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Abstract
HPVs representing the most common sexually transmitted disease are a group of carcinogenic viruses with different onco-
genic potential. The immune system and the vaginal microbiome represent the modifiable and important risk factors in HPV-
induced carcinogenesis. HPV infection significantly increases vaginal microbiome diversity, leading to gradual increases in 
the abundance of anaerobic bacteria and consequently the severity of cervical dysplasia. Delineation of the exact composi-
tion of the vaginal microbiome and immune environment before HPV acquisition, during persistent/progressive infections 
and after clearance, provides insights into the complex mechanisms of cervical carcinogenesis. It gives hints regarding the 
prediction of malignant potential. Relative high HPV prevalence in the general population is a challenge for modern and 
personalized diagnostics and therapeutic guidelines. Identifying the dominant microbial biomarkers of high-grade and low-
grade dysplasia could help us to triage the patients with marked chances of lesion regression or progression. Any unnecessary 
surgical treatment of cervical dysplasia could negatively affect obstetrical outcomes and sexual life. Therefore, understanding 
the effect and role of microbiome-based therapies is a breaking point in the conservative management of HPV-associated 
precanceroses. The detailed evaluation of HPV capabilities to evade immune mechanisms from various biofluids (vaginal 
swabs, cervicovaginal lavage/secretions, or blood) could promote the identification of new immunological targets for novel 
individualized diagnostics and therapy. Qualitative and quantitative assessment of local immune and microbial environment 
and associated risk factors constitutes the critical background for preventive, predictive, and personalized medicine that is 
essential for improving state-of-the-art medical care in patients with cervical precanceroses and cervical cancer. The review 
article focuses on the influence and potential diagnostic and therapeutic applications of the local innate immune system and 
the microbial markers in HPV-related cancers in the context of 3P medicine.
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Introduction

Women’s health is a cardinal priority of predictive, pre-
ventive, and personalized (3P) medicine. 3P medicine, an 
innovative approach representing individualized treatment 
strategies and precision medicine, is a cornerstone of the 
battle against gynecologic cancers [1, 2]

Cervical cancer (CC) is the fourth most common cancer 
in women, with an estimated age-standardized incidence 
of 13.1 per 100,000 women and an age-specific mortal-
ity rate of 6.9 per 100,000 women globally [3]. Further, 
570,000 new CC cases occurred in 2018, and more than 
311,000 deaths result from CC every year; incidence and 
death rates are higher in low- and middle-income countries 
that lack organized screening and vaccination programs [4, 
5]. Moreover, almost 95% of CC biopsies contain high-risk 
human papillomavirus (HPV) infections [6].

HPV infection is one of the causes of preinvasive and 
invasive cervical disease [6]. More than 200 HPV genotypes 
belong to the Papillomaviridae family of DNA viruses, and 
approximately 30 HPV genotypes infect the anogenital tract. 
Based on their oncogenic potential, HPV types are classified 
as high-risk (HPV-16, HPV-18, HPV-31, HPV-33, HPV-35, 
HPV-39, HPV-45, HPV-51, HPV-52, HPV-56, HPV-58, and 
HPV-59) and probably high-risk (HPV-26, HPV-53, HPV-
66, HPV-67, HPV-68, HPV-70, HPV-73, and HPV-82) with 
an increased affinity for mucosa. Mucosal HPV genotypes 
are associated with cervical, penile, vaginal, vulvar, anal, 
and oropharyngeal pre-cancers and cancers [7, 8].

HPV is the most common sexually transmitted disease 
(STD) and affects 80% of women during their lifetime [9]. 
The interaction between the HPV virus and host organism 
is highly complex and does not represent a one-way pro-
cess. Fortunately, most of the HPV infections are sponta-
neously cleared (79% of infections in 24 months) and do 
not lead to dysplastic changes on the cervical epithelium 
[10]. In some cases, persistent HPV infection may pro-
gress to low- and high-grade lesions [11]. Besides, 90% of 
screening results in US population are represented by neg-
ative cytological finding and HPV negativity. The rest is 
mainly characterized by mild cytological changes, includ-
ing atypical squamous cells of undetermined significance 
(ASCUS) and low-grade squamous intraepithelial lesion 
(LSIL) either associated with hrHPV (high-risk HPV) pos-
itivity or negativity. High-grade squamous intraepithelial 
lesions (HSILs) form only a small fraction of cytologi-
cal results. The current management of mild cytological 
abnormalities consists of a conservative approach in non-
suspicious colposcopic findings [12, 13]. This is particu-
larly important in nulliparous women, where the HPV 
virus incidence is the highest, and any surgical treatment 
could have adverse effects on future pregnancies [14].

The reasons for HPV infection persistence or progres-
sion remain largely unclarified. Biologically based non-
modifiable and behaviorally based modifiable risk factors 
likely play a significant role in preventing viral infection 
progression and predicting its course. Indeed, in the view 
of a severe socioeconomic burden on society, overall cancer 
management requires a shift from a reactive to 3P medicine 
to implement cost-effective and individualized healthcare 
that benefits the whole society [15–18]. The vaginal micro-
biome and innate immune system are highly associated 
with the pathogenesis of HPV-induced CC [6]; therefore, 
the individualized patient profiles and targeted preventive, 
early predictive, or therapeutic strategies as basic pillars of 
3P medicine should be implemented in CC management to 
obtain improved outcomes concerning the individual and 
society as a whole. In this regard, improved CC manage-
ment requires identifying novel liquid biopsy biomarkers 
obtained from specific body fluids. In conclusion, elucidat-
ing the malignant potential of particular HPV infections and 
associated cervical lesions based on the local microenviron-
ment is crucial to the preventive and personalized approach 
of state-of-the-art medicine.

Non‑modifiable and modifiable risk factors 
of cervical cancer

The best known non-modifiable risk factors for CC develop-
ment are HPV infections, patient age, ethnic factors, host 
genetic factors, and the family history of CC [19]. These fac-
tors act throughout women’s lives, and it is difficult to isolate 
their effects on the transformation of primary infections into 
persistent infections and that of persistent infections into 
pre-cancer lesions. Moreover, HPV type, viral factors, viral 
load, and co-infections with multiple HPV genotypes and/or 
other sexually transmitted diseases (STDs) are major factors 
in the persistence of HPV and the development of CC [20].

Age, an intrinsic host factor, is associated with the risk 
of acquiring HPV infection. HPV is most prevalent among 
adolescents and young adults between 15 and 25 years of 
age; it is supposed that 75% of young individuals acquire 
HPV in this age range [21–23]. On the other hand, the risk 
of HPV infection in puberty or younger age is increased by a 
lack of immune responses and squamous metaplasia during 
endocervical reconfiguration to the ectocervix in response 
to an acidic environment. Therefore, during the metaplastic 
transformation of the cervical epithelium, basal cells are 
more susceptible to HPV infection; this may result in cell 
proliferation and the development of cervical dysplasia or 
squamous cell cancer [24, 25]. Moreover, the prevalence of 
HPV increases in post-menopausal women over 50 years of 
age. This may be a consequence of weakening immunity 
and reactivation of latent infections, with cumulative risks 
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associated with the number of births and sexual partners 
over a lifetime [26].

Modifiable risk factors for cervical carcinogenesis mir-
ror the sexual behavior, lifestyle, and socioeconomic status. 
Moreover, cultural and geographic variations influence the 
sexual behavior of women and their male partners. Risk fac-
tors include certain aspects of a woman’s sexual history: the 
age of first sexual intercourse, the number of partners and 
their characteristics, the age at first birth, parity [27], and the 
intake of oral contraceptives [28]. Numerous sexual partners 
and/or recent new or older sexual partners are associated 
with increased HPV risk. On the other hand, marital status 
and hormonal contraceptive or condom use are associated 
with decreased risks of HPV infection. Condoms, moreo-
ver, have some protective effects against the transmission of 
HPV and other STDs, including HIV [29]. It remains unclear 
how parity influences CC risk. HPV-positive women with 
7 or more reported full-term pregnancies have a fourfold 
increased risk of CC compared to HPV-positive nulliparous 
women [27]. Hormonal factors related to pregnancy and cer-
vical trauma associated with delivery may increase the risk 
of cervical carcinogenesis [30]. The relationship between 
long-term oral contraceptive (OC) use and increased CC 
risk remains controversial. Studies reported an elevated risk 
of cervical adenocarcinoma due to an abundance of estro-
gen without progesterone caused by OC pills; endometrial 
cells respond to this hormonal imbalance through endome-
trial hyperplasia [31]. On the other hand, women using OC 
are likely under medical supervision and may participate 
in screening examinations; therefore, they are at lower risk 
[32].

An unhealthy lifestyle, negative life events, a lack of 
social support, smoking, alcohol consumption, and illegal 
drug abuse are known risk factors for CC, especially in less-
educated women. Cigarette smokers are at an increased risk 
for SIL and CC compared to HPV-positive non-smokers 
[33]. Tobacco smoke contains carcinogens that could cause 
immunosuppression and have an instantaneous effect on the 
transformation of cervical tissue. Chemicals from tobacco 
smoke were found in cervical mucus; this could allow HPV 
infections to persist and progress to cancer by integrating 
viral DNA into the host genome [34]. Substance abuse 
(e.g., alcohol consumption [35] and illegal drugs [36]) may 
reduce immune function and thus affect the cervical squa-
mous epithelial microenvironment and support persistent 
HPV infection.

