

http://dx.doi.org/10.11646/phytotaxa.205.3.6

A new species of *Collodiscula* (Xylariaceae) from China

QI-RUI LI¹, TING-CHI WEN¹, JI-CHUAN KANG^{1,*} & KEVIN D. HYDE²

¹ The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University Guiyang 550025, PR China

* Corresponding Author: email: bcec.jckang@gzu.edu.cn

² Institute of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

Abstract

A *Collodiscula* isolate, found on a bamboo stalk in China, differs from *C. japonica* by having smaller ascospores. On the basis of morphology and molecular phylogeny it is described as a new species, *Collodiscula bambusae sp. nov*.

Key words: ascomycetes, taxonomy, Xylariales

Introduction

Collodiscula I. Hino & Katum. was introduced as a monotypic genus by Hino & Katumoto (1955) and later referred to the Sphaeriaceae (Hino 1961). However, based on features such as the stromatal ontogeny, heavily carbonized stromata, amyloid ascus apical apparatus, and short stipitate asci it is now included in the Xylariaceae (Samuels & Rossman 1992, Læssøe & Spooner 1994, Kang *et al.* 1999). Jaklitsch & Voglmayr (2012) provided a phylogenetic study based on LSU and ITS sequences and confirmed that the genus *Collodiscula* belongs to Xylariaceae. Samuels *et al.* (1987) gave a detailed description of the sexual morph, and *Acanthodochium collodisculae* was identified as the asexual state of *C. japonica. Collodiscula japonica* has been reported from Chinese mainland (Jaklitsch & Voglmayr 2012), Japan (Hino & Katumoto 1955), Russia (Vasiljeva 1998) and Taiwan (Ju & Rogers 1999).

A species of *Collodiscula* was found in Guizhou Province, China that differed from *C. japonica* by having smaller ascospores. Phylogenetic analysis also indicated that this species was distinct and it described as *C. bambusae sp. nov.*

Materials and methods

Morphological studies and isolation

Specimens of bamboo with ascocarps of an unknown fungus were collected from Guizhou Province, China and taken to the laboratory in plastic bags. The methodology used for morphological examination of fungi growing on the bamboo followed that used by Stadler *et al.* (2004). Materials were mounted in water and Melzer's iodine reagent for examination. Asci and ascospores were examined by light microscopy (BX41, Olympus). At least 20 propagules were measured, length and width ranges were recorded. Material was deposited in the herbarium of Guizhou University (GZUH).

DNA extraction, PCR amplification and sequencing

A culture was initiated from perithecial contents of freshly collected stromata, propagated and studied as described by Stadler *et al.* (2004) on potato dextrose agar (PDA) medium at 25°C. Total genomic DNA was extracted from fresh cultures using a modified protocol of Doyle & Doyle (1987) and Lee & Taylor (1990). DNA preparations were stored at -20 °C until used for PCR.

DNA sequencing and alignment

The ITS and 5.8S region of rDNA (ITS) molecule was amplified using primer pairs ITS4 and ITS5 (White *et al.* 1990). Large subunit nuclear ribosomal DNA (LSU) was amplified with primer pairs LROR and LR5 (Vilgalys & Hester 1990), RNA polymerase II second largest subunit (RPB2) gene was amplified with primer pairs fRPB2-5F and fRPB2-7cr, and β -tubulin gene was amplified with primer pairs T–1 and T–22 (Tanaka *et al.* 2009, Hsieh *et al.* 2010). PCR was performed with the 25 µL reaction system consisting of 19.75 µL of double distilled water, 2.5 µL of 10× Taq buffer with MgCl₂, 0.5 µL of dNTP (10 mM each), 0.5 µL of each primer (10 µM), 0.25 µL Taq DNA polymerase (5 U/µl), and 1.0 µL of DNA template. The thermal cycling program followed Maharachchikumbura *et al.* (2012).

