

Pea Disease Diagnostic Series

Samuel Markell, Extension Plant Pathologist North Dakota State University

Julie Pasche, Dry Bean and Pulse Crop Pathologist, North Dakota State University

Lyndon Porter, Research Plant Pathologist – Legumes, U.S. Department of Agriculture-Agricultural Research Service, Prosser, Wash.

NDSU EXTENSION SERVICE

NDSU NORTH DAKOTA AGRICULTURAL

North Central

Index

Rots and Wilts

Fusarium root rot	PP1790-1
Aphanomyces root rot	PP1790-2
Pythium seed and seedling rot	PP1790-3
Rhizoctonia seed, seedling and root rot	PP1790-4
Fusarium wilt	PP1790-5

Spots and Lesions

Ascochyta blight	PP1790-6
Bacterial blight and brown spot	PP1790-7
Powdery mildew	PP1790-8
Rust	PP1790-9
Septoria blight	PP1790-10
White mold	PP1790-11

Viruses

PP1790-12
PP1790-13
PP1790-14
PP1790-15
PP1790-16

The NDSU Extension Service does not endorse commercial products or companies even though reference may be made to tradenames, trademarks or service names. NDSU encourages you to use and share this content, but please do so under the conditions of our Creative Commons license. You may copy, distribute, transmit and adapt this work as long as you give full attribution, don't use the work for commercial purposes and share your resulting work similarly. For more information, visit www.ag.ndsu.edu/agcomm/creativecommons.

For more information on this and other topics, see www.ag.ndsu.edu

Country commissions, North Dakota State University and U.S. Department of Agriculture cooperating, North Dakota State University does not discriminate on the basis of age, color, disability, gender expression/identity, genetic information, marital status, national origin, public assistance status, race, religon, sex, sexual orientation, or status as a U.S. veleran. Direct inquiries to: Vice Provost for Faculty and Equity, DOI Main 201, 701-231-7708 or Title X/ADA Coordinator, Old Main 102, 701-231-4093. This publication will be made available in alternative formats for people with disabilities upon request, (701) 231-7881.

PP1790-1 Pea Disease Diagnostic Series

Fusarium root rot

Fusarium avenaceum, F. solani f. sp. *pisi* and other species

PP1790-1 Pea Disease Diagnosti<u>c Series</u>

Fusarium root rot

Fusarium avenaceum F. solani f. sp. pisi and other species

AUTHORS: Julie S. Pasche, Lyndon Porter and Kimberly Zitnick-Anderson

SYMPTOMS

- Red to brown-black below-ground lesions
- Lateral root reduction and complete destruction in severe infections
- Below-ground red discolored vascular tissue is possible
- Above-ground stunting, yellowing and necrosis

FIGURE 1 - Discrete lesions expanding from the point of seed attachment and coalescing into larger lesions

FIGURE 2 - Advanced lesions affecting large areas of roots and hypocotyls

FIGURE 3 - Infected plants yellowing from the base upward

FACTORS FAVORING DEVELOPMENT

- Temperatures from 73 to 83 F and wet soils
- · Soil compaction and plant stress
- · Contaminated seed or plant debris

IMPORTANT FACTS

- Alternative hosts include dry beans, soybean, chickpea and lentil
- Often seen in a complex with other root rots
- Above-ground symptoms often not seen until flowering
- Can be confused with other root rots and abiotic stress (water damage, etc.)

Card 1 of 16

PP1790-2 Pea Disease Diagnostic Series

Aphanomyces root rot

Aphanomyces euteiches

PP1790-2 Pea Disease Diagnostic Series

Aphanomyces root rot

Aphanomyces euteiches

AUTHOR: Lyndon Porter

SYMPTOMS

- Caramel-brown root and below-ground stem
- Outer root and below-ground stem tissue will slough off, exposing the vascular tissue
- Lower leaves turn yellow; the plant may be stunted, wilt and/or die prematurely

FIGURE 1 - Caramel-brown infected roots (R) and healthy roots (L)

FIGURE 2 - Infected roots and yellowing lower leaves

FIGURE 3 - Outer root tissue sloughing off and exposing inner vascular tissue

FACTORS FAVORING DEVELOPMENT

- Cool and wet spring conditions
- Low-lying areas
- · Short rotations with peas or lentils

IMPORTANT FACTS

NDSU EXTENSION

- Thick-walled spores can survive in soil for 20 years or more
- Lentils are a host, but chickpeas and faba beans are not
- Crop rotations of six or more years with nonhost can help reduce disease
- Can be confused with other root rots and abiotic stress (water damage, etc.)