A low socioeconomic status may lead to an increased risk 
for health problems. Women living in low-resource countries 
usually have limited incomes and restricted access to health-
care. These women are often poorly informed about CC risks 
and suffer from nutritional deficiencies [37]. Consumption 
of fruits and vegetables containing antioxidant nutrients such 
as vitamins C and E, carotenoids, and lycopene may prevent 

DNA damage and protect cells from reactive oxygen species 
released due to tobacco-induced cervical inflammation [38]. 
Accordingly, fresh vegetable consumption reduced the risk 
of HPV persistence by more than 50% [39]. A healthy life-
style with moderate sexual behavior may reduce the risk of 
long-term HPV infection and enhance the immune response.

Our review article focuses on two modifiable and impor-
tant risk factors for HPV-induced carcinogenic processes: 
the immune system and the vaginal microbiome (VM). 
These factors could be used as markers and tools in modern 
personalized diagnostic and therapeutic approaches.

Vaginal microbiome concerning HPV 
infection and cervical dysplasia

The vaginal microbiome: its composition 
and interactions

The female genital tract is protected against infections by 
a complex system composed of the mucosal epithelial bar-
rier, the immune system, and a healthy VM producing lactic 
acid, hydrogen peroxide, halides, and antimicrobial peptides. 
Moreover, the VM modulates local inflammatory immune 
responses, including cytokine secretion [40]. Maintaining 
or improving the VM represents a new and effective strat-
egy in treating HPV infections and associated precancerous 
lesions [41].

Estrogen levels have a significant effect on the vaginal 
microbiome composition. Estrogen influences the amount 
and viscosity of vaginal secretions, the glycogen content, 
and the vaginal oxygen and carbon dioxide levels [42]. Reg-
ular vaginal lubrication, acidic vaginal pH, and healthy are 
important and effective defense mechanisms against alien 
microbial contamination. Vaginal dryness as a part of sicca 
syndrome represents a low Lactobacillus state with a strong 
predisposition to frequent vaginal infections and even lichen 
sclerosus of the vulva [43]. Low-estrogen state in prepuber-
tal age and postmenopausal women is associated with low 
Lacrobacillus levels and consists of a mixture of anaerobic 
bacteria [44]. On the contrary, the vaginal microbiome of 
pregnant women is more stable and typically dominated 
by L. crispatus or L. iners [45]. Two longitudinal studies 
showed that the changes in the vaginal microbiome composi-
tion are affected by the phase of the menstrual cycle and by 
sexual activity [46, 47].

Lactobacillus species can colonize both the urinary tract 
and the rectum. The female reproductive tract microbiome 
interacts with the gut (vagina–gut axis) and the urinary tract 
(vagina–bladder axis) and other sites like the oral cavity 
through direct or estrogen-mediated mechanisms. The rec-
tum is a key lactobacilli reservoir that maintains a healthy 
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vaginal microbiome and local immune system with the sub-
sequent lower incidence of infections [48].

Enteric bacteria can deconjugate estrogens and promote 
their reabsorption to the circulatory system [49] This leads 
to the increased glycogen and mucus production and thick-
ening of the epithelium of the lower genital tract. Thus, a 
reduction in estrogen-metabolizing bacteria could influence 
the Lactobacillus dominance in vaginal flora [50].

Complex interactions between the microbiome and host 
that increase the risk of gynecological cancer can be influ-
enced by behavioral, socioeconomic, genetic, environmental, 
and host factors, including early life factors such as gesta-
tion, birth route, and infancy. Table 1 shows a summary of 
these factors.

Many recent studies have assessed the relationship 
between the VM’s composition and HPV infections lead-
ing to carcinogenesis. Ravel et al. [51] characterized the 
VM and vaginal pH of 396 asymptomatic, sexually active 
women, revealing five major community state types (CSTs) 
of VM. CST I, which occurred in 26.2% of the women, was 
dominated by L. crispatus, whereas CST II (6.3%), CST 
III (34.1%), and CST V (5.3%) were dominated by L. gas-
seri, L. iners, and L. jensenii, respectively. The remaining 
CST IV found in 27% of the women was heterogeneous and 
characterized by higher proportions of strictly anaerobic 
bacteria, including Gardnerella, Prevotella, Megasphaera, 
and Sneathia species [51]. CST I had the lowest median pH 
(4.0 ± 0.3), indicating that other CSTs might produce less 
lactic acid than group I or have different buffering capabili-
ties [3].

Two faces of Lactobacillus species

Lactobacillus spp. prevent the adherence of pathogenic 
bacteria to the epithelial tissue and protect the vaginal 
epithelium through a series of barrier (self-aggregation, 
adherence) and interference (receptor-binding interfer-
ence, coaggregation with potential pathogens) mechanisms 
[52]. Lactobacillus produces organic acids by decompos-
ing glycogen to maintain the vaginal acidic environment 

[53], which can inhibit the invasion of pathogenic bacteria. 
 H2O2-producing lactobacilli stimulate epithelial cell secre-
tion of antimicrobial substances and increase the antibacte-
rial activity of preexisting protective factors (muramidase 
and lactoferrin) [54]. Lactobacilli secrete various metabo-
lites and surfactants, such as exopolysaccharides, phospho-
rylated polysaccharides, and peptidoglycans, which can 
inhibit harmful microorganisms and carcinogenesis [55–57]. 
Moreover, Lactobacillus spp. also activate the cellular and 
humoral components of the immune system [58].

Comparatively, L. crispatus is more effective in prevent-
ing bacterial dysbiosis than L. iners, lacking a protective 
role in vaginal health [59]. L. iners has no antibacterial or 
antiviral activity, as it can only synthesize L-lactic acid and 
cannot produce  H2O2 [60]. On the other hand, L. iners pro-
duces inerolysin, a cytotoxin similar to that produced by 
Gardnerella vaginalis. Inerolysin forms pores in the vaginal 
epithelium, increasing the risk of multiple infections [61].

Lactobacillus spp. are associated with the decreased 
detection of high-risk HPV subtypes (OR 0.64), cervical 
dysplastic lesions (OR 0.53), and invasive cancers (OR 
0.12). L. crispatus (CST I) itself has even better properties 
for the incidence of high-risk HPV (hrHPV) infections (OR 
0.49) and neoplastic changes (OR 0.50) [62]. What more, a 
Lactobacillus gasseri (CST II)-dominant microbiome causes 
the rapid clearance of HPV infections (adjusted transition 
rate ratio (aTRR) 4.43) [63, 64]. Moreover, a specific group 
of less abundant lactobacilli including L. agilis and L. san-
franciscensis are significantly reduced in HPV-positive 
women and could play an important role in cervical car-
cinogenesis [65]. Interestingly, Mitra et al. observed that 
the overexpression of  H2O2-producing L. jensenii and L. 
coleohominis prevents the progression of low-grade cervi-
cal dysplasia [66].

On the other hand, a L. iners-dominated microbiome is 
commonly associated with HPV positivity. In the vagina, the 
most common transition observed is from CST III to CST 
IV; this suggests that L. iners is less able to inhibit coloni-
zation by anaerobic bacteria than other Lactobacillus spp. 
[67]. It was even shown that L. iners became more abundant 

Table 1  Factors influencing the vaginal microbiome composition [48]

Genetics/host Environmental Socioeconomic Behavioral STI status

Aging Geography Education Sexual behavior Bacterial infections
Genomics Early life factors Income Contraception Viral infections
Epigenetics Toxins and carcinogens Race, ethnicity Hygiene practices Fungal infections
Pregnancy Antibiotics, prebiotics, xenobiotics Access to healthcare Smoking Parasitic infections
Hormonal status Stress Social policy Alcohol consumption
Comorbidities HPV vaccine Diet/nutrition
Altered immunity Obesity
Obesity Physical activity

202 EPMA Journal (2021) 12:199–220



1 3

immediately before the onset of HPV-16 infections [68]. 
Lactobacillus-depleted CST IV and L. iners are responsible 
for HPV persistence and progression to preinvasive and inva-
sive lesions [64]. The combination of Gardnerella vaginalis 
and L. iners or other unclassified lactobacilli increases the 
risk of high-grade cervical lesions [69, 70]. This CST type 
leads to a sixfold increase in the risk of cervical dysplasia 
[71]. Another study compared L. types and showed higher 
risks of prevalent hrHPV with L. iners than L. crispatus (OR 
– 1.31). L. iners is associated with almost double the overall 
risk for LSIL and cancerous lesions (OR 1.95) compared to 
L. crispatus-dominated CST [70].

Prognostic role of vaginal microbiome composition

Bacterial vaginosis (BV) has a high prevalence (around 9% 
in the UK [72] and up to 29% in the USA [73]). In women 
with BV, the native vaginal flora is replaced with invasive 
pathogens, including Gardnerella vaginalis and Prevotella 
and Mobiluncus species [74]. The replacement of lactoba-
cilli with G. vaginalis promotes a basic pH that promotes 
BV. G. vaginalis produces a biofilm that provides a matrix 
on which other pathogenic bacteria can adhere; this biofilm 
also reduces the efficacy of antibiotic therapy [67]. CST IV 
in the cervicovaginal niche is associated with a higher risk 
of developing persistent HPV infections and, consequently, 
cervical lesions [75].

