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Abstract 

Plant pathogenic fungi and fungus-like taxa (oomycetes) form part of the ecological makeup 

of healthy natural forest ecosystems. Some help to eliminate unhealthy trees, while others are 

essential for the conservation of plant species diversity, particularly soil-borne pathogens. 

However, many fungal pathogens also have devastating effects on forest ecosystems. Disease 

impacts are more profound when pathogens newly emerge and these can even wipe out an entire 

tree population. These organisms have developed a plethora of strategies to colonize and infect 

plants and there are several factors causing pathogens to emerge. Therefore, to prevent emerging 

diseases, a thorough understanding of the factors causing them is necessary. It is also important to 

have a comprehensive understanding of the mechanisms of disease development and propagation to 

design effective control measures. In this review, we describe the phenomenon of emerging and re-

emerging pathogens by exemplifying ten important recently emerged forest pathogenic fungi and 

fungus-like taxa, namely, Ophiostoma novo-ulmi, Ceratocystis fimbriata, Fusarium circinatum, 

Hymenoscyphus fraxineus, Phyllosticta citricarpa, Neonectria faginata, Sphaerulina musiva, 

Phytophthora pluvialis, P. agathidicida, and Melampsora × columbiana. They have been listed in 

order of the most cited to the least cited species based on data obtained from the Web of Science. 

We provide a review for each species to document its emergence and its negative impact on the 

host(s). We also revise their taxonomic placement, host and country details, and provide updated 

phylogenetic trees for each genus. The number of accepted species based on molecular data is also 

provided. 
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Introduction  

Forest plants are important in sustaining wildlife habitats and are also valued for recreational 

and spiritual welfare (Allen et al. 2010). Forests contribute to the industry through their harvesting 

value as they are primarily relied upon for timber (Allen et al. 2010, Hyde et al. 2019). A healthy 

natural forest ecosystem includes fungal pathogens, which are essential in removing weakened and 
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unhealthy trees (Castello et al. 1995). However, they may pose threats to forest ecosystems, 

resulting in large forest areas being affected. For example, oak forests have experienced morbidity 

and mortality attributed to canker-causing taxa such as Diplodia corticola and Discula quercina 

(current name: Dendrostoma leiphaemia) (Linaldeddu et al. 2009, 2014, Maddau et al. 2011). In 

view of phytopathogens, fungi are considered as the most ecologically and economically important 

threats (Doehlemann et al. 2017, Jayawardena et al. 2021b).  

Basically, upon colonization of plants, fungi exhibit pathogenic, parasitic or mutualistic 

lifestyles (De Silva et al. 2017). However, they can switch among the different lifestyles under 

favorable or unfavorable conditions (Promputtha et al. 2007, Rai & Agarkar 2016). Some 

endophytes, which asymptomatically colonize plants, can become pathogenic and vice versa, under 

certain conditions (Müller & Krauss 2005, Schulz & Boyle 2005, Delaye et al. 2013). For instance, 

Sphaeropsis sapinea can cause disease when plants are stressed under conditions such as drought, 

extreme temperatures or mechanical wounds (Chou 1987, Stanosz et al. 2001). Furthermore, 

Diplodia mutila is an endophyte of Iriartea deltoidea that may become pathogenic when there is 

excess light (Álvarez-Loayza et al. 2011). Similarly, certain saprobic fungi may switch to 

pathogens, as was the case with the opportunistic Lasiodiplodia brasiliense (MFLUCC 11-0414) 

and L. pseudotheobromae (MFLUCC 12-0053) (Dong et al. 2020). 

Pathogenic fungi exist as biotrophs, necrotrophs or hemibiotrophs, with the impacts ranging 

from mild infection to host death (Doehlemann et al. 2017). Botrytis cinerea and Sclerotinia 

sclerotiorum are examples of necrotrophic pathogens (van Kan 2006). Some necrotrophs manifest 

as latent pathogens, whereby they prevail in a quiescent state until triggered by host physiological 

changes to re-establish growth (Brown 1998, Slippers & Wingfield 2007). Hemibiotrophs initially 

occur as biotrophs and later switch to a necrotrophic mode (Horbach et al. 2011, De Silva et al. 

2017). Such examples include Pyricularia oryzae (Koeck et al. 2011) and Phytophthora infestans 

(Sowley et al. 2009, Jayawardena et al. 2020). 

Some symptoms associated with fungal diseases include spots, blights, cankers, wilts, rots, 

and damping-off (Ray et al. 2017, Jayawardena et al. 2019). Through infection and eradication of 

wild plants, pathogenic fungi and fungus-like taxa threaten the vitality and viability of natural 

ecosystems (Fisher et al. 2020). The impacts are more profound upon the invasion and emergence 

of pathogens (Avila-Quezada et al. 2018). A disease is considered as “emerging” when it is newly 

recognized or has newly appeared in a certain region, and has the ability to spread at an increasing 

rate in incidence and severity (Daszak et al. 2003). Emerging pathogens are those that have a high 

incidence and virulence rate (Daszak et al 2000, Jones et al. 2008). Emerging pathogens can 

generate novel dangerous strains that threaten plant health and negatively impact biodiversity 

conservation (Jones et al. 2008, Avila-Quezada et al. 2018). Pathogens also emerge as a result of 

newly introduced taxa on native hosts (Garbelotto & Pautasso 2012). Emerging fungus-like 

pathogens include Phytophthora agathidicida (Scott & Williams 2014, Weir et al. 2015) and P. 

pluvialis (Dick et al. 2014), and emerging pathogenic fungi include Ceratocystis platani (Panconesi 

1999, Baker et al. 2003, Engelbrecht et al. 2004, Engelbrecht & Harrington 2005), Hymenoscyphus 

fraxineus (Krauml & Kirisits 2012, Pautasso et al. 2013, Baral & Bemmann 2014, Baral et al. 2014, 

Fisher et al. 2020), as well as Neonectria faginata and N. ditissima (Ehrlich 1934, Lohman & 

Watson 1943, Houston 1994, Castlebury et al. 2006). Other examples are provided in Table 1.  

Several factors prompt the emergence of pathogens (Ghelardini et al. 2016). Owing to their 

complex biogeography, latent and cryptic expression, phytopathogenic fungi and fungus-like taxa 

threaten biosecurity (Hyde et al. 2018, Scott et al. 2019). Therefore, the main objective of this 

review is to describe different scenarios for the occurrence of emerging pathogens by exemplifying 

ten important emerged or re-emerged forest pathogenic fungi and fungus-like taxa. Each entry 

provides details on the number of accepted species in the genus, their hosts, distributions and their 

negative impacts on their respective hosts. We also elucidate the taxonomic placement of each 

species and their relatives and provide updated phylogenetic trees based on DNA sequence 

analyses, concurrently revising these genera. 
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Table 1 Summary of emerging forest pathogenic fungi and fungus-like taxa focused in this study. 

 
List of emerging 

pathogens 

Invasion 

mechanism 

Diseases 

caused 

Main host 

affected 

Location References 

Ophiostoma novo-ulmi 

(Sordariomycetes, 

Ophiostomatales, 

Ophiostomataceae) 

- Dutch elm 

disease 

Ulmus sp.  

(elm trees) 

Europe, western 

Asia and North 

America 

Brasier (1991) 

Ceratocystis fimbriata 
(Sordariomycetes, 

Microascales, 
Ceratocystidaceae) 

Via wounds Rapid 

ˋŌhiˋa death 

Metrosideros 
polymorpha 

(ˋŌhiˋa lehua) 

Hawaii Baker et al. (2003), 

Harrington (2013), 

Keith et al. (2015), 

Mortenson et al. (2016) 

Fusarium circinatum 

(Sordariomycetes, 
Hypocreales, Nectriaceae) 

Via wounds Pitch canker 

disease 

Pinus radiata 

(Monterey 

pine) 

California, USA McCain et al. (1987), 

Correll et al. (1991), 

Gordon et al. (2001) 

Hymenoscyphus fraxineus 

(Leotiomycetes, 

Helotiales, Helotiaceae) 

- Dieback  Fraxinus 

excelsior 

(European ash 

trees) 

Europe Krauml & Kirisits 

(2012), Pautasso et al. 

(2013), Baral & 

Bemmann (2014),  

Baral et al. (2014) 

Phyllosticta citricarpa 
(Dothideomycetes, 

Botryosphaeriales, 
Phyllostictaceae) 

- Citrus black 

spot 

Citrus spp. South Africa Kotzé (1981), 

Baldassari et al. (2008) 

Neonectria faginata 

(Sordariomycetes, 
Hypocreales, Nectriaceae) 

Via wounds Beech bark 

disease 

Fagus 

grandifolia 
(American 

beech) 

USA  Ehrlich (1934) 

Sphaerulina musiva 
(Dothideomycetes, 

Capnodiales, 

Mycosphaerellaceae) 

Via wounds, 

and/or 

natural 

openings 

Septoria 

leaf spot 

and stem 

canker 

Populus spp. 

(poplars) 

North America Bier (1939), Waterman 

(1954), Feau et al. 

(2010), Quaedvlieg et 

al. (2006), Dhillon et al. 

(2015) 

Phytophthora pluvialis 

(Peronosporomycetes, 
Peronosporales, 

Peronosporaceae) 

- Red needle 

cast disease 

Pinus radiata 

(pine) 

New Zealand Dick et al. (2014) 

Phytophthora agathidicida 
(Peronosporomycetes, 

Peronosporales, 

Peronosporaceae) 

- Kauri 

dieback 

Agathis 
australis 

(kauri) 

New Zealand Scott & Williams 

(2014), Weir et al. 

(2015) 

Melampsora × 

columbiana 

(Pucciniomycetes, 
Pucciniales, 

Melampsoraceae) 

- Leaf rust 

disease  

Populus spp. 

(poplars) 

USA Newcombe et al. (2000) 

 

Drivers of emerging fungal pathogens 

Disease establishment by pathogens on their hosts depends on many factors. Much of the 

global increase in plant diseases are attributed to newly emerged pathogens (Rafiqi et al. 2018). 

When pathogens emerge, they can spread to new geographical areas and affect other hosts (Wilson 

1995, Strange & Scott 2005). Among the numerous drivers of emerging phytopathogens, Morse 

(2004) ranked ecological changes, for example, climate change as the most significant factor 

leading to the emergence of diseases. Events such as floods, storms and hurricanes can generate 

novel virulent strains (Nnadi & Carter 2021). These events expand the geographic range of 

pathogens or their carriers which result in the introduction of new diseases in areas where they have 

not been previously reported (Tucker et al. 2011, de Crecy et al. 2009). For instance, Phytophthora 
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cinnamomi tends to migrate to warmer regions where it infects new hosts as it is sensitive to frost 

(Benson 1982, Bergot et al. 2004). Furthermore, climate change may enhance the virulence of 

pathogens and/or weaken the host defense system (Harvell et al. 2002, Eastburn et al. 2011).  

Another key factor responsible for the increased occurrence of fungal pathogens is largely 

attributed to human-mediated activities, which alter the natural environment thus generating 

opportunistic situations for pathogens to emerge (Morse 2004, Fisher et al. 2012). Furthermore, 

perturbations due to human activities may lead to the emergence of novel hybrid species through 

interspecific hybridization (Brasier & Mehrotra 1995, Fisher et al. 2012, Stukenbrock 2016). 

Movement of living plants across international borders has been recognized as an important 

invasion pathway for non-native pathogens worldwide (Brasier 2008). Such disease-causing 

organisms may have severe economic and ecological consequences (Brasier 2008). Pathogens that 

have co-existed with their hosts might have little to no adverse effects since they co-evolved and 

are adapted to each other (Brasier 2008, Phukhamsakda et al. 2022). However, greater risks arise 

when these pathogens move to other regions, where the endemic plants are endangered as they have 

little resistance (Brasier 2008). Such an example is Phytophthora cinnamomi, which can expand its 

geographic range and affect previously unaffected hosts (Bergot et al. 2004). Phytophthora 

cinnamomi has infected more than 3,000 plant species over the last 150 years from its presumed 

origin within South Asia (Hardham 2005). This root pathogen continues to infect plant ecosystems 

worldwide, especially forests in south-west Australia (Hardham 2005). Emerging diseases also 

arise as a result of a pathogen being latent (Ghelardini et al. 2016). Plants affected by latent 

pathogens initially do not show any visible symptoms (Migliorini et al. 2015). The pathogen 

perseveres and later produces signs or symptoms of diseases, perhaps triggered by changes in 

environmental or nutritional conditions, or if the host immune system is compromised (Photita et 

al. 2004). 