NDSU NORTH DAKOTA AGRICULTURAL

USDA Research Service Card 2 of 16

Pythium seed and seedling rot

Pythium ultimum and other Pythium species

Photo: L. Porter, USDA-ARS Prosser, WA

PP1790-3 Pea Disease Diagnostic Series

Pythium seed and seedling rot

Pythium ultimum and other Pythium species

AUTHOR: Lyndon Porter

SYMPTOMS

- Rotted seeds often are coated with soil that is difficult to remove, even with washing
- Rotted tissue appears light brown
- Stunted plants, poor vigor and pinching-off of secondary roots

FIGURE 1 - Light brown internal seed rot FIGURE 2 - Rotted seed coated with soil FIGURE 3 - Emerged plants with reduced vigor

FACTORS FAVORING DEVELOPMENT

 Conditions that delay emergence, including planting into cool soils, poor seed vigor and compacted soils

IMPORTANT FACTS

NDSU EXTENSION

- Common seed rot pathogen across the U.S.
- Manage by maximizing speed of emergence by planting as shallow as possible in warm soils with high-quality seed
- Fungicide seed treatments effective on *Pythium* should be used
- Can be confused with water damage and other root rots

NDSU NORTH DAKOTA AGE

USDA -

RICULTURAL

Card 3 of 16

Rhizoctonia seed, seedling and root rot

Rhizoctonia solani AG 2-1, 4, 5 and 8

PP1790-4 Pea Disease Diagnostic Series

Rhizoctonia seed, seedling and root rot

Rhizoctonia solani AG 2-1, 4, 5 and 8

AUTHORS: Timothy Paulitz, Dipak Sharma-Poudyal, Lyndon Porter, Weidong Chen and Lindsey du Toit

SYMPTOMS

- Seeds may rot in soil, resulting in poor emergence
- Seedlings have reddish-brown, sunken lesions on roots and base of stem
- Pinching-off of tips of the main tap root and secondary roots
- Plants become stunted and yellow

FIGURE 1 - Sunken brown lesions on below-ground stem tissue

FIGURE 2 - Browning of the roots and pinching-off of root tips

FIGURE 3 - Peas infected with Rhizoctonia

FACTORS FAVORING DEVELOPMENT

- Wet, cool soils
- Seed with poor germination

IMPORTANT FACTS

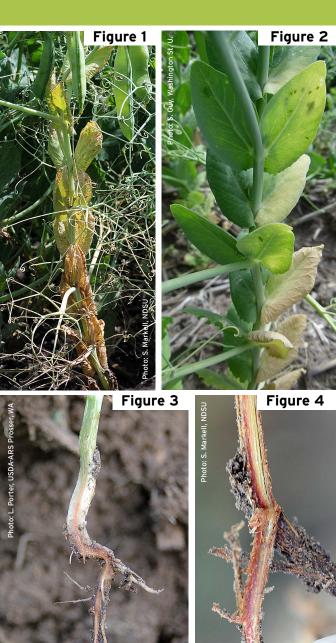
NDSU EXTENSION

- · Pathogen can survive in soil and plant debris
- Rotation is largely ineffective and resistant cultivars are not available
- · Fungicide seed treatments are recommended

NDSU NORTH DAKOTA AGRICULTURAL

• Can be confused with other root rots, water damage

Card 4 of 16



Fusarium wilt

Fusarium oxysporum f. sp. pisi

PP1790-5 Pea Disease Diagnostic Series

Fusarium wilt

Fusarium oxysporum f. sp. pisi

AUTHOR: Stephen Guy

SYMPTOMS

- Leaves curl and yellow progressively from the base of the plant upward, sometimes more severe on one side of the plant
- Root vascular tissue is shades of yellow, orange or red, extending into the base of stem
- Field distribution is scattered plants or concentrated patches
- Plants may wilt

