://twitter.com/tobskihectov

© Copyright Khronos Group 2015 - Page 134

Bringing Vulkan to the 3D Ecosystem

Vulkan Working Group

Vulkan on Android
SIGGRAPH, August 2015
Jesse Hall | Google, Android Graphics

Vulkan: Better Mobile Graphics

 Multithreading and reduced CPU overhead:
o Free up power and thermal headroom for the GPU

o More draw calls and state changes per-frame per-core

o Effectively scale to multiple CPU cores

 First-class support for tile-based architectures
o App explicitly defines render pass boundaries and operations

o Reusable RenderPass and Framebuffer objects amortize tiling setup

o Allows merging render passes into a single tiling pass

Vulkan on Android

 Vulkan will be supported in a future Android release
o Vulkan loader always present, even if device doesn’t support Vulkan

o New <uses-feature> declaration in application manifest

o NDK will include shader compiler, validation layers, and other tools

 Google is contributing to a comprehensive test suite
o Open-source tests, available on all Vulkan platforms

o Enforced for all Android devices and updates

 Android will continue to support OpenGL ES
o Developers can choose which API best meets their needs

o Continuing to contribute to and adopt new versions

Vulkan Update

Dan Ginsburg

Vulkan Support

 Source 2 Engine ported

 Dota 2 Reborn seeded to desktop IHVs

 All IHVs have drivers running Dota 2 Reborn

 SDK collaboration with LunarG

 Common loader

 Samples

 Reference implementation

 SPIR-V tools

 Trace capture and replay

 Documentation

Why Vulkan is the Future

 DX12

 Windows 10-only

 Metal

 iOS/OSX-only

 Vulkan

 Cross-platform: Windows 7/8/10, Linux, Android

 Cross-vendor: NVIDIA, AMD, Intel, Qualcomm,

Imagination Technologies, Samsung, ARM, Broadcom,

Vivante.

NVIDIA Vulkan update

Why is it important to NVIDIA?

API is designed to be extensible

We can easily expose new GPU features

No single vendor or platform owner controls the API

Scales from low-power mobile to high-performance desktop

Can be used on any platform

It’s fast!

It’s open

Vulkan driver update

Supports the latest Vulkan API and LunarG SDK

Alpha drivers available to Khronos members with NVIDIA NDA

Windows, Linux and Android

GeForce and Tegra

Public beta available after Vulkan spec release

Work in progress

Demo: Vulkan cadscene
CPU overhead, multi-CPU scaling, pipeline changes

cadscene on Shield

Same framework used for NVIDIA GameWorks samples

https://github.com/NVIDIAGameWorks

Supports cross-platform development

Code for Windows, Linux and Android

Using the GameWorks cross-platform SDK

Demo: Vulkan cadscene on Shield
Interactive high-polygon count CAD models

Overview
• First Vulkan benchmark

• Entirely new rendering engine

• In-house render API for Vulkan, Metal, DX12
• Also on OpenGL 4.3+, ES 3.2, DX11

• Same shaders using our translator

• Concept

• Working title: Alien Beam

• Huge amount of individual draw calls (2000+ per render pass)

• Compute and render pipeline interop

• State

• Currently WIP and Beta, RC expected by Q4

• Currently v90, switch to v138 with Android as soon as possible

Alien Beam video

Rendering pipeline
• Highlights:

• Deferred rendering (and forward rendering at transparents)

• Adaptive HDR

• Physically-based lighting

• Raymarched volumetrics

• Particles

• Render passes:

1. Advect compute-based particles

2. Deferred rendering: geometry pass & shading

3. Forward rendering: transparencies (particles, light shafts)

4. Post-process effects (including compute) and final composition

Future development plans
• Rendering features

• Dynamic shadows for volumetrics

• Image-based lighting to augment analytic lights

• Enhanced fog

• Additional post-effects

• Velocity-based motion blur & DoF

• SSAO

• Lens flares

• Multi-threaded command recording

• Stereo rendering?

© Copyright Khronos Group 2015 - Page 153

Vulkan on Adreno

Maurice Ribble, Qualcomm

© Copyright Khronos Group 2015 - Page 154

Fracture Demo Using Vulkan™

• Preliminary Vulkan driver based on latest internal

Khronos SDK header

• 10x number of draw calls over OpenGL® ES

driver

• Vulkan prototype driver greatly reduces CPU

overhead
o Increases performance and reduces power

consumption

• Three render passes:
o Shadows
o Reflections
o Compositing

• FP16 HDR Lighting

“Qualcomm Technologies has been a major contributor
to the development of Vulkan which we intend to
support with our upcoming Qualcomm® Adreno™
GPUs for Qualcomm® Snapdragon™ processors.”

Avinash Seetharamaiah, Senior Director of Engineering

Qualcomm Technologies, Inc.

© Copyright Khronos Group 2015 - Page 155

Fracture Demo

© Copyright Khronos Group 2015 - Page 156

Intel demo

Slawomir Grajewski, Intel

© Copyright Khronos Group 2015 - Page 157

Questions?

	Khronos-Press-Briefing-SIGGRAPH_Aug15.pdf
	Slide Number 1
	Khronos Connects Software to Silicon
	Khronos Open Standards for Graphics and Compute
	OpenGL Extensions Released Today
	OpenGL ES 3.2 Released Today
	Safety Critical Working Group
	OpenCL 2.0 Updates Released Today
	Next Generation GPU APIs
	No Compromise
	The Power of a Three Layer Ecosystem
	Developing Ecosystem and Spec in Parallel
	Vulkan Tools Architecture
	LunarG Open Source SDK Layers
	Vulkan Feature Sets
	Vulkan Window System Integration (WSI)
	Vulkan Open Source Conformance Tests
	SPIR-V Transforms the Language Ecosystem
	Driving the SPIR-V Open Source Ecosystem
	SPIR-V Open Source Community Activity
	Vulkan Status
	Roadmap Possibilities
	Summary

