NOWA NOWA IRON PROJECT

ATTACHMENT 8 :

FLORA, FAUNA AND ECOLOGICAL CHARACTERISTICS AND ASSESSMENT

Prepared for Eastern Iron Limited by Earth Systems

REVISION 1

October 2013

DOCUMENT REVISION LIST

Revision Status / Number	Revision Date	Description of Revision	Approved By
Rev0	October 2013	Draft	Nigel Murphy
Rev1	October 2013	Final	Nigel Murphy

Contents

Exe	cutive	e Summary	i
1	Intro	oduction	1
	1.1	Background	1
	1.2	Objectives and Scope	1
	1.3	Project Description	2
2	Envi	ronmental Setting	5
	2.1	Topography and Climate	5
	2.2	Landuse, Geology and Soils	5
		2.2.1 Landuse	5
		2.2.2 Geology and Soils	6
	2.3	Hydrology and Drainage	6
	2.4	Bioregional Context	7
	2.5	Legislative Context	7
		2.5.1 Commonwealth	7
		2.5.2 State	7
		2.5.3 International Treaties	8
3	Meth	nodology	9
	3.1	Study Areas	9
	3.2	Literature and Database Review	9
	3.3	Regional Overview Field Assessment	10
	3.4	Vegetation and Flora	10
	3.5	Fauna Habitat	11
	3.6	Diurnal Fauna Surveys	11
		3.6.1 Point Counts	12
		3.6.2 Transect Searches	12
	3.7	Nocturnal Fauna Surveys	12
		3.7.1 Search and Playback Sites	13
		3.7.2 Transect Spotlighting	
		3.7.3 Dusk/Dawn Watches	
		3.7.4 Estimating Owl and Glider Detectability and Sufficient Survey Effort	
	3.8	Incidental Surveys	
	3.9	Data Analysis	
		3.9.1 Bird Species Assemblage Differences	
		3.9.2 Estimated Species Richness and General Diversity	
	3.10	Groundwater Dependent Ecosystems	
	3.11	Limitations of Surveys	19

4	Reg	Regional Biodiversity	
	4.1	Significant Ecological Communities	20
		4.1.1 Listed EPBC Act Significant Communities	20
		4.1.2 FFG Act Modelled Communities	20
	4.2	Vegetation and Flora	21
		4.2.1 Ecological Vegetation Classes	21
		4.2.2 Flora	22
	4.3	Fauna	22
		4.3.1 Birds Recorded During Overview Assessment	22
		4.3.2 Birds Previously Recorded In, and May Use, the Region	22
		4.3.3 Mammals Recorded During Overview Assessment	27
		4.3.4 Mammals Previously Recorded and Significant Species that May Reside in the Region	27
		4.3.5 Herpetofauna Recorded and may Reside in Region	28
		4.3.6 Other fauna	28
	4.4	Limitations of the Data Sources	28
5	Stuc	ly Area Biodiversity	30
	5.1	Literature and Database Results and Discussion	30
		5.1.1 Vegetation and Flora	30
		5.1.2 Fauna	30
		5.1.3 Groundwater Dependent Ecosystems	31
	5.2	Vegetation and Flora Field Assessment	33
	5.3	Fauna Field Assessment Survey Effort	35
	5.4	Fauna Habitat	35
		5.4.1 Logging Regeneration Habitat	35
		5.4.2 Open Woodland	36
		5.4.3 Open Shrubby Forest	36
		5.4.4 Riparian/damp Forest	36
	5.5	Birds	37
	5.6	Mammals	43
	5.7	Reptiles and Amphibians	45
	5.8	Owl and Glider Detectability	46
	5.9	Bird Species Assemblage Differences	48
	5.10	Estimated Species Richness and General Diversity	49
6	Pote	ntial Impacts	51
	6.1	Current Key Threatening Processes	51
	6.2	Potential Project Impacts	54
		6.2.1 Native Ecological Communities and Flora	
		6.2.2 Native Fauna	55

		6.2.3	Groundwater Dependent Ecosystems	56
	6.3	Natio	nal and State Threatened Species with Potential to be Impacted	57
		6.3.1	Potential Direct Impacts to Flora and Communities	57
		6.3.2	Potential Indirect Impacts to Flora and Communities	57
		6.3.3	Potential Indirect Impacts to Fauna	60
7	Leg	islatio	on and Policy Implications	65
	7.1	Com	monwealth Government and International Treaties	65
		7.1.1	Environmental Protection and Biodiversity Conservation Act 1999	65
	7.2	Victo	rian State Government	66
		7.2.1	Environment Effects Act 1978	66
		7.2.2	Flora and Fauna Guarantee Act 1988	
		7.2.3	Catchment and Land Protection Act 1994	67
		7.2.4	Wildlife Act 1975	67
		7.2.5	Planning and Environment Act 1987	
		7.2.6	Victoria's Biodiversity Strategy	
		7.2.7	Forest Management Areas	
8	Mar	nagem	nent, Mitigation and Monitoring	69
	8.1	Gene	ral Mitigation and Management	69
	8.2	Spec	ific Management, Further Surveying and Monitoring	70
		8.2.1	Warm Temperate Rainforest Community	70
		8.2.2	Threatened Flora Species	70
		8.2.3	Forest Owls	71
		8.2.4	Nocturnal and Cryptic Mammals and Frogs	71
		8.2.5	Other Fauna	72
	8.3	Biodi	iversity Offset Strategy	72
		8.3.1	Reforms to Victoria's native vegetation permitted clearing regulations	73
9	Ref	erenc	es	74
10	Ann	exes		78

Terminology

Term	Definition
ANOSIM	Analysis of Similarities: statistical modelling technique
BIM	Biodiversity Interactive Map
Biodiversity	All life-forms (organisms) including plants, animals and micro-organisms
Bioregion	A landscape based approach to classifying the land surface using a range of environmental attributes such as climate, geomorphology, lithology and vegetation
Bioregional Conservation Status	An assessment of the conservation status of the native vegetation type (EVC) in the context of a particular bioregion, taking account of how commonly it originally occurred, the current level of depletion and the level of degradation of condition typical of remaining stands
BOM	Bureau of Meteorology
Bonn Convention	Convention on the Conservation of Migratory Species of Wild Animals
САМВА	China-Australia Migratory Bird Agreement
CMS	Convention of Migratory Species
DEPI	Department of Environment and Primary Industries
DEWHA	Department of Environment, Water, Heritage and the Arts
DPI	Department of Primary Industries (superseded by DEPI in April 2013)
DSE	Department of Sustainability and Environment (superseded by DEPI in April 2013)
DSEWPaC	Department of Sustainability, Environment, Water, Population and Communities
Ecological Vegetation Class (EVC)	Native vegetation classification system categorising a vegetation community based on a combination floristics, structure, life forms, ecological characteristics, and bioregions
EES	Environmental Effects Statement
EGL	East Gippsland Lowlands
EGFMP	East Gippsland Forest Management Plan
EGU	East Gippsland Uplands
EMP	Environment Management Plan
EPBC Act	Environment Protection and Biodiversity Conservation Act 1999
EPHC	Environment Protection and Heritage Council
Exotic/introduced species	Any species that is not native to Australia or its States and Territories. This definition can sometimes include non-indigenous vegetation.
FFG Act	Flora and Fauna Guarantee Act1988
GMA	Groundwater Management Areas
JAMBA	Japan-Australia Migratory Bird Agreement
MDS	Multi-dimensional Scaling: analytical technique
MBS	