FIGURE 1 - Yellowing and curling of leaves

FIGURE 2 - Curling and yellowing of lower leaves on one side of the plant only

FIGURE 3 - Orange-red vascular discoloration extending into the stem

FIGURE 4 - Severe vascular discoloration

FACTORS FAVORING DEVELOPMENT

- Previous history of disease in the field
- · Frequent cropping of susceptible varieties
- Late planting

IMPORTANT FACTS

NDSU EXTENSION

- Can survive in soil for 10 years or more
- The fungus penetrates root tips and blocks vascular tissue
- Pathogen has more than one race and resistant varieties may not be effective against all races

NDSU NORTH DAKOTA AGRICULTURAL

USDA Research Service

• Can be confused with Aphanomyces and Fusarium root rots and abiotic stress

Card 5 of 16

Ascochyta blight

Ascochyta pisi, A. pinodes, Phoma medicaginis var. pinodella

Photo: M. Wunsch, NDSU

PP1790-6 Pea Disease Diagnostic Series

Ascochyta blight

Ascochyta pisi, A. pinodes, Phoma medicaginis var. pinodella

AUTHOR: Michael Wunsch

SYMPTOMS

- Leaf lesions are dark, irregular flecks and/or circular to oval lesions, with a concentric ring pattern
- Purplish stem lesions develop at nodes, elongate and may girdle stem
- Pod lesions are small, irregular to circular and brown to purplish black
- Seed may be discolored

FIGURE 1 - Oval lesions with concentric rings FIGURE 2 - Irregular flecks on leaf, extending to petioles and stems FIGURE 3 - Small, irregular pod lesions

FIGURE 4 - Stem lesions

FACTORS FAVORING DEVELOPMENT

Cool, wet weather

NDSU EXTENSION

· Short rotational intervals between pea crops

IMPORTANT FACTS

- Primarily residue-borne but can be seedborne
- Crop rotation reduces but does not eliminate pathogen inoculum
- The host range of the causal pathogens is limited to field peas
- Can be confused with bacterial blight or Septoria blight

NDSU NORTH DAKOTA AGRICULTURAL

USDA Research Service Card 6 of 16

PP1790-7 Pea Disease Diagnostic Series

Figure 1

Bacterial blight and brown spot

Pseudomonas syringae pv. pisi and P. syringae pv. syringae

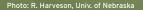


Photo: R. Harveson, Univ. of Nebraska

PP1790-7 Pea Disease Diagnostic Series

Bacterial blight and brown spot

Pseudomonas syringae pv. pisi and P. syringae pv. syringae

AUTHOR: Robert M. Harveson

SYMPTOMS

- Symptoms occur on all above-ground plant parts
- Lesions initially are water-soaked and later turn necrotic
- Lesions are vein-delimited, angular in shape and translucent
- Bacterial ooze may be seen under conditions of high humidity

FIGURE 1 - Angular leaf lesions delimited by veins FIGURE 2 - Watery stem lesions forming in linear patterns as disease progresses

FIGURE 3 - Bacterial ooze emerging from pod lesions

FACTORS FAVORING DEVELOPMENT

- Warm temperatures
- · High humidity or leaf moisture

IMPORTANT FACTS

NDSU EXTENSION

- Pathogens are seedborne
- Spread can occur with any type of mechanical contact on wet leaves or by splashing water
- Planting clean seed and use of disease resistant cultivars are the most effective management tools

NDSU NORTH DAKOTA AGRICULTURAL

USDA Research Service

· Can be confused with fungal leaf spots

Card 7 of 16

Powdery mildew

Erysiphe pisi and E. trifolii

Figure 4

Photo: R. Attanayake, Washington St. L

PP1790-8 Pea Disease Diagnostic Series

Powdery mildew

Erysiphe pisi and E. trifolii

AUTHORS: Renuka N. Attanayake, Weidong Chen and Michael Wunsch

SYMPTOMS

- White powdery tufts of fungal growth
- New fungal growth can be rubbed off easily
- Fungal growth will expand and may cause plant tissue to become chlorotic
- Late in the season, black fungal structures may appear
- Infection on pods can cause a gray-brown discoloration of the seeds