VM composition differs between HPV-positive and 
HPV-negative patients. Moreover, persistent high-risk HPV 
infections have a higher prevalence of bacterial vaginosis 
than HPV clearance [64]. Shannon et al. showed that HPV-
positive patients are more likely to have cervico-VMs con-
sistent with CST IV than HPV-negative women (58.8% vs. 
29.4%) [76]. The predominance of some pathogens during 
the early phases of HPV infection may contribute to the sub-
sequent development of cervical dysplasia [77]. A CST IV 
subgroup, characterized by a dominant presence of Gard-
nerella, Prevotella, Megasphaera, and Atopobium species, 
was present in 43% of women with persistent HPV infections 
but only in 7.4% of women with HPV clearance. G. vaginalis 
is a substantial risk factor for cervical disease development 
(OR 10.19) [59]. Its dominance may result from a shift from 
antimicrobial to antiviral immune responses, with a loss of 
bacterial control caused by HPV itself [68]. Subsequent 
production of bacterial sialidase by G. vaginalis leads to 
creating a biofilm that entraps anaerobic bacteria such as 
Prevotella and Atopobium, leading to their overgrowth and 
HPV persistence [78]. G. vaginalis could be a dominant 
biomarker of HPV infection progression to HSIL lesions 
through the induction of greater microbiome diversity [79] 
with an immunosuppressive effect [80]. This vicious cycle 
leads to overall changes in mucosal metabolism and immune 
responses [81, 82]. A proinflammatory environment then 

facilitates the integration of viral DNA; this is a crucial point 
in cervical carcinogenesis, viral persistence, and disease pro-
gression [66].

HPV infection increases VM diversity and richness, lead-
ing to gradual increases in the CST IV proportion and con-
sequent increases in the severity of cervical dysplasia [83]. 
The mycobiome similarly correlates with HPV infection and 
CIN severity, with higher fungal diversity in hrHPV infec-
tions (Malassezia) and ASCUS cytology results (Sporidi-
obolaceae, Saccharomyces) [84]. Chen et al. distinguished 
the specific microbes and the vaginal bacterial structure 
related to the progression of CINs. For example, HPV 
infection without CINs or cancerous lesions was strongly 
associated with Megasphaera, while the most abundant 
bacterium in the low-grade squamous intraepithelial lesion 
group was Prevotella amnii [83]. HPV-positive patients with 
high-risk microbial patterns have an OR of 34.1 for LSIL 
development, compared to HPV-negative women with low-
risk microbial scores [64].

Snaethia is a further abundant species connected with 
HPV infection, as it induces strong inflammation in the vagi-
nal microenvironment [85]. Some studies indicate its poten-
tial as a marker of low-risk HPV (lrHPV) genital infection 
[86]. LrHPV infection is also associated with the abundance 
of Actinobacteria and Atopobium, which disrupt epithelial 
barriers [85]. Other common bacterial species in the lrHPV 
group include Gardnerella, Bifidobacterium, Hydrogenophy-
lus, Burkholderia, and Fusobacterium — all of which have 
oncogenic potential [66, 87, 88].

The rate of CST IV incidence increased twofold in LSIL, 
threefold in HSIL, and fourfold in CC groups [66]. HSIL 
lesions are associated with higher levels of Peptostreptococ-
cus anaerobius, Anaerococcus tetradius, and Snaethia san-
guinensis; these species may serve as biomarkers for HSIL 
lesions [64, 66, 89]. Mycoplasma incidence is also higher 
in HSIL lesions than LSIL, but it is not detected in cancer. 
Mycoplasma spp. may play a role in the early phases of HPV 
infection and may facilitate HPV persistence [77].

So et al. estimated the overall risks for HSIL and CC 
development associated with particular bacteria, reporting 
the highest values for Atopobium (OR 4.33), Finegoldia 
(6.00), Prevotella timonensis (6.00), G. vaginalis (7.33), 
and Prevotella buccalis (11.00) [59, 65]. Prevotella spp. 
could be predictive of CIN2 + lesion development in cases 
of persistent hrHPV infection [65]. CIN2 is a heterogenous 
disease with marked chances of regression. CST IV species, 
including Megasphaera, Prevotella, and G. vaginalis, are 
connected with CIN2 persistence with an OR of 3.85 for 
12-month persistence and an OR of 4.25 for 24-month per-
sistence [90]. CIN3 lesions are associated with significantly 
different VM compositions from CIN2 (Lactobacillus spp., 
A. vaginae, G. vaginalis, and U. parvum) with the preva-
lence of Aerococcus, Leptotrichia, M. hominis, Prevotella, 
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Snaethia, and L. crispatus dropping from 70 to 47% [91, 92]. 
From these studies, it is clear that substantial reductions in 
lactobacilli are seen in the third grade of dysplastic changes 
of the cervical epithelium. Invasive cancer is associated 
with a complete spectrum of anaerobes, including Bacillus, 
Snaethia, Acidovirus, Oceanobacillus profundus, Fusobac-
teria, Veillonellaceae, Anaerococcus, and Porphyromonas 
[83]. An overview of bacterial compositions in cases of HPV 
infection, different degrees of dysplasia, and invasive can-
cers is provided in Fig. 1.

Personalized diagnostics and treatment 
of HPV‑associated cervical disease based on vaginal 
microbiome composition

Currently, the complete lack of effective medical therapies 
for HPV infection poses a significant challenge. Conization 
treatment remains the gold standard in cases of histologi-
cally proven high-grade cervical lesions with possible future 
adverse effects [64]. Immunohistochemical markers, includ-
ing p16 and Ki-67, increase the specificity of cytological 
or histological examinations. Nevertheless, no therapies 
based on diagnostic markers are included in international 

guidelines. Therefore, research foci should be diverted away 
from the ocean of molecular markers with no clinical appli-
cability and toward the promising interactions within and 
between bodily cells and their prokaryotic symbionts.

Delineation of the exact composition and immune envi-
ronment of the VM before HPV acquisition, during per-
sistent infection, and after clearance provides insight into 
the complex mechanisms of cervical carcinogenesis [68]. 
A detailed review by Bubnov et al. highlighted the signifi-
cant role of probiotic-based regimens in treating immune 
and atopic states, metabolic and inflammatory diseases, and 
cancers [93].

There is substantial evidence that the gut microbiome 
is linked with the normal functioning of the brain, heart, 
skin, respiratory, and urogenital system, leading to new 
approaches to maintaining health, disease prevention, and 
treatment of multiple chronic diseases. Consequently, the 
use of probiotics and prebiotics could have an enormous 
potential for patient care [94].

Modulating the gut microbiome (sometimes referred to as 
“bugs as drugs”) includes bacterial therapeutics, probiotics, 
prebiotics, antibiotics, and microbiota transplantation [48]. 
Vaginal and fecal microbiota transplantation (VMT, FMT) 

Fig. 1  Changes of the vaginal microbiome composition in the process 
of cervical carcinogenesis. Abbreviations: HPV, human papillomavi-
rus; hrHPV, high-risk HPV; lrHPV, low-risk HPV; LSIL, low-grade 
squamous intraepithelial lesion; HSIL, high-grade squamous intraepi-
thelial lesion; CIN, cervical intraepithelial neoplasia; L. crispa-
tus, Lactobacillus crispatus; L. gasseri, Lactobacillus gasseri; G. 

vaginalis, Gardnerella vaginalis; Prevotella b., Prevotella buccalis; 
Prevotella t., Prevotella timonensis; M. hominis, Mycoplasma homi-
nis; L. iners, Lactobacillus iners; P. anaerobius, Peptostreptococcus 
anaerobius; A. tetradius, Anaerococcus tetradius; S. sanguinensis, 
Snaethia sanguinensis 
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is a novel, provocative treatment option under investigation 
for women with BV or vaginal disorders [95].

Prebiotics and probiotics recreating a Lactobacillus-dom-
inant environment in the VM are potential low-cost treat-
ment strategies with minimal side effects [96]. Moreover, 
probiotics are safe and have proven antiviral activity [97]. 
Probiotics including L. paracasei and L. rhamnosus acidify 
the vaginal microenvironment, prevent bacterial adhesion, 
and act synergistically with the host immune system [98]. 
This simple approach with oral or vaginal regimens could 
promote HPV clearance or even reverse carcinogenesis and 
reduce subsequent morbidity [96, 99]. HPV clearance was 
markedly increased in patients using probiotics compared 
to controls (25% vs. 7,7%) [100]. The same effects were 
seen in cytological abnormalities, with a twofold increase 
in clearance and normalization in the treated patients [101].

