

MP Biomedicals, LLC

29525 Fountain Parkway Solon, Ohio 44139

Telephone: 440/337-1200 Toll Free: 800/854-0530 Fax: 440/337-1180 mailto: biotech@mpbio.com web: http://www.mpbio.com

TECHNICAL INFORMATION

Catalog Number: 100183, 194527, 199520 Cycloheximide

Structure:

CH₃ Ω OH CH СĤ

Molecular Formula: C₁₅H₂₃NO₄ Formula Weight: 281.36 CAS #: 66-81-9

Synonyms: Acti-Dione; 3-[2-(3,5-Dimethyl-2-oxocyclohexyl)-2-hydroxyethyl] glutarimide; Naramycin A **Physical Description:** Grayish to yellowish gray crystalline powder or solution

Recommended Storage: +4°C

Solubility: It is very soluble in chloroform, methanol, and acetone; moderately soluble in isopropanol, n-butanol and amyl acetate; very slightly soluble in carbon tetrachloride and the saturated hydrocarbons. Cycloheximide solubility in water is about 2% and the solutions are stable for several weeks at pH 3-5 which is the optimum range for stability. Activity is rapidly destroyed by alkaline solutions.

Activity: Approximately 800 ug/mg

Description: Cycloheximide is an antibiotic which is very active against many molds, yeasts, and phytopathogenic fungi. It exhibits somewhat lower activity against bacteria and certain fungi. Control of various molds and fungi in gelatin-based photographic emulsions, photoengraving glues, and other light-sensitive products is suggested. The activity of cycloheximide against various organisms is given below.^{1,2} Inhibits peptide synthesis in eukaryotic organisms but not in prokaryotes. Protein synthesis is blocked by the interaction of cycloheximide with the translocase enzyme. This interaction prohibits the translocation of messenger RNA on the cytosolic, 80S ribosomes without inhibiting organelle protein synthesis.^{3,9,10}

The antibiotic activity is described below as micrograms per milliliter completely inhibiting growth for 72 hours.

Phytopathogenic Fungi		Bacteria	
Pythium debaryanum	20.0	Aerobacter aerogenes	> 1000.0
Sclerotinia fructicola	20.0	Bacillus mycoides	> 1000.0
Diplocarpon rosae	10.0	Bacillus subtilis	> 1000.0
Elsinoe veneta	40.0	Escherichia coli	> 1000.0
Gibberella saubinetii	20.0	Phytomonas campestris	> 1000.0
Physalopora tucumanensis	10.0	Proteus vulgaris	> 1000.0
Diaporthe citri	2.5	Pseudomonas aeruginosa	> 1000.0
Endothia parasitica	20.0	Salmonella schottmuelleri	> 1000.0
Gnomonia leptostyla	20.0	Staphylococcus aureus	> 1000.0
Gnomonia veneta	20.0	Streptococcus faecalis	> 1000.0
Guignardia aesculi	10.0	Streptococcus pyogenes	> 1000.0
Venturia inaequalis	10.0		
Ustilago tritici	0.125	Yeasts	
Ustilago zeae	10.0	Nematospora phaseoli	0.17
Cercospora apii	20.0	Pichia membranaefaciens	0.17
Heterosporium iridis	5.0	Saccharomyces carlsbergensis	0.17
Cladosporium fluvum	0.25	Saccharomyces ellipsoideus var. burgundy	0.17
Cladosporium paeoniae	10.0	Saccharomyces fragilis	0.17
Macrosporium sarcinaeforme	20.0	Saccharomyces pastorianus	0.17
Alternaria solani	40.0	Schwanniomyces occidentalis	0.17
Alternaria solani BTI	10.0	Sporobolomyces salmonicolor	0.17
Alternaria oleracea BTI	20.0	Torulaspora fermentati	0.17
Ramularia pastinaceae	100.0	Rhodotorula glutinis	0.31
Diplodia zeae	1.25	Hansenia apiculata	0.62

10.0 10.0 100.0 0.125 2.5 1.25
0.24
12.5
25.0
1000.0
> 1000.0
> 1000.0
> 1000.0
> 1000.0
> 1000.0
> 1000.0
> 1000.0
> 1000.0