 

Invasion of pathogenic fungi into plant tissues and their dispersal 

Fungi have multiple ways to interact with plants (Burgess et al. 2016). Their distinct lifestyles 

exhibit diverse traits, such as dispersal mechanisms, types of reproduction, growth, nutrient 

assimilation and parasitism (Gilbert et al. 2002, García-Guzmán & Morales 2007, Dickman & de 

Figueiredo 2011, Porras-Alfaro & Bayman 2011). Pathogenic fungi are adapted so that they can 

invade plants, overcome defense mechanisms, and colonize tissues to grow, survive and reproduce 

(Mendgen et al. 1996, Jayawardena et al. 2021b). For a pathogen to infect a plant, it must be able to 

make its way into and through the tissues (Mendgen et al. 1996). As such, fungi initially target the 

hosts that they want to colonize and develop means for their spore dispersal (Doehlemann et al. 

2017). Spore dissemination can either be independent of the host (via wind, water or insect vector) 

or dependent on the host (through pollen or seed dispersal) (Alfen 2001, Doehlemann et al. 2017). 

Some spores secrete an adhesive extracellular matrix to attach firmly to the host surface 

(Doehlemann et al. 2017, Chethana et al. 2021a, b). These spores adhere to the host surface to 

prevent them from being washed away prior to penetration (Doehlemann et al. 2017). 

Following adherence to the surface, some spores penetrate the plant via phloem-feeding 

insect vectors (Kluth et al. 2002), via wounds or through the stomata (Dean et al. 2012, Watkinson 

et al. 2015). Others enter their hosts by secreting cell-wall degrading enzymes or through the 

formation of appressoria and pegs (Bechinger et al. 1999, Thines et al. 2000, Tonukari et al. 2000, 

Tonukari 2004, Dean et al. 2012, Chethana et al. 2021a, b). Prior to appressorium formation, the 

fungus undergoes a morphological change that results in high turgor pressure (Thines et al. 2000, 

Doehlemann et al. 2017). Such high pressure enables the fungus to rupture and penetrate the cuticle 

to enter underlying epidermal cells of the leaves (Thines et al. 2000). After entering the hosts, fungi 

obtain nutrients as biotrophs or necrotrophs (Eberl et al. 2019). Fig. 1 illustrates a spore germ tube 

that has formed an appressorium, entering the epidermis. Fig. 2 summarizes the steps of fungal 

invasion into its host. 

Appressorial cells vary among different species, being either single-celled or multicellular, 

the latter termed compound appressoria (Armentrout et al. 1986, Chethana et al. 2021a, b). Most 
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appressoria are simple nodules that emerge at the end of spore germ tubes. However, some 

appressoria contain melanin pigments and are septate, such as in Magnaporthe oryzae (current 

name: Pyricularia oryzae) and the anthracnose disease-causing Colletotrichum species (Ryder & 

Talbot 2015, Jayawardena et al. 2021a). The biology of P. oryzae has been studied as a model to 

understand the mechanism of fungal disease formation in plants (Ebbole 2007). Pyricularia oryzae 

is a hemibiotrophic pathogen. The fungus initially invades cells, absorbs the available nutrients, but 

does not kill the host cells (Campos-Soriano et al. 2013). Ultimately, the fungus becomes 

necrotrophic, damaging and killing plant tissues (Campos-Soriano et al. 2013). The infection starts 

when the conidium adheres to the host surface and upon germination, an appressorium is formed to 

infect the plant (Wilson & Talbot 2009). 

 

 
 

Figure 1 – Spore germ tube and appressorium entering the epidermis – process in pathogenic fungi 

and fungus-like taxa [Adapted and re-drawn from Meng et al. (2009)]. 

 

 
 

Figure 2 – Summary: fungal invasion mechanisms of the host. 
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Materials & Methods  

 

Case studies 

In this paper, we describe the phenomenon of emerging and re-emerging pathogens by 

exemplifying ten important recently emerged forest pathogenic fungi and fungus-like taxa, namely, 

Ophiostoma novo-ulmi, Ceratocystis fimbriata, Fusarium circinatum, Hymenoscyphus fraxineus, 

Phyllosticta citricarpa, Neonectria faginata, Sphaerulina musiva, Phytophthora pluvialis, P. 

agathidicida, and Melampsora × columbiana. These species have been selected in view of their 

degree of severity and their negative impacts on the natural ecosystems, based on a search of 

previous publications. Each entry highlights the emergence of the pathogens and their impacts on 

their respective hosts. These ten pathogens have been listed in order of the most cited to the least 

cited. The total number of citations per year has been obtained from the core collection of the “Web 

of Science” webpage. The graphs provided herein illustrate the number of times each species was 

cited, calculated from the years 2001 to 2021 (Figs 3, 5, 7, 8, 10, 12, 14, 16, 17, 19). This has been 

done by using the “advance search” option and using the species name as the query keyword. 

Furthermore, to estimate the number of studies carried out on fungal pathogens from forest trees, 

crops and ornamentals, a basic search on the Web of Science and google scholar was initiated, by 

using specific keywords (Table 2).  

 

Table 2 Estimation of the number of studies carried out on fungal phytopathogens.  

 

Types of plantation 

Number of fungal pathogenic records 

Keywords used From Web of 

Science 

From google 

scholar 

Crops 3525 58,800 Fungal pathogens in/on crops 

Forest trees 701 28,000 Fungal pathogens in/on forest trees 

Ornamental trees 129 25,300 Fungal pathogens in/on ornamental 

plants 

 

Sequence alignment and phylogenetic analyses 

Phylogenetic analyses were performed using multi-locus datasets for each genus. Sequences 

for individual gene regions [internal transcribed spacer (ITS), large subunit (LSU), β-tubulin (β-

TUB), translation elongation factor 1α (TEF-1α), RNA polymerase 1 and 2 (RPB1 and RPB2), actin 

(ACT), calmodulin (CAL), guanine nucleotide-binding protein subunit beta (MS204), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 60S ribosomal protein L10 (60S), enolase 

(Enl), heat shock protein 90 (HSP90), triosephosphate isomerase/glyceraldehyde-3-phosphate 

dehydrogenase gene (TigA)] were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/). 

These sequences were aligned using MAFFT v7 (https://mafft.cbrc.jp/alignment/server/) (Katoh et 

al. 2019). The aligned sequences were checked and trimmed using trimAl to remove uneven ends 

(Capella-Gutiérrez et al. 2009), and combined using BioEdit v. 7.0.5.2 (Hall 1999). Phylogenetic 

trees of the concatenated gene regions were reconstructed using maximum likelihood (ML), 

maximum parsimony (MP) and Bayesian inference (BI) method. For each genus, phylogenetic 

analyses were also conducted on single gene locus for verification and selection of taxon sampling 

for subsequent phylogenetic analyses. 

Maximum likelihood analysis was performed in the CIPRES Science Gateway v.3.3 (Miller 

et al. 2010). Bootstrap support was obtained by running 1000 pseudo-replicates using RAxML-

HPC2 on XSEDE (8.2.12) (Stamatakis 2014). Phylogenetic Analysis Using Parsimony (PAUP) 

v.4.0b10 was used to perform the MP analysis using the heuristic search option with 1,000 random 

taxa additions (Swofford 2002). The model of evolution was estimated by using MrModeltest 2.2 

(Nylander 2004) under the Akaike information criterion (AIC) implemented in PAUP v. 4.0b10. 

Bayesian inference analysis was conducted using MrBayes v. 3.1.2 (Huelsenbeck et al. 2001, 

Ronquist & Huelsenbeck 2003) to evaluate posterior probabilities (BYPP) by Markov chain Monte 

Carlo sampling (BMCMC). Markov chains were run for 1,000,000 to 15,000,000 generations 
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depending on the genera and trees were sampled every 100th generation. The suitable burn-in 

phases were determined using Tracer version 1.7 (Rambaut et al. 2018) and were discarded. 

Phylograms were visualized using FigTree v.1.4.4 (Rambaut & Drummond 2012) and Adobe 

Illustrator CS5 (Version 15.0.0, Adobe, San Jose, CA). 

 

Results 

 

Phylogenetic analyses 

From our phylogenetic analyses, all three phylogenetic trees (ML, MP and BI) resulted in 

similar topologies, using their respective concatenated alignments. The RAxML analysis yielded 

the best scoring tree, which was used as the backbone tree. The results for the ML and MP 

parameters are provided (Table 3). 

 

Ten emerging forest fungal pathogens 

Different circumstances whereby pathogens emerge are herein demonstrated and these 

include newly recognized and existing diseases. Emerging pathogenic species can develop into 

virulent strains that cause host morbidity and mortality in a short period of time. 

 

Ophiostoma novo-ulmi Brasier, Mycopathologia 115(3): 155 (1991) 

Dutch elm disease on Ulmus spp. is one of the most pernicious tree diseases across the 

northern Hemisphere (Brasier 1991). It is characterized by vascular wilt, and is caused by 

Ophiostoma ulmi and O. novo-ulmi (Brasier 2001a). Dutch elm disease-causing pathogens are 

vectored primarily by scolytid bark beetles (Scolytus scolytus) (Webber 2000). Adult beetles 

containing the spores infect healthy trees by transferring them into xylem vessels. The spores 

germinate and colonize the xylem, resulting in foliar wilting and tree death (Newbanks et al. 1983, 

Webber & Brasier 1984, Webber 1990, 2000, Ouellette et al. 2004). Since O. novo-ulmi is 

dimorphic, it colonizes the xylem by both budding and hyphal growth. The unicellular yeast 

enables vertical spread throughout the xylem of elm trees while the multicellular mycelium invades 

initially uninfected adjacent xylem vessels (Sarmiento-Villamil et al. 2021). Human-mediated 

transportation of infected elm timber further aids in the rapid expansion of the epidemic (Brasier & 

Webber 2019). Vascular tissues are important as they help to transport water and nutrients 

throughout the plant. Thus, diseases targeting these tissues have adverse effects on plant health 

(Perdiguero et al. 2017). 

The Dutch elm disease pandemic occurred twice over two different periods. The disease, first 

caused by Ophiostoma ulmi, appeared in northwest Europe in 1910 (Brasier 1991) and spread at an 

increasing rate across Europe to central Asia and North America (Brasier 2000b). The pandemic 

declined around the 1940s since most of the trees had already died (Brasier 1979). However, the 

second wave of Dutch elm disease occurred in the 1950s, causing the death of elm trees in Europe, 

North America and western Asia. This pathogen was described as a new species named 

Ophiostoma novo-ulmi, which was grouped into two races – a Eurasian race that probably 

originated in the area of Moldavia and Ukraine, and a North American race (Brasier 2001a). The 

Eurasian race is now called O. novo-ulmi subsp. novo-ulmi and the North American race is known 

as O. novo-ulmi subsp. americana (Brasier 2001a). 

Ophiostoma novo-ulmi and O. ulmi can be differentiated based on mitochondrial DNA size, 

mitochondrial and nuclear DNA polymorphisms, morphology and their aggressiveness, with O. 

novo-ulmi being highly aggressive in contrast to O. ulmi (Bates 1990, Bates et al. 1990, Brasier 

1991, Brasier & Buck 2001). Even though Dutch elm disease was attributed to O. ulmi during the 

first wave, the impacts were less severe when compared with the second wave, where Dutch elm 

disease was caused by O. novo-ulmi (Brasier & Buck 2001). Ophiostoma novo-ulmi caused the 

death of approximately 30 million mature elm trees by the early twentieth century, with few 

remnants of elm trees in isolated or disease-controlled areas (Greig & Gibbs 1983, Brasier & 

Webber 2019). In due course, Dutch elm disease continued to spread around other countries 
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including Canada (Temple et al. 2006), Croatia (Katanić et al. 2020), Czech Republic (Dvořák et al. 

2007), Estonia and north-eastern Europe (Jürisoo et al. 2019), Japan (Miyamoto et al. 2019) and 

Latvia (Matisone et al. 2020). 

In the current Dutch elm disease epidemic, Ophiostoma ulmi is more likely to be replaced by 

the more aggressive O. novo-ulmi (Brasier & Webber 2019). In the first epidemic caused by O. 

ulmi, there was a decline in disease intensity (Brasier & Webber 2019). Therefore, this raised the 

question of whether there can be a decline in the current Dutch elm disease. A plausible 

explanation for the decline of the first Dutch elm disease pandemic caused by O. ulmi might be 

attributed to the increased viral infection of the fungus that led to a decreased xylem infection by 

the bark beetles (Mitchell & Brasier 1994, Brasier 2000c). In experiments carried out during the 

1980s, both O. ulmi and O. novo-ulmi were found to carry “deleterious, cytoplasmically transmitted 

viruses” (Brasier 1983, Buck et al. 2003, Brasier & Webber 2019). These fungal viruses have the 

ability to reduce mycelial growth and conidial viability, thus resulting in low disease incidence in 

elm trees via the bark beetle vectors (Webber 1987, Sutherland & Brasier 1997). Unfortunately, 

although these viruses can be transmitted through ascospores in O. ulmi, they are not readily 

transmitted in the aggressive O. novo-ulmi, which explains why the current Dutch elm disease is 

not declining (Brasier & Webber 2019). 