Term	Definition
Native Vegetation	All vegetation that is native to Australia, and its States and Territories
Non-indigenous (Native) Species	Australian species that are found beyond their original range
РОМА	Powerful Owl Management Area
ROKAMBA	Republic of Korea-Australia Migratory Bird Agreement
Shannon's Index	Determines whether most individuals are from the same species (weighted) or evenly distributed among multiple species: $H' = -\sum_{i=1}^{R} p_i ln p_i$ Where p_i = the proportion of individuals belonging to the <i>ith</i> species, R = is the richness (number of species). When $H' = 0$ there is no uncertainty and there is only one species; H' between 1.5 and 3.5 represents that individuals are distributed evenly
Simpson's Index	The probability that two individuals taken at random from a population (with replacement) are from the same species: $D = \sum_{i=1}^{R} p_i^2$ Where p_i = the proportion of individuals belonging to the <i>i</i> th species, R = is the richness (number of species); D = 0 represents infinite diversity, D = 1 no diversity
SMZ	Special Management Zone
SOMA	Sooty Owl Management Area
SPZ	Special Protection Zone
TSSC	Threatened Species Scientific Committee
VBA	Victorian Biodiversity Atlas

Definitions of Conservation Status of Threatened Species

Conservation Status	Definition	
Commonwealth (EPBC Act 1999)		
Extinct (EX)	A species is Extinct when there is no reasonable doubt that the last individual of the taxon has died	
Critically Endangered (CR)	A species is Critically Endangered if it is facing an extremely high risk of extinction in the wild in the immediate future	
Endangered (EN)	A species is Endangered if it is facing a very high risk of extinction in the wild in the near future but is not critically endangered	
Vulnerable (VU)	A species is Vulnerable if it is facing a high risk of extinction in the wild in the medium-term future but is not critically endangered or endangered	
Conservation Dependent (CD)	A species is Conservation Dependent when it is the focus of a specific conservation program, the cessation of which would result in the species becoming vulnerable, endangered or critically endangered within a period of five years	
Migratory	Migratory species listed under the international conventions and agreements Australia is party to are protected under the <i>Environment Protection and Biodiversity</i> <i>Conservation Act 1999</i>	
Marine	Marine species listed under the international conventions and agreements Australia is party to are protected under the <i>Environment Protection and Biodiversity Conservation Act 1999</i>	
Cetacean	Whales, dolphins and porpoises that are protected within Australian waters	
Victorian (FFG Act 1988)		
Listed	Listed as threatened	
Nominated (N)	Nominated for listing as threatened but has not yet completed the listing process. In some cases, the taxon may have received a preliminary or final recommendation indicating that it is eligible or ineligible for listing. In other cases, the nomination might not yet have been considered	
Potentially Threatening Process	Processes have been listed as potentially threatening processes in accordance with Section 10 of the FFG Act	
Victorian (DEPI 2013) Advisory	Lists	
Extinct (EX)	A species or community is Extinct when there is no reasonable doubt that the last individual has died. A species or community is presumed Extinct when exhaustive surveys in known and/or expected habitat, at appropriate times (diurnal, seasonal, annual), throughout its historic range have failed to record an individual	
Regionally Extinct (RX)	As for Extinct but within a defined region (in this case the State of Victoria) that does not encompass the entire geographic range of the taxon. A species or community is presumed Regionally Extinct when exhaustive surveys in known and/or expected habitat, at appropriate times (diurnal, seasonal, annual), throughout the region have failed to record an individual	
Critically Endangered (CR)	A species or community is Critically Endangered when the best available evidence indicates that it meets any of the criteria A to E for Critically Endangered (see IUCN Standards and Petitions Subcommittee 2010), and it is therefore considered to be facing an extremely high risk of extinction in the wild	
Endangered (EN)	A species or community is Endangered when the best available evidence indicates	

Conservation Status	Definition	
	that it meets any of the criteria A to E or Endangered (see IUCN Standards and Petitions Subcommittee 2010), and it is therefore considered to be facing a very high risk of extinction in the wild	
Vulnerable (VU)	A species or community is Vulnerable when the best available evidence indicates that it meets any of the criteria A to E for Vulnerable (see IUCN Standards and Petitions Subcommittee 2010), and it is therefore considered to be facing a high risk of extinction in the wild	
Near-threatened (NT)	A species or community is Near Threatened when it has been evaluated against the criteria but does not qualify for Critically Endangered, Endangered or Vulnerable now, but is close to qualifying for or is likely to qualify for a threatened category in the near future	
Data Deficient (DD)	A species or community is Data Deficient when there is inadequate information to make a direct, or indirect, assessment of its risk of extinction based on its distribution and/or population status. Data Deficient is therefore not a category of threat. Listing of taxa in this category indicates that more information is required and acknowledges the possibility that future research will show that threatened classification is appropriate	
Victorian (DEPI 2013) BCS	for EVCs	
Presumed Extinct (X)	Probably no longer present in the Bioregion	
Endangered (E)	Contracted to less than 10% of former range; OR	
	Less than 10% pre-European extent remains; OR	
	Combination of depletion, degradation, current threats and rarity is comparable overall to the above:	
	 10 to 30% pre-European extent remains and severely degraded over a majority of this area; or 	
	 Naturally restricted EVC reduced to 30% or less of former range and 	
	moderately degraded over a majority of this area; or	
	 Rare EVC cleared and/or moderately degraded over a majority of former 	
	area	
Vulnerable (V)	10 to 30% pre-European extent remains; OR	
	Combination of depletion, degradation, current threats and rarity is comparable overall to the above:	
	• Greater than 30% and up to 50% pre-European extent remains and	
	moderately degraded over a majority of this area; or	
	• Greater than 50% pre-European extent remains and severely degraded	
	over a majority of this area; or	
	• Naturally restricted EVC where greater than 30% pre-European extent	
	remains and moderately degraded over a majority of this area; or	
	Rare EVC cleared and/or moderately degraded over a minority of former area	
Depleted (D)	Greater than 30% and up to 50% pre-European extent remains; OR Combination of depletion, degradation and current threats is comparable overall to	

Conservation Status	Definition	
	the above and:Greater than 50% pre-European extent remains and moderately degraded	
	over a majority of this area	
Rare (R)	 Greater than 30% and up to 50% pre-European extent remains; OR Combination of depletion, degradation and current threats is comparable overall to the above and: Greater than 50% pre-European extent remains and moderately degraded over a majority of this area 	
Least Concern (LC)	Greater than 50% pre-European extent remains and subject to little to no degradation over a majority of this area	

Executive Summary

Introduction

Eastern Iron Limited ('Eastern Iron'), through its wholly owned subsidiary Gippsland Iron Pty Ltd, proposes to develop the Nowa Nowa Iron Project (hereafter 'the Project'). The Project is a greenfield development of a high grade magnetite/hematite deposit generally referred to as '5 Mile'. It is located approximately 7 km north of the township of Nowa Nowa, which is situated on the Princes Highway between Bairnsdale and Orbost in East Gippsland, Victoria.

Earth Systems has been commissioned by Eastern Iron Limited to prepare this *Flora, Fauna and Ecological Characteristics and Assessment* to support a referral to the Minister for Planning for advice as to whether an Environment Effects Statement is required for the Project pursuant to the *Environment Effects Act* 1978 ('EES Referral').

There are spatial and landscape aspects that are relevant to the consideration of the Project. Firstly the mine site itself, which is where the mineral extraction and infrastructure associated with the Project will occur and secondly, the wider region surrounding the mine site which may be impacted by construction and operation. The ecological characteristics of the downstream catchment have been addressed separately; see *Aquatic and Wetland Ecology Study* (EES Referral Attachment 9).