Phylogenetic analyses

Two separate phylogenetic analyses were performed on two separate datasets. Combination sequence data were manually adjusted using BioEdit (Hall 1999), to allow maximum alignment and maximum sequence similarity. Maximum parsimony analysis (MP) were performed using PAUP (Phylogenetic Analysis Using Parsimony) v.4.0b10 (Swofford 2002). Ambiguously aligned regions were excluded and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Maxtrees were set up to 5,000, branches of zero length were collapsed and all multiple parsimonious trees were saved. The robustness of the most parsimonious trees was evaluated by 1,000 bootstrap replications resulting from maximum parsimony analysis (Felsenstein 1985).

Species	Strain	Type status/References	GenBank accession numbers				
			ITS	LSU	RPB2	β-tubulin	
Amphirosellinia	HAST 91111209	Ex-type (Hsieh et al. 2010)	GU339496		GQ848339	GQ495950	
fushanensis							
Amphirosellinia	HAST 91092308	Ex-type (Hsieh et al. 2010)	GU322457		GQ848340	GQ495951	
nigrospora							
Amphisphaeria umbrina	HKUCC 994, CBS	Jaklitsch & Voglmayr 2012	AF009805	AF452029	FJ238348		
	172.96, Mt2	Schoch <i>et al.</i> 2009	TILE 50 000				
Anthostomella brabeji	CBS 110128	Jaklitsch & Voglmayr 2012 Stadler <i>et al.</i> 2013	EU552098	EU552098			
Apiospora montagnei	AFTOL 951, H3-83	Jaklitsch & Voglmayr 2012	JN688916	DQ471018	DQ470921		
Apiospora sinensis	HKUCC 3143	Jaklitsch & Voglmayr 2012	AY083831	AY083831			
Arthrinium marii	CBS 114803	Crous & Groenewald 2013	KF144899	KF144945			
Arthrinium sacchari	ATCC76303	Jaklitsch & Voglmayr 2012	AF393679	ATCC76303			
Arthrinium phaeospermum	CBS 114317, HKUCC 3395	Jaklitsch & Voglmayr 2012		KF144953			
Astrocystis bambusae	HAST 89021904	Ex-type (Hsieh et al. 2010)	GU322449		GQ844836	GQ495942	
Astrocystis mirabilis	HAST 94070803	Ex-type (Hsieh et al. 2010)	GU322448		GQ844835	GQ495941	
Bartalinia robillardoides	BRIP 14180	Jaklitsch & Voglmayr 2012	AF405301	AF382366	DQ368653		
Biscogniauxia arima	WSP 122	Ex-type (Hsieh et al. 2010)	EF026150		GQ304736	AY951672	
Biscogniauxia nummularia	BCC 1101, H86	Jaklitsch & Voglmayr 2012		AB376691	FR715504		
Clypeosphaeria uniseptata	HKUCC6349, Mt28	Jaklitsch & Voglmayr 2012	AF009808	DQ810219			
Collodiscula japonica	CBS 124266	Jaklitsch & Voglmayr 2012	JF440974	JF440974			
Collodiscula bambusae	GZUH0102	This study	KP054279	KP054280	KP276675	KP276674	
Creosphaeria sassafras	CM AT-018	Authentic (Tang <i>et al.</i> 2009)	AJ390425	DQ840056			

TABLE 1. Strains used in phylogenetic analyses and their corresponding GenBank accession numbers.

TABLE 1 (Continued)