The optimum growth temperature of O. ulmi is 28°C (Brasier 1981, Brasier & Webber 2019, 

Et-Touil et al. 2019). Between 18–25°C, O. ulmi grows slower than O. novo-ulmi (Brasier 1981, 

Brasier & Webber 2019, Et-Touil et al. 2019). Therefore, the faster growth rate of O. novo-ulmi 

and its highly aggressive nature towards elm trees might explain why the current Dutch elm disease 

epidemic is not declining (Webber & Brasier 1984, Brasier & Webber 1987, Webber 2000, Brasier 

& Webber 2019). Since the optimum temperature for the growth of O. novo-ulmi is 22°C, it is 

suggested that this species is more adapted to a temperate rather than a tropical or sub-tropical 

environment (Brasier & Mehrotra 1995). Considering that elm trees are mostly confined to the 

temperate regions of the northern hemisphere (Brasier & Buck 2001), we suggest that they might 

be more prone to infection by the aggressive O. novo-ulmi rather than the less aggressive O. ulmi. 

Considering the aggressive nature of O. novo-ulmi, we hypothesize that the fungus might 

have emerged with respect to its virulent trait. In view of its higher pathogenic ability, O. novo-ulmi 

has a tendency to acquire more of the host nutrients as compared to O. ulmi (Brasier & Buck 2001). 

A lack of prior coevolution with the pathogen might have also increased host susceptibility, leading 

to diminution of the mature elm trees (Brasier & Webber 2019). Environmental factors facilitating 

pathogen dispersal might have also led to the rapid depletion of hosts (Brasier & Webber 2019). In 

addition, transcriptomic analyses of the dimorphic O. novo-ulmi proved that a large number of 

homologous genes involved in pathogenicity and virulence were differentially expressed during the 

morphological change from yeast to hypha (Nigg & Bernier 2016). 

 

 
 

Figure 3 – Citation reports for Ophiostoma novo-ulmi from 2001 to 2021 (Total number of 

citations: 6654). 
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Table 3 RAxML and MP analysis parameters. 

 
RAxML analysis parameters 

Genera Ophiostoma Ceratocystis Hymenoscyphus Phyllosticta Neonectria Sphaerulina Phytophthora Melampsora 

ML optimization 

likelihood value 

-19592.792324 -16741.202186 -17717.356778 -25922.236963 -11927.610536 -16039.415963 -104897.856414 -5275.921844 

ML Tree length 10.332702 0.860209 3.170726 3.821264 0.537636 1.515705 3.838371 1.299843 

Estimated base 

frequencies 

A 0.190465 0.237055 0.234054 0.209614 0.227800 0.243219 0.214955 0.297767 

C 0.328530 0.265681 0.245832 0.291564 0.285760 0.258835 0.277278 0.167997 

G 0.259872 0.229924 0.262936 0.277288 0.257119 0.280481 0.311455 0.225362 

T 0.221133 0.267341 0.257178 0.221534 0.229321 0.217465 0.196312 0.308873 

Substitution 

rates 

AC 1.263365 1.344621 1.399620 1.272775 1.177927 1.673097 0.421605 1.239230 

AG 2.240960 4.759465 3.386606 3.486976 2.762327 3.397782 1.258017 2.594528 

AT 1.673433 1.933586 1.556380 1.452622 1.374486 0.952555 0.602518 0.667930 

CG 0.848152 1.067482 0.728797 1.356161 0.801527 1.227454 0.960377 0.282600 

CT 4.539824 6.553397 5.809631 7.371114 6.428365 7.295385 5.325356 2.986894 

GT 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Gamma distribution 

shape parameter α 

0.350163 0.234472 0.282434 0.279759 0.177784 0.176438 0.1000000000 0.317319 

Distinct alignment 

patterns 

1050 958 1074 1241 762 1012 3321 364 

Undetermined characters 

or gaps (%) 

44.54 34.76 72.56 39.80 41.95 18.84 28.84 10.18 

Maximum parsimonious analysis parameters 

Genera Ophiostoma Ceratocystis Hymenoscyphus Phyllosticta Neonectria Sphaerulina Phytophthora Melampsora 

MP length: Tree #1 3802 1839 2674 4446 1245 2566 17769 740 

Total number of 

characters 

1628 4521 3756 2711 4015 2994 8412 1077 

Constant 671 3512 2532 1665 3174 2073 5613 676 

Parsimony-informative 841 745 1073 874 741 796 2348 355 

Parsimony-

uninformative 

116 264 151 172 100 125 451 46 

Tree #1 

CI 0.453 0.668 0.607 0.385 0.820 0.552 0.244 0.659 

RI 0.814 0.867 0.803 0.785 0.895 0.690 0.749 0.843 

RC 0.369 0.580 0.487 0.302 0.734 0.381 0.183 0.556 

HI 0.547 0.332 0.393 0.615 0.180 0.448 0.756 0.341 
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Wang et al. (2020) introduced eight new Ophiostoma species from hosts other than elm trees 

from northeastern China including Larix and Pinus spp. Since ophiostomatoid fungi are very 

diverse, it is possible that these taxa might emerge under certain circumstances, with similar 

destructive disease dynamics as exhibited by O. novo-ulmi. 

The combined ITS, β-TUB and TEF-1α alignment of Ophiostoma comprised 1628 characters 

(ITS: 1–570, β-TUB: 571–779, TEF-1α: 780–1628), representing 155 strains of Ophiostomataceae 

(Fig. 4). There are 117 Ophiostoma species in Species Fungorum (2022). Based on our multigene 

phylogenetic analyses, we accept 93 species in Ophiostoma. Ophiostoma novo-ulmi, the emerging 

pathogen discussed herein, was initially isolated from Ulmus species (Brasier 1991). In addition,  

O. ulmi and O. himal-ulmi, both residing in the O. ulmi complex, are important tree pathogens 

(Brasier 1991, Gibbs 2003). Besides Ulmus spp., some economically significant forest trees 

infested by Ophiostoma species include Acacia spp., Araucaria spp., Betula spp., Eucalyptus spp., 

Larix spp., Picea spp., and Pinus species (Fig. 4).  

Several ophiostomatoid taxa reported from Europe and Scandinavia exhibit symbiotic 

relationships with bark beetles (Kirisits 2007). Some examples where Ophiostoma infections have 

been vectored by bark beetles are denoted in Fig. 4. From a survey carried out in the boreal forests 

in Finland and Russia, 717 fungal isolates resembling Ophiostoma were reported, which are 

associated with 11 bark beetle species on Picea abies and Pinus sylvestris (Linnakoski et al. 2010). 

Thirty-eight ophiostomatalean isolates were reported from 16 adult wood-boring beetles (Nel et al. 

2021). Furthermore, 496 ophiostomatoid strains were reported from beetle galleries infesting Larix 

spp. and Pinus spp. in China (Wang et al. 2020). Since spore dispersal of Ophiostoma species is 

precipitated by bark beetles (Wingfield et al. 1993, Kirisits 2007), it is important to design control 

strategies that target beetle galleries. 

 

Ceratocystis fimbriata Ellis & Halst., Bull. New York Agricultural Experimental Station 76: 14 

(1890) 

Many saprobes and important plant pathogens are Ceratocystis species, ranging from weak to 

notorious disease-causing agents, yielding undesirable impacts (Wingfield et al. 1996). For 

example, Ceratocystis platani (≡ Endoconidiophora fimbriata f. platani), an aggressive stain-

causing canker pathogen, has affected several Platanus spp. worldwide, including in Europe, Italy 

and the United States (Panconesi 1999, Baker et al. 2003, Engelbrecht et al. 2004, Engelbrecht & 

Harrington 2005). Diseases caused by Ceratocystis species include cankers and vascular wilts of 

trees, as well as root rot of crops such as sweet potato (Roux & Wingfield 2009). 

Ceratocystis is transmitted in several ways. The tested hypotheses are that they are spread 

over long distances by human activity through infected wood or other plant and soil matter, 

equipment, tools, shoes, and by the wind, as spores embedded in tiny bits of insect frass (Loope et 

al. 2016). These taxa can produce a fruity aroma that attracts beetles, causing them to come into 

contact with spore masses that stick to their exterior and are transported to new hosts (Gibbs 1980, 

Appel et al. 1990, Heath et al. 2009). Moreover, spores of some Ceratocystis species are present in 

soil and can enter their hosts via roots (Hicks et al. 1980). Transmission has also been observed 

between trees through natural root grafts, as in the case of oak wilt (Juzwik et al. 2008). 

Ceratocystis fimbriata, the type species of the genus, was first isolated from sweet potato, 

causing black rot of tubers (Halsted 1890). This species has a wide geographical and host range 

including Acacia spp., Eucalyptus spp., Mangifera indica (mango), Populus spp. (poplar), Hevea 

brasiliensis (rubber) and Platanus spp. (sycamore) (Barnes et al. 2001, Baker et al. 2003). 

Ceratocystis fimbriata is primarily a wound colonizer (Baker et al. 2003, Harrington 2013). The 

species has brown to black perithecia with long slender fimbriate necks, evanescent asci and 

cucullate ascospores (Halsted 1890). The perithecia are globose, either superficial or embedded in 

the substrate. The ascospores are hyaline, unicellular and galeate (Engelbrecht & Harrington 2005). 

Within the past 10 years, a native tree species of Hawaii, Metrosideros polymorpha (commonly 

known asˋŌhiˋa lehua) has been dying at a very high rate (Mortenson et al. 2016). This 

phenomenon has been termed rapid ˋŌhiˋa death, induced by Ceratocystis fimbriata (Mortenson et 
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al. 2016). Affected trees display dark brown to black discoloration in the woody xylem (Keith et al. 

2015). ˋŌhiˋa is the most abundant forest tree, occupying roughly 80% of all native forests across 

the Hawaiian islands (Friday & Herbert 2006, Loope et al. 2016). Ranging from sea level to 2,500 

meters in elevation, ˋŌhiˋa can tolerate frost, volcanic vapors, and excesses or deficiencies in 

moisture (Loope et al. 2016). 

 

 
 

Figure 4 – Phylogram generated from maximum likelihood analysis (RAxML) based on the 

combined ITS, β-TUB and TEF-1α matrices of Ophiostoma. Maximum likelihood (ML) and 

maximum parsimony (MP) with bootstrap support ≥80%, and the posterior probability (PP) values 

(≥0.8) of Bayesian inference (BI) analyses are given at respective nodes as ML/MP/PP. The tree is 

rooted with Ceratocystiopsis minima (UM1501 and UM235) and C. minuta (CBS 116796 and 

YCC139) (Ophiostomataceae). Ex-type strains are indicated in bold and the emerging pathogen 

discussed herein is denoted in red. Hyphen (-) represents support values below 80% (ML and MP) 

and below 0.80 (PP). The host and country from which each species was identified are shown in the 

phylogram.  
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* Vectored by beetles including Ambrosia sp., Dryocoetes baikalicus, Ips duplicatus, Ips 

subelongatus, Pityogenes chalcographus, Polygraphus ssiori, Trypodendron lineatum and some 

unknown beetle species 

a Pinus koraiensis China, b Pinus sylvestris Finland, c Pinus sp. Russia, d/d* Picea abies Finland, 

e* Picea abies Russia 

 

 
 

Figure 4 – Continued. 
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Figure 4 – Continued. 

 

ˋŌhiˋa forests are important in various aspects. Firstly, they provide habitat to many endemic and 

endangered flora, fauna and mycota (Warshauer & Jacobi 1982, Friday & Herbert 2006). For 

example, the endangered Vicia menziesii (Hawaiian vine) exclusively inhabits the ˋŌhiˋa koa 

forests (Warshauer & Jacobi 1982). ˋŌhiˋa trees also have cultural and ornamental significance 

(Friday & Herbert 2006). Therefore, it is important to protect these trees and find ways to control 

the current epidemic. The absence of effective management approaches may result in the death of 

most ˋŌhiˋa trees in Hawaii (Loope et al. 2016). 
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A rapid increase in the death of these iconic trees was first observed in the Puna District of 

Hawaii island among healthy trees in undisturbed forest areas (Keith et al. 2015, Mortenson et al. 