FIGURE 1 - Small tufts of fungal growth

FIGURE 2 - Progression of fungal growth

FIGURE 3 - Fungal growth rubbed off right side of leaf

FIGURE 4 - Sever infection late in the season; note black fungal structures

FACTORS FAVORING DEVELOPMENT

- Temperatures of 59 to 77 F are optimal
- Heavy dew or fog

NDSU EXTENSION

Late planting

IMPORTANT FACTS

- Pathogen can be soil-borne, seed-borne and wind-dispersed
- Management tools include resistant cultivars, crop rotation and foliar fungicides

NDSU NORTH DAKOTA AGRICULTURAL

USDA Research Service

Most prevalent late in the season

Card 8 of 16

PP1790-9 Pea Disease Diagnostic Series

Figure 3

Uromyces viciae-fabae

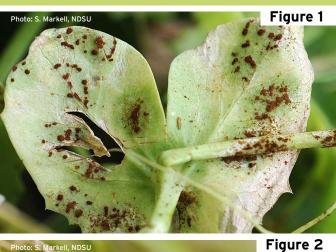


Photo: S. Markell, NDSU

Photo: S. Markell, NDSU

PP1790-9 Pea Disease Diagnostic Series

Rust

Uromyces viciae-fabae

AUTHORS: Sam Markell and Julie Pasche

SYMPTOMS

- Affects all above-ground plant parts
- Pustules erupt from tissue, causing holes and large lacerations
- Pustules are filled with dusty cinnamon-brown spore that easily rub off
- Severe infection causes yellowing, premature senesce and yield loss

FIGURE 1 - Pustules filled with dusty brown spores on leaf

FIGURE 2 - Pustules lacerating branch

FIGURE 3 - Severe infection causing premature senesce and plant death

FACTORS FAVORING DEVELOPMENT

· Heavy dew or fog

NDSU EXTENSION

IMPORTANT FACTS

- Disease observed annually in northern Great Plains but rarely widespread
- Epidemics can progress quickly once disease is established

<u>USDA</u>

- Foliar fungicides can help manage disease
- · Also can infect lentils and garden peas

NDSU NORTH DAKOTA

Card 9 of 16

Septoria blight

Septoria pisi

Photo: S. Markell, NDSU

Figure 3

PP1790-10 Pea Disease Diagnostic Series

Septoria blight

Septoria pisi

AUTHORS: Mary Burrows and Sam Markell

SYMPTOMS

- Symptoms occur on all plant parts
- Necrotic lesions with small black fungal structures (pycnidia)
- Often occur late in the season

FIGURE 1 - Young leaf lesion with black fungal structures (pycnidia)
FIGURE 2 - Oblong lesions with pycnidia
FIGURE 3 - Necrotic lesion with pycnidia on branch

FACTORS FAVORING DEVELOPMENT

- Warm temperatures (70 to 80 F)
- · High humidity or heavy dews

IMPORTANT FACTS

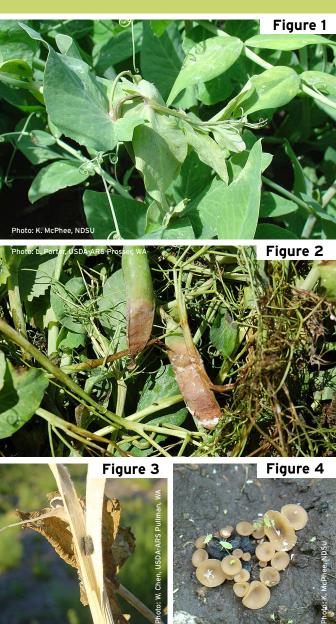
NDSU EXTENSION

- The pathogen survives on crop stubble or infected seed; spores are wind-dispersed
- Planting clean seed, rotation and foliar fungicides are the most effective management tools
- No variety resistance is known
- Can be confused with Ascochyta blight and bacterial blight. Note that Septoria pycnidia are distributed randomly and Ascochyta pycnidia are distributed in a circular, target pattern. Bacterial blight does not have pycnidia.

