ORIGINAL ARTICLE

A New Antifungal Macrolide, Eushearilide, Isolated from *Eupenicillium shearii*

Tomoo Hosoe, Kazutaka Fukushima, Kayoko Takizawa, Takeshi Itabashi, Nobuo Kawahara, Valerio Vidotto, Ken-ichi Kawai

Received: June 27, 2006 / Accepted: August 27, 2006 © Japan Antibiotics Research Association

Abstract In screening for antifungal substances, a new macrolide, eushearilide (1), was isolated from *Eupenicillium shearii* IFM54447. The structure of 1 was established to be 24-membered macrolide having a non-conjugated diene and a choline phosphate ester moetiy on the basis of detailed investigation of NMR, UV, IR and MS spectral data. Compound 1 showed antifungal activity against various fungi and yeasts, including human pathogens *Aspergillus fumigatus, Trichophyton* spp. and *Candida* spp.

Keywords *Eupenicillium shearii*, Eushearilide, Macrolide, Antifungal activity

Introduction

The incidence of life-threatening fungal infections has steadily increased in immunocompromised hosts such as HIV infected persons and cancer and transplant patients [1]. Invasive pulmonary aspergillosis and *Pneumocystis carinii* pneumonia are leading causes of death in bone marrow transplant recipients and in HIV-infected patients, respectively. Moreover, resistance to the azoles, which are the most widely used antifungals today, is attracting much attention. Therefore, there is a continuing need for

T. Hosoe (Corresponding author), **T. Itabashi, K. Kawai:** Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan,

new antifungal agents to overcome these fungal diseases. Screening for new antifungal substances from fungal sources was carried out using pathogenic filamentous fungi, *Aspergillus fumigatus* Fresenius IFM41362 and *Aspergillus niger* Van Tieghem IFM41398, and/or pathogenic yeasts, *Candida albicans* (Robin) Berkhout ATCC90028 and *Cryptococcus neoformans* (Sanfelice) Vuillemin ATCC90112. The chloroform - methanol (1:1) extract of freshly isolated *Eupenicillium shearii* IFM54447, cultivated on rice for 21 days at 25°C, showed antifungal activity against the above four test organisms. The purification of this extract led to the isolation of a new macrolide designated eushearilide (1) as the antifungal substance.

Results and Discussion

Eushearilide (1) was obtained as a white amorphous solid. High resolution time of flight mass spectrometry (HR-TOF-MS) for 1 gave a quasimolecular ion $[M+H]^+$ at m/z544.3757 (calcd 544.3762) corresponding to the molecular formula $C_{29}H_{54}NO_6P$, which was consistent with ¹H, ¹³C and ³¹P NMR spectra. Infrared (IR) absorption at 2920 and 2850 cm⁻¹ suggested the presence of aliphatic moiety and that at 1730 cm⁻¹ (strong) suggested the presence of an ester carbonyl. The ¹H NMR spectrum of 1 exhibited 54

N. Kawahara: National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan

V. Vidotto: Dipartimento Discipline Medico-Chirurgiche, Sezione Malattie Infettive, Universita' deglistudi di Torino, Italia

E-mail: hosoe@hoshi.ac.jp

K. Fukushima, K. Takizawa: Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8673, Japan

non-exchangeable protons, including three equivalent tertiary (δ 3.21) and a secondary (δ 1.19) methyl groups and four olefinic protons (δ 5.36, 5.37, 5.39 and 5.50). The above olefins apparently possessed a Z-configuration at C-

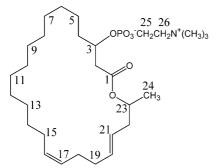


Fig. 1 Structure of eushearilide (1).

16, C-17 and an *E*-configuration at C-20, C-21 from the value of their coupling constants ($J_{16,17}$ =7.8 Hz and $J_{20,21}$ =15.1 Hz). The ¹³C NMR spectrum of **1** showed four methyls (δ 19.7 and 54.7) including three equivalent methyls, 18 methylenes, two methines (δ 72.3 and 74.1) bearing oxygen functions, one carbonyl carbon (δ 171.8), and four tertiary olefinic carbon atoms (δ 126.5, 131.2, 131.8 and 134.7). A peak at δ –0.048 ppm in the ³¹P NMR spectrum of **1** showed the presence of a phosphoryl or phosphoric acid moiety.

From the analysis of the ¹H-¹H COSY and HMBC spectra (Fig. 2) of **1**, the planar structure of eushearilide (**1**) was determined as a twenty-four membered macrolide with a non-conjugated diene and a choline phosphate ester moiety. The stereochemistry of **1** remains to be determined.