The main aim of this *Flora, Fauna and Ecological Characteristics and Assessment* is to review, investigate and discuss the baseline ecological characteristics of the mine site, and recommend key management and mitigation measures to minimise potential adverse effects on species and communities. Specific objectives of this study were to:

- Identify and assess flora, fauna and ecological communities that may be present in, or near to, the mine site;
- Determine the likelihood that threatened species and communities may reside or temporarily use the mine site and greater region; and
- Briefly outline the current disturbance status of the mine site, and assess the potential impacts of the proposed Project on terrestrial ecology; and
- Outline mitigation and management measures that will minimise the potential for any significant impacts on flora, fauna and ecological communities.

Environmental Setting

The mine site is located approximately 7 km north of the township of Nowa Nowa, 18 km northeast of Lakes Entrance and 250 km east of Melbourne in East Gippsland, Victoria. The mine site (and greater region) intersects both the East Gippsland Lowlands (EGL) and East Gippsland Uplands (EGU) bioregions.

East Gippsland is a low-lying region with gently undulating hills flanked by coastal plains, dune fields and inlets. The hills rarely reach over 320 metres elevation. The climate of East Gippsland is temperate, with a mean annual rainfall of approximately 821 mm recorded at Mount Nowa Nowa, in close proximity to the mine site. Mean maximum temperatures recorded at Mount Nowa Nowa are highest in January (25°C) and mean minimum temperatures are lowest in July (6°C). Relative humidity levels range between 57% (in January) and 78% (in May).

The main land use activities within the East Gippsland region are forestry and agriculture, including dairy farming, wool production, cattle and sheep production and vegetable production. Tourism is a growing industry in East Gippsland, with the Ramsar listed wetlands, lakes, forests, rivers and the Victorian Alps key attractions. The mine site itself is entirely located within the Tara State Forest, which is primarily

managed for forestry activities. The site includes areas approved as timber coupes in VicForests' latest Timber Release Plan (2009-2014).

In terms of its hydrological setting, the mine site is primarily located within the Boggy Creek Sub-Catchment. A number of creeks, both permanent and ephemeral, are present within the mine site and form two main waterways to the ocean. The site is north of the Gippsland Lakes system including the Ramsar-listed lakes and wetlands.

Most of the East Gippsland region is composed of Neogene (late Tertiary) alluvial sediments. These alluvial sediments form terraces and fan out from the uplands. The lowlands are sandy loams overlying clays. There has been some structural movement with early deposits being dissected with sediment composed of organic matter and iron, and volcanic intrusions.

Methodology

A three-tiered approach was adopted to assess the ecological characteristics of the mine site and surrounds:

- 1. Literature and database searches to determine species previously recorded in the area;
- 2. An overview site visit of the mine site and broader region; and
- 3. Detailed flora and fauna field surveys of the mine site.

Regional biodiversity was assessed by examining literature and database records within a 10 km zone around coordinates centred at the mine site. The overview field study was conducted covering the same zone. The detailed fauna survey was undertaken by Earth Systems within a 1250 ha (12.5 km²) *Study Area* encompassing the mine site, buffers and the immediate habitat surrounding the mine site (to account for highly mobile fauna).

Field flora surveys within a similar Study Area were conducted by Ethos NRM Pty Ltd. The assessment was undertaken to determine on-site vegetation quality and included a site description, Habitat Hectares Assessment and Ecological Vegetation Class mapping (Annex 1). Targeted surveys for the Colquhoun grevillea (*Grevillea celata;* EPBC Act listed) were conducted in October 2013 (flowering season) to determine presence of individual plants and potential habitat (Annex 2). Additional spring vegetation assessment and other threatened species surveys are currently underway. The field assessments were undertaken by a DEPI accredited Native Vegetation Assessor.

The fauna field study included a total of 127 hours of surveys. Fauna habitat was assessed to provide an indication of the distribution and quality of habitat within the Study Area. Detailed habitat assessment was primarily achieved by observations on foot (~550 ha), and supplemented by observations from a vehicle and satellite imagery. Systematic spatial sampling was used to survey the Study Area. The fauna field study included:

- Diurnal point counts of all vertebrate fauna observed (72 points arranged in a grid);
- Diurnal transect searches (vegetation, trees, under rocks/logs, leaf litter and bare ground were searched for evidence of vertebrate fauna);
- Nocturnal fauna surveys using call playback, call recognition, point spotlight search, transect spotlighting and dusk and dawn watches; and
- Incidental records of all vertebrate fauna seen or heard within the Study Area and not seen during formal diurnal or nocturnal fauna surveys.

Regional Biodiversity

Database and literature searches indicated that within a 10 km zone around the mine site:

• The EPBC Act listed White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland community (Critically Endangered) may occur in the region (although was not identified during field surveys of the Study Area);

- No EPBC Act threatened mammals have been recorded in the region;
- Four modelled FFG Act communities have been mapped within the region, all being listed as Rare communities and composed of Warm Temperate Rainforest;
- Eight Ecological Vegetation Classes (EVCs) have been mapped in the region;
- 1102 different species, sub-species, variants and hybrids of plant have been recorded, with 200 of these being introduced;
- 196 bird species have been recorded in the region; most are common and widespread except for:
 - Two EPBC Act threatened species were recorded in 1977 (Australian bittern Botaurus poiciloptilus and swift parrot Lathamus discolor);
- Three FFG Act listed species (masked, sooty and powerful owl, *Tyto novaehollandiae* novaehollandiae, *T. tenebricosa tenebricosa* and *Ninox strenua*);
- 25 mammalian species have previously been recorded, six of these are non-native;
- 12 species of reptile have been recorded in the past in the region but only one is recognised by the DEPI Advisory list (lace monitor *Varanus varius*);
- 14 species of the class Amphibia have been recorded in the region, only one being a nationally significant species; the EPBC Act Vulnerable green and golden bell frog (*Litoria aurea*); and
- No significant fish or invertebrates have been recorded in the region.

The overview field assessment found:

- Fifty-two species of bird and 16 mammal species were observed during the overview assessment of the region, and of these:
 - » No EPBC or FFG Act listed species were observed at any time, however one DEPI-listed species was observed in forested areas within the region.
 - » All other fauna species were common and/or widespread within Victoria and/or Australia.

Study Area Biodiversity

Databases and literature searches of the Study Area (encompassing the mine site and surrounding habitat) indicated:

- No EPBC Act listed species have been recorded within the mine site or Study Area;
- Four modelled Rare FFG Act communities have been mapped within the south-east corner of the Study Area. All of these four communities are within one remnant patch of Warm Temperate Rainforest. However, this patch is not located within the mine site;
- One FFG Act listed species (sooty owl) has been recorded within the Study Area, but not within the mine site;
- Two DEPI recognised species, the slender wire-lily (*Laxmannia gracilis*) and southern toadlet (*Pseudophyrne semimarmorata*), have been recorded within the Study Area, but only the wire-lily was recorded within the mine site (in 1980);
- It is unlikely that additional FFG or EPBC Act listed flora or fauna species inhabit the mine site due to previous logging, insufficient habitat characteristics and poor connectivity with source populations;
- Overall, it appears that the Study Area has few areas of vegetation that are reliant on subsurface or subterranean groundwater since groundwater depths range from 37 to 50 m. The most likely areas of GDEs are within and along the three main ephemeral creeks of the mine site and the greater Study Area. However, these GDEs are probably only reliant on surface expression of groundwater, rather than tapping deeper sources of water.

