Seeing With Headlights Gene Farber, Consultant

NHTSA Workshop on Headlamp Safety Metrics Washington, DC July 13, 2004,
"You can't see worth a damn at night" (Paul Olson)

- Day/night illumination ratio: 10^{5}
- Pedestrian visibility distance night: 150-250 feet day: 1000's of feet
- Distance required to respond and stop from 55 mph: 265 feet

Night drivers have little time to

 respond to obstacles- Best data on PRT gives means of 1.1 to 1.5 seconds
- $85^{\text {th }}$ percentile values of 1.3 to 1.8 seconds.
- Glance durations can range from 0.5 to 1.5 seconds (IP tasks, mirror looks, looks to the side, etc.)
- Effective response latency of 2.5 or more sec

Over-driving Headlights

- Headlamps provide enough light for primary driving task of lane-keeping
- Low visibility obstacles are extremely rare and thus not expected
- Driver's (and pedestrians) over-estimate visibility
- Result: we over-drive headlights WRT obstacles but not lane-keeping.

PCDETECT

- Headlamp seeing distance program developed at Ford
- Based on Blackwell data and formulations
- Estimates seeing distance as influenced by human, environmental and lighting parameters
- Validated in early 70's in field studies

Base Conditions	
Headlamps	Taurus low beams
Headlamp height	Two feet above ground
Headlamp aim	Correct
Glare from opposing cars	None
Driver age \& contrast sensitivity	35,50 th Percentile
Alertness	"Normal"
Target type, size	Pedestrian, 5.8-feet tall

Base Conditions

Target location	2 feet right of right lane edge
Target reflectance	8%
Pavement reflectance	6%
Ambient illumination	0.001 FL
Road type	Two 12-foot lanes
Geometry	Straight and level
Windshield transmittance	80%

Luminance

Headlamp Intensity				
	Seeing Distance (feet)			
Headlamp Intensity (\%)	50	100	150	200
0.2				
0.5				
0.8				
1.0				
1.2				
1.5				
2.0				

Target Location				
	Seeing Distance (feet)			
Target Location	0	50	100	150
Right Edgeline + 6 feet				
Right Edgeline + 2 feet				
Right Edgeline				
Center of Right Lane				
On Road Centerline				
Center of Left Lane				
Left Edge of Left Lane				

Target Size				
	Seeing Distance (feet)			
Target Size Pedestrian Height (feet)	100	125	150	175
5.8				
5.0				
4.0				
3.0				
2.0				
1.0				
0.5				

Driver Age				
	Seeing Distance (feet)			
Driver Age	50		100	150

Contrast Sensitivity				
	Seeing Distance (feet)			
Contrast Sensitivity (Percentile	50	100	150	200
5th				
15th				
50th				
85th				
95th				

Target Reflectance				
	Seeing Distance (feet)			
$\%$	0	100	200	300
6.5				
7.0				
7.5				
8.0				
9.0				
10.0				
12.0				
15.0				

Headlamp Misaim

	Seeing Distance (feet)			
Vertical Misaim (Degrees)	50	100	150	200
+1.0				
+0.5				
0.0				
-0.5				
-1.0				

Opposing Glare Road Width Effects				
	Seeing Distance (feet)			
Lamp Condition	100	150	200	250
Low Beam 2-lane Road Low Beams 4-lane Road High Beam 2-lane Road High Beam 4-lane Road				

Effect of Glare Source Distance

Closing thoughts

- High beams are better than low beams for pedestrian detection (but not all that much better).
- High beam glare is much worse than low beam glare.
- Even with high beams, drivers have little time to respond to pedestrians.

Closing thoughts

- Need a systems approach for evaluation
- Need to consider behavioral factors.
- Need to consider driver comfort:

Pedestrian at risk extremely rare event Always-on high beams a constant irritation

- Alternatives:

Better signaling and marking Smarter headlights