 Table 1
 Antifungal and antibacterial activities of eushearilide (1)

Microorganisms		Inhibition zone (mm)	Microorganisms		Inhibition zone (mm)
—Filamentous fungi—					
<pre>(Imperfect fungi and ascomycetes)</pre>			(Zygomycetes)		
Alternaria alternata	IFM 41348	21	Absidia corymbifera	IFM 41345	15
Arthroderma benhamiae	IFM 41160	20	Cunninghamella elegans	IFM 47050	20
Aspergillus flavus	IFM 41935	24	Mucor ramosissimus	IFM 46006	24
Aspergillus fumigatus	IFM 41362	14	Rhizopus oryzae	IFM 40515	12
Aspergillus fumigatus	IFM 47078	15			
Aspergillus fumigatus	IFM 49896	21	—Yeasts—		
Aspergillus fumigatus	IFM 51126	20	Candida albicans	IFM 47945	8
Aspergillus fumigatus	IFM 51357	21	Candida albicans	ATCC 90028	7
Aspergillus niger	IFM 41398	18	Candida albicans	ATCC 90029	7
Aureobasidium pullulans	IFM 4802	20	Candida dubliniensis	IFM 51756	11
Emericella nidulans	IFM 46997	12	Candida glabrata	IFM 46888	7
Exophiala dermatitidis	IFM 41479	17	Candida guilliermondii	IFM 46823	(14)
Fonsecaea pedrosoi	IFM 4887	11	Candida kefyr	IFM 46921	11
Fusarium oxysporum f. sp. lactucae	IFM 53787	17	Candida krusei	IFM 46834	7
Microsporum audouinii	IFM 41144	22	Candida parapsilosis	IFM 46863	9
Microsporum canis	IFM 45108	23	Candida tropicalis	IFM 46816	7.5
Penicillium citrinum	IFM 53298	19	Cryptococcus neoformans	ATCC 90112	10.5
Penicillium islandicum	IFM 41098	11	Cryptococcus neoformans	ATCC 90113	10
Penicilium marneffei	IFM 52703	20	Saccharomyces cerevisiae	IFM 40210	7
Phialophora verrucosa	IFM 4928	11	Trichosporon asahii var. asahii	IFM 48429	(16)
Pichia anomala	IFM 53788	9.5			
Pseudallescheria boydii	IFM 41901	26	—Bacteria—		
Trichophyton mentagrophytes	IFM 40951	18	Staphylococcus aureus	JCM 2151	(12)
Trichophyton rubrum	IFM 45802	18	Escherichia coli	JCM 1649	_
Trichophyton tonsurans Trichophyton verrucosum	IFM 5275 IFM 46798	20 14	Pseudomonas aeruginosa	JCM 5962	

The parentheses mean hazy inhibition zone.

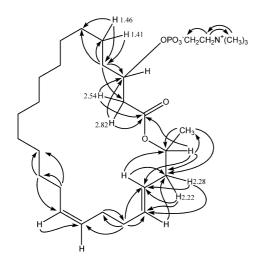


Fig. 2 HMBC correlations in eushearilide (1).

Antimicrobial Property

Since eushearilide (1) was insoluble in water, the antimicrobial activity was determined by the paper disc method, as described in the previous paper [2, 3]. The results are summarized in Table 1. Eushearilide (1) showed a broadrange of antifungal activity against various fungi and yeasts including human pathogens *Aspergillus fumigatus*, *Trichophyton* spp. and *Candida* spp. *etc.*, whereas only a trace of the antibacterial activity was observed.

Although many macrolide antibiotics have several conjugated double bonds and amino sugar moieties in the molecular structure (*cf.* amphotericin B [4]), eushearilide (1) is a macrolide antibiotic having a twenty-four membered ring, that has non-conjugated double bonds, no an amino sugar moiety and no hydroxyl groups on the ring structure. It is the first example to our knowledge of a twenty-four membered macrolide antibiotic having a choline phosphate ester moiety.

Experimental

ESI-TOF-MS was taken with a Bruker microTOF spectrometer. UV and IR spectra were recorded on a Hitachi U-3210 spectrometer and a JASCO IR-810 spectrometer, respectivity. ¹H and ¹³C NMR spectra were recorded on a JEOL ECA-800 (¹H, 800.14 MHz; ¹³C, 201.20 MHz) spectrometer, using tetramethylsilane as an internal standard, and the ³¹P NMR spectrum was recorded on a JEOL ECA-600 spectrometer. CD curves were determined on a JASCO J-600 spectropolarimeter. Column chromatography was performed using Wakogel C-200 (Art. 237-00071, Wako). High performance liquid chromatography (HPLC) was performed with a Senshu

Scientific SSC-3160 pump (flow rate, 4 ml/minute), equipped with a Shimamura YRD-883 RI detector. HPLC analytical condition of Eushearilide was as follows [column: Inertsil ODS-3, 4.6×250 mm, GL sciences Inc.; mobile phase: MeOH - H₂O (9 : 1); flow rate: 1.0 ml/minute; column oven temperature: 40°C] TLC was conducted on pre-coated Kieselgel 60 F₂₅₄ plates (Art. 5715; Merck) with solvent system CHCl₃ - MeOH - H₂O (6 : 4 : 1). Eushearilide was detected by spraying with 5%H₂SO₄ and then heating.