Orally administered lactobacilli can verifiably reach the 
vagina, restore its microbiota in the presence of microbial 
imbalance, and eradicate or reduce the incidence of uro-
genital infections [102, 103]. Orally consumed probiotics 
ascend to the vaginal tract after they are excreted from the 
rectum. On the other hand, vaginal administration allows for 
the direct replacement of probiotics for unhealthy vaginal 
flora [104]. Daily intake of probiotics containing L. casei 
improved HPV clearance in LSIL lesions [100]. Bifido-
bacteria may further enhance antitumor immunity and the 
efficacy of immunotherapy [105]. Clarification of the exact 
interactions between specific bacterial types, the immune 
system, and HPV will support the development of probiotics 
with high efficacy.

Prebiotics also significantly reduce HPV positivity and 
low-grade cervical lesion occurrence. Selected prebiotics 
improve the ectopic structure of the cervical mucosa and 
enhance the maturation of the metaplastic epithelium, lead-
ing to negative colposcopic findings. What is more, prebi-
otics form a mucoadhesive film that protects the cervical 
surface from pathogenic microbial agents [41].

Remarkably, research on the penile microbiome has excit-
ing implications. Given the sexually transmitted nature of 
the pathogenic agents in question, it is wise to consider the 
male microbiome. Penile anaerobic bacteria such as Prevo-
tella may increase the risk of genital infections such as bac-
terial vaginosis. On the other hand, penile Corynebacteria 
and Staphylococcus are associated with healthy cervicov-
aginal microbiota [106]. In summary, the penis can be a 
reservoir of BV-associated bacteria, and complex interac-
tions occur in both the male and female genital biomes [107, 
108]. Based on the hypotheses above, topical microbicides 
can fight against HPV infection in the male population [106].

New markers are essential for monitoring and identify-
ing microbial compositions indicative of HPV infection and 
cervical dysplasia. State-of-the-art molecular methods for 
VM assessment could support advanced and individualized 

management strategies (in conjunction with HPV vaccina-
tion) to reduce CC incidence [109]. Rapid bedside tests 
(microchip arrays and metabolomic technologies) focused 
on identifying patients at highest risk have potential in tri-
age and the selection of patients for intense observation and 
treatment [64]. For instance, Mitra et al. presented selected 
vaginal biomarkers for CIN in Caucasian, Black, and Asian 
women, including Snaethia sanguinensis, Anaerococcus 
tetradius, and Peptostreptococcus anaerobius [66]. Similar 
microbial markers could be applicable in tailored surveil-
lance and prognostic evaluation of women with cervical 
lesions [90].

Innate immune system and HPV infection

The innate immune system plays an essential role during 
the early stage of HPV infection. Its mechanisms are associ-
ated with developing a proinflammatory microenvironment, 
leading to the recruitment of immune cells and subsequent 
eradication of infected cells [110, 111]. Importantly, innate 
immunity is also crucial for the activation of adaptive immu-
nity [112]. Components of the immune system contribute 
to viral clearance and tumorigenesis due to HPV infection 
[113]. Innate immunity includes various components, such 
as physical and anatomical barriers, effector cells and effec-
tor molecules (i.e., antimicrobial peptides), and receptors. 
[114]. The potential of HPV to trigger carcinogenesis in 
cervical epithelia is associated with the weakened immune 
system of an infected woman. Indeed, cervical intraepithe-
lial neoplasia (CIN) develops in 15–30% of hrHPV-infected 
women within 2 years; approximately 10–20% of severe 
CIN cases develop into invasive CC. Nevertheless, current 
research into the applicability of vaginal suppositories of the 
metabolite 3,3′-diindolylmethane for CIN treatment offers 
potential agents for the personalized prevention of CC [115].

The primary targets of hrHPV in squamous epithelia are 
undifferentiated keratinocytes [116]. These cells act as non-
professional immune cells by serving as physical barriers 
and expressing pattern recognition receptors (PRRs). PRRs 
are involved in recognizing pathogen-associated molecular 
patterns (PAMP) and damage-associated molecular patterns 
(DAMP). PRRs include Toll-like receptors (TLRs), retinoic 
acid-inducible gene (RIG) I-like receptors (RLRs), and 
nucleotide-binding oligomerization domain-like receptors 
(NLRs) [117]. Keratinocytes express surface and endosomal 
TLRs; endosomal TLRs are essential for the recognition of 
viral nucleic acids. TLRs may recognize double-stranded 
RNA (TLR3), single-stranded RNA (TLR7 and TLR8), and 
double-stranded CpG-rich DNA (TLR9) [113, 116, 118]. 
Notably, HPV infection can modulate cytokine secretion 
and lead to immune evasion. For instance, the HPV18 onco-
proteins E6 and E7 suppressed TLR9-induced expression 
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of proinflammatory cytokines [119]. Interestingly, in con-
trast to TLR9, the TLR3, TLR5, and TLR8 pathways were 
activated in hrHPV-infected cells [120]. Furthermore, the 
upregulation of TLR8 correlated with the higher expres-
sion of Bcl-2 and VEGF in HeLa cells and CC tissue [120]. 
Moreover, an HPV oncoprotein (HPV18-E7) inhibited the 
expression of interferon regulatory factor 1 (IRF-1) [110, 
121]. Accordingly, keratinocytes containing episomal copies 
of hrHPV exhibit deregulated genes associated with antigen 
presentation, inflammasome action, and proinflammatory 
and chemotactic cytokines [122].

Dendritic cells (DC) are leukocytes responsible for initiat-
ing antigen-specific immune responses through antigen pres-
entation [123]. Due to the localization of HPV infections, a 
DC subtype known as Langerhans cells (LCs) plays a criti-
cal role in initiating and regulating the antiviral immune 
response [124]. Upon recognition of HPV, LCs undergo 
maturation, resulting in the upregulation of MHC expres-
sion, increased secretion of chemokines and cytokines, and 
migration to the lymph nodes to activate naive T cells [125]. 
LCs form tight junctions with adjacent keratinocytes; this 
close contact mediated by E-cadherin is crucial for retaining 
LCs in the skin [126]. However, HPV-16 infection reduced 
E-cadherin expression in infected keratinocytes, resulting in 
the depletion of LCs in the skin [127]. Notably, chemokine 
ligand 20 (CCL20) is expressed in various cells and is essen-
tial for the migration of immature LCs to the epidermis. 
The inhibition of CCL20 secretion by keratinocytes by HPV 
infection impaired LC migration to the epidermis. In-depth 
analyses revealed that oncoprotein E7 affected molecular 
cascades, preventing the binding of the transcription factor 
C/EBP to a CCL20 promoter and inhibiting NF-kB signal-
ing [128]. In addition, recent evidence suggests that HPV-
E6-expressing cells inhibit the differentiation of monocytes 
into LCs [129].

Like DCs, macrophages are professional antigen-present-
ing cells (APCs) with a critical role in connecting the innate 
and adaptive immune responses [130, 131]. Macrophages 
contribute to HPV clearance by eradicating infected host 
cells. Furthermore, these cells secrete IL-17 and TNF-α to 
initiate and promote the infiltration of immune cells [132]. 
HPV utilizes several strategies to modulate macrophage 
activity. The E6 oncoprotein expressed by infected keratino-
cytes inhibited the release of monocyte chemoattractant pro-
tein-1 (MCP-1) and thus modulated macrophage chemotaxis 
[133]. In addition, the E6/E7 oncoprotein reduces the secre-
tion of macrophage inflammatory protein 3α (MIP-3α) by 
infected keratinocytes, resulting in the modulation of mac-
rophage chemotaxis [134].

Viral infection causes the secretion of IFNs and cytokines 
by DCs and macrophages, leading to the activation of natu-
ral killer (NK) cells, which are another important barrier 
against HPV-infected cells [128]. HPV infection regulates 

the activity of NK cells in various manners, as demonstrated 
in several experimental studies. HPV-infected cells express-
ing HPV-16 E7 expressed indoleamine 2,3-dioxygenase 1 
(IDO1), which has an immunosuppressive role and con-
tributes to the impairment of NK cytotoxic activity [135]. 
Moreover, the natural killer group 2D (NKG2D) receptor 
is crucial for NK cell activation [136]. The downregulation 
of NKG2D in NK cells was associated with suppressing 
cytotoxic activity after contact with SiHa and HeLa HPV-
positive cancer cells expressing NKG2D ligands [137].

Finally, HPV infection affects several other components 
of the innate immune response. The chemokine CXCL14 
acts as an immune and inflammatory modulator regulating 
immune cell migration [138]. Low expression of CXCL14 
was documented after HPV infection due to the regulatory 
impact of E7 oncoprotein-induced hypermethylation of the 
CXCL14 promoter region [139]. Additionally, low expres-
sion of CXCL14 impaired the differentiation of CD14 + DC 
precursors into LCs [140] and blocked the maturation of 
macrophages [141]. Similarly, E6/E7 expression correlated 
with TGF-β1 secretion. TGF-β reduces the immune response 
via various mechanisms such as suppressing cytokine pro-
duction or the inhibition of T cell proliferation [142]. Sup-
pression of the immune response via E6-/E7-mediated 
upregulation of TGF-β1 represents another way to escape 
from immune surveillance [143].

Understanding the role of HPV in the modulation of the 
innate immune response is crucial to develop effective thera-
pies against HPV-related cancer. Only more in-depth investi-
gations focused on the relationship between viral pathogens 
and components of innate immunity can bring novel thera-
peutic approaches in the context of 3P medicine.