Hensenula anomala	2.5
Saccharomyces cerevisiae	10.0
Torula utilis	10.0
Asporomyces urae	25.0
Debaryomyces globosum	25.0
Schizosaccharomyces pombe	25.0
Endomyces magnusii	> 1000.0
Kloeckera apiculata	> 1000.0
Mycotorula roseo-corrallina	> 1000.0
Pityrosporum ovale	> 1000.0
Saccharomyces lactis	> 1000.0

Cycloheximide is also known to induce FAS/FAS Ligand apoptosis, and triggers apoptosis in HL-60 cells, T-cell hybridomas, Burkitt's lymphoma cells¹¹ in addition to a variety of other cell types. Cycloheximide will also delay or inhibit apoptosis induced by other agents. Cycloheximide is used in plant research to study disease resistance and as an ethylene stimulant, useful in studies involving fruit and leaf production.

Typical uses involve:

- Used in bacteriological media to isolate or count bacteria in the presence of yeast and molds;

- Used in protein synthesis in apoptosis⁴;
- Gene expression^{5,6};

– Glycogenolysis, gluconeogenesis and ureogenesis in isolated rat hepatocytes⁷;

Studies involving steroidogenesis⁸;

- Used in plant regulation and as a quality control measure by the food and beverage industry.

Catalog Number	Description	Size
100183	Cycloheximide	1 g 5 g 25 g
194527	Cycloheximide, cell culture reagent	1 g 5 g 25 g
199520	Cycloheximide solution - 100 mg/ml of DMSO, 0.2um filtered.	1 ml

∆vailahilitv

References:

- Whiffen, A.J., "The Production, Assay, and Antibiotic Activity of Acti-Dione, an antibiotic from Streptomyces griseus," Journal of Bacteriology, v. 56: 283 (1948). - Whiffen, A.J., "The Activity in vitro of Cycloheximide (Acti-dione) against Fungi Pathogenic to plants," Mycologia, v. 42: 253

(1950).

- Obrig, T.G., et al., "The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes." J. Biol. Chem., v. 246, 174-181 (1971).

- Cotter, T.G., Glynn, J.M., Echeverri, F. and Green, D.R., "The Induction of apoptosis by chemotherapeutic agents occurs in all phases of the cell cycle." Anticancer Research, v. 12, 773-780 (1992).

- Lusska, A., Wu, L. and Whitlock, J.P. Jr., "Superinduction of CYP1A1 transcription by cycloheximide." J. Biological Chemistry, v. 267:21, 15146-15151 (1992).

- Durrant, W.E., Rowland, O., Piedras, R., Hammond-Kosack, K.E. and Jones, J.D.G., "cDNA-AFLP Reveals a striking overlap in race-specific resistance and wound response gene expression profiles." The Plant Cell., v. 12, 963-977 (2000).

- Huerta-Bahena, J. Villalobos-Molina, R. and Garcia-Sainz, A.J., "Cycloheximide: An adrenergic agent." Life Sciences, v. 30, 1757-1762 (1982).

- Miller, W., "Mitochondrial specificity of the early steps in steroidogenesis." J. Steroid Biochem. Molec. Biol., v. 55, 607-616 (1995).

- Suzuki, N., Suzuki, T., Uchida, A.E. and Thompson, A., "Effect of dexamethasone on nucleolar casein kinase II activity and phosphorylation of nucleolin in lymphosarcoma P1798 cells." J. Steroid Biochem. Molec. Biol., v. 42:3/4, 305-312 (1992). - Setkov, N.A., Kazakov, V.N., Rosenwald, I.B., Makarova, G.F. and Epifanova, O.I., "Protein synthesis inhibitors, like growth factors, may render resting 3T3 cells competent for DNA synthesis: a radioautographic and cell fusion study." Cell Prolif., v. 25, 181-191 (1992).

– Waring, P., "DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol triphosphate levels." *J. Biological Chemistry*, **v. 265:24**, 14476-14480 (1990).

– Merck Index, 12th Ed, No 2797