USDA

NDSU NORTH DAKOTA AGE

Card 10 of 16



RICULTURAL

White Mold

Sclerotinia sclerotiorum

PP1790-11 Pea Disease Diagnostic Series

White Mold

Sclerotinia sclerotiorum

AUTHORS: Weidong Chen, Lyndon Porter and Kevin McPhee

SYMPTOMS

- Lesions occur on stems, leaves and pods
- Lesions initially are water-soaked but appear bleached and necrotic as they age
- White, puffy fungal growth (white mold) may appear on lesions
- Mouse-dropping-sized black sclerotia may form on and in infected tissue

FIGURE 1 - Water-soaked lesion on an infected plant

FIGURE 2 - Necrotic lesions and white mycelium (mold)

FIGURE 3 - A black sclerotium in a pea stem

FIGURE 4 - Apothecia (mushrooms) developed from sclerotia

FACTORS FAVORING DEVELOPMENT

- · Cool and moist conditions
- Lush vegetative growth
- Heavy canopy

IMPORTANT FACTS

NDSU EXTENSION

- · Sclerotia can survive for many years in soil
- Pathogen infects most broadleaf crops
- Plant-to-plant spread can occur by physical contact
- Management tools include clean seed, fungicide applications, rotation to cereal crops and irrigation management

NDSU NORTH DAKOTA AGRICULTURAL

USDA Research Service Card 11 of 16

PP1790-12 Pea Disease Diagnostic Series

Alfalfa mosaic

Alfalfa mosaic virus

Photo: L. Porter, USDA-ARS Prosser, WA

PP1790-12 Pea Disease Diagnostic Series

Alfalfa mosaic

Alfalfa mosaic virus

AUTHORS: Lyndon Porter

SYMPTOMS

- Yellow mottling of foliar tissue (not always prominent)
- Purple or brown streaks in leaf veins
- Dead tissue on leaf or stem

FIGURE 1 - Yellow mottling of foliar tissue

FACTORS FAVORING DEVELOPMENT

- Presence of pea and green peach aphids, which transmit the virus
- · Proximity to alfalfa fields

IMPORTANT FACTS

NDSU EXTENSION

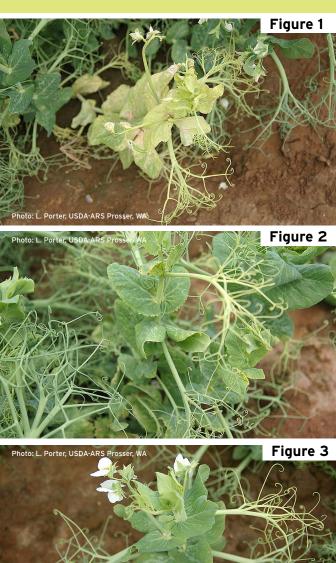
NDSU NORTH DAKC

- Pea, green peach, foxglove, bean and potato aphids transmit the virus
- No resistant cultivars are available
- Insecticides may reduce secondary spread of virus by killing vectors (aphids)

USDA

· Can be confused with pea streak virus

Card 12 of 16


CULTURAL

Bean leaf roll or pea leaf roll

Bean leaf roll virus

PP1790-13 Pea Disease Diagnostic Series

Bean leaf roll or pea leaf roll

Bean leaf roll virus

AUTHORS: Lyndon Porter

SYMPTOMS

- Plants are yellow and stunted
- New tissue is distorted and twisted while old growth may be normal
- · Leaflets curl downward and are brittle

FIGURE 1 - Yellow, distorted and twisted leaves FIGURE 2 - Down-curled leaves

FIGURE 3 - Yellow and distorted new growth; old growth is normal

FACTORS FAVORING DEVELOPMENT

Presence of pea aphids transmitting the virus

IMPORTANT FACTS

NDSU EXTENSION

- Virus is not seed-transmitted
- · Often occurs with pea enation mosaic virus
- Later infections are less likely to have an impact on yield
- · Cultivars with resistance may be available