Adaptive immune response to HPV infection

Although the innate immune system is a crucial defense 
mechanism, it can only recognize a limited number of 
PAMPs. Effective evasion of innate immune recognition is 
a hallmark of HPV infections. hrHPV infection modulates 
the adaptive or acquired immune system to create a suit-
able microenvironment for persistent infection and lesion 
progression [144]. Adaptive immunity has evolved for more 
accurate and broader recognition of both self- and nonself-
antigens [145, 146]. The leading players in the adaptive 
immune response are antibodies and T cells. Antibodies 
specific for viral surface antigens can block the binding and 
fusion of viruses with host cells [147]. Moreover, T cell-
mediated immune responses play a pivotal role in adaptive 
immunity. Two viral oncoproteins, E6 and E7, cause the 
development of cancers induced by HPV infection. Immune 
responses specific for either or both of these oncoproteins 
are essential for therapeutic interventions [148]. There-
fore, vaccination against HPV can support the prevention 
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of HPV and associated cancers through antibody-driven 
immunological memory [146]. Intra-muscular delivery of 
HPV virus-like particle vaccines with high antigen doses 
enables rapid and direct access to the lymph nodes and the 
spleen to initiate the adaptive immune response. Two avail-
able vaccines against HPV infection, Cervarix® and Gar-
dasil9®, rely on the interaction of antibodies with HPV L1 
capsid protein epitopes [148]. However, without vaccination, 
acquired immunity through natural HPV infection provides 
only modest protection against subsequent cervical HPV 
infections in women [149].

In cases of immunological danger, TLRs link innate and 
adaptive immunity through their actions on T cells. CD4 + /
CD8 + T cells, regulatory T cells, T helper 1 (Th1) and Th2 
CD4 + cells, and antibody-producing B cells are adaptive 
immune cells [150]. TLRs activate downstream signaling 
pathways, which involve DCs, macrophages, NK cells, 
NF-κB, mitogen-activated protein kinases (MAPKs), pro-
inflammatory cytokines, and ultimately the induction of 
adaptive immunity [151, 152]. After the activation of TLRs 
and consequent signal transduction, DCs undergo matura-
tion characterized by the upregulation of cell surface major 
histocompatibility complex (MHC) molecules and pathogen-
derived peptide co-receptors and fragments (CD40, CD80, 
and CD86); this finally leads to the activation of T cells 
and the induction of antigen-specific immune responses 
[153]. Moreover, reduced CD80 and CD86 expression in 
DCs in hrHPV + patients positively correlates with CIN 
grades [154]. Besides, higher levels of stromal DCs are 
commonly associated with increased HPV infection regres-
sion through the activation of the programmed death 1 
(PD-1)/PD-1 ligand (PD-L1) pathways [155]. Furthermore, 
in cervical exudates of hrHPV + patients, increased Th2 
cytokine (IL-10) and reduced Th1 cytokine (IFN-γ, IL-12, 
IL-2, and tumor necrosis factor-α) levels are detected [156, 
157]. Moreover, several studies indicate that HPV modu-
lates TLR expression and interferes with TLR signaling 
pathways; this could point to therapeutic strategies based 
on TLR agonists to revive host immune responses inhib-
ited by persistent HPV infection [158]. Furthermore, cervi-
cal biopsies from women with low-grade and high-grade 
CIN reveal that cytotoxic T cells are predominant in the 
intraepithelial region; however, CD4 + and FOXP3 + T cells 
are present in the stromal compartment. Moreover, in the 
regression state of low-grade CIN, the levels of the cytotoxic 
granzyme B + significantly increase. Besides, the correla-
tions between granzyme B + levels and CD8 + T cell popu-
lations indicate that the early infiltration of highly active 
CD8 + T cells has preventive effects against the progression 
of CIN to invasive cancer [159]. Similarly, the upregula-
tion of CD8α, CD3ζ, granzyme K, CD28, and integrin αL 
RNAs has been observed in HPV-positive lesions but not in 
HPV-unrelated tumors. Besides, in HPV-positive tumors, the 

stroma is strongly infiltrated by CD8α‐ and CD3ζ‐positive T 
cells, suggesting that an enhanced cytotoxic T cell-mediated 
antitumor immune response can ameliorate the prognosis of 
patients with HPV-positive tumors, including HPV-related 
oropharyngeal tumors [160]. Interestingly, nano-pulse stim-
ulation, a non-thermal pulsed electric field modality, can 
stimulate an adaptive immune response through the genera-
tion of CD8 + T cells that can recognize tumor antigens in 
an HPV-16-transformed C3.43 murine tumor model [161].

Despite the high efficacy of HPV-like particle vaccines, 
they remain uncorrelated with protection against infection 
or disease, and the role of B cell memory remains unclari-
fied. Therefore, these parameters should be evaluated, for 
example, through the long-term follow-up of vaccinated 
individuals. However, adaptive immunity obtained by the 
vaccine is stronger than the acquired immunity by natural 
HPV infection. A better understanding of the molecular 
genetic profiles of variations in common immune response 
genes can improve the HPV vaccine in the prevention of 
CIN and CC. Figure 2 summarizes the impact of HPV infec-
tion on critical components involved in innate and adaptive 
immune responses.

Novel immunotherapeutic strategies 
in HPV‑induced cervical carcinogenesis falling 
into the concept of 3P medicine

The early oncoproteins E6 and E7 from HPV genotypes in 
cervical lesions are crucial targets of progressive immuno-
therapeutic strategies. Several HPV therapeutic vaccines 
were introduced to ameliorate the function of DCs and T 
lymphocytes [162]. However, established HPV infections 
with associated neoplastic changes require therapeutic vac-
cines in combination with cellular immune inducers, such 
as immunomodulators that enhance HPV-specific cellular 
responses. These immunomodulators include TLR adju-
vants that activate innate immunity, substances that directly 
enhance adaptive immunity (co-stimulatory molecules and 
cytokines), and adjuvants that eliminate cancer-induced 
immunosuppressive processes [162].

Postoperative immunotherapy with inosine pranobex in 
HPV-positive women receiving cervical conization of estab-
lished high-grade squamous intraepithelial lesions resulted 
in significant increases in viral clearance and reductions 
in disease relapse [163]. Another study demonstrated the 
clinical importance of combinatory treatments that can 
(1) induce tumor-associated T cell responses, (2) elevate 
immune responses in the tumor microenvironment (TME), 
and (3) reduce immunosuppressive mechanisms in the TME 
[164]. Combinations of the mentioned clinical strategies 
may increase the efficacy of therapeutic vaccines in com-
bating HPV-induced cervical neoplasia [165].
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Recent data revealed that HPV-transformed cells actively 
promote chronic stromal inflammation and cooperate with 
cells within the local microenvironment to support carcino-
genesis. This novel insight provides several implications 
for clinical practice [166]: (a) novel diagnostic approaches 
such as immunoscores can distinguish non-progressing 
and progressing precursor lesions; (b) new biomarkers can 
predict responses to therapy (e.g., IRF1 as a parameter of 
chemo- or radiochemotherapy); and (c) new immunothera-
peutic tools can target specific mechanisms and signaling 
pathways in HPV-induced carcinogenesis; these tools may 
include dsRNA-based immunotherapies for individuals with 
elevated intratumoral RIPK3 expression, IRF3-activating 
molecules such as dsRNA to eliminate oncogenic β-HPV 
infection, blockers of the IL-6/JAK/STAT3-pathway for 

patients with CC after chemo- or radiochemotherapy, and 
therapies based on IgA antibodies that engage myeloid cells 
in the killing of tumor cells [166].

Recently, immunotherapy using checkpoint inhibitors was 
implemented into more targeted CC treatment approaches 
and showed promise. These novel drugs can reduce the 
disease burden associated with HPV infection and improve 
the quality of life of patients [162]. In this regard, the anti-
PD1 antibody pembrolizumab was approved by the FDA 
to treat metastatic or recurrent CC with PD-L1 expression 
that progresses after one or more lines of chemotherapy. 
Cemiplimab, another anti-PD1 antibody, demonstrated 
similar clinical benefits both alone and in combination with 
radiotherapy. It is currently under evaluation in a phase 
III trial [167]. Other novel checkpoint inhibitors such as 

Fig. 2  Role of adaptive and innate immunity in HPV infection. 
Abbreviations: TLR 3, toll-like receptor 3; TLR 5, toll-like recep-
tor 5; TLR 8, toll-like receptor 8; TLR 9, toll-like receptor 9; IRF-
1, interferon regulatory factor 1; LC, Langerhans cells; CCL20, 
chemokine (C–C motif) ligand 20; MCP-1, monocyte chemoattract-
ant protein-1; MIP-3α, macrophage inflammatory protein 3 alpha; 
IDO1, indoleamine 2,3-dioxygenase 1; NKG2D, natural killer group 
2D; CXCL14, chemokine (C-X-C motif) ligand 14; TGF-β1, trans-

forming growth factor beta 1; NK cells, natural killer cells; Th2, T 
helper type 2; Th1, T helper type 1; IFN-γ, interferon gamma; HPV, 
human papillomavirus; IL-12, interleukin 12; IL-2, interleukin 2; 
TNF-α, tumor necrosis factor alpha; CD8α, cluster of differentiation 
8 alpha; CD3ζ, cluster of differentiation 3 zeta; CD28, cluster of dif-
ferentiation 28; CD80, cluster of differentiation 80; CD86, cluster of 
differentiation 86
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atezolizumab, durvalumab, nivolumab, and camrelizumab 
are in different stages of clinical evaluations. An additional 
targeted approach in managing CC involves PARP inhibitors 
(olaparib and rucaparib, which are both in phase II trials) 
based on earlier promising data [167].