Species	Species Strain Type status/References			GenBank accession numbers			
	Struin	Type status, references	ITS	LSU	RPB2	β-tubulin	
Daldinia concentrica	CBS 113277,	Spatafora & Blackwell	AY616683	U47828	FR715506	KC977274	
	ATCC 36659	1993		50450044	D.0.48004.8		
Diatrype disciformis	AFTOL 927	Trouillas et al. 2001	AJ302437	DQ470964	DQ470915		
Discoxylaria	169 (JDR)	Hsieh <i>et al.</i> 2010	GU322433			GQ487710	
myrmecophila Entoleuca mammata	100 (JDR)	Hsieh et al. 2010	AJ246235		GQ844782	GQ470230	
Euepixylon	261 (JDR)	Hsieh et al. 2010	GU292821			GQ470224	
sphaeriostomum Eutypa consobrina	CBS122677	Jaklitsch & Voglmayr 2012	EU552126	EU552126			
Graphostroma platystoma	CBS 270.87,	Jaklitsch & Voglmayr 2012	JX658535	DQ836906			
Hyponectria buxi	AFTOL-ID 1249 UME 31430	Jaklitsch et al. 2012		AY083834			
Hypoxylon fragiforme	MUCL 51264, STMA07069, HKUCC 1022	Authentic (Seifert <i>et al.</i> 2003)	KM186294	KM186295			
Kretzschmaria guyanensi	HAST 89062903	Hsieh <i>et al.</i> 2010	GU300079		GQ844792	GQ478214	
Melogramma campylosporum	MBU	Jaklitsch & Voglmayr 2012	JF440978	JF440978			
Muscodor albus	MSU 2081	Ex-type (Seifert et al. 2003)	AF324336	HM034864	FJ480345		
Nemania maritima	HAST 89120401	Ex-type (Hsieh et al. 2010)	GU292822	DQ840074	DQ631946	GQ470225	
Nemania serpens	HAST 235 , FR AT 114	Authentic (Hsieh <i>et al.</i> 2010)	GU292820	DQ840075	GQ844773	GQ470223	
Pestalosphaeria hansenii	ATCC48245	Jaklitsch & Voglmayr 2012	AF377290				
Podosordaria mexicana	176 (WSP)	Hsieh et al. 2010	GU324762		GQ853039	GQ844840	
Poronia pileiformis	88113001 (WSP)	Ex-epitype (Hsieh <i>et al.</i> 2010)	GU324760		GQ853037	GQ502720	
Rhopalostroma angolense	MUCL52664, CBS 126414	Authentic (Stadler <i>et al.</i> , 2010b)	FN821965	KM186298	KM186297	KM186299	
Rosellinia merrillii	HAST 89112601	Hsieh et al. 2010	GU300071		GQ844781	GQ470229	
Rosellinia necatrix	HAST 89062904, HKUCC 9037	Authentic (Hsieh <i>et al.</i> 2010)	EF026117	AY083824	GQ844779	EF025603	
Rostrohypoxylon terebratum	CBS 119137	Ex-type (Fournier <i>et al.</i> 2010)	DQ631943	DQ840069	DQ631954	DQ840097	
Ruwenzoria pseudoannulata	MUCL 51394	Ex-type (Stadler <i>et al.</i> 2010b)	GU053568				
Sordaria fimicola	CBS 723.96, CBS 508.50	Miller & Huhndorf 2005, Tang <i>et al.</i> 2009	AY681188	AY681160	DQ368647	DQ368618	
Stilbohypoxylon elaeicola	JDR 173	Hsieh et al. 2010	EF026148		GQ844826	EF025616	
Subramaniomyces fusisaprophyticus	CBS 418.95	Jaklitsch & Voglmayr 2012	EU040241	EU040241			
Thamnomyces camerunensis	MUCL 51396	Ex-type (Stadler <i>et al.</i> 2010a)	FN428828				

...continue on the next page

TABLE 1 (Continued)

Species	Strain	Type status/References	GenBank accession numbers			
			ITS	LSU	RPB2	β-tubulin
Truncatella angustata	ICMP 7062	Jaklitsch & Voglmayr 2012	AF405306	AF382383		
Xylaria bambusicola	WSP 205, BCC 23659	Ex-type (Hsieh <i>et al.</i> 2010; Okane <i>et al.</i> 2008)	EF026123	AB376825	GQ844802	AY951762
Xylaria grammica	HAST 479	Hsieh <i>et al.</i> 2010, Chen <i>et al.</i> 2013	JQ862677	JQ862638	GQ844813	GQ487704
Xylaria hypoxylon	CBS 122620	Authentic (Stadler <i>et al.</i> 2013)	AM993141	KM186301	KM186302	KM186300