Field flora surveys of the Study Area indicated:

- No EPBC Act or FFG Act threatened flora species (or preferred habitat) were identified at any time during the survey;
- Colquhoun grevillea (or preferred habitat) was not found within the mine site during targeted spring surveys (Annex 2);
- Five Ecological Vegetation Classes (EVCs) were identified within the Study Area:
 - » Lowland Forest (Least Concern);
 - » Shrubby Dry Forest (Least Concern);
 - Damp Forest (Least Concern);
 - Riparian Forest (Depleted); and
 - Warm Temperate Rainforest (FFG Act modelled) notably this community does not occur within the mine site.
- A total of 146 ha of vegetation equating to approximately 104 habitat hectares (HHa) is proposed for removal;
- Additional (flowering period) spring 2013 flora and vegetation surveys will determine vegetation loss and offset requirements and will search for other threatened flora.

Fauna surveys of the Study Area indicated:

- No EPBC Act species were observed (or evidence found) at any time during surveys;
- One FFG Act listed species, the masked owl, was observed 1.2 km east-north-east of the mine site;
- Despite extensive searches of the habitat, including the Warm Temperate Rainforest patch to the south-east of the mine site, evidence of owl nests or roosts was not found;
- It is likely that the three threatened owl species hunt in the Study Area, but do not nest or roost in the Study Area or nearby. Analyses indicates that surveys were sufficient to detect all three species, if they were present in areas searched;
- A DEPI-listed Near Threatened species, the brown treecreeper (*Climacteris picumnus victoriae*) was observed on numerous occasions;
- The DEPI-listed Endangered lace monitor was observed twice and scratched trees indicating its presence were found throughout the Study Area;
- The DEPI-listed Critically Endangered Martin's toadlet (*Uperoleia martini*) was heard on one occasion, during a particularly heavy rainfall event, on the southern boundary of the Study Area, along the Nowa Nowa-Buchan Road (outside mine site);
- Overall, 43 species of bird were seen using, flying over, or heard within, the Study Area;
- All mammals detected were common and widespread native species (i.e. not listed), in addition to three introduced species;
- In total, 571 individuals from 58 terrestrial fauna species were observed inhabiting or using the Study Area; and
- Most models estimated species richness to be between 58 (± 0.1) and 73 (± 9.1) with an upper outlying estimate of 90.1 (± 38.4).

Potential Impacts

Habitat fragmentation and degradation feature prominently in the current threats to the Study Area. Historical timber harvesting has probably altered the microclimate, hydrology, erosion patterns and the number of weeds and pests. It is unlikely that the vegetation of the Study Area resembles the preEuropean (harvesting) habitat. Similarly, fauna biodiversity is unlikely to resemble the original suite of species present on the site. Many species have become extinct from the Gippsland region and introduced species are now common and widespread.

Potential impacts on terrestrial ecology associated with the development of the Project at the mine site are expected to be moderate due to the significant historical disturbance of the area through timber harvesting and human use. The primary impact on fauna and flora is expected to be associated with the native vegetation clearance required for the Project components. Key potential direct and indirect impacts are summarised below.

Direct Impacts

Native Vegetation – key potential direct impacts include:

- The development of the mine site will require the removal of approximately 146 ha of native vegetation (equating to approximately 104 habitat hectares);
- No EPBC Act or FFG Act threatened species or ecological communities have currently been identified as potentially impacted;
- Vegetation removal may directly impact upon the following DEPI-listed Rare species:
 - » Wallaby bush (Beyeria lasiocarpa);
 - Gippsland stringybark (Eucalyptus mackintii);
 - » Forest red box (Eucalyptus polyanthemos longior);
 - » Paperbark tea-tree (*Leptospermum trinervium*);
 - » Austral tobacco (*Nicotiana suaveolens*); and
 - » Smooth geebung (Persoonia levis).

Native Fauna – key potential direct impacts include:

• Accidental death and/or injury are likely to be the primary potential direct impact on native fauna.

Indirect Impacts

Native Vegetation - key potential indirect impacts include:

- Increased exposure of vegetation to light and altered microclimate on clearance edges;
- Vegetation exposed to increased weeds and parasites carried by wind and increased traffic;
- Dewatering may indirectly impact GDEs within the area of the cone of depression around the pit, however it is likely that these areas will already be cleared for mine components;
- The following species are unlikely to occur in the habitat of the mine site but nevertheless will be considered in regards of mitigation and management (in line with the precautionary principle):
 - Maroon leek-orchid (*Prasophyllum frenchii*);
 - » Leafy nematolepis (Nematolepis frondosa);
 - » Leafless tongue-orchid (Cryptostylis hunteriana);
 - » Thick-lipped spider-orchid (Caladenia tessellate); and
 - » Yellow-wood (Acronychia oblongifolia).
- Please note that Colquhoun grevillea was not found during targeted surveys and therefore there will be no impact on this species.

Native Fauna - key potential indirect impacts include:

- Removal of foraging and/or breeding fauna habitat;
- Fauna being disturbed by an increase in human activities;
- Increased competition for resources; and
- Increased competition and predation from increased number of introduced fauna species (including native).

Significant fauna species found in the Study Area that may be indirectly impacted by the development of the mine site include:

- Masked owl;
- Brown treecreeper;
- Lace monitor; and
- Martin's toadlet.

It is likely that foraging habitat will be removed, but these species are highly mobile, and are likely to find foraging grounds elsewhere. Removal of habitat for Project activities is not expected to significantly impact on the local or regional population. For example, the lace monitor occurs in relatively low population densities, being one to three individuals over 1000 to 3000 ha and their large territories typically cover highly degraded habitat. Brown treecreepers also occur in highly degraded and fragmented forest in East Gippsland, and elsewhere across Victoria (e.g. box iron-bark forests; see Kavanagh et al. 2007 for example). Removal of a small proportion of the foraging grounds for these two species is thus unlikely to significantly impact on their foraging activities. There may be temporary displacement, but these species are able to readily habituate to (human-caused) disturbance, since all species forage in highly disturbed/fragmented and degraded habitat. It is also possible that these species will habituate to the mining activities and take advantage of the cleared areas to hunt.

It is possible that other threatened species inhabit the mine site and surrounding habitat but have never been recorded in the area, particularly due to their cryptic nature. An assessment of threatened species habitat requirements and the likelihood of their presence within the mine site found that no (additional) threatened species were "likely" to inhabit the area. "Likely" is defined as a species having habitat requirements met, threatening processes are low and that it is likely that they are detected in the future. The habitat is too disturbed, structural components are absent (e.g. adequate shrub cover) and threatening processes are too frequent and/or in high numbers (e.g. introduced predators, logging activities) for many threatened species.

The following species have been identified as having the potential (categorised as "potential" or "occasional") to occur in the Study Area based on habitat requirements and the potential presence of nearby populations, and may be indirectly impacted (if present):

- Black-faced monarch (Monarcha melanopsis);
- Greater glider (Petauroides volans);
- Long-nosed potoroo (Potorous tridactylus tridactylus);
- Powerful owl;
- Sooty owl;
- Southern brown bandicoot (Isoodon obesulus obesulus);
- Southern toadlet;
- Spot-tailed quoll (Dasyurus maculatus maculatus); and
- White-footed dunnart (Sminthopsis leucopus).