2016). By 2012, 10% or more of ˋŌhiˋa trees of all ages died, accounting for about 1600 hectares 

(ha) across Puna District, which increased to about 6400 ha by 2014 (Mortenson et al. 2016). In 

February 2016, approximately 15,000 ha of ˋŌhiˋa died and this number increased to about 20,000 

ha by September 2016 (Loope et al. 2016). These statistical data characterize the malignancy and 

emergence of Ceratocystis fimbriata, whereby a single diseased ˋŌhiˋa leaf can ultimately spread to 

the entire canopy at an alarming rate (Mortenson et al. 2016). 

Due to the recent discovery of this disease, research on both the pathogen and the host has 

only just begun. While modes of transmission, seasonality and even host resistance are understood 

for many species of Ceratocystis, only some basic biology, pathology, sanitary methods, and 

distribution are understood for this particular disease (Keith et al. 2015). 

 

 
 

Figure 5 – Citation reports for Ceratocystis fimbriata from 2001 to 2021 (Total number of 

citations: 5507). 

 

The combined ITS, β-TUB, TEF-1α, MS204 and RPB2 alignment of Ceratocystis comprised 

4521 characters (ITS: 1–450, β-TUB: 451–999, TEF-1α: 1000–2448, MS204: 2449–3396, RPB2: 

3397–4521), representing 77 strains of Ceratocystidaceae (Fig. 6). There are 104 Ceratocystis 

species in Species Fungorum (2022). Following previous studies carried out by Marin-Felix et al. 

(2017), Barnes et al. (2018), Liu et al. (2018) and Holland et al. (2019), and based on our multigene 

phylogenetic analyses we accept 42 species in Ceratocystis (Fig. 6). 

Ceratocystis species comprise many undescribed and cryptic species that cause wilt and 

canker diseases of plants, thus, making it difficult to differentiate between morphologically 

identical species (Baker et al. 2003). Ceratocystis species have been placed in four phylogenetic 

lineages with respect to geographical regions namely, African clade (Heath et al. 2009, Mbenoun et 

al. 2014), Asian-Australian clade (Thorpe et al. 2007, Johnson et al. 2017, Liu et al. 2018, Holland 

et al. 2019), Latin American clade (Harrington 2000) and North American clade (Johnson et al. 

2017) (Fig. 6). Based on our phylogenetic analyses and in accordance with Harrington (2000), 

Johnson et al. (2017), Li et al. (2017) and Holland et al. (2019), Ceratocystis fimbriata is located in 

the Latin American clade. Species residing in this clade are considered as hostile pathogens, 

accounting for emerging diseases (Keith et al. 2015, Barnes et al. 2018) when introduced into new 

locations and hosts (Al Adawi et al. 2014). From both the Latin American clade and the Asian-

Australian clade strains of Ceratocystis identified in China, only the Latin American clade strain of 

C. fimbriata has been reported as serious pathogens (Li et al. 2016). Recently, a combination of 

phylogenetic, morphological and biological data by Barnes et al. (2018) revealed two new species, 

Ceratocystis huliohia and C. lukuohia, associated with rapid ˋŌhiˋa death in native ˋŌhiˋa forests. 

Ceratocystis lukuohia forms part of the Latin American clade (Barnes et al. 2018). Other important 

Latin American clade species bearing economic significance include C. cacofunesta causing 
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Ceratocystis wilt on Theobromae cacao and C. platani causing canker stain on Platanus spp. 

(Engelbrecht & Harrington 2005). 

 

 
 

Figure 6 – Phylogram generated from maximum likelihood analysis (RAxML) based on the 

combined ITS, β-TUB, TEF-1α, MS204 and RPB2 matrices of Ceratocystis. Maximum likelihood 

(ML) and maximum parsimony (MP) with bootstrap support ≥80%, and the posterior probability 

(PP) values (≥0.8) of Bayesian inference (BI) analyses are given at respective nodes as ML/MP/PP. 
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The tree is rooted with Thielaviopsis paradoxa (GF924 and JDL2) and T. musarum (CMW1546 

and CMM 1525) (Ceratocystidaceae). Ex-type strains are indicated in bold and the emerging 

pathogen discussed herein is denoted in red. Hyphen (-) represents support values below 80% (ML 

and MP) and below 0.80 (PP). The host and country from which each species was identified are 

shown in the phylogram. 

 

Although there has been a decline in ˋŌhiˋa trees associated with rapid ˋŌhiˋa death, this is 

not the first time that ˋŌhiˋa has encountered mass death (Hodges 1986). A similar incident 

occurred during the late 1960s in Mauna koa and Mauna Kea in Hawaii as a result of fungal 

infections from Phytophthora cinnamomi and Armillaria mellea, and the ˋŌhiˋa borer, 

Plagithmysus bilineatus (Hodges 1986). Previously the death of ˋŌhiˋa trees was associated with 

progressive dieback and the trees were dying at a slower rate as compared to the current rapid 

ˋŌhiˋa death (Hodges 1986). Furthermore, this observation was made primarily among senescent 

trees in a different region (Mueller-Dombois et al. 2013). However, in the current epidemic, trees 

of all ages are dying (Mortenson et al. 2016). These distinct observations further indicate the 

emergence of C. fimbriata. 

Some important forest trees infected by Ceratocystis species include Acacia spp., Eucalyptus 

spp., Metrosideros spp., Platanus spp. and Populus spp. (Fig. 6). Therefore, it is of utmost 

importance to study phytopathogenic fungi to protect and preserve forest ecosystems. 

 

Fusarium circinatum Nirenberg & O’Donnell, Mycologia 90(3): 442 (1998) 

Fusarium species are among the most significant phytopathogens known to cause diseases on 

a myriad of crops and forest trees (Summerell 2019). Fusarium circinatum (≡ Gibberella circinata) 

causes pitch canker disease of pine trees (McCain et al. 1987). The disease was first reported in 

California in 1986 and was found to affect Pinus radiata (Monterey pine) (McCain et al. 1987, 

Correll et al. 1991). Fusarium circinatum possibly originates from Mexico and/or southern Florida 

(Correll et al. 1991, Gordon et al. 2001). It is among the major pathogens affecting pine globally 

(Wingfield et al. 2008). Following its initial outbreak, the pathogen was later recorded from Europe 

(Landeras et al. 2005, Pérez-Sierra et al. 2007), Italy (Carlucci et al. 2007), Portugal (Bragança et 

al. 2009) and Spain (Landeras et al. 2005, Pérez-Sierra et al. 2007). In addition, the pathogen is 

present in Chile, Haiti, Korea, South Africa and south-east USA (Watt et al. 2011). Fusarium 

circinatum is found in most of the pine plantation areas, with a higher incidence in the 

Mediterranean and sub-tropical rather than temperate regions (Ganley et al. 2009). Since its 

dispersal depends largely on climatic conditions, F. circinatum is unlikely to spread to cooler 

northern latitudes despite the presence of susceptible hosts (Ganley et al. 2009, Baker et al. 2010, 

Möykkynen et al. 2015, Drenkhan et al. 2020). 

Fusarium circinatum is in the European and Mediterranean Plant Protection Organization 

(EPPO) A2 quarantine list and is regulated by the European Union (Vettraino et al. 2018, Drenkhan 

et al. 2020, EPPO 2022b). It is an invasive necrotroph, which can be airborne and seed-borne (Aloi 

et al. 2021). Fusarium circinatum has both endophytic and pathogenic lifestyles (Elvira-Recuenco 

et al. 2020). Accounting for both life modes, we hypothesize that F. circinatum can switch from 

endophytic to pathogenic lifestyles and vice versa when conditions are favorable. As a 

consequence, it is probably more threatening to plants if its pathogenic lifestyle is predominant. We 

speculate that these lifestyle changes may result in increased virulent genotypes of the fungus. We 

further hypothesize that the pathogenesis of F. circinatum depends largely on its intrusive nature, 

implying that it can easily spread and infect certain hosts. Collectively, in view of these 

characteristics, it is unlikely to predict how the fungus will emerge.  

Wounding is a prerequisite for F. circinatum to invade the plant tissues (Gordon et al. 2001). 

Wounds are generated by insects, weather-related events (including wind and hail) or mechanical 

damage (Gordon et al. 2001). Symptoms exhibited by the pitch canker disease include pitch-soaked 

cankers in trunks that can girdle trees and branches, and lead to tree death (Gordon et al. 2001, 

Wingfield et al. 2008, Bezos et al. 2017). Branch dieback, exudation of excessive resin leading to 
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cankers, canopy defoliation, reduced tree growth and decreased survival capacity also occur 

(Wingfield et al. 2008).  

Pinus spp. are native to Europe and North America, and are economically important as their 

wood is used for timber and pulp, and their resins for the production of varnishes (Elvira-Recuenco 

et al. 2020). Pinus radiata is mainly used for commercial purposes (Mead 2013). Twelve native 

pine species occur in Europe (Richardson 2000). Considering the importance of pine trees, it is 

essential to protect them from fungal infections. Pinus radiata is the main Pinus species being 

affected by Fusarium circinatum. However, other pine such as P. pinaster in Spain is also affected 

(Landeras et al. 2005, Pérez-Sierra et al. 2007). However, a Mesoamerican pine (P. oocarpa), 

perhaps co-evolved with Fusarium circinatum and is therefore resistant to pitch canker disease 

(Dvorak et al. 2009). 

Several studies have focused on the infection mechanism of Fusarium circinatum. For 

example, five candidate genes involved in pathogenicity were detected in the genome of F. 

circinatum (Muñoz-Adalia et al. 2018). Moreover, dual RNA-seq analysis of F. circinatum showed 

that ergosterol might be needed to cause diseases in pine (Visser et al. 2019). Therefore, a reduction 

in the F. circinatum ergosterol biosynthetic gene expression might reduce virulence of the fungus 

and contribute to host resistance (Visser et al. 2019). Another study aiming to investigate the effect 

of secondary metabolites in the pathogenicity of F. circinatum found that fusaric acid plays a 

significant role in the pathogenesis of F. circinatum (Phasha et al. 2021). Fusaric acid is a 

phytotoxin produced by the enzyme polyketide synthases (PKS6) encoded by the FUB1 gene 

(Wiemann et al. 2013, Brown et al. 2015). These characteristics exhibited by F. circinatum account 

for some probable infection mechanisms and its pathogenicity. 

There are 380 Fusarium species listed in Species Fungorum (2022), but many species lack 

molecular data. Based on the concatenated alignment of ITS, LSU, CAM, RPB1, RPB2, TEF-1α, β-

TUB, Crous et al. (2021) provided an updated phylogenetic tree for Fusarium and accepted 220 

species in this genus. 

 

 
 

Figure 7 – Citation reports for Fusarium circinatum from 2001 to 2021 (Total number of citations: 

5366). 

 

Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz & Hosoya, IMA Fungus5(1): 79 (2014) 

Hymenoscyphus was established in 1821 (Dennis 1964) and comprises 236 species (Species 

Fungorum 2022). It has a cosmopolitan distribution with most of its members being saprobes 

(Gross et al. 2015). Along with multi-locus phylogenetic analyses and morphological 

characteristics (apothecial colour, shape and size, guttulation, septation, and presence of cilia), 

habitats are considered for species recognition (Queloz et al. 2011, Zheng & Zhuang 2014, 2015, 

Gross & Han 2015, Gross et al. 2015). A decade ago, Hymenoscyphus fraxineus became a subject 

of interest since it was linked to the novel European ash dieback (Kowalski & Holdenrieder 2009). 
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Hymenoscyphus fraxineus (≡ Chalara fraxinea, = Hymenoscyphus pseudoalbidus) is a 

pleiomorphic invasive emerging discomycete that causes dieback of Fraxinus excelsior (European 

ash trees) (Queloz et al. 2011, Krauml & Kirisits 2012, Pautasso et al. 2013, Baral & Bemmann 

2014, Baral et al. 2014, Fones et al. 2016). Ash trees occur in both tropical and temperate regions, 

distributed over Asia, Central America, Europe, North America and Northwest Africa (Kowalski 

2006), and Hymenoscyphus fraxineus is distributed in East Asia and Europe (Farr & Rossman 

2022). Hymenoscyphus fraxineus probably originates from Eastern Asia (Zhao et al. 2013) and was 

initially reported on petioles of decaying leaves of Fraxinus mandshurica (Mandshurian ash) 

(Hosoya et al. 1993). However, the causal agent was misidentified as Lambertella albida (≡ 

Hymenoscyphus albidus). Hymenoscyphus albidus is a sister species of H. fraxineus and is not 

virulent on ash (Husson et al. 2011, Gross et al. 2014). On the other hand, H. fraxineus has 

catastrophic effects, displaying dieback symptoms among ash trees of all age groups (Kowalski 

2006, Kowalski & Holdenrieder 2009, Kowalski et al. 2015, Gross & Sieber 2015). 

Ash dieback was initially detected in north-western Poland in 1992 without identifying the 

real cause of the disease (Przybył 2002, Kowalski & Holdenrieder 2009, Timmermann et al. 2011). 