NOTE: Abbreviations: **AFTOL:** Assembling the Fungal Tree of Life; **ATCC**: American Type Culture Collection, Virginia, USA; **AT**: Taxa collected and identified by Alvin M. C. Tang; **BCC**: BIOTEC Culture Collection, Bangkok, Thailand; **CBS**: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; **HKUCC** Hong Kong University Culture Collection, Hong Kong, China; **HAST**: Herbarium, Research Center for Biodiversity, Academia Sinica, Taipei; **JDR**: Herbarium of Jack D. Rogers; **MSU**: Montana State University mycological collection, U.S.A.; **MUCL**: Mycothèque de l'Université catholique de Louvain, Germany; **WSP**: Washington State University, U.S.A.

Results

A species of *Collodiscula* (GZUH0102) was isolated in pure culture and subjected to morphological and molecular analyses.

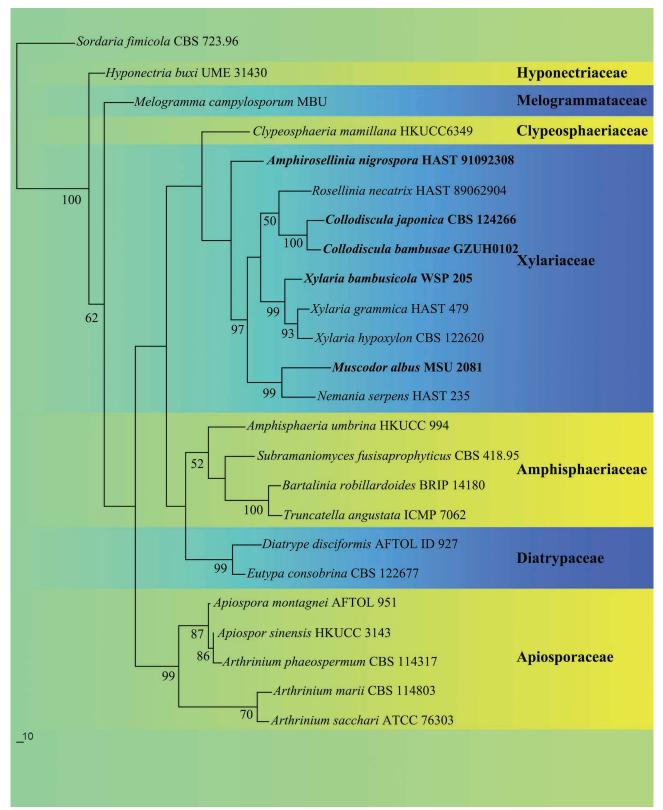
Combined analysis of LSU and ITS rDNA

The alignment file resulted in a data set comprising 1,682 characters including gaps. Of these characters, 1,251 were constant and parsimony-uninformative. A best scoring MP tree is shown (Fig. 1) and bootstrap support (BS) values of MP (equal to or above 50% based on 1,000 replicates) are shown on the upper branches (TL=1986, CI=0.575, RI=0.532, RC=0.306, HI=0.425). Isolate GZUH0102 grouped with *Collodiscula japonica* (CBS 124266) with high bootstrap support (100%) in Xylariaceae.

Combined analysis of ITS, LSU, RPB2 and β -tubulin genes

The combined data set of ITS, LSU, RPB2 and β -tubulin genes comprised sequences from 32 taxa with *Sordaria fimicola* (CBS 723.96) as the outgroup taxon. The dataset consisted of 4,778 characters after alignment, of which 1,778 were conserved, 1,104 were variable and 1,896 were parsimony informative. A best scoring MP tree is shown (Fig. 2) and bootstrap support (BS) values of MP (equal to or above 50% based on 1,000 replicates) are shown on the upper branches (TL=11298, CI=0.468, RI=0.378, RC=0.177, HI=0.532). Our strain GZUH0102 grouped with *Collodiscula japonica* (CBS 124266) with high bootstrap support (89%) in a sister clade to *Astrocystis* spp. (100%) in Xylariaceae.