Management, Mitigation and Monitoring

Suitable measures to avoid, minimise, manage and monitor impacts to flora and fauna will be required for the Project and will include the development and implementation of:

- An Environmental Management Plan;
- General mitigation and management measures;
- Targeted Colquhoun grevillea surveys have identified no specimens or preferred habitat within the mine site, but additional (planned spring) vegetation quality surveys will establish the absence of other nationally and State threatened flora species through targeted surveying and will involve:
 - » Conducted during species flowering period;
 - » Transect and/or quadrat surveying within suitable habitat;
 - » If specimens are detected:
 - Monitor population over life and upon closure of the mine (e.g. annual surveying).
 - Implement a monitoring and management plan including translocation, propagation and revegetation programs.
- It is likely that a pair of each FFG Act listed owl species (masked, powerful and sooty owls) intermittently use the habitat within and surrounding the Study Area, therefore management and conservation will follow current DEPI guidelines.

Where adverse impacts cannot be avoided, mitigated and/or managed (e.g. due to direct native vegetation loss required for the Project components), a *Biodiversity Offset Strategy* will need to be implemented to compensate for these impacts on native vegetation and biodiversity. The *Biodiversity Offset Strategy* should:

- Provide net gain in native vegetation area and biodiversity values;
- Ensure offsets are kept in perpetuity;
- Be enforceable; and
- Involve both on-site and off-site offsets.

Appropriate native vegetation offset sites will need to be identified and secured prior to Project commencement. Offset management plans will also be required covering each offset site which detail the specific works to be implemented.

Since no EPBC Act listed species were detected, specific offsets for these species are unlikely to be necessary. Native vegetation to be removed will require offsets to be set aside in accordance with *Victoria's Native Vegetation Framework* or *Permitted clearing of native vegetation – Biodiversity* assessment guidelines (new reforms). These offsets will be calculated to take into account:

- Site based:
 - » Area of native vegetation to be removed;
 - » Condition of native vegetation;
 - Types and conservation status of Ecological Vegetation Classes (EVCs) to be removed; and
 - » Presence of any threatened flora and fauna (of DEPI Rare status and above).
- Landscape level:
 - » Importance of area for Victoria's biodiversity; and
 - » Habitat importance.

Under the current Victorian Native Vegetation Framework, it is estimated that between 104.4 HHa (1.26 HHa of High and 103.14 HHa of Medium Conservation Significance) and 155.96 HHa of High Conservation Significance vegetation will need to be offset. Additionally, this would include an estimated Large Old Tree (LOT) protection target of between 890 and 1772 LOTs will be required to offset the loss of 443 LOTs.

Additional Habitat Hectare Assessments for the mine site are currently being undertaken and offsets will be calculated in accordance with the new DEPI requirements and will be used as the basis of the approvals process for the Project.

Summary and Conclusions

Potential impacts on terrestrial ecology associated with the development of the Project at the mine site are expected to be moderate due to the significant historical disturbance of the area through timber harvesting and human use. Direct impacts will result from the removal of native vegetation however, indirect impacts may also occur due to dewatering, removal of foraging habitat and general disturbance from increased human activity.

The most pertinent Commonwealth legislation for the Project is the EPBC Act. Under the Act, actions that are likely to have a significant impact upon matters of national environmental significance require approval from the Environment Minister. However, no EPBC Act threatened species, communities or critical habitats have been identified during the field surveys of the Study Area at the current stage. It appears the habitat condition within the Study Area is unsuitable, poor or there is little habitat connectivity to support EPBC Act species.

Suitable measures to avoid, minimise, manage and monitor impacts to flora and fauna will be required for the Project and should be included in an Environmental Management Plan where appropriate. Where adverse impacts cannot be avoided, mitigated and/or managed, a *Biodiversity Offset Strategy* will need to be developed and implemented to compensate for any impacts on native vegetation and biodiversity. Since no EPBC species were detected, specific offsets for these species are unlikely to be necessary at this stage. Native vegetation to be removed will require offsets to be set aside in accordance with *Permitted clearing of native vegetation – Biodiversity assessment guidelines.*

With progressive revegetation of disturbed areas over the mine life and the effective implementation of management measures and native vegetation offsets as outlined in this study, it is envisaged that the mine site can be developed with no long-term impact on regional or State biodiversity values.

1 Introduction

1.1 Background

Eastern Iron Limited ('Eastern Iron'), through its wholly owned subsidiary Gippsland Iron Pty Ltd, proposes to develop the Nowa Nowa Iron Project (hereafter 'the Project'). The Project is a greenfield development of a high grade magnetite/hematite deposit generally referred to as 'Five Mile'. It is located approximately 7 km north of the township of Nowa Nowa, which is situated on the Princes Highway between Bairnsdale and Orbost in East Gippsland, Victoria.

Earth Systems has been commissioned by Eastern Iron to prepare this *Flora, Fauna and Ecological Characteristics and Assessment* to support a referral to the Minister for Planning for advice as to whether an Environment Effects Statement is required for the Project pursuant to the *Environment Effects Act* 1978 ('EES Referral').

There are spatial and landscape aspects that are relevant to the consideration of the Project. Firstly the mine site itself, which is where the mineral extraction and infrastructure associated with the Project will occur and secondly, the wider region surrounding the mine site which may be indirectly impacted by construction and operation. In accordance with State and Commonwealth legislation, the Project will be required to achieve a net-gain benefit in the region's biodiversity. Project components will need to be designed and placed to avoid, minimize and mitigate impacts on ecological characteristics wherever possible. A comprehensive management and monitoring program for biodiversity values will also need to be implemented over the life of the Project.

1.2 Objectives and Scope

The main aim of this *Flora, Fauna and Ecological Characteristics and Assessment* is to review, investigate and discuss the baseline ecological characteristics of the mine site, and recommend key management and mitigation measures to minimise potential adverse effects on species and communities. Specific objectives of this study were to:

- Identify and assess flora, fauna and ecological communities that may be present in, or near to, the mine site;
- Determine the likelihood that threatened species and communities may reside or temporarily use the mine site and greater region; and
- Briefly outline the current disturbance status of the mine site, and assess the potential impacts of the proposed Project on terrestrial ecology; and
- Outline mitigation and management measures that will minimise the potential for any significant impacts on flora, fauna and ecological communities.

As discussed in the section above, the scope of this report is limited to an assessment of the ecological characteristics in the mine site and surrounds. The ecological characteristics of the downstream catchment have been addressed separately in the *Aquatic and Wetland Ecology Study* (EES Referral Attachment 9).

As the purpose of the current Study is to support the EES Referral, the focus of the report is on the components of the Project within Victoria. Project components at the South East Fibre Exports (SEFE) wharf in Edrom, NSW, will be subject to approval under State and local planning processes.

1.3 Project Description

The proposed Project is a greenfield development of a high grade magnetite/hematite deposit generally referred to as '5 Mile'. It is located approximately 7 km north of the township of Nowa Nowa, which is situated on the Princes Highway between Bairnsdale and Orbost in East Gippsland, Victoria. The site is wholly within the Tara State Forest (Figure 1-1).

The Project involves an open cut mining operation from a single pit with dry processing at the site to upgrade the material to a saleable product. It is anticipated that the Project will produce up to 1Mt of ore per annum, over an initial mine life of 8-10 years. The mine will be operated using a mining contractor and local employees (i.e. no on-site accommodation).

It is proposed to transport the processed ore by road to the existing South East Fibre Exports (SEFE) wharf at the Port of Eden in Edrom, NSW. The majority of the transport route between the mine and the Port is via the Princes Highway. The material will be temporarily stockpiled before being loaded onto 50-60,000t vessels and exported to international markets.