In due course, the disease spread to more than 25 European countries (Pautasso et al. 2013, 

Mckinney et al. 2014). Subsequent events of ash dieback in Europe are listed in chronological order 

in Table 4. Hymenoscyphus fraxineus has also been reported on leaves of Fraxinus mandshurica 

(Mandshurian ash) from Eastern China (Zheng & Zhuang 2014) and Russia (Baral & Bemmann 

2014, Cleary et al. 2016), and on rachises and petioles of fallen leaves of Fraxinus rhynchophylla 

(Korean ash) from Korea (Han et al. 2018). 

Hymenoscyphus fraxineus is an aggressive pathogen, displaying symptoms of bark cankers 

and crown dieback, leaf necrosis, premature leaf fall, shoot and xylem wilt, ultimately causing tree 

mortality (Timmermann et al. 2011). Ascospores of H. fraxineus are commonly produced on fallen 

leaf petioles of ash. The ascospores are dispersed by wind and are easily spread to other ash trees 

(Timmermann et al. 2011, Krauml & Kirisits 2012). Hymenoscyphus fraxineus proliferates from 

infected leaves into twigs and stems via petioles, inducing necrotic bark lesions, subsequently 

leading to dieback (Gross et al. 2014). 

Ash dieback jeopardizes stands of ash and increases its overall death rate (Gross et al. 2014). 

Infected seedlings are at higher risks of dying. However, aged trees develop long-term lethal 

infection (Hietala et al. 2013). Barely a fraction of European ash trees exhibit resistance against 

Hymenoscyphus fraxineus. Since H. fraxineus has emerged and has affected European ash for only 

around two decades, it is unlikely that natural adaptation has occurred (Mckinney et al. 2014). The 

harmless saprotroph H. albidus has been replaced by the invasive pathogenic H. fraxineus. This 

was confirmed through the “2010 Danish collection” that reported no H. albidus from sites 

previously known as H. albidus habitat (McKinney et al. 2012). Early colonization of H. albidus 

and H. fraxineus on 1-year-old ash-petioles is essential for spore dispersal during the early summer-

autumn (McKinney et al. 2012). Therefore, a plausible explanation for the substitution of H. 

albidus by H. fraxineus could be due to competition between them for colonizing ash petioles, 

eliminating the native decomposer H. albidus from its natural ecological niche (McKinney et al. 

2012). Even though the invasion mechanism of H. fraxineus is unclear, we hypothesize that the 

intrusive pathogenic nature of H. fraxineus is key to the replacement of H. albidus. Owing to the 

pathogenic nature of H. fraxineus, we further hypothesize that it can also generate appressoria to 

invade ash trees, which the saprobic H. albidus is unable to do. These explain the emergence of H. 

fraxineus as a forest pathogen. 

The combined ITS, LSU, TEF-1α, CAL, ACT and β-TUB alignment of Hymenoscyphus 

comprised 3756 characters (ITS: 1–513, LSU: 514–1341, TEF-1α: 1342–2379, CAL: 2380–2745, 

ACT: 2746–2988, β-TUB: 2989–3756), representing 79 strains of Helotiaceae (Fig. 9). There are 

235 Hymenoscyphus species in Species Fungorum (2022). Based on our multigene phylogenetic 

analyses, we accept 49 species in Hymenoscyphus.  

Ash trees have great ecological and economic importance as they are usually grown for 

timber (Chavez et al. 2015, Mitchell et al. 2016). A reduction in ash trees yields huge economic 
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losses (Chavez et al. 2015, Mitchell et al. 2016). For better management approaches, forest 

pathologists should collaborate with conservation biologists, forest and landscape managers, plant 

breeders, restoration ecologists, social scientists and tree geneticists (Pautasso et al. 2013, Tallmon 

et al. 2004, McKay et al. 2005, Waring & O’Hara 2005, Laine et al. 2011, McRoberts et al. 2011, 

Pliura et al. 2011, Brukas & Sallnäs 2012). A breeding program to generate resistance and 

simultaneously conserve the genetic diversity of ash trees could be helpful (Pautasso et al. 2013). 

 

Table 4 Events of sequential ash dieback in Europe. 

 
Year  Countries References 

1996 Lithuania Timmermann et al. (2011) 

late 1990s Czech Republic Jankovský & Holdenrieder (2009)  

2000 Latvia Timmermann et al. (2011) 

2002 Sweden Barklund (2005) 

2002 Denmark Thomsen & Skovsgaard (2012) 

2003 Estonia Drenkhan & Hanso (2009), 

Timmermann et al. (2011) 

2003 Belarus Timmermann et al. (2011) 

2004 Slovenia Ogris et al. (2009) 

2005 Austria Halmschlager & Kirisits (2008) 

2006 Norway Timmermann et al. (2011) 

2007 Finland Rytkönen et al. (2011) 

2007 Switzerland Pautasso et al. (2013) 

2008 Hungary Szabó (2009) 

2009 Italy Ogris et al. (2010) 

2009 Croatia Barić et al. (2012) 

2010 Belgium Chandelier et al. (2011) 

2010 Ukraine Davydenko et al. (2013) 

 

 
 

Figure 8 – Citation reports for Hymenoscyphus fraxineus from 2001 to 2021 (Total number of 

citations: 2144). 

 

Phyllosticta citricarpa (McAlpine) Aa, Stud. Mycol. 5: 40 (1973) 

Phyllosticta species exist mainly as pathogens, as well as endophytes and saprobes (Okane et 

al. 2001, 2003, Baayen et al. 2002, Thongkantha et al. 2008, Glienke et al. 2011, Rashmi et al. 

2019, Norphanphoun et al. 2020, Bhunjun et al. 2021). They have a ubiquitous and worldwide 

distribution and occur on a broad range of hosts (Glienke et al. 2011, Rashmi et al. 2019). 

Pathogenic Phyllosticta species are mostly associated with leaf and fruit spots (Wang et al. 2012, 

Wikee et al. 2013a). Economically important plants such as Citrus spp. (Rutaceae) are greatly 

affected by Phyllosticta and one of the major diseases is Citrus black spot (Baayen et al. 2002, 

Glienke-Blanco et al. 2002, Everett & Rees-George 2006, Baldassari et al. 2008, Glienke et al. 
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2011, Brentu et al. 2012, Wikee et al. 2013b, Guarnaccia et al. 2017, 2019, Petters-Vandresen et al. 

2020). 

 

 
 

Figure 9 – Phylogram generated from maximum likelihood analysis (RAxML) based on the 

combined ITS, LSU, TEF-1α, CAL, ACT and β-TUB matrices of Hymenoscyphus. Maximum 

likelihood (ML) and maximum parsimony (MP) with bootstrap support ≥80%, and the posterior 

probability (PP) values (≥0.8) of Bayesian inference (BI) analyses are given at respective nodes as 

ML/MP/PP. The tree is rooted with Hyaloscypha Bicolor (UAMH 10107 and CBS 144009) and 
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Hya. fuckelii (AMFB1780 and TK7053) (Hyaloscyphaceae). Ex-type strains are indicated in bold 

and the emerging pathogen discussed herein is denoted in red. Hyphen (-) represents support values 

below 80% (ML and MP) and below 0.80 (PP). The host and country from which each species was 

identified are shown in the phylogram. 

 

Citrus black spot is caused by Phyllosticta citricarpa (≡ Guignardia citricarpa) and is a foliar 

and fruit disease affecting citrus hosts (Kotzé 1981, Baldassari et al. 2008). Commercially grown 

citrus varieties comprising grapefruit, lemon, mandarin and sweet orange are greatly affected by 

this disease (Kotzé 1981, Baldassari et al. 2008). Five pathogenic Phyllosticta species (P. 

citriasiana, P. citricarpa, P. citrichinaensis, P. citrimaxima and P. paracitricarpa) and three 

endophytic species (P. capitalensis, P. citribraziliensis and P. paracapitalensis) are associated with 

Citrus spp. (Glienke et al. 2011, Wang et al. 2012, Wikee et al. 2013b, Guarnaccia et al. 2017). It 

has been observed that P. citricarpa occurs mainly in subtropical citrus-growing regions (Kotzé 

1981, 1996).  

The conidia of Phyllosticta species are aseptate and hyaline, usually bearing an apical 

appendage and covered by a mucoid layer (Van Der Aa 1973). Symptoms associated with Citrus 

black spot occur primarily in three stages, namely: “hard spot, freckle spot and virulent spot” 

(Kiely 1948). Hard spot is characterized by “sunken lesions with brick red to black margins”, while 

virulent spot is characterized by “sunken necrotic lesions” without any defined borders (Brentu et 

al. 2012). The disease was first detected in Australia (Benson 1895), and later described by Kiely 

(1948). Citrus black spot has emerged in Florida (USA) and was initially found on sweet oranges in 

April 2010 (Chiyaka et al. 2012, Dewdney et al. 2011, Schubert et al. 2012, Shen et al. 2013, Wang 

et al. 2016). Events of Citrus black spot are listed in chronological order from different countries 

(Table 5).  

 

Table 5 First records of Citrus black spots from different countries. 

 
Year  Countries References 

2009 Uganda Reeder et al. (2009) 

2010 Brazil, Cuba Góngora & Pérez (2010)  

2010 Florida Schubert et al. (2012) 

2012 Ghana Brentu et al. (2012) 

2017 Italy, Malta, Portugal Guarnaccia et al. (2017) 

 

Infections caused by P. citricarpa can be initiated by both ascospores and conidia (Tran et al. 

2017, Hendricks et al. 2017). Epidemiological studies demonstrate that the primary inoculum for 

the spread of Citrus black spot are ascospores produced in decomposing leaf litter (Kotzé 1981, 

Reis et al. 2006, Spósito et al. 2008). Ascospores are released during wet environmental conditions 

and dispersed via wind, while conidia are dispersed by rain splash (Huang & Chang 1972, Kotzé 

1981). It has been observed that the emergence of P. citricarpa is mainly attributed to changes in 

environmental conditions, mostly favored within tropical citrus cultivars areas, in warm and humid 

climatic conditions (Hendricks et al. 2020). 

The combined ITS, LSU, TEF-1α, ACT, RPB1 and β-TUB alignment of Phyllosticta 

comprised 2711 characters (ITS: 1–627, LSU: 628–1390, TEF-1α: 1391–1873, ACT: 1874–2093, 

GAPDH: 2094–2711), representing 142 strains of Phyllostictaceae (Fig. 11). There are 1488 

Phyllosticta species in Species Fungorum (2022). Based on our multigene phylogenetic analyses, 

we accept 103 species in Phyllosticta (Fig. 11). Phyllosticta citricarpa is found in the  

P. concentrica species complex, primarily affecting citrus hosts (Kotzé 1981, Baldassari et al. 

2008). 

Other species located in the Phyllosticta concentrica species complex include  

P. aspidistricola, P. aucubae-japonicae, P. bifrenariae, P. catimbauensis, P. citriasiana,  

P. citribrasiliensis, P. citricarpa, P. citrichinaensis, P. citrimaxima, P. concentrica, P. cussonia,  

P. domestica, P. elongata, P. ericarum, P. gardeniicola, P. harai, P. hostae, P. hymenocallidicola, 
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P. hypoglossi, P. iridigena, P. kerriae, P. kobus, P. mate, P. ophiopogonis, P. paracitricarpa,  

P. pilospora, P. religiosa, P. rhaphiolepidis, P. speewahensis, P. spinarum, accounting for a total 

of 29 Phyllosticta species (Fig. 11). 

 

 
 

Figure 10 – Citation reports for Phyllosticta citricarpa from 2001 to 2021 (Total number of 

citations: 1689). 

 

Considerable impacts related to Citrus black spot include a downfall in the economy as 

injured fruits are prone to fruit drops in the orchards, which jeopardizes international trade (Everett 

& Rees-George 2006, Dewdney et al. 2011, Gabriela et al. 2014). Essentially, P. citricarpa is 

regarded as a quarantine pest in Europe and the USA (Baayen et al. 2002, Glienke et al. 2011, 

EPPO 2022a). This pathogen has been reported from more than 12 Citrus species (Guarnaccia et al. 

2019). Notwithstanding the importance of Citrus black spot, the origin of P. citricarpa is not well-

documented. The pathogen is presumed to be native to a Citrus-rich zone such as South and 

Southeast Asia (Scora 1975, Malik et al. 2013, Hynniewta et al. 2014). Since citrus is of great 

economic importance, it necessitates extreme control and management strategies. Great care must 

be taken when handling citrus fruits with leaves and debris from Citrus black spot quarantined 

areas. This may prevent the introduction of Citrus black spot into other citrus-grown regions. 

Fungicide applications are regarded as major control measures globally (Hincapie et al. 2014). 