The molecular etiology of HPV-induced CC provides 
novel biomarkers that may play an important role in pre-
dicting early recurrence and supporting personalized, alter-
native treatment modalities. Moreover, a wide spectrum of 
biomarkers may help to tailor immunotherapy and improve 
responses to these novel approaches.

HLA‑related genetics and HPV clearance/
persistence: an assessment of individualized risk

The human MHC or human leukocyte complex (HLA) is a 
cluster of highly polymorphic genes localized on chromo-
some 6 [168]. HLA genes encode proteins with roles in 
antigen presentation [169]. There are two classes of HLA 
(I and II) with essential roles in presenting HPV antigen 
peptides to T cells. Specific polymorphic variants of the 
HLA alleles are determinants of HPV persistence and pro-
gression. Class I and II HLA polymorphisms were associ-
ated with persistent HPV infection and the development 
of CC (i.e., HLA-A*02, HLA-A*0201, HLA-A*3101, 
HLA-DQB1*05 HLA-DRB1*04, HLA-DQB1*0602, 
HLA-DQB1*0403, HLA-A*3303, and HLA-B*3901); 
other alleles were associated with the reduction of CC risk 
(i.e., HLA-B*15, HLA-DRB1*13, HLA-DRB1*1310, and 
HLA-B*1501, HLA-DQB1*0402) [170–177]. Roy-Ospina 
et al. provided unique insight into the relationship between 
variations in the HLA-DRB1/DQB1 genes and HPV clear-
ance and redetection. Their study identified alleles and 
haplotypes and epitope (L1 resp. L2) binding to MHCII 
molecules from HPV-16, HPV-18, HPV-31, HPV-33, 
HPV-45, and HPV-58 [178]. Similarly, Bhaskaran et al. 
analyzed the association between the HLA-A, HLA-B, 
HLA-DRB, and HLA-DQB genes and HPV-16 persis-
tence and HPV-16-associated CC [179]. Besides, differ-
ences in HLA expression correlate with HPV infection. 
Higher HLA-E expression is associated with better over-
all survival of patients with CC. Elevated HLA-E expres-
sion may be a strategy of host cells against HPV infection 
due to HLA-E interaction with CD94/NKG2 receptors 
localized on NK cells; this interaction leads to eradicat-
ing infected or cancer cells [180]. Moreover, HLA-G was 
upregulated in HPV-infected cervical epithelium and CC 
tissue. In-depth analyses indicated that augmentation of 
HLA-G favors HPV persistence and neoplastic transforma-
tion [181]. As mentioned above, the HLA genes are highly 
polymorphic. HLA polymorphisms associated with HPV 
persistence and CC progression and those related to host 

defense represent promising biomarkers in the context of 
3P medical approaches focused on the prevention of HPV-
associated CC.

Immune system signatures and cervicovaginal 
microbiome composition in preventive, predictive, 
and personalized medicine associated with cervical 
carcinogenesis and HPV clearance

Due to the role of persistent HPV in CC, an understand-
ing of the mechanisms resulting in HPV clearance is nec-
essary for cancer prevention. The microbiome plays an 
essential role in human health and immunity [97, 182, 
182]; however, the utilization of the microbiome for 3P 
medicine should be assessed in terms of evidence-based 
knowledge [93]. Microbiome investigations revealed that 
G. vaginalis is involved in shaping immune responses, 
possibly through a shift from antimicrobial to antiviral 
responses. These bacteria also perform a certain level of 
inflammatory surveillance to maintain the HPV-negative 
state. These results suggest that probiotics or proinflam-
matory agents could be helpful in treating persistent HPV 
[68]. Moreover, Qingqing et al. reported that cervicov-
aginal microbiota dysbiosis in cervical secretions to be 
closely associated with persistent HPV infection identified 
dysbiosis biomarkers (supported by blood markers) pro-
vided new concepts for CC prevention [183–185]. Table 2 
provides a detailed overview of the various liquid biopsy 
markers potentially utilizable in cervical pathogenesis in 
HPV-infected women.

Indeed, HPV utilizes various mechanisms to evade 
immune responses and progress from infection to chronic 
dysplasia and cancer [121]. The presence of invariant 
natural killer T (iNKT) cells in cervical tissue during the 
progression from HPV infection to CIN suggests the criti-
cal role of iNKT cells in immunosuppression; preventing 
their accumulation could inhibit CIN development [188]. 
Moreover, Gutiérrez-Hoya et al. recently demonstrated 
that CC cells express markers related to the activation and 
inhibition of the immune system, as well as receptors of 
natural killer (NK) cells, suggesting that these molecules 
could potentially facilitate mimicry of the immune cells 
and evasion of immune responses [189]. Nevertheless, the 
means through which HPV evades immune mechanisms 
could promote the identification of new immunological 
targets applicable in HPV-related cancer therapy; includ-
ing the use of cytokines to create tumor milieu favoring 
the destruction of transformed cells, DC vaccines that acti-
vate Th1 and cytotoxic T lymphocyte responses, and the 
activation of NK cells through autologous or allogenic 
transplants to induce tumor cell lysis [190].

209EPMA Journal (2021) 12:199–220



1 3

Ta
bl

e 
2 

 Im
m

un
e 

sy
ste

m
 a

nd
 c

er
vi

co
va

gi
na

l m
ic

ro
bi

om
e 

si
gn

at
ur

es
 u

til
iz

ab
le

 in
 c

er
vi

ca
l c

ar
ci

no
ge

ne
si

s a
nd

 H
PV

 in
fe

ct
io

n

A
im

 o
f s

tu
dy

St
ud

y 
de

ta
ils

Re
su

lts
Re

fe
re

nc
e

C
la

rifi
ca

tio
n 

of
 th

e 
re

la
tio

ns
hi

p 
be

tw
ee

n 
lo

ca
lly

 se
cr

et
ed

 
ca

nc
er

 b
io

m
ar

ke
rs

 a
nd

 fe
at

ur
es

 o
f t

he
 c

er
vi

co
va

gi
na

l 
m

ic
ro

en
vi

ro
nm

en
t t

o 
un

de
rs

ta
nd

 th
e 

in
te

rp
la

y 
be

tw
ee

n 
ho

st,
 v

iru
s, 

an
d 

va
gi

na
l m

ic
ro

bi
ot

a

C
trl

 H
PV

 −
 (n

 =
 18

), 
C

trl
 H

PV
 +

 (n
 =

 11
), 

LS
IL

 (n
 =

 12
), 

H
SI

L 
(n

 =
 27

), 
an

d 
IC

C
 (n

 =
 10

) e
va

lu
at

ed
 in

 c
er

vi
co

v-
ag

in
al

 la
va

ge

C
an

ce
r b

io
m

ar
ke

rs
 e

le
va

te
d 

in
 IC

C
 v

s C
trl

 H
PV

 −
 : p

ro
-

in
fla

m
m

at
or

y 
cy

to
ki

ne
s (

TN
F-

α)
, a

po
pt

os
is

-r
el

at
ed

 p
ro

-
te

in
s (

sF
as

, s
Fa

sL
, T

R
A

IL
), 

ho
rm

on
es

 (l
ep

tin
, p

ro
la

ct
in

), 
gr

ow
th

 a
nd

 a
ng

io
ge

ni
c 

fa
ct

or
s (

H
G

F,
 S

C
F,

 V
EG

F)
, o

th
er

 
m

ul
ti-

fu
nc

tio
na

l p
ro

te
in

s (
O

PN
, C

Y
FR

A
 2

1–
1,

 A
FP

)

[1
86

]