The main components of the Project at the mine site will include:

- Open Pit;
- Mine Infrastructure (includes the Run of Mine (ROM) pad, processing plant and Mine Operations Centre);
- Waste Rock Dump;
- Temporary Low Grade Ore Stockpile;
- Water Storage Infrastructure;
- Mine Access and Haul Roads; and
- Ancillary Infrastructure.

These components are depicted in Figure 1-2, whilst further details of the Project are provided in the *Project Description and Proposed Mine Plan* (EES Referral Attachment 1).

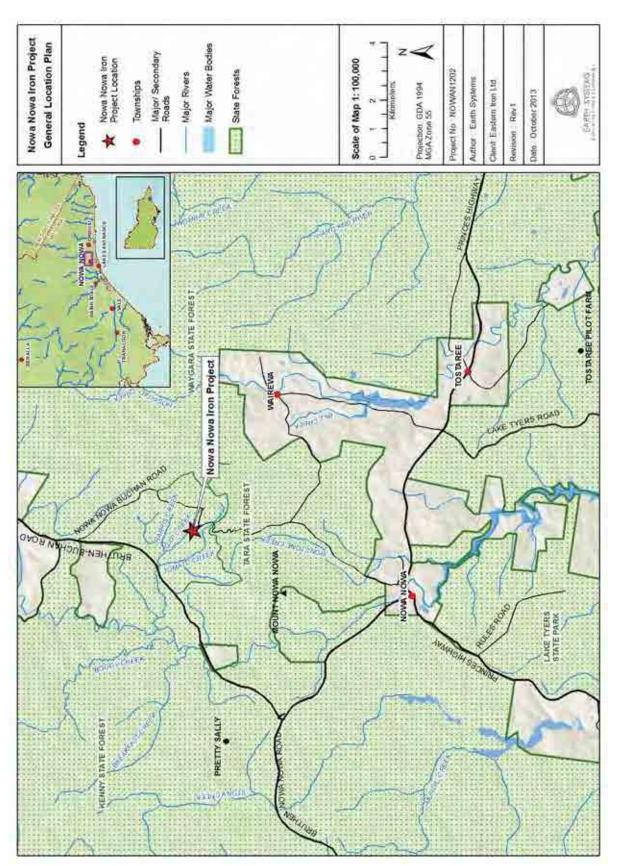


Figure 1-1 Project location

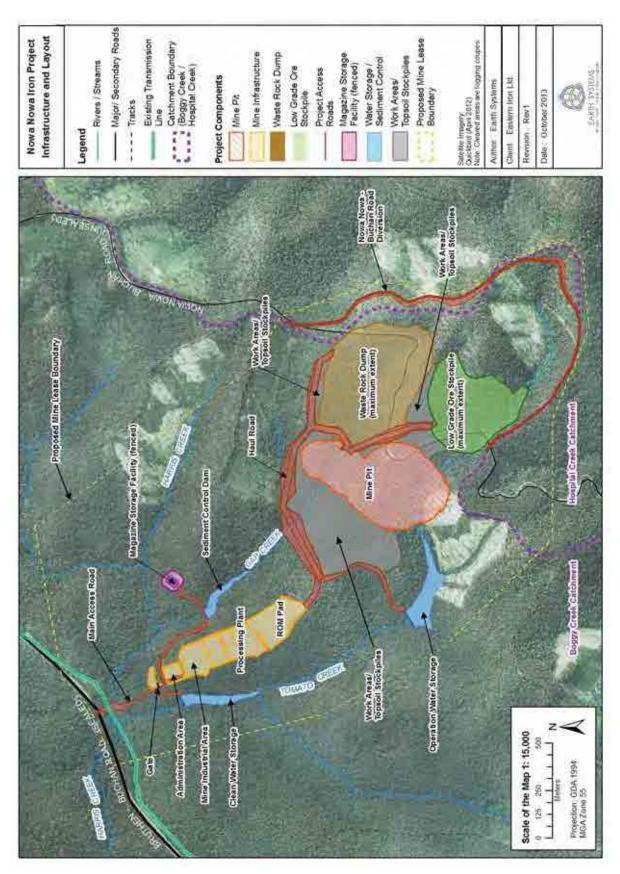


Figure 1-2 Mine site infrastructure and layout

2 Environmental Setting

2.1 Topography and Climate

The mine site is located approximately 7 km north of the township of Nowa Nowa, 18 km northeast of Lakes Entrance and 250 km east of Melbourne in East Gippsland, Victoria (37° 39' 45"S, 148° 6' 43"E; Figure 1-1). East Gippsland is a low-lying region with gently undulating hills flanked by coastal plains, dunefields and inlets. Drainage from the area of the mine site flows south to the estuaries on the coast which form part of the Gippsland Lakes.

The climate of East Gippsland is temperate, with a mean annual rainfall of approximately 821 mm recorded at Mount Nowa Nowa, in close proximity to the mine site (BOM 2013b). Mean maximum temperatures recorded at Mount Nowa Nowa are highest in January (25°C) and mean minimum temperatures are lowest in July (6°C). Relative humidity levels range between 57% (in January) and 78% (in May). Mean wind speeds recorded at Mount Nowa Nowa are approximately 12 km/hr. The prevailing wind direction is from the north-west in the morning and south-east in the afternoon.

2.2 Landuse, Geology and Soils

2.2.1 Landuse

The Project is located within the Tara State Forest. The Department of Environment and Primary Industries (DEPI) divides State Forests into three zones for management purposes, two of which occur within the mine site (the latter two):

- 1. General Management Zone (GMZ) are managed for a range of uses and values, with human use and timber production given a high priority.
- 2. Special Management Zone (SMZ) managed to conserve specific features, while catering for timber production under specific management conditions.
- 3. Special Protection Zone (SPZ) managed for particular conservation values, forming a network designed to complement the formal reserve system. Timber harvesting and other disturbances are excluded from this zone.

The Tara State Forest is primarily managed for forestry activities and the mine site includes some areas approved as timber coupes in the VicForests' latest Timber release Plan (2009-2014).

The main land use activities within the broader East Gippsland region are forestry and agriculture, including dairy farming, wool production, cattle and sheep production and vegetable production. Tourism is a growing industry in East Gippsland, with the Ramsar listed wetlands, lakes, forests, rivers and the Victorian Alps key attractions (DSEWPaC 2010). Hikers and cyclists are attracted to the East Gippsland Rail Trail which follows the disused Bairnsdale-Orbost railway, crossing Boggy Creek and Ironstone Creek and passing through Nowa Nowa. The Lake Tyers Forest Park which extends to Mount Nowa Nowa is a destination for shore-based activities including bushwalking and camping. There are also several other national and State parks surrounding the area, particularly along the coast.

For a more detailed review of land and water use associated with the Project see the Land and Water Use Study (EES Referral Attachment 11).

2.2.2 Geology and Soils

Most of the region of the mine site is composed of Neogene (late Tertiary) alluvial sediments (DPI 2013). These alluvial sediments form terraces and fan out from the uplands. The lowlands are sandy loams overlying clays. There has been some structural movement with early deposits being dissected with sediment composed of organic matter and iron, and volcanic intrusions.

Surface soils are moderately to highly acidic, particularly along the coast (EPHC 2011). Soils range from sandy loams to dark grey brown loamy sands. Surface soils also have a low nutrient and water holding capacity, and are particularly prone to wind erosion (if exposed). Deeper layers of heavy clay can also be moderately to strongly acidic (DPI 2013).