Taxonomy


Collodiscula bambusae Q.R. Li & J.C. Kang, sp. nov. (Fig. 3) MycoBank MB 810668

Differs from *Collodiscula japonica* mainly by its smaller, yellowish brown ascospores.

Type—CHINA. Guizhou Province: Guiyang, saprobic on the stalk of bamboo, March 2014, Q.R. Li (GZUH0102, holotype); *Ibid.*, (MFLU 15-0391, isotype), ex-type living cultures, MFLUCC 15-0398.

Saprobic on the stalk of bamboo, forming on the host surface. Sexual state: stromata scattered or gregarious, solitary, superficial, pulvinate to nearly semiglobose, 0.5–0.8 mm diam., 0.3–0.6 mm high, containing 1–3 perithecia. Surface convex or flattened, dark, smooth, with a central papillate of black ostiole. External stromatal layer black, carbonaceous,

easily chipped away to reveal the thin, black perithecia. Base surrounded by a black crustose ring on the host surface. Perithecia globose to subglobose. Paraphyses hyaline, septate. Asci cylindrical, 8-spored, overlapping uniseriate, $110-170 \times 8-11 \mu m$ (mean $144 \times 9.5 \mu m$, n=30) with a J+, wedge-shaped apical apparatus, $2.5-3.5 \mu m$ (mean $3 \mu m$, n=30) high, $1.5-2.5 \mu m$ (mean $2 \mu m$, n=30) diam. Ascospores $15-17.5 \times 4.5-5.5 \mu m$ (mean $17 \times 5 \mu m$, n=30), fusoid, inaequilateral, with one median slightly constricted septum, with narrow rounded ends, yellowish brown, smooth, lacking sheath and germ slit. Asexual state: unknown.

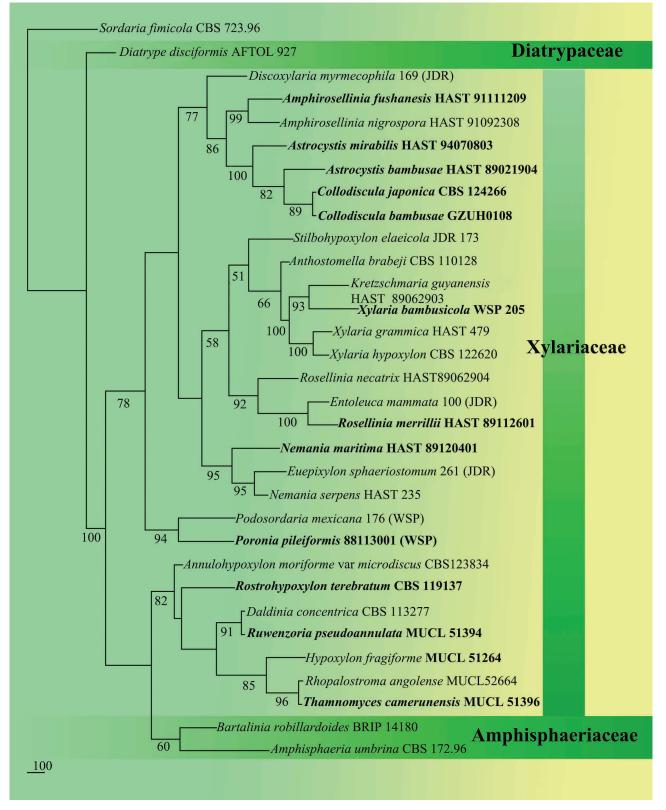


FIGURE 1. Topology showing the most parsimonious tree of ITS and LSU genes regions. Bootstrap values higher than 50% are shown. The tree is rooted with *Sordaria fimicola*. Sequence from type strains are in bold.


Habitat/Distribution:—Known to inhabit stalk of bamboo, Guizhou Province, China.

Etymology:—In reference to the host, bamboo.

Other material examined:—CHINA. Guiyang Province: Guiyang city, saprobic on the stalk of bamboo, 20 March 2014, Q.R. Li (GZUH0108!).