Isolation of Eushearilide (1) from E. shearii IFM54447

E. shearii IFM54447, kept by The Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, was cultivated for 21 days at 25°C on rice (450 g, using 3 Roux flasks). The cultivated rice was extracted with $CHCl_3$ -MeOH (1:1) and the evaporated extract suspended in water and partitioned with EtOAc. The EtOAc extract (15 g), which showed antifungal activity against *A. fumigatus*, was repeatedly chromatographed on silica gel (Wako, C-200) with $CHCl_3$ -MeOH, followed by preparative reverse-phase HPLC [column: Senshu Pack pegasil-ODS, 10×250 mm; mobile phase: MeOH-H₂O (9:1)] to give **1** (8 mg) along with a fraction including several lysophosphoglycerides.

Eushearilide (1): white amorphous solid; 1 was shown at Rt (15.2 minutes) and Rf value (0.42) in the above analytical condition. $[\alpha]_D^{25}$ +12.8 (c 0.75, MeOH); UV (MeOH): λ_{max} (log ε) 206 (3.23), 225 nm (2.82); CD (MeOH): $\Delta \varepsilon$ (nm) +0.36 (217); IR (film): v_{max} 3400 (br), 2920 (s), 2850 (s), 1730 (s), 1230 (br), 1080 (s), 1060 (s), 850 (s) cm⁻¹; HR-TOF-MS (ESI positive) *m/z*: 544.3757 $[M+H]^+$; calcd. for C₂₉H₅₅NO₆P: 544.3762. ¹H-NMR (800.14 MHz, CD₃OD): δ 1.19 (3H, d, J=6.4 Hz, 24-H₃), 1.30 (16H, br s, 6, 7, 8, 9, 10, 11, 12, and 13-H₂), 1.36 (2H, m, 14-H₂), 1.41 (1H, m, 5-H), 1.46 (1H, m, 5-H), 1.64 (2H, m, 4-H₂), 2.00 (2H, br dd, J=6.0, 11.5 Hz, 15-H₂), 2.06 (2H, m, 18-H₂), 2.07 (2H, m, 19-H₂), 2.22 (1H, ddd, *J*=6.4, 7.3, 14.0 Hz, 22-H), 2.28 (1H, ddd, J=6.9, 7.3, 14.0 Hz, 22-H), 2.54 (1H, dd, J=8.2, 14.2 Hz, 2-H), 2.82 (1H, dd, J=4.2, 14.2 Hz, 2-H), 3.21 (9H, s, 27-CH₃), 3.62 (2H, m, 26-H₂), 4.26 (2H, m, 25-H₂), 4.54 (1H, m, 3-H), 4.87 (1H, br q, J=6.4 Hz, 23-H), 5.36 (1H, br d, J=7.8 Hz, 17-H), 5.37 (1H, br d, J=7.8 Hz, 16-H), 5.39 (1H, dt, J=7.3, 15.1 Hz, 21-H), 5.50 (1H, m, 20-H).; ¹³C-NMR (201.20 MHz, CD₃OD): δ 19.7 (C-24), 25.4 (C-5), 28.5 (C-13), 29.2, 29.4, 29.6, 29.7×2, and 29.8 (C-7 to C-12), 29.5 (C-14), 30.1 (C-6), 32.8 (C-15), 33.6 (C-18), 33.9 (C-19), 36.1 (C-4), 40.0 (C-22), 41.9 (C-2), 54.7 (C-27), 60.3 (C-25), 67.5 (C-26), 72.3 (C-23), 74.1 (C-3), 126.5 (C-21), 131.2 (C-17), 131.8 (C-16), 134.7 (C-20), 171.8 (C-1).

Antibacterial and Antifungal Activities of 1

Antibacterial and antifungal activities were qualitatively determined using the agar diffusion method with paper discs (6 mm in diameter), loaded with $40 \mu g$ of 1 as described in the previous paper [2]. The test organisms used and the results are summarized in Table 1.

Acknowledgements We are grateful to Dr. H. Kasai and Miss N. Kobayashi of Hoshi University for NMR measurements. We also thank Prof. Y. Ebizuka of the University of Tokyo for mass measurements. This study was supported in part by Hoshi University Science/Technology Frontier Research Base and the Natural BioResouce Project-Pathogenic Microorganisms from the Ministry of Education, Science, Sports and Culture, Japan and by a Cooperative Research Pro­gram of Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University (05-15).

References

- Georgopapadakou NH, Walsh TJ. Antifungal agents: chemotherapeutic targets and immunologic strategies. J Antimicrob Agents Chemother 40: 279–291 (1996)
- Hosoe T, Fukushima K, Itabashi T, Nozawa K, Takizawa K, Okada K, Takaki GMC, Kawai K. A new nonadride derivative, dihydroepiheveadride, as characteristic antifungal agent against filamentous fungi, isolated from unidentified fungus IFM52672. J Antibiot 57: 573–578 (2004)
- Komai S, Hosoe T, Nozawa K, Okada K, Takaki GMC, Fukushima K, Miyaji M, Horie Y, Kawai K. Antifungal activity of pyranone and furanone derivatives, isolated from *Aspergillus* sp. IFM51759, against *Aspergillus fumigatus*. Mycotoxins 53: 11–18 (2003)
- Inoue S, Sezaki M. Current antifungal antibiotics. Yukigoseikagakukyoukaishi 51: 327–349 (1993)