The 5 Mile deposit area itself consists of a massive magnetite/haematite ore body within Silurian felsic volcanics (Thorkidaan Volcanics) and turbidites (Pinnak Sandstone). The style of mineralisation appears to be skarn-style or carbonate replacement. The mineralisation is characterised by massive magnetite-haematite with lesser chlorite, talc, pyrite and quartz with trace chalcopyrite. Magnetite appears to be late stage replacing specular haematite, but where extensive weathering is apparent haematite appears to occur after magnetite. For a more detailed review of the geology of the site refer to EES Referral Attachments 1 and 6.

2.3 Hydrology and Drainage

Surface water

The mine site occurs principally within the catchment of Boggy Creek, and is located adjacent to the boundary of the Hospital Creek Catchment. Several small creeks intersect the mine site area, which are ephemeral and dry for most of the year. These creeks are Harris Creek, Gap Creek, and Tomato Creek. Both Gap Creek and Tomato Creek are tributaries of Harris Creek, which flows into the Boggy Creek about 4 km downstream of the mine site. A further 11 km downstream, the Boggy Creek flows into the 'Nowa Nowa Wetlands' at the northern end of Lake Tyers, which is part of the broader Gippsland Lakes. Lake Tyers is an estuary covering approximately 25 km², with an average depth of 3-4 m. The Gippsland Lakes system, including Lake Tyers, is listed under the Convention on Wetlands of International Importance (i.e. Ramsar Convention). The main lakes of the Gippsland Lakes system are Lake Wellington, Victoria and King, which are linked to the sea by an artificial entrance at Lakes Entrance. Notably, Lake Tyers is situated to the east of the Lakes Entrance area and does not have connectivity to the other lakes in the Gippsland Lakes system.

While not directly downstream of the mine site, Ironstone Creek occurs south of the mine area and forms the second of two major tributaries draining directly into Lake Tyers. The source of Ironstone Creek is located south of Mount Nowa Nowa, approximately 2 km south of the mine site. Ironstone Creek is crossed by both Nowa Nowa – Buchan Road and the Princes Highway, flowing south to join the Nowa Nowa arm of Lake Tyers just south of Nowa Nowa township.

Groundwater

The catchment downstream of the Project is located within the Gippsland groundwater basin which underlies a significant proportion of the Gippsland region. There are no Groundwater Management Areas in the Nowa Nowa region (EGCMA 2006). Groundwater Management Areas cover areas where groundwater has been, or has the potential to be, intensively developed.

Further detail on the surface and groundwater setting of the Project is provided in the *Surface and Ground Water Baseline and Assessment* (EES Referral Attachment 5).

2.4 Bioregional Context

The mine site and greater region lies within the East Gippsland Lowlands and East Gippsland Uplands (DEPI 2013b). The mine site specifically lies within the two former bioregions. The **East Gippsland Lowlands** (EGL) is formed by gently undulating terraces flanked by coastal plains, dunefields and inlets. The vegetation is dominated by Lowland Forest with Damp Forest and Shrubby Dry Forest ecosystems interspersed throughout the foothills; Banksia Woodland and Riparian Scrub Complex are common along coastal areas. The **East Gippsland Uplands** (EGU) consists of tablelands and mountains up to 1400 metres elevation. The vegetation is dominated by Shrubby Dry Forest and Damp Forest on the upland slopes and Wet Forest ecosystems which are restricted to the higher altitudes; Grassy Woodland, Grassy Dry Forest and Valley Grassy Forest ecosystems are associated with major river valleys.

2.5 Legislative Context

The development of the Project at the mine site will need to be developed in accordance with several items of Commonwealth and Victorian legislation relevant to flora, fauna and ecological communities, as well as relevant international treaties and agreements.

2.5.1 Commonwealth

The Commonwealth Government regulates many aspects of the environment. Key Commonwealth legislation applicable to the flora, fauna and ecological aspects of the Project include:

- Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act);
- International treaties that are governed under the EPBC Act (refer Section 2.5.3).

2.5.2 State

Key Victorian legislative items that may be applicable to the flora, fauna and ecological aspects of the Project include:

- Catchment and Land Protection Act 1994;
- Coastal and Management Act 1995;
- Crown Land (Reserves) Act 1978;
- Environmental Effects Act 1978;
- Environmental Protection Act 1970;
- Flora and Fauna Guarantee Act 1988 (FFG Act);
- Forest Management Zones;
- National Parks Act 1975;
- Planning and Environment Act 1987:
 - » Currently including Victoria's Native Vegetation Framework;

- Victoria's Biodiversity Strategy;
- Water Act 1989;
- Wildlife Act 1975.

2.5.3 International Treaties

The Convention on Wetlands of International Importance (Ramsar Convention 2013) is an international treaty designed to conserve and manage the sustainable use of wetlands. Australia became a signatory in 1971 and protects its 64 Ramsar wetlands under Commonwealth Legislation, specifically the *EPBC Act* 1999 (DSEWPaC 2010). This Convention is of relevance to the Project as the Gippsland Lakes Ramsar site occurs approximately 15 km downstream of the mine site.

3 Methodology

A three-tiered approach was adopted to assess the ecological characteristics of the mine site and surrounds. Firstly, a search of the literature and available databases provided an indication of the species and communities recorded in the greater region and also the likelihood of these species inhabiting the mine site. Secondly, an overview site visit of the mine site and broader region was conducted to initially assess the ecological characteristics of the area. Thirdly, detailed field surveys were conducted including:

- Detailed flora field surveys to assess the quality and conservation status of habitat and vegetation and provide estimates of offsets for any vegetation that may be removed; and
- Diurnal and nocturnal fauna surveys to record the presence (and absence) of birds, mammals, reptiles and amphibians inhabiting the mine site.

3.1 Study Areas

For the purposes of this report, the *mine site* is defined as the area proposed to be directly cleared for the Project, including the open pit, mine infrastructure, waste rock dump, temporary low grade ore stockpile, mine access and haul roads, ancillary infrastructure, and buffer areas (Figure 1-2, see also EES Referral Attachment 1 for full description). This includes the proposed diversion of the existing Nowa Nowa-Buchan Road.

Regional biodiversity was assessed by examining literature and database records within a 10 km zone (hereafter 'the region') centred on coordinates at the mine site (37° 39' 45"S, 148° 6' 43"E). This zone was also visited to provide an overview field assessment of the region. The zone was chosen to allow for spatial error in species or ecological communities locations. It is possible that the location details from the various flora and fauna databases have been inexactly recorded or incorrectly entered into the databases. Additionally, many animals can move long distances and may be recorded elsewhere but still visit the region.

For the detailed fauna field surveys, the area assessed was at a much finer spatial scale. A ~1250 ha **Study Area** encompassed the mine site and surrounding habitat (to account for highly mobile fauna). Field flora surveys within and around the mine site were conducted by Ethos NRM within a similar area (referred to as the 'vegetation study area' (see Section 3.4, Annex 1 and Annex 2).

3.2 Literature and Database Review

This assessment also sought information for flora, fauna and ecological community records from the following main databases and literature sources:

- Victorian Biodiversity Atlas (VBA: DEPI 2013d);
- Biodiversity Interactive Map (BIM: DEPI 2013a);
- BOM Atlas of Groundwater Dependent Ecosystems (BOM 2013a);
- EPBC Act Protected Matters Search Tool (DSEWPaC 2013a);

- DEPI Threatened Species Advisory Lists (DEPI 2013c);
- Department of Sustainability, Environment, Water, Populations and Community Species Profile and Threats Database (DSEWPaC 2013b);
- Gippsland Lakes Ramsar site Ecological Character Description (DSEWPaC 2010); and
- Gippsland Lakes Ramsar site Strategic Management Plan (DSE 2003).