 

Neonectria faginata (M.L. Lohman, A.M.J. Watson & Ayers) Castl. & Rossman, in Castlebury, 

Rossman & Hyten, Can. J. Bot. 84(9): 1425 (2006) 

Fagus grandifolia (American beech), a temperate deciduous tree (Tubbs & Houston 1990), 

has been suffering from beech bark disease for over 100 years (Hewitt 1914, Houston 1994, Morin 

et al. 2005). Beech bark disease is principally associated with Neonectria ditissima and N. faginata 

(Lohman & Watson 1943, Houston 1994, Castlebury et al. 2006). However, the disease is also 

attributed to the introduced European felted beech scale insect, Cryptococcus fagisuga (Ehrlich 

1934). The insect was accidentally brought into Halifax, Nova Scotia, Canada, from Europe in the 

1890s (Morin et al. 2005, 2007, Garnas et al. 2011). Beech bark disease is an insect-fungus 

complex that comprises the scale insect and both species of Neonectria (Ehrlich 1934). Prior to 

colonization by Neonectria species, Cryptococcus fagisuga infests beech trees by feeding on their 

boles, thus creating a wound and weakening the trees (Ehrlich 1934). This generates a point of 

entry for pathogenic fungi to invade the cambium, leading to beech bark disease (Houston 1994). 

Neonectria species are distributed in both tropical and temperate regions (Chaverri et al. 

2011). Beech bark disease usually occurs in three phases (Shigo 1972); the “advancing front”, the 

“killing front” and the “aftermath”. Canker disease caused by the insect-fungus interaction leads to 

apertures in the bark, resulting in reduced tree growth, leaf chlorosis and subsequently death. 

Excessive Neonectria infection girdles the vascular cambium and causes crown dieback (Ehrlich 
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1934, Gavin & Peart 1993, Houston 1994, Gove & Houston 1996). In addition, Xylococculus 

betulae, a secondary scale insect, occasionally infests beech trees, which also facilitates Neonectria 

colonization (Morin et al. 2007). 

 

 
 

Figure 11 – Phylogram generated from maximum likelihood analysis (RAxML) based on the 

combined ITS, LSU, TEF-1α, ACT and GAPDH matrices of Phyllosticta. Maximum likelihood 

(ML) and maximum parsimony (MP) with bootstrap support ≥80%, and the posterior probability 

(PP) values (≥0.8) of Bayesian inference (BI) analyses are given at respective nodes as ML/MP/PP. 

The tree is rooted with Botryosphaeria obtusa (CMW 8232 and CMW 7775) and B. stevensii 

(CBS112553 and CMW7060) (Botryosphaeriaceae). Ex-type strains are indicated in bold and the 
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emerging pathogen discussed herein is denoted in red. Hyphen (-) represents support values below 

80% (ML and MP) and below 0.80 (PP). The host and country from which each species was 

identified are shown in the phylogram. 

 

 
 

Figure 11 – Continued. 
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Figure 11 – Continued. 

 

In North America, the first beech bark disease epidemic was reported in Halifax, Nova Scotia 

around 1920. Eighty-five percent of deaths were observed in the basal area of beech in Nova Scotia 

(Ehrlich 1934). Following the first outbreak, the disease had spread throughout Nova Scotia and 

southward to Maine over the next decade. Beech bark disease was later reported in Michigan 

(O’Brien et al. 2001) and Ohio in the United States (MacKenzie & Iskra 2005). Following 

screening against the phi-base, predicted genes associated with virulence and pathogenicity were 

high in Neonectria ditissima and N. faginata. The highest number of effectors were seen in N. 

ditissima, followed by N. faginata among other Neonectria species (Salgado-Salazar et al. 2021). 

The combined ITS, LSU, TEF-1α, ACT, RPB1 and β-TUB alignment of Neonectria 

comprised 4015 characters (ITS: 1–444, LSU: 445–1341, TEF-1α: 1342–2221, ACT:  2222–2811, 

RPB1: 2812–3425, β-TUB: 3426–4015), representing 30 strains of Nectriaceae (Fig. 13). There are 

22 Neonectria species in Species Fungorum (2022). Based on multigene our phylogenetic analyses, 

we accept 15 species in Neonectria (Fig. 13).  

Neonectria faginata was initially isolated from Fagus spp. (beech) (Lohman & Watson 1943, 

Houston 1994, Castlebury et al. 2006). Beech can normally attain a height of approximately 37 

meters and may live up to 300 to 400 years (Tubbs & Houston 1990). Beech wood is used for 

furniture, flooring and containers (Tubbs & Houston 1990). Even though beech timber has low 

value, it is important to manage beech bark disease because it affects primary productivity, 
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biodiversity and structural sustainability, and disturbs forest ecosystems (Cale et al. 2013, 2014, 

2017). However, management of beech bark disease is challenging because the scale insects and 

Neonectria spores are easily spread via wind (McCullough et al. 2001). Attempts to control the 

scale insect were made. However, the use of pesticides was not effective in decreasing the number 

of scale insects due to their ability to form a waxy protective layer (McCullough et al. 2001). 

Furthermore, the requirement of extensive labor and finance makes it impracticable to use pesticide 

or to remove infected trees over large forest areas (Wiggins et al. 2004). Therefore, further 

investigations are required. 

 

 
 

Figure 12 – Citation reports for Neonectria faginata from 2001 to 2021 (Total number of citations: 

479). 

 

 
 

Figure 13 – Phylogram generated from maximum likelihood analysis (RAxML) based on the 

combined ITS, LSU, TEF-1α, ACT, RPB1 and β-TUB matrices of Neonectria. Maximum likelihood 

(ML) and maximum parsimony (MP) with bootstrap support ≥80%, and the posterior probability 

(PP) values (≥0.8) of Bayesian inference (BI) analyses are given at respective nodes as ML/MP/PP. 

The tree is rooted with Nectria cinnabarina (CBS 189.87 and CBS 255.47) and N. ulmicola (CFCC 

52117 and CFCC 52118) (Nectriaceae). Ex-type strains are indicated in bold and the emerging 

pathogen discussed herein is denoted in red. Hyphen (-) represents support values below 80% (ML 
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and MP) and below 0.80 (PP). The host and country from which each species was identified are 

shown in the phylogram. 

 

Sphaerulina musiva (Peck) Quaedvl., Verkley & Crous, Stud. Mycol. 75: 345 (2013) 

Sphaerulina musiva (≡ Septoria musiva; asexual morph = Mycosphaerella populorum) is a 

heterothallic ascomycete that exhibits both asexual and sexual morphs (Tabima et al. 2020). The 

latter causes Septoria leaf spot and stem canker of Populus spp. (poplars) (Bier 1939, Waterman 

1954, Quaedvlieg et al. 2006, Feau et al. 2010, Dhillon et al. 2015). Natural Populus deltoides 

(eastern cottonwood) were exclusively affected by leaf spots in North America. However, 

interspecific hybrids such as Populus deltoides × P. trichocarpa and P. deltoides × P. nigra were 

affected by both, Septoria leaf spots and stem canker disease (Newcombe et al. 2001a, Feau et al. 

2010). Sphaerulina musiva was initially identified among a hybrid poplar plantation in British 

Columbia, Canada in 2006 (Callan et al. 2007). The emergence of S. musiva in British Columbia 

perhaps occurred as a result of the cultivation of hybrid poplars, subsequently leading to an 

increased proliferation across nearby poplars (Herath et al. 2016). 

Severe Septoria leaf spot causes premature defoliation of trees while canker disease results in 

weak stands of branches and stems that causes breakage, stunted growth and mortality (Bier 1939, 

Waterman 1954, Long et al. 1986, Spielman et al. 1986, Feau et al. 2010). Canker disease can 

cause tree death through a single infection, which alters the gross pulp and bioenergy plantation 

(Weiland et al. 2003). Therefore, it is regarded as the most devastating disease in hybrid poplars of 

North America (Bier 1939, Feau et al. 2010). Sphaerulina musiva is cited in the quarantine list of 

pathogens in Europe and is of primary concern because of its invasive nature (Niemczyk & Thomas 

2020). 

Sphaerulina musiva enters its host via wounds and through natural openings (Bier 1939, 

Waterman 1954, Long et al. 1986, Krupinsky 1989, Feau et al. 2010). Stems of highly susceptible 

hybrid poplars are prone to direct infection (Krupinsky 1989). Since S. musiva can occur in sexual 

and asexual morphs, both ascospores and conidia are accountable to infect its host. Generally, 

ascospores serve as the primary inoculum (Tabima et al. 2020). Hereby, we hypothesize that the 

easy penetration and the different morphs of S. musiva are responsible for its emerging trait. Owing 

to the different morphs of S. musiva, we speculate that it can spread and cause diseases throughout 

the year, instead of a specific period. Furthermore, it does not require any specialized structure such 

as appressoria to infect its host. Therefore, we hypothesize that it can easily multiply and colonize a 

large number of hosts.  

Poplars are among the fast-growing temperate trees (Abraham 2017). In North America, 

endemic poplars and their interspecific hybrids are fast-growing and are widely distributed across 

the country. They have huge ecological and industrial significance and are ideally used for fiber 

and biomass due to the ease of replication and adaptation to various environmental conditions. 

Furthermore, poplars can be grown effortlessly on marginal lands (Tabima et al. 2020). Over the 

last century, Septoria leaf spot and stem canker disease have emanated in such a way that they 

threatened poplar populations in the north-eastern and north-central regions of North America 

(Feau et al. 2010, Dhillon et al. 2015). An estimated 44,128 hectares and 45,000 hectares of poplars 

were endangered by S. musiva in Canada and the USA, respectively (Derbowka et al. 2012, FAO 

2012). Following the initial outbreak, S. musiva has also been reported from areas beyond its 

endemic range such as Argentina (Sarasola 1944), Asia (Maxwell et al. 1997) and Brazil (Santos et 

al. 2010).  

The combined ITS, LSU, RPB2, TEF-1α, ACT, CAL and β-TUB alignment of Sphaerulina 

comprised 2994 characters (ITS: 1–493, LSU: 494–1315, RPB2: 1316–1661, TEF-1α: 1662–2037, 

ACT: 2038–2249, CAL: 2250–2685, β-TUB: 2686–2994), representing 42 strains of 

Mycosphaerellaceae (Fig. 15). There are 72 Sphaerulina species in Species Fungorum (2022). 

Based on our multigene phylogenetic analyses, we accept 29 species in Sphaerulina. 

Sphaerulina (Fig. 15, Clade 1) mainly includes species infecting forest trees; S. aceris and  

S. neoaceris from Acer spp., S. musiva, S. populicola, S. populi from Populus spp., and  
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S. quercicola from Quercus spp. (Fig. 15). Apart from poplars, S. musiva has also been reported 

from Salix lucida (Feau & Bernier 2004). Therefore, it is of utmost importance to control the 

proliferation of S. musiva.  

The most effective control strategy of S. musiva is to use disease-resistant hybrid poplars 

(LeBoldus et al. 2007, 2008, Qin & LeBoldus 2014, Dunnell et al. 2016, Niemczyk & Thomas 

2020). Several management strategies have been adopted to mitigate the effect of Septoria leaf 

spots and canker diseases, including cultural and biological control (Ostry 1989, Feau et al. 2010). 

However, these methods are not feasible as they are either inefficient or expensive (Tabima et al. 

2020). 

 

 
 

Figure 14 – Citation reports for Sphaerulina musiva from 2001 to 2021 (Total number of citations: 

198). 

 

Phytophthora pluvialis Reeser, W. Sutton & E.M. Hansen, N. Amer. Fung. 8(7): 2 (2013) 

Phytophthora is an economically significant fungus-like genus (oomycetes) in 

Peronosporaceae (Thines & Choi 2016, Cavalier-Smith 2018, Ho 2018). Phytophthora species are 

prominent in the list of plant pathogens that epitomize international biosecurity challenges (Scott et 

al. 2019), causing damage to a diverse range of hosts (Bollmann et al. 2016, Jayawardena et al. 

2020). Some Phytophthora species have co-evolved with their hosts, leaving the ecosystem 

undisturbed. Others have profound effects as invasive pathogens. Phytophthora cinnamomi, a soil-

borne oomycete, is a notable example. It is among the most destructive and invasive of pathogens 

affecting a wide range of hosts worldwide, including cork and holm oaks (Hardham 2005, Camilo-

Alves et al. 2013). Other significant species include P. nicotianae and P. sojae (Erwin & Ribeiro 

1996). The impact caused by Phytophthora species has continued to increase, with the emergence 

of new pathogens and diseases (Yang et al. 2017). 