B
io

m
ar

ke
rs

 to
 d

ist
in

gu
is

h 
IC

C
 fr

om
 h

ea
lth

y 
C

trl
 H

PV
 −

 : 
TN

F-
α,

 C
Y

FR
A

 2
1–

1,
 M

IF
, p

ro
la

ct
in

, S
C

F 
m

ea
su

re
d 

in
 

th
e 

C
V

L
Ex

pr
es

si
on

 o
f c

an
ce

r b
io

m
ar

ke
rs

 re
la

te
d 

to
 g

en
ita

l i
nfl

am
-

m
at

io
n 

an
d 

V
M

 c
om

po
si

tio
n

19
 o

ut
 o

f 2
3 

ca
nc

er
 b

io
m

ar
ke

rs
 e

xh
ib

ite
d 

si
gn

ifi
ca

nt
 p

os
i-

tiv
e 

co
rr

el
at

io
ns

 w
ith

 in
fla

m
m

at
or

y 
sc

or
es

. N
in

e 
ca

nc
er

 
bi

om
ar

ke
rs

 (M
IF

, T
N

Fα
, s

Fa
sL

, T
R

A
IL

, F
G

F2
, S

C
F,

 
pr

ol
ac

tin
, a

nd
 O

PN
) c

or
re

la
te

d 
ne

ga
tiv

el
y 

w
ith

 L
ac

to
-

ba
ci

llu
s a

bu
nd

an
ce

 a
nd

 p
os

iti
ve

ly
 w

ith
 v

ag
in

al
 p

H
. H

E4
 

(a
n 

an
tim

ic
ro

bi
al

 p
ep

tid
e)

 c
or

re
la

te
d 

po
si

tiv
el

y 
w

ith
 

La
ct

ob
ac

ill
us

 a
bu

nd
an

ce
 a

nd
 n

eg
at

iv
el

y 
w

ith
 v

ag
in

al
 p

H
C

ha
ra

ct
er

iz
at

io
n 

of
 th

e 
re

la
tio

ns
hi

p 
be

tw
ee

n 
H

PV
, v

ag
in

al
 

pH
, v

ag
in

al
 m

ic
ro

bi
ot

a,
 g

en
ita

l i
m

m
un

e 
m

ed
ia

to
rs

, a
nd

 
th

e 
se

ve
rit

y 
of

 c
er

vi
ca

l n
eo

pl
as

m
s

C
trl

 H
PV

 −
 (n

 =
 20

), 
C

trl
 H

PV
 +

 (n
 =

 31
), 

LG
D

 (n
 =

 12
), 

H
G

D
 (n

 =
 27

), 
an

d 
IC

C
 (n

 =
 10

) e
va

lu
at

ed
 in

 v
ag

in
al

 
sw

ab
s a

nd
 c

er
vi

co
va

gi
na

l l
av

ag
e

In
cr

ea
se

d 
va

gi
na

l p
H

 a
t v

ar
io

us
 st

ag
es

 o
f c

er
vi

ca
l c

ar
ci

no
-

ge
ne

si
s a

nd
 a

bn
or

m
al

 p
H

 h
ig

hl
y 

as
so

ci
at

ed
 w

ith
 c

an
ce

r
[1

87
]

En
ric

he
d 

Sn
ea

th
ia

 sp
p.

; u
nd

er
re

pr
es

en
te

d 
La

ct
ob

ac
ill

us
 

sp
p.

 in
 IC

C
, L

G
D

, H
G

D
, C

trl
 H

PV
 +

 
BV

-a
ss

oc
ia

te
d 

At
op

ob
iu

m
 a

nd
 P

ar
vi

m
on

as
 e

nr
ic

he
d 

in
 

LG
D

 a
nd

 H
G

D
BV

-a
ss

oc
ia

te
d 

G
ar

dn
er

el
la

, P
re

vo
te

lla
, M

eg
as

ph
ae

ra
, a

nd
 

Sh
ut

tle
wo

rt
hi

a 
en

ric
he

d 
on

ly
 in

 H
G

D
Sn

ea
th

ia
 a

nd
 A

to
po

bi
um

 e
nr

ic
he

d 
an

d 
un

de
rr

ep
re

se
nt

ed
 

La
ct

ob
ac

ill
us

 sp
p.

 in
 a

bn
or

m
al

 p
H

 o
r p

at
ie

nt
s o

f H
is

-
pa

ni
c 

et
hn

ic
ity

In
cr

ea
se

d 
ge

ni
ta

l i
m

m
un

e 
m

ed
ia

to
rs

 a
nd

 g
en

ita
l i

nfl
am

m
a-

to
ry

 sc
or

es
 in

 in
va

si
ve

 c
ar

ci
no

m
a 

on
ly

N
eg

at
iv

e 
co

rr
el

at
io

ns
 o

f P
D

-L
1 

an
d 

LA
G

-3
 a

nd
 p

os
iti

ve
 

co
rr

el
at

io
n 

of
 T

LR
2 

w
ith

 h
ea

lth
-a

ss
oc

ia
te

d 
La

ct
ob

ac
ill

us
 

do
m

in
an

ce
C

D
40

, C
D

28
, a

nd
 T

LR
2 

po
si

tiv
el

y 
co

rr
el

at
ed

 w
ith

 g
en

ita
l 

in
fla

m
m

at
io

n

210 EPMA Journal (2021) 12:199–220



1 3

Ab
br

ev
ia

tio
ns

: 
A

FP
, α

-fe
to

pr
ot

ei
n;

 B
V,

 b
ac

te
ria

l 
va

gi
no

si
s;

 C
D

27
, c

lu
ste

r 
of

 d
iff

er
en

tia
tio

n 
27

; 
C

D
28

, c
lu

ste
r 

of
 d

iff
er

en
tia

tio
n 

28
; 

C
D

40
, c

lu
ste

r 
of

 d
iff

er
en

tia
tio

n 
40

; 
C

trl
 H

PV
−

, H
PV

-
ne

ga
tiv

e 
co

nt
ro

ls
; C

trl
 H

PV
+

, H
PV

-p
os

iti
ve

 c
on

tro
ls

; C
Y

FR
A

 2
1-

1,
 c

yt
ok

er
at

in
 fr

ag
m

en
t 2

1-
1;

 H
G

D
, h

ig
h-

gr
ad

e 
dy

sp
la

si
a;

 H
G

F,
 h

ep
at

oc
yt

e 
gr

ow
th

 fa
ct

or
; H

SI
L,

 h
ig

h-
gr

ad
e 

in
tra

ep
ith

el
ia

l 
le

si
on

s;
 I

C
C

, i
nv

as
iv

e 
ce

rv
ic

al
 c

ar
ci

no
m

a;
 I

FN
-γ

, i
nt

er
fe

ro
n 

ga
m

m
a;

 I
L,

 in
te

rle
uk

in
; L

G
D

, l
ow

-g
ra

de
 d

ys
pl

as
ia

; L
SI

L,
 lo

w
-g

ra
de

 in
tra

ep
ith

el
ia

l l
es

io
ns

; M
IF

, m
ac

ro
ph

ag
e 

m
ig

ra
tio

n 
in

hi
bi

-
to

ry
 fa

ct
or

; M
IP

-1
α,

 m
ac

ro
ph

ag
e 

in
fla

m
m

at
or

y 
pr

ot
ei

n-
1α

; O
PN

, o
ste

op
on

tin
; S

C
F,

 s
te

m
 c

el
l f

ac
to

r; 
sF

as
, s

ol
ub

le
 F

as
 re

ce
pt

or
; s

Fa
sL

, s
ol

ub
le

 F
as

 li
ga

nd
; T

IM
-3

, T
-c

el
l i

m
m

un
og

lo
bu

lin
 a

nd
 

m
uc

in
 d

om
ai

n-
co

nt
ai

ni
ng

 3
; T

LR
2,

 to
ll-

lik
e 

re
ce

pt
or

 2
; P

D
-L

1,
 p

ro
gr

am
m

ed
 c

el
l d

ea
th

 li
ga

nd
 1

; T
N

F-
α,

 tu
m

or
 n

ec
ro

si
s f

ac
to

r; 
TR

A
IL

, T
N

F-
re

la
te

d 
ap

op
to

si
s-

in
du

ci
ng

 li
ga

nd
; V

EG
F,

 v
as

cu
la

r 
en

do
th

el
ia

l g
ro

w
th

 fa
ct

or
; W

N
H

PV
, w

om
en

 w
ith

 n
o 

hi
sto

ry
 o

f H
PV

Ta
bl

e 
2 

 (c
on

tin
ue

d)

A
im

 o
f s

tu
dy

St
ud

y 
de

ta
ils

Re
su

lts
Re

fe
re

nc
e

Ev
al

ua
tio

n 
of

 th
e 

as
so

ci
at

io
n 

be
tw

ee
n 

th
e 

m
ic

ro
bi

om
e 

an
d 

in
fla

m
m

at
or

y 
m

ili
eu

 d
ur

in
g 

H
PV

-1
6 

pr
e-

ac
qu

is
iti

on
, 

pe
rs

ist
en

ce
, a

nd
 c

le
ar

an
ce

W
om

en
 th

at
 a

cq
ui

re
d 

H
PV

-1
6,

 p
er

si
ste

nc
e 

at
 le

as
t 

8 
m

on
th

s a
nd

 c
le

ar
ed

 (n
 =

 14
) a

nd
 W

N
H

PV
 (n

 =
 8)

 
ev

al
ua

te
d 

in
 c

er
vi

ca
l w

as
h 

re
po

si
to

ry
 sa

m
pl

es

H
PV

-1
6:

 L
. I

ne
rs

, a
bu

nd
an

ce
 in

cr
ea

se
d 

im
m

ed
ia

te
ly

 b
ef

or
e 

in
fe

ct
io

n 
bu

t d
ec

re
as

ed
 th

er
ea

fte
r. 