FIGURE 2. Topology showing the most parsimonious tree of ITS, LSU, RPB2 and β -tubulin genes regions. Bootstrap values higher than 50% are shown. The tree is rooted with *Sordaria finicola*. Sequence from type strains are in bold.

FIGURE 3. *Collodiscula bambusae*. A. Fresh material. B, C. Ascomata on the surface of host. D, E. Section of ascoma. F. Paraphyses. G–J. Mature asci with ascospores. K, L. Ascus apical apparatus (stained in Melzer's reagent). M–R. Ascospores. Scale bars: B–E=200 μm, F–L=10 μm, M–R=5 μm.

Discussion

Collodiscula was reported as a new genus from bamboo culms in Japan (Hino & Katumoto 1955). Collodiscula is characterised by possessing superficial, stromatic ascomata, brown septate ascospores, which lack a germ slit, and

large, J+, wedge-shaped ascal apical apparatus (Hino & Katum 1955). Currently, there is only one species in the genus. Samuels *et al.* (1987) studied the type material of *C. japonica*, gave a detailed description and reported its asexual state, *Acanthodochium collodisculae*. Kang *et al.* (1999) and Jaklitsch & Voglmayr (2012) placed *Collodiscula* in Xylariaceae.

In the molecular analyses of ITS, LSU, RPB2 and β -tubulin genes *Collodiscula* showed a very close relationship with *Astrocystis*. *Astrocystis* is a genus mostly confined to monocotyledons and has uni- or rarely multi-peritheciate stromata, which may develop beneath the host cuticle and appear superficial. The asci have a relatively short stipe and the ascal apical apparatus is relatively small, amyloid and stopper-shaped (Smith & Hyde 2001). *Astrocystis* also has a *Acanthodochium* asexual state (Samuels *et al.* 1987). However, *Collodiscula* species have septate ascospores, whereas those of *Astrocystis* are aseptate.

Collodiscula japonica has ascospores measuring $18-24 \times 4.5-5.5 \mu m$ with one median not or slightly constricted septum, fusoid, inaequilateral, with rounded ends, rarely one end pinched, yellowish brown to dark brown, initially with a hyaline minute globose basal cell, smooth, with two guttules in each cell and thin hyaline sheath (Jaklitsch & Voglmayr 2012). *Collodiscula bambusae* has smaller ascospores (15–17.5 × 4.5–5.5 µm) without guttule and sheath. Phylogenetic analysis of ITS, LSU, RPB2 and β -tubulin genes and ITS–LSU also indicated that *C. bambusae* was distinct from *C. japonica*.

Acknowledgments

This work was funded by grants from the National Natural Science Foundation of China (NSFC, No. 30870009), the international collaboration plan of Guizhou province (No. G [2012]7006) and the innovation team construction for science and technology of Guizhou Province (No. [2012]4007) from the Science and Technology Department of Guizhou Province, China.

References

Chen, J., Zhang, L.C., Xing, Y.M., Wang, Y.Q., Xing, X.K., Zhang, D.W., Lang, H.Q. & Guo S.X. (2013) Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of *Dendrobium* (Orchidaceae). *PloS one* 8(3): e58268. http://dx.doi.org/10.1371/journal.pone.0058268

Crous, P.W. & Groenewald, J.Z. (2013) A phylogenetic re-evaluation of *Arthrinium. IMA Fungus* 4 (1):133–154. http://dx.doi.org/10.5598/imafungus.2013.04.01.13

Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.

Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

Fournier, J., Stadler, M., Hyde, K.D. & Duong, L.M. (2010) The new genus *Rostrohypoxylon* and two new *Annulohypoxylon* species from Northern Thailand. *Fungal Diversity* 40: 23–36.

http://dx.doi.org/10.1007/s13225-010-0026-4

Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.

Hino, I. (1961) Icones fungorum bambusicolorum japonicorum. The Fuji Bamboo Garden.