Phytophthora pluvialis has recently emerged as a significant pathogen of Pinus radiata 

(Monterey pine), causing red needle cast disease in New Zealand (Dick et al. 2014). Pinus radiata 

originates from California (USA) and is largely grown in the southern hemisphere, especially in 

Australia, Chile, New Zealand and South Africa (Dick et al. 2014). Exotic plantation in New 

Zealand accounts for 1.7 million hectares, constituting 90% of P. radiata (NEFD 2016). Planted  

P. radiata has notable economic importance within the southern hemisphere (Watt et al. 2017). 

Forty-seven percent of P. radiata in the New Zealand forest industry is cultivated for timber (Li 

2017). The wood of P. radiata is used to manufacture several products including boards, panel 

products, papers, pulp and veneers (Li 2017). However, wood quality decreases in the case of 

external resin bleeding, thus lowering the value of appearance-grade timber (Li 2017). Due to its 

high economic value, these plantations require great care to prevent pest and pathogen infestation. 

Globally, over 400 pests and pathogens have been reported from Pinus radiata (Flux et al. 1993). 

The emergence of Phytophthora pluvialis causing foliar disease and red needle cast disease of 

Pinus radiata, and the subsequent identification of the same pathogen from Douglas-fir in New 
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Zealand highlights the dire need to study this pathogen (Dick et al. 2014, Hansen et al. 2015). 

Symptoms include olive discoloration of needles, usually bearing resin-like dark bands (Dick et al. 

2014). Reeser et al. (2013) isolated Phytophthora pluvialis from streams, soil and canopy drip in 

mixed tanoak-Douglas-fir forest in Oregon. Pine needles are easily infected by P. pluvialis because 

the latter is aerial (Reeser et al. 2013). Furthermore, P. pluvialis is homothallic, implying that it can 

easily produce oogonia (Reeser et al. 2013). Phytophthora pluvialis also has caducous sporangia, 

which makes it easier to release zoospores that can reach needle surfaces by water splash (Reeser et 

al. 2013, Dick et al. 2014, Hansen et al. 2017). Following this event, zoospores enter the 

intercellular spaces. Sporangia develop from the stomata so that P. pluvialis can start its cycle over 

again (Gómez-Gallego et al. 2019). 

 

 
 

Figure 15 – Phylogram generated from maximum likelihood analysis (RAxML) based on the 

combined ITS, LSU, RPB2, TEF-1α, ACT, CAL and β-TUB matrices of Sphaerulina. Maximum 

likelihood (ML) and maximum parsimony (MP) with bootstrap support ≥80%, and the posterior 

probability (PP) values (≥0.8) of Bayesian inference (BI) analyses are given at respective nodes as 

ML/MP/PP. The tree is rooted with Septoria cruciatae (CBS 123747 and CBS 123748) and Sep. 

eclipticola (CBS 136118 and CCTU 1153.2) (Mycosphaerellaceae). Ex-type strains are indicated 

in bold and the emerging pathogen discussed herein is denoted in red. Hyphen (-) represents 

support values below 80% (ML and MP) and below 0.80 (PP). The host and country from which 

each species was identified are shown in the phylogram. 
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Figure 16 – Citation reports for Phytophthora pluvialis from 2001 to 2021 (Total number of 

citations: 170). 

 

Little is known about red needle cast disease. Therefore, it is challenging to analyze its 

potential impacts on forest ecosystems and develop control measures (Ganley et al. 2014). To 

protect P. radiata forestry productivity, active management strategies are required. A decline in 

disease severity was observed after applying stem injections and aerial phosphite in P. radiata 

(Rolando et al. 2014). Understanding the epidemiology of infectious diseases and the combined use 

of chemical and biological control can be effective in minimizing disease occurrence and severity 

in New Zealand forests (Ganley et al. 2014). 

 

Phytophthora agathidicida B.S. Weir, Beever, Pennycook & Bellgard, in Weir, Paderes, Anand, 

Uchida, Pennycook, Bellgard & Beever, Phytotaxa 205(1): 29 (2015) 

The native host Agathis australis (kauri), in New Zealand, has been under threat from the 

newly emerged soil-borne dieback pathogen Phytophthora agathidicida (Scott & Williams 2014, 

Weir et al. 2015). The pathogen has emerged in such a way that it can kill different stages of kauri, 

including seedlings and large mature trees (Beever et al. 2009). Kauri is endemic to New Zealand 

and forms part of the coniferous Araucariaceae (Wilf et al. 2014). The carbon-rich kauri, storing up 

to 670 Mg of carbon per hectare in wood biomass (Keith et al. 2009), is one of the largest and 

longest-lived tree species in New Zealand (Ahmed & Ogden 2011). The trunk height can reach 30–

50 m with an average lifespan of 600 years, sometimes exceeding 1500 years (Steward & 

Beveridge 2010, Ahmed & Ogden 2011). Kauri has ecological and immense cultural significance 

(Black et al. 2018). Kauri is also capable of growing on low nutrients in infertile soil (Wyse et al. 

2014, Padamsee et al. 2016, Byers et al. 2020). 

Following colonization by European settlers, kauri was extensively logged. Therefore, its 

distribution was altered in New Zealand. Additionally, huge populations of kauri were cleared for 

pastoral farming and this led to the depletion of kauri forests (Steward & Beveridge 2010). An 

estimated 1% of the original remnant kauri remains (Steward & Beveridge 2010). Unfortunately, 

the 60,000 ha of kauri forest regenerated is now under threat of extinction from dieback disease 

caused by P. agathidicida (Halkett 1983, Beever et al. 2009, Weir et al. 2015). Thus, it is important 

to study this lethal pathogen and develop control strategies. 

Kauri dieback is not a newly described disease as it was initially reported by Gadgil (1974) 

on Great Barrier Island. However, based on morphology, the pathogen responsible was 

misidentified as Phytophthora heveae at that time (Gadgil 1974). Consequently, kauri morbidity 

and mortality were observed in the Waitākere Ranges in 2006, which prompted surveys that 

identified the same pathogen from unhealthy kauri (Waipara et al. 2013). Kauri dieback was 

confirmed in other forests in Auckland and Northland from 2005 to 2010 (Beever et al. 2009, 

Waipara et al. 2013). In 2008, the pathogen was identified as Phytophthora taxon Agathis (Beever 

et al. 2009) and was classified as an unwanted organism under the Biosecurity Act (Waipara et al. 
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2010). In 2015, the pathogen was formally described as Phytophthora agathidicida (Weir et al. 

2015).  

Phytophthora agathidicida is a hemibiotrophic pathogen that is dependent on the root tissues 

of the host for completion of its life cycle (Bellgard et al. 2019). After the death of kauri, P. 

agathidicida continues to reside in the root tissues (Bellgard et al. 2019). Phytophthora 

agathidicida is a notable example of an invasive pathogen (Waipara et al. 2013). It causes root rot 

that gives rise to canker bleeding of the lower trunk, foliage yellowing, and uncontrolled resin 

(gummosis) at the collar and lower trunk (Seyfullah et al. 2018). The pathogen also causes tree 

death eventually resulting in a decrease in tree density (Winkworth et al. 2020). These symptoms 

are solely notable during the chronic phase of the disease. The time-lapse between disease 

symptom manifestation and tree death usually takes one to ten years. It is suggested that even trees 

>1000 years old are not immune (Bradshaw et al. 2020). 

Little is known about kauri dieback because the latter has recently emerged (Guo et al. 2020). 

Schwendenmann & Michalzik (2019) suggested that interactions between multiple Phytophthora 

species may increase the susceptibility of kauri to P. agathidicida. At present, there is no known 

cure for kauri dieback (Bradshaw et al. 2020). However, several disease management strategies 

have been proposed, focusing on attempts to control the spread of P. agathidicida (Bradshaw et al. 

2020). One strategy involves biological control, which refers to the “purposeful use of introduced 

or resident micro-organisms” (Bellgard et al. 2019). Arbuscular mycorrhizal fungi can be used as 

biocontrol agents as they have antagonistic effects on soil-borne pathogens (Bellgard & Williams 

2011). Furthermore, chemical control using phosphite to manage kauri dieback was effective by 

suppressing the activity of P. agathidicida in glasshouse seedlings and trees, ranging from 30–50 

years in the field (Horner & Hough 2013). 

Phytophthora agathidicida can easily be dispersed through infected root materials contained 

in soil adhered to footwear, tools, machinery and logs (Bellgard et al. 2013). Improved 

management measures are required for kauri dieback. Further surveillance may ameliorate 

understanding of the biology of P. agathidicida, such as latency period. Advanced research can 

reveal whether P. agathidicida affects hosts other than kauri (Bradshaw et al. 2020). Since the 

infection occurs at the root-pathogen interface, control strategies towards kauri dieback need to be 

targeted in the rhizosphere (Bellgard et al. 2019). Currently, there are few options for controlling or 

treating P. agathidicida. The main method for reducing pathogen spread is physical barriers such as 

walking track closures and shoe cleaning stations. In 2020, three new Phytophthora species were 

introduced, namely P. acaciivora, P. aysenensis and P. personensis (Burgess et al. 2020, Crous et 

al. 2020). Since many Phytophthora species are destructive pathogens (Scott et al. 2019), the 

emergence, severity and dispersal of these novel species are unpredictable. We hypothesize that the 

newly introduced species might emerge with co-existed pathogens and affect new hosts. 

 

 
 

Figure 17 – Citation reports for Phytophthora agathidicida from 2001 to 2021 (Total number of 

citations: 156). 
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The combined LSU, 60S, β-TUB, TEF-1α, Enl, HSP90 and TigA alignment of Phytophthora 

comprised 8412 characters (LSU: 1–1241, 60S: 1242–1703, β-TUB: 1704–2841, TEF-1α: 2842–

3856, Enl: 3857–5025, HSP90: 5026–6772, TigA: 6773–8412), representing 217 strains of 

Peronosporaceae (Fig.18). In the case of Phytophthora, only Maximum likelihood and Maximum 

parsimony analyses were performed. There are 186 Phytophthora species in Species Fungorum 

(2022). Based on our multigene phylogenetic analyses, we accept 180 species in Phytophthora.  

 

Melampsora × columbiana G. Newc., in Newcombe, Stirling, McDonald & Bradshaw, Mycol. 

Res. 104(3): 271 (2000) 

Melampsora × columbiana is a natural hybrid of M. medusae and M. occidentalis 

(Newcombe et al. 2000). Hybridization is considered as a major reason for the emergence of fungal 

diseases, especially if the hybrid taxon has the ability to infect a wide range of hosts (Brasier 

2000a, 2001b, Schardl & Craven 2003, Inderbitzin et al. 2011). Natural hybridization is the mating 

between individuals of two distinct populations in nature (Arnold 1997). The offspring generated 

via genetic crosses of two non-conspecific individuals may be defined as a hybrid (Mallet 2007, 

Stukenbrock 2016). Hybrids may be formed through both, sexual mating and asexual fusion of the 

vegetative hyphae (Schardl & Craven 2003, Kohn 2005, Stukenbrock 2016). Intermediate clades 

with incongruence in phylogenetic topologies may be recognized as hybrid species in a 

phylogenetic tree (Schardl & Craven 2003). 

Melampsora species cause foliar rust disease (Newcombe et al. 2000). Severe infection by 

these taxa may result in early leaf drop, reduced photosynthetic ability, reduced growth and 

decreased biomass (Steenackers et al. 1996). Melampsora species affect trees worldwide, including 

Populus spp. (poplars) (Steenackers et al. 1996). Some examples of Melampsora leaf rust are 

caused by M. medusae, M. occidentalis, M. allii-populina and M. laricis-populina (Newcombe et 

al. 2000, Albornoz et al. 2018). Leaf rust disease has spread throughout Asia, Europe, North 

America, Oceania and South America (Albornoz et al. 2018). 

The telial hosts of Melampsora are Populus sections Aigeiros and Tacamahaca. Populus 

section Aigeiros has two native species in North America, Populus deltoides and P. fremontii. 

Populus section Tacamahaca has three native species, namely P. angustifolia, P. balsamifera and 

P. trichocarpa (Eckenwalder 1984). Newcombe et al. (2000) determined that natural hybridization 

occurs between Melampsora medusae and M. occidentalis in hybrid poplars, thus giving rise to the 

hybrid Melampsora × columbiana. This poplar rust hybrid has had huge impacts on poplars in the 

USA (Dickmann 2001). It has the ability to generate novel virulent traits on Populus trichocarpa × 

P. deltoides hybrid poplar (Newcombe et al. 2001b). In North America, Melampsora ×columbiana 

has exhibited diverse pathogenic traits (La Mantia et al. 2013). 