NDSU NORTH DAKOTA

• Can be confused with other viruses, root rots, herbicide damage or abiotic stress

USDA

Card 13 of 16

RICULTURAL

Pea enation mosaic

Pea enation mosaic virus

Photo: L. Porter, USDA-ARS Prosser, WA

Figure 2

Photo: L. Porter, USDA-ARS Prosser, WA

Figure 3

PP1790-14 Pea Disease Diagnostic Series

Pea enation mosaic

Pea enation mosaic virus

AUTHORS: Lyndon Porter

SYMPTOMS

- Leaves may be brittle and have a mosaic of green and yellow rough bumps (enations), translucent spots or clear veins
- Pods may be distorted and fill poorly

FIGURE 1 - Leaf with mosaic pattern of white/clear spots (windows)

FIGURE 2 - Misshapen pods

FIGURE 3 - Enations (bumps) on leaf

FACTORS FAVORING DEVELOPMENT

Presence of pea aphids transmitting the virus

IMPORTANT FACTS

NDSU EXTENSION

NDSU NORTH DAKOT

- Virus is not seed-transmitted
- · Often occurs with bean leaf roll virus
- Early infections more severely impact yield than late infections
- Insecticides may reduce secondary spread of virus by killing vectors (aphids)
- Can be confused with other viruses, herbicide damage

USDA

Card 14 of 16

CULTURAL

Pea seedborne mosaic

Pea seedborne mosaic virus

Photo: L. Porter, USDA-ARS Prosser, WA

Figure 1

Figure 2

Photo: A. Beck, NDSU

Photos M. Wünsch, NDSU Figure 3

PP1790-15 Pea Disease Diagnostic Series

Pea seedborne mosaic

Pea seedborne mosaic virus

AUTHORS: Lyndon Porter, Kevin McPhee and Julie Pasche

SYMPTOMS

- Leaves may curl downward
- Plants are stunted with a rosette appearance on new growth
- Pods may be deformed and fill poorly
- Seed may be water-soaked, scarred or cracked
- Maturity of infected plants is delayed

FIGURE 1 - Deformed growth

FIGURE 2 - Seed with water soaking and scarring symptoms

FIGURE 3 - Delayed maturity of infected plants

FACTORS FAVORING DEVELOPMENT

- Presence of pea, green peach or potato aphids, which can transmit the virus
- Infected seed

NDSU EXTENSION

IMPORTANT FACTS

- · Virus is readily seed-transmitted
- Virus infects many plants, including lentil, chickpea, alfalfa and vetch
- Manage by planting virus-free seed and resistant cultivars
- Insecticides may reduce secondary spread of virus by killing vectors (aphids)
- Can be confused with other viruses or herbicide damage

NDSU NORTH DAKOTA AGRICULTURAL

USDA Research Service Card 15 of 16

PP1790-16 Pea Disease Diagnostic Series

Pea streak

Pea streak virus

Photo: L. Porter, USDA-ARS Prosser, WA

Figure 2

PP1790-16 Pea Disease Diagnostic Series

Pea streak

Pea streak virus

AUTHORS: Lyndon Porter

SYMPTOMS

- Purple to brown streaks on leaves, stems and pods
- Leaf-yellowing and dieback of growing tips
- Pods may appear blistered, deformed and fill poorly
- Streaks on pods differ in size and shape and often are sunken

FIGURE 1 - Malformed pea pods with blistering FIGURE 2 - Purple sunken streaks on infected plants

FACTORS FAVORING DEVELOPMENT

 Presence of pea or green peach aphid transmitting virus

IMPORTANT FACTS

NDSU EXTENSION

- Virus is not seed-transmitted
- Virus also can infect alfalfa, red and white clover, and vetch
- Rarely associated with significant damage in pea fields
- Insecticides may reduce secondary spread of virus by killing vectors (aphids)
- Can be confused with other viruses, herbicide or abiotic damage

NDSU NORTH DAKOTA AGRICULTURAL

Card 16 of 16

