Seeing With Headlights

Gene Farber, Consultant

NHTSA Workshop on Headlamp Safety Metrics Washington, DC July 13, 2004,

"You can't see worth a damn at night" (Paul Olson)

- Day/night illumination ratio: 10⁵
- Pedestrian visibility distance night: 150 - 250 feet day: 1000's of feet
- Distance required to respond and stop from 55 mph: 265 feet

Night drivers have little time to respond to obstacles

- Best data on PRT gives means of 1.1 to 1.5 seconds
- 85th percentile values of 1.3 to 1.8 seconds.
- Glance durations can range from 0.5 to 1.5 seconds (IP tasks, mirror looks, looks to the side, etc.)
- Effective response latency of 2.5 or more sec

Over-driving Headlights

- Headlamps provide enough light for primary driving task of lane-keeping
- Low visibility obstacles are extremely rare and thus not expected
- Driver's (and pedestrians) over-estimate visibility
- Result: we over-drive headlights wrt obstacles but not lane-keeping.

PCDETECT

- Headlamp seeing distance program developed at Ford
- Based on Blackwell data and formulations
- Estimates seeing distance as influenced by human, environmental and lighting parameters
- Validated in early 70's in field studies

Base Conditions

Headlamps	Taurus low beams
Headlamp height	Two feet above ground
Headlamp aim	Correct
Glare from opposing cars	None
Driver age & contrast sensitivity	35, 50 th Percentile
Alertness	"Normal"
Target type, size	Pedestrian, 5.8-feet tall

naition	S
	ndition

Target location	2 feet right of right lane edge
Target reflectance	8%
Pavement reflectance	6%
Ambient illumination	0.001 FL
Road type	Two 12-foot lanes
Geometry	Straight and level
Windshield transmittance	80%

Luminance

Opposing Glare Road Width Effects Seeing Distance (feet) 150 Lamp 100 **200 250 Condition** Low Beam 2-lane Road Low Beams 4-lane Road **High Beam** 2-lane Road **High Beam** 4-lane Road

Closing thoughts

- High beams are better than low beams for pedestrian detection (but not all *that* much better).
- High beam glare is much worse than low beam glare.
- Even with high beams, drivers have little time to respond to pedestrians.

Closing thoughts

- Need a systems approach for evaluation
- Need to consider behavioral factors.
- Need to consider driver comfort:
 Pedestrian at risk extremely rare event
 Always-on high beams a constant
 irritation
- Alternatives:
 - Better signaling and marking Smarter headlights