Melampsora × columbiana probably occurred due to the introduction of M. medusae in the 

Pacific Northwest in 1991 (Newcombe 1996, 1998). Prior to the establishment of M. medusae, 

Populus trichocarpa × P. deltoides was not infected by leaf rust disease even in the presence of M. 

occidentalis due to its non-pathogenic nature on Populus trichocarpa × P. deltoides (Hsiang & Van 

Der Kamp 1985). Melampsora medusae has been identified beyond its native range of Populus 

deltoides (Thümen 1878), from Australia (Galović et al. 2010), China (Zheng et al. 2019), India 

(Vialle et al. 2011), Japan (Hiratsuka 1939), Portugal (Pinon 1986, 1991), Russia (Farr & Rossman 

2022) and South Africa (Galović et al. 2010). Since M. medusa undergoes natural hybridization 

with other species (Spiers & Hopcroft 1994, Newcombe et al. 2000), it is important to develop 

management strategies for poplar rust disease to prevent the formation of Melampsora hybrids 

which have the potential to develop novel pathogenic traits. 

The combined ITS and LSU alignment of Melampsora comprised 1077 characters (ITS: 1–

527, LSU: 528–1077), representing 70 strains of Melampsoraceae (Fig. 20). There are 114 

Melampsora species in Species Fungorum (2022). Based on our multigene phylogenetic analyses, 

we accept 42 species in Melampsora.  

Melampsora was established by Castagne, with M. euphorbiae as the type species (Cummins 

& Hiratsuka 2003). Melampsora species are obligate biotrophic pathogens infecting a wide range 
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of plants (Vialle et al. 2011, Zheng et al. 2019), including Populus spp. (poplars) and Salix spp. 

(willows) (Fig. 20). Of the 74 strains and 42 Melampsora species, 50 strains and 28 species were 

isolated from willows (Fig. 20). Willows are great sources of renewable energy and bioproducts 

(Kuzovkina & Quigley 2005, González-García et al. 2012). Furthermore, they are widely used for 

ornamentation and production of fibers (Verwijst et al. 2008). Willow rust disease caused by 

Melampsora species is emerging, thus limiting willow cultivation (Zhao et al. 2015). 

 

 
 

Figure 18 – Phylogram generated from maximum likelihood analysis (RAxML) based on the 

combined LSU, 60S, β-TUB, TEF-1α, Enl, HSP90 and TigA matrices of Phytophthora. Maximum 
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likelihood (ML) and maximum parsimony (MP) with bootstrap support ≥80% are given at 

respective nodes as ML/MP. The tree is rooted with Pythium longipapillum (NRh8 and NS05) and 

Py. oryzicollum (Ts3 and Kr7) (Pythiaceae). Ex-type strains are indicated in bold and the emerging 

pathogen discussed herein is denoted in red. Hyphen (-) represents support values below 80% (ML 

and MP). 

 

 
 

Figure 18 – Continued. 
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Figure 18 – Continued. 
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Figure 19 – Citation reports for Melampsora × columbiana from 2001 to 2021 (Total number of 

citations: 64). 

 

Melampsora × columbiana is an emerging pathogen that has been isolated from Populus 

angustifolia (Newcombe et al. 2000). Other Melampsora species obtained from poplars include  

M. abietis-populi, M. laricis-populina, M. magnusiana, M. medusae, M. microspora, M. 

occidentalis, M. populnea and M. pruinosae. They have mainly been collected in China, Iraq and 

North America (Fig. 20). Rust disease on poplars is considered as one of the most important 

diseases in China (Tian et al. 2004) and are important worldwide (Frey et al. 2005). Therefore, to 

control diseases it is important to study the biology of disease formation of these taxa. 

 

Discussion 

Forest pathogens have continued to emerge, thus affecting plant health (Jones et al. 2008, 

Avila-Quezada et al. 2018). There are several explanations for disease emergence. Firstly, the 

transfer of genetic information among species via hybridization and horizontal gene transfer can 

cause disease (Calo et al. 2013). A mutation in genes that confer virulence may also result in the 

emergence of pathogenic strains (Ahmed et al. 2012, Stukenbrock 2013, Fones et al. 2017). 

Furthermore, some fungal pathogens have “two-speed” genomes, implying that genes responsible 

for pathogenicity and virulence may occupy genomic regions that emerge at a higher rate as 

compared to other fundamental gene regions (Dong et al. 2015, Rafiqi et al. 2018). 

Other possible causes for pathogens to emerge include the introduction of pathogenic taxa 

into new geographical areas, or introduction of hosts in areas where the pathogens are already 

present (Manning & Tiedemann 1995, Bebber et al. 2013, Fones et al. 2017). Several biotic and 

abiotic factors may also contribute to the occurrence of new disease (Bebber et al. 2013, Fones et 

al. 2017). Fungi also emerge as a result of lifestyle switching, particularly from mutualistic to a 

parasitic lifestyle (Promputtha et al. 2007, Rai & Agarkar 2016). A plausible explanation for 

lifestyle switching is a mutation in the NADPH oxidase gene NoxA produced from reactive oxygen 

species (ROS) (Tanaka et al. 2006). Other factors include host age and changes in climatic 

conditions (Saikkonen et al. 1998, Rai & Agarkar 2016, Bhunjun et al. 2021). Another cause for the 

emergence of pathogens may be host-jumping, whereby pathogens colonize new host groups, 

resulting in increased genetic separation from the parent population (Thines 2019). Host jumps are 

induced by several factors.  

Fungal phytopathogens yield significant economic losses in both tropical and temperate forest 

ecosystems. A huge number of fungi have been reported in tropical rainforests, suggesting that 

fungal diversity is higher in these regions as compared to temperate forests (Arnold & Lutzoni 

2007, Tedersoo et al. 2014). A decline in fungal species richness was observed when moving 

towards the poles (Tedersoo et al. 2014). The probability of finding a huge number of fungi in the 

tropics is higher than in temperate regions because three quarters of known plant genera are 

confined to the tropics (Lücking et al. 2017). Even though tropical forests have high fungal species 
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richness, they are poorly studied. Thus, continuous research is needed whereby all fungal groups in 

each ecological habitat are surveyed in depth, which is a strenuous procedure requiring the 

contribution of several experts and mycologists. 

 

 
 

Figure 20 – Phylogram generated from maximum likelihood analysis (RAxML) based on the 

combined ITS and LSU matrices of Melampsora. Maximum likelihood (ML) and maximum 
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parsimony (MP) with bootstrap support ≥80%, and the posterior probability (PP) values (≥0.8) of 

Bayesian inference (BI) analyses are given at respective nodes as ML/MP/PP. The tree is rooted 

with Chrysomyxa diebuensis (BJFC: R00556 and BJFC: R00507) and C. weirii (CFB 22195 and 

916CHW-PCG-SG8) (Coleosporiaceae). Ex-type strains are indicated in bold and the emerging 

pathogen discussed herein is denoted in red. Hyphen (-) represents support values below 80% (ML 

and MP) and below 0.80 (PP). The host and country from which each species was identified are 

shown in the phylogram. 

 

In this paper, ten important emerging and re-emerging forest pathogenic species have been 

reviewed. Each entry provides examples of different scenarios whereby a pathogen can emerge. 

Firstly, the invasive nature of certain pathogens can cause the emergence of new virulent strains, 

which can be more aggressive than other closely related taxa. This was the case for the pathogenic 

Hymenoscyphus fraxineus, which replaced the harmless saprobic H. albidus (McKinney et al. 

2012). The emergence of Fusarium circinatum was also attributed to its invasive nature. In view of 

the lifestyles of F. circinatum, we hypothesize that when conditions are favorable, its pathogenic 

lifestyle may predominate as compared to its endophytic lifestyle. Therefore, it may affect hosts in 

other geographical areas. In the case of Ophiostoma novo-ulmi, it mutated into a more aggressive 

species that caused the death of a huge number of elm trees in contrast to its closely related O. ulmi.  

Ceratocystis fimbriata, responsible for rapid ˋŌhiˋa death, targets and kills ˋŌhiˋa trees of all 

ages. In the current epidemic, C. fimbriata has emerged in such a way that there was a rapid 

increase in the number of host deaths in a short period of time. Other fungi may emerge as a result 

of close association with insects, as in the case of Neonectria faginata. Another scenario for the 

emergence of a pathogen is through natural hybridization, as suggested for Melampsora × 

columbiana.  

To predict the emergence of phytopathogenic fungi and fungus-like taxa, a proper 

understanding of the biology and mechanisms of pathogenesis is important. However, along with 

these data, morphological illustration and phylogenetic analyses are fundamental. In addition, 

quantifying the number of existing pathogenic fungi is significant in determining their emergence, 

owing to the fact that some fungal species have different lifestyles. Prior to the advent of molecular 

tools, fungal species were introduced primarily based on morphological examination. Nevertheless, 

with the advent of molecular tools, it might be possible that the same species has been introduced 

and described more than once. Thus, these details should be taken into account when determining 

the number of described species, including pathogenic strains.  

The estimated number of fungal species has increased from 2.2–3.8 to 11.7–13.2 million 

(Hawksworth & Lücking 2017, Wu et al. 2019), but with only around 150,000 described species 

(Hyde et al. 2020, Bhunjun et al. 2022, Phukhamsakda et al. 2022). However, the number of 

pathogenic fungi, their diversity and re-occurrence is still unknown. Thus, there is a dire need to 

estimate the number of pathogenic fungi that have hitherto been described for the several reasons 

aforementioned. Eventually, an estimated number of pathogenic species will not solely help plant 

pathologists to study the biology of pathogenesis but also help farmers with biocontrol and 

management strategies.  

Quantifying the number of pathogenic fungi is strenuous because they are constantly 

emerging. Their emergence generates novel virulent traits which can annihilate an entire tree 

population and destroy forest ecosystems, as in the case of Ceratocystis fimbriata. Quarantine lists 

of pathogens could be used to estimate the number of pathogenic fungi. Quarantine regulations 

have been executed based on existing plant pathogens that have affected specific hosts globally 

(McTaggart et al. 2016). Nonetheless, quarantine lists are rarely updated and therefore, not reliable. 

Besides, each country has its list, and while some countries recorded the sexual morph name of a 

species, others have listed the asexual morphs (Wingfield et al. 2011, Jayawardena et al. 2021b, 

Manawasinghe et al. 2021). This leads to confusion where the same species might be considered 

different. Another hindrance in identifying and quantifying the number of pathogenic strains is the 

restriction to conduct pathogenicity tests in vivo, especially in natural forests. Also, farmers might 



    650 

not allow plant pathologists to carry out these tests in plantation areas. Some fungi are host-

specific. Therefore, in order to carry out pathogenicity tests on certain hosts, we need to grow them, 

which is an arduous and time-consuming process. Thus, it is difficult to confirm whether certain 

described pathogens are actually pathogenic on their respective hosts.  

Also, the number of pathogenic fungi reported from forest trees and crops is not classified per 

se. Remarkably, very few studies have been carried out on fungal pathogens affecting forest trees 

as compared to crops and to a lesser extent on ornamentals. As it happens, the very few studies 

carried out on forest trees stipulate huge economic consequences as a result of invasive pathogens 

(Pimentel 2011, Lovett et al. 2016). From Table 2, we can decipher that more research is required 

in view of forest diseases. Furthermore, pathogens have a tendency to cause diseases on specific 

hosts due to the limited host range (Van Der Does & Rep 2007). However, from the phylogenetic 

trees provided herein, it is evident that each species is not host-specific. 

From Figs 3, 5, 7, 8, 10, 12, 14, and 16, it is observed that the total number of citations have 

decreased between the years 2020 to 2021. A probable explanation for this decline might be 

attributed to the Covid-19 crisis period, during which research was hindered. Therefore, we 

speculate that there might be other emerging fungal strains, probably more virulent in nature. 

Continuous long-term studies are required to monitor existing fungal diseases to properly control 

and manage them, thus preserving natural ecosystems. Given their ruinous effect, it is critically 

essential for the genera discussed herein to have a stable taxonomy that allows plant pathologists to 

study and identify these fungi. This will help to develop effective management strategies against 

the diseases. 

 

Conclusions and future prospects 

Emerging pathogenic fungi and fungus-like taxa pose a significant risk to forest ecosystems. 

They are capable of causing complete host eradication. The reasons these pathogens emerge are 

unpredictable. Therefore, a complete understanding of the mechanisms of host invasion and disease 

formation is fundamental for disease control. This will help to better understand their biology and 

lifestyles. As such, we can predict pathogenicity and virulence of certain pathogenic fungi and 

fungus-like taxa and thus design control measures. What are the different life modes and lifestyles 

of these pathogens? Why do some species become virulent and aggressive? What are the 

mechanisms of pathogenesis? Are pathogens host-specific or can they expand their host range? 

These questions need to be addressed to understand the several mechanisms of disease formation 

and emergence. 
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