- Hino, I. & Katumoto, K. (1955) Illustrationes fungorum bambusicolorum III. Bulletin of the Faculty of Agriculture, Yamaguchi University 6: 29–68.
- Hsieh, H.M., Lin, C.R., Fang, M.J., Rogers, J.D., Fournier, J., Lechat, C. & Ju, Y.M. (2010) Phylogenetic status of *Xylaria* subgenus *Pseudoxylaria* among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. *Molecular Phylogenetics and Evolution* 54: 957–969.

Jaklitsch, W.M. & Voglmayr, H. (2012) Phylogenetic relationships of five genera of *Xylariales* and *Rosasphaeria* gen. nov. (Hypocreales). *Fungal Diversity* 52: 75–98.

http://dx.doi.org/10.1007/s13225-011-0104-2

Ju, Y.M. & Rogers, J.D. (1999) The Xylariaceae of Taiwan (excluding Anthostomella). Mycotaxon 73: 343-440.

Kang, J.C., Hyde, K.D. & Kong, R.Y.C. (1999) Studies on Amphisphaeriales: The genera excluded from the *Amphisphaeriaceae*, *Cainiaceae* and *Clypeosphaeriaceae*. *Fungal Diversity* 2: 135–151.

- Læssøe, T. & Spooner, B.M. (1994) *Rosellinia & Astrocystis (Xylariaceae*): new species and generic concepts. *Kew Bulletin* 49: 1–70. http://dx.doi.org/10.2307/4110199
- Lee, S.B. & Taylor, J.W. (1990) Isolation of DNA from fungal mycelia and single spores. *In*: Innis, M.A., Gelfand, D.H. Sninsky, J.J. & White, T.J. (Eds.) *PCR protocols: a guide to methods and applications*. Academic Press, San Diego, USA, pp. 282–287.
- Maharachchikumbura, S.S.N., Guo, L.D., Cai, L., Chukeatirote, E., Wu, W.P., Sun, X., Crous, P.W., Bhat, D.J., McKenzie, E.H.C., Bahkali, A.H. & Hyde, K.D. (2012) A multi-locus backbone tree for *Pestalotiopsis*, with a polyphasic characterization of 14 new species. *Fungal Diversity* 56: 95–129.

http://dx.doi.org/10.1007/s13225-012-0198-1

Miller, A.N. & Huhndorf, S.M. (2005) Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). *Molecular Phylogenetics and Evolution* 35 (1): 60–75.

http://dx.doi.org/10.1016/j.ympev.2005.01.007

Okane, I., Toyama, K., Nakagiri, A., Suzuki, K., Srikitikulchai, P., Sivichai, S., Hywel-Jones, N., Potacharoen, W. & Læssøe, T. (2008) Study of endophytic Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA sequence analyses with saprobes forming fruit bodies in the field. *Mycoscience* 49 (6): 359–372.