G
. v

ag
in

al
is

, a
bu

n-
da

nc
e 

in
cr

ea
se

d 
im

m
ed

ia
te

ly
 b

ef
or

e 
cl

ea
ra

nc
e,

 si
gn

ifi
-

ca
nt

ly
 in

cr
ea

se
d 

af
te

r c
le

ar
an

ce
, a

nd
 re

tu
rn

ed
 to

 b
as

el
in

e 
m

on
th

s l
at

er
W

N
H

PV
: L

. i
ne

rs
, m

or
e 

ab
un

da
nt

 th
an

 in
 sa

m
pl

es
 fr

om
 

th
e 

im
m

ed
ia

te
 p

os
t-c

le
ar

an
ce

 v
is

its
 o

f H
PV

-in
fe

ct
ed

 
su

bj
ec

ts
G

. v
ag

in
al

is
, l

es
s a

bu
nd

an
t t

ha
n 

in
 im

m
ed

ia
te

 p
os

t-c
le

ar
-

an
ce

 sa
m

pl
es

 b
ut

 si
m

ila
r t

o 
pr

e-
 a

nd
 p

os
t-i

nf
ec

tio
n 

le
ve

ls

[6
8]

C
yt

ok
in

es
 (I

L-
4,

 IL
-5

, I
L-

10
, I

L-
12

, a
nd

 IL
-1

3,
 IF

N
γ,

 
IF

N
-α

2,
 M

IP
-1

α,
 T

N
F-

α)
 e

le
va

te
d 

at
 th

e 
im

m
ed

ia
te

 
po

st-
cl

ea
ra

nc
e 

vi
si

t c
om

pa
re

d 
to

 th
e 

pr
e-

ac
qu

is
iti

on
 a

nd
 

se
co

nd
 p

os
t-c

le
ar

an
ce

 v
is

its

G
. v

ag
in

al
is

 w
as

 a
ss

oc
ia

te
d 

w
ith

 e
le

va
te

d 
cy

to
ki

ne
s i

n 
th

e 
po

st-
cl

ea
ra

nc
e 

vi
si

t (
IL

-4
, I

L-
5,

 IL
-1

0,
 IL

-1
2,

 IL
-1

3,
 

TN
F-

α,
 IF

N
-γ

, M
IP

-1
α)

A
 G

. v
ag

in
al

is
 in

cr
ea

se
 p

re
ce

de
d 

fin
al

 c
le

ar
an

ce
 a

nd
 

pe
ak

ed
 a

t t
he

 ti
m

e 
of

 th
e 

ob
se

rv
ed

 c
yt

ok
in

e 
pe

ak
C

or
re

la
tio

n 
of

 c
er

vi
co

va
gi

na
l m

ic
ro

bi
ot

a 
dy

sb
io

si
s a

nd
 

H
PV

 p
er

si
ste

nc
e

Pe
rs

ist
en

t a
nd

 tr
an

si
en

t H
PV

 in
fe

ct
io

ns
 a

nd
 h

ea
lth

y 
w

om
en

 
(c

er
vi

ca
l s

ec
re

tio
ns

, b
lo

od
)

H
PV

-p
er

si
ste

nt
 in

fe
ct

io
n:

 h
ig

he
r a

bu
nd

an
ce

 o
f P

ro
te

ob
ac

-
te

ria
, A

ct
in

ob
ac

te
ria

, B
ac

te
ro

id
et

es
, a

nd
 F

us
ob

ac
te

ria
[1

83
]

C
or

re
la

tio
n 

of
 P

re
vo

te
lla

, S
ph

in
go

m
on

as
, a

nd
 A

na
er

oc
oc

-
cu

s w
ith

 p
er

si
ste

nt
 H

PV
 in

fe
ct

io
n.

 C
or

re
la

tio
n 

of
 L

ac
to

-
ba

ci
llu

s i
ne

rs
 w

ith
 tr

an
si

en
t H

PV
 in

fe
ct

io
n

A
lte

re
d 

im
m

un
e 

m
ic

ro
en

vi
ro

nm
en

t w
ith

 c
er

vi
co

va
gi

na
l 

m
ic

ro
bi

ot
a 

dy
sb

io
si

s:
 IL

-6
 a

nd
 T

N
F-

α 
w

er
e 

up
re

gu
la

te
d 

in
 c

er
vi

ca
l s

ec
re

tio
ns

 fr
om

 p
er

si
ste

nt
 H

PV
 in

fe
ct

io
n 

co
m

-
pa

re
d 

w
ith

 tr
an

si
en

t i
nf

ec
tio

ns
 a

nd
 h

ea
lth

y 
w

om
en

Pe
rip

he
ra

l b
lo

od
: r

eg
ul

at
or

y 
T 

ce
lls

 a
nd

 m
ye

lo
id

-d
er

iv
ed

 
su

pp
re

ss
or

 c
el

ls
 in

 p
at

ie
nt

s w
ith

 p
er

si
ste

nt
 H

PV
 in

fe
ct

io
n 

w
er

e 
si

gn
ifi

ca
nt

ly
 in

cr
ea

se
d

211EPMA Journal (2021) 12:199–220



1 3

Conclusions and expert recommendations

Viral infections are responsible for approximately 15% of 
cancer cases worldwide [191]. These oncogenic viruses 
use different strategies that lead to carcinogenesis, includ-
ing direct effects on immune responses with subsequent 
chronic inflammation. A general model of virus–bacte-
ria–host interaction involves altered host gene expression 
with the consequent promotion of tumorigenesis [192]. On 
the other hand, a microbiome with multiple bacterial, viral, 
and fungal species can protect the host from viral infec-
tions. This defense system greatly depends on the exact 
microbiome composition and its complex interactions.

Predictive diagnostics

The disrupted balance of the VM and the innate immune 
system is one of the most critical risk factors in HPV 
infection. It could represent an exciting and valuable group 
of biomarkers for stratifying dysplastic cervical lesions 
and predicting LSIL and HSIL lesions regression, persis-
tence, or progression to invasive disease. Novel diagnostic 
approaches such as immunoscores can help to distinguish 
non-progressing and progressing precursor lesions. More-
over, complex evaluation of the local vaginal microenvi-
ronment might potentially assess the malignant potential 
in elusive histological subgroup of cervical intraepithe-
lial neoplasia grade 2 (CIN2), which has a marked chance 
regress. A similar approach is also demanding in persisting 
LSIL lesions, where the guidelines are still incoherent.

Targeted prevention

Prevention is a cornerstone in HPV-associated diseases. 
There are multiple behavioral, environmental, and host 
factors influencing the vaginal microbiome and local 
innate immune system that could be successfully and eas-
ily modified. Smoking, a diet rich in fat, with a high gly-
cemic load and nutritional density, and obesity are linked 
to a higher incidence of bacterial vaginosis [193]. Even 
hygiene practices, including the frequent douching and 
use of vaginal lubricants, could alter the local vaginal 
flora [194]. Gender-specific health concepts raise ques-
tions regarding the functional interactions between geni-
tal microbiota and the host and the associations between 
semen and the VM [195]. Multiple studies showed that 
vaginal microbiome members could be detected in male 
penile skin, urethral, urine, and semen specimens [196, 
197], suggesting that sexual partners share and exchange 
microorganisms colonizing the urogenital tracts. This fact 

highlights the need for universal and gender-neutral HPV 
prevention strategies focused on modifiable risk factors.

Personalization of medical services

Focusing the research on the exact Lactobacillus composi-
tion could explain how to prevent the persistent HPV infec-
tions and subsequent disease progression [198]. Footprints 
of these unique ecosystems tightly connected to the immune 
system could provide valuable insights for the diagnosis and 
treatment in the context of 3P medicine. This multidiscipli-
nary character of 3P medicine is essential to overcoming 
barriers between the clinical sphere and the research area 
[199].

The accumulating evidence connecting HPV-associated 
gynecological cancers and dysbiosis identifies microbiota as 
a valuable target for cancer prevention and therapy. In the 
future, vaginal probiotics, prebiotics, novel antimicrobials, 
biofilm disruptors, and microbiome transplantation have the 
potential to be used alone or in combination to modulate the 
vaginal microbiome by restoring a healthy local microenvi-
ronment for the prevention of cervical cancer and/or reduc-
tion of vaginal toxic effects associated with cancer therapies 
[48].

Biomarkers of cervical carcinogenesis obtained from var-
ious biofluids (vaginal swabs, cervicovaginal lavage/secre-
tions, or blood) constitute important evidence utilizable in 
personalized, preventive, and predictive medicine, which is 
essential for the improvement of medical care due to the 
need for an individualized approach and reduced economic 
burden of traditional healthcare in the context of medicine of 
the twenty-first century. The integration of the unique com-
position of the VM and the innate immune system allows us 
to create a complex ecosystem map for targeted prevention 
and the development of personalized treatment regimens. 
This could reduce drug toxicity, adverse side effects, and 
morbidity [200]. What more, high-throughput and cost-
effective multi-omics technologies play a clinically relevant 
role in cancer management and research, especially for iden-
tifying biomarkers necessary for the successful implementa-
tion of 3P medicine [201, 202].

In conclusion, the concepts of an early predictive diag-
nosis, targeted prevention, and individualized approach to 
the patient associated with massive progress in the field of 
biomedicine bring significant advantages compared to reac-
tive medical approaches. The analysis of disbalance between 
VM and immune system in HPV-induced CC based on char-
acterization of novel biomarkers demonstrates the innovative 
approach in the work-frame of the 3P medicine, and only 
more in-depth research could bring efficient therapeutical 
strategies for patients with CC.
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