http://dx.doi.org/10.1007/S10267-008-0440-6

- Samuels, G.J. & Rossman, A.Y. (1992) *Thuemenella & Sarawakus. Mycologia* 84: 26–40. http://dx.doi.org/10.2307/3760399
- Samuels, G.J., Rogers, J.D. & Nagasawa, E. (1987) Studies in the *Amphisphaeriaceae* (sensu lato) 1. *Collodiscula japonica* and its anamorph, *Acanthodochium collodisculae*. *Mycotaxon* 28: 453–459.
- Schoch, C.L., Sung, G.H., López-Giráldez, F., Townsend, J.P., Miadlikowska, J., Hofstetter, V., Robbertse, B., Matheny, P.B., Kauff, K., Wang, Z., Gueidan, C., Andriel, R.M., Trippe, K., Ciufettil, L.M., Wynns, A., Fraker, E., Trippe, K., Ciufetti, L.M., Wynns, A., Fraker, E., Hodkinson, B.P., Bonito, G., Groenewald, J.Z., Arzanlou, M., de Hoog, G.S., Crous, P.W., Hewitt, D., Pfister, D.H., Peterson, K., Gryzenhout, M., Wingfield, M.J., Aptroot, A., Suh, S.O., Blackwell, M., Hillis, D.M., Griffith, G.W., Castlebury, L.A., Rossman, A.Y., Lumbsch, H.T., Lücking, R., Büdel, B., Rauhut, A., Diederich, P., Ertz, D., Geiser, D.M., Hosaka, K., Inderbitzin, P., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Mostert, L., O'Donnell, K., Sipman, H., Rogers, J.D., Shoemaker, R.A., Sugiyama, J., Summerbell, R.C., Untereiner, W., Johnston, P.R., Stenroos, S., Zuccaro, A., Dyer, P.S., Crittenden, P.D., Cole, M.S., Hansen, K., Trappe, J.M., Yahr, R., Lutzoni, F. & Spatafora, J.W. (2009) The Ascomycota Tree of Life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. *Systematic Biology* 58 (2): 224–392. http://dx.doi.org/10.1093/sysbio/syp020
- Seifert, K.A., Louis-Seize, G. & Sampson, G. (2003) *Myrothecium acadiense*, a new hyphomycete isolated from the weed *Tussilago* farfara. Mycotaxon 87: 317–327.
- Smith, G.J.D. & Hyde, K.D. (2001) Fungi from palms. XLIX. Astrocystis, Biscogniauxia, Cyanopulvis, Hypoxylon, Nemania, Guestia, Rosellinia and Stilbohypoxylon. Fungal Diversity 7: 89–127.
- Spatafora, J.W. & Blackwell, M. (1993) Molecular systematics of unitunicate perithecial ascomycetes: the *Clavicipitales-Hypocreales* connection. *Mycologia* 85 (6): 912–922.
- Stadler, M., Wollweber, H., Jäger, W., Briegert, M., Venturella, G., Castro, J.M. & Tichy, H.V. (2004) Cryptic species related to *Daldinia* concentrica and *D. eschscholzii*, with notes on *D. bakeri*. *Mycological Research* 108: 257–273. http://dx.doi.org/10.1017/S0953756204009335
- Stadler, M., Fournier, J., Læssøe, T., Chlebicki, A., Lechat, C., Flessa, F., Rambold, G. & Peršoh D. (2010a) Chemotaxonomic and phylogenetic studies of *Thamnomyces* (Xylariaceae). *Mycoscience* 51: 189–207. http://dx.doi.org/10.1007/S10267-009-0028-9
- Stadler, M., Fournier, J., Læssøe, T., Decock, C., Peršoh, D. & Rambold, G. (2010b) *Ruwenzoria*, a new genus of the Xylariaceae from Central Africa. *Mycological Progress* 9: 169–179. http://dx.doi.org/10.1007/S11557-009-0623-3
- Stadler, M., Kuhnert, E., Peršoh, D. & Fournier, J. (2013) The Xylariaceae as model example for a unified nomenclature following the "One Fungus-One Name(1F1N) concept. *Mycology* 4 (1): 5–21. http://dx.doi.org/10.1080/21501203.2013.782478
- Swofford, D.L. (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland.
- Tanaka, K., Hirayama, K., Yonezawa, H., Hatakeyama, S., Harada, Y., Sano, T., Shirouzu, T. & Hosoya, T. (2009) Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs. *Studies in Mycology* 64: 175–209.

http://dx.doi.org/10.3114/sim.2009.64.10

- Tang, A.M.C., Jeewon, R. & Hyde, K.D. (2009) A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. *Fungal Diversity* 34: 127–155.
- Trouillas, P., Honnorat, J., Bret, P., Jouvet, A. & Gerard, J.P. (2001) Redifferentiation therapy in brain tumors: long-lasting complete regression of glioblastomas and an anaplastic astrocytoma under long term 1-alpha-hydroxycholecalciferol. *Journal of Neuro-Oncology* 51 (1): 57–66.
- Vasilyeva, L.N. (1998) Plantae non vasculares, Fungi et Bryopsidae Orientis extremi Rossica. Fungi. Tomus 4. Pyrenomycetidae et Loculoascomycetidae. *Nauka*, *Petropoli* 1–418.
- Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4238–4246.
- White, T.J., Bruns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In*: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) *PCR protocols: a guide to methods and applications*. Academic Press, New York, pp. 315–322.