The VBA provides information on species that have been recorded, for example seen, heard, or indirect evidence (e.g. tracks), in an area (DEPI 2013d). The records may be part of an official survey conducted by scientists or incidental observations by amateurs. The VBA data is much more detailed than what is provided publically by the DEPI on their BIM and therefore information sourced from the BIM supplemented data provided to us by the VBA rather than supplanting it. Although these databases were searched in 2013, data were limited to records up until 2011.

Information regarding threatened species was also sought from the DSE's Advisory Lists. These lists refer to rare and threatened species in Victoria only and are not to be confused with the species listed under the FFG Act. There are no legal requirements pertaining to species in these Advisory Lists. However, information was sourced from these lists to aid in detailed flora and fauna assessments of the study area.

Native vegetation has been classified according to Ecological Vegetation Classes (EVCs). These EVCs have been mapped using various sources (e.g. satellite, field) and are available through the BIM and VBA. The conservation status of EVCs is similar to the legal requirements of DEPI Advisory Lists. However, some EVCs have been encompassed under the FFG Act, either alone or in conjunction with other EVCs or communities (e.g. bird communities). The data pertaining to any FFG Act modelled communities in the region were obtained from DEPI (DEPI 2013d).

A thorough search of the literature and publically available documents was conducted to provide background information and to assess the likelihood of an impact on the ecological characteristics of the region (including significant species and communities). It was then possible to use expert knowledge and the literature to determine how likely these species and communities were to occur within the region in the future (if no records exist).

Species that are exclusively marine, particularly deep marine, have been excluded from this report as they are highly unlikely to occur in-shore and thus not be in any way impacted by the Project.

3.3 Regional Overview Field Assessment

Much of the region surrounding the mine site was traversed on foot and by vehicle to provide an overview assessment of the entire region. Species seen or heard and their rough location (e.g. study area) were noted. This did not include the area designated as the Study Area.

3.4 Vegetation and Flora

Field flora surveys within and around the mine site were conducted by Ethos NRM Pty Ltd. The methodology of the vegetation and flora assessment is described in detail in Annex 1 and Annex 2, and is summarised briefly below.

The vegetation and flora assessment was undertaken to determine on-site vegetation quality and included site description, Habitat Hectares Assessment and Ecological Vegetation Class mapping. All field assessments were undertaken by a DEPI accredited Native Vegetation Assessor.

Background information was sourced to aid in the identification of potential flora and fauna values associated with the proposed vegetation removal, as well as any other conditions that may be relevant to the quantification of vegetation loss and calculation of the Offset like-for-like conditions. These sources included:

- Atlas of Victorian Wildlife;
- Biodiversity Interactive Map (DEPI interactive maps);
- DSE Rare and Threatened species database;
- Ecological Vegetation Class Descriptions;
- EPBC on-line Protect Matters Search Tool; and
- Planning Maps Online.

Field surveys within a vegetation study area of approximately 1100 hectares surrounding the mine site were undertaken on the 26th and 27th of March and 5th of April, 2013. The assessment followed existing guidelines (see DSE 2004) to determine on-site vegetation quality and included:

- Site Description (location) and Site Specific Details;
- Ecological Vegetation Class (EVC) descriptions;
- Habitat Hectares Assessment of 17 sample sites and Tomato Track-Bruthen-Buchan Road intersection; and
- EVC mapping.

Targeted surveys for the Colquhoun grevillea (*Grevillea celata;* EPBC Act listed) were conducted in October 2013 (flowering season) to determine presence of individual plants and potential habitat. This involved vehicular and walking transects along tracks and roads (grevilleas seem to prefer disturbed sites) and also detailed searching within the mine footprint (see Annex 2 for details).

3.5 Fauna Habitat

Fauna habitat was assessed to provide an indication of the distribution and quality of habitat within the Study Area. Detailed habitat assessment was primarily achieved by observations on foot (~550 ha), and supplemented by observations from a vehicle and high resolution satellite imagery covering the remainder of the 1250 ha Study Area. Fauna habitat was broadly categorised into very low, low, moderate and high quality, with finer scale assessment based on aspects such as the number of trees per hectare, canopy cover and the presence of tree hollows. Fauna habitat was then classified based on the type and structure of vegetation, canopy presence and topography.

3.6 Diurnal Fauna Surveys

Diurnal fauna surveys were conducted between the 27th March and 29th May, 2013, with each survey session being separated by a two-week interval to obtain a representative sample over time, encompassing the end of warmer temperatures to the start of winter. All diurnal fauna surveys were

conducted in fine weather, that is, not in excessively wet or stormy conditions. Light, sporadic and shortlasting rain was considered acceptable. Animals are less active during wet and stormy weather and therefore detectability decreases. The aim was to detect all species present, rather than obtaining a representative (behavioural) activity level in different weather conditions. This did not include targeted surveys for frogs as they are more active in wet conditions; however, any frogs heard or seen during these surveys were recorded (see Section 3.7).

3.6.1 Point Counts

Systematic spatial sampling was used to survey the Study Area, as the site was too large (and logistically difficult) to survey by simple random or other randomised methods. The Study Area was divided into nine approximately 130 ha quadrats, and within these quadrats, eight survey points were located in a grid arrangement, following the borders of the quadrat (see Figure 3-1). These survey points (totalling 72), or replicates, aimed to cover all habitat types and provide a representative spatial sample of the Study Area's species assemblage. Quadrat surveying order was randomised and points were systematically visited in either a clockwise or anti-clockwise direction (logistically too difficult to randomise).

Diurnal surveys began 30 min after sunrise and finished within approximately 3 hrs. This restricted period of time was to reduce time-of-day effects (i.e. changes in faunal activity levels). At least two quadrats (16 points) were visited within one survey session, sampling the range of different habitats within the Study Area. A survey point was at least 250 m from another point to reduce the likelihood of resampling highly mobile fauna. Points were not revisited to avoid resampling individuals.

All vertebrate fauna seen during point counts were recorded within two radii of each point. The radius from each point was determined by the size of the animal. Larger animals (e.g. laughing kookaburra *Dacelo novaeguineae*, 340 g) could be identified within 50 m, smaller at approximately 15 m (e.g. striated thornbill *Acanthiza lineata*, 7 g). Each point was surveyed for 10 min to adequately search the radii but to avoid resampling individuals. Calls were only used to identify the location of animals; if the animal could not be seen and identified (with or without binoculars) an incidental record was taken (see Section 3.8). Birds flying overhead and not utilising some of the vegetation within the radii were not recorded within counts, but were included in incidental records (see Section 3.8). This methodology was adopted from (Loyn 1986) and (Watson 2003) (with modifications) to suit the biotic and abiotic characteristics of this Study Area.

3.6.2 Transect Searches

Searches were conducted of vegetation, trees, under rocks/logs, leaf litter and bare ground for evidence of vertebrate fauna (e.g. nests, scats, tracks, owl pellets) while walking to, from and in between survey points. Approximately 3 to 10 m either side of the path taken was surveyed and any potential evidence of threatened species was noted, photographed and spatial coordinates recorded (see Figure 3-1). Any evidence of non-threatened species was recorded within incidental records (see Incidental Surveys). These searches also included listening for any threatened owl or frog species. Owls will occasionally vocalise when roosting.

3.7 Nocturnal Fauna Surveys

Due to the steep terrain and dense vegetation, nocturnal surveys were restricted to roads, tracks and paths for personnel safety. Surveys were either conducted on foot or by vehicle. Due to the nature of the surveying methodology, a larger area than the Study Area was surveyed (see Figure 3-2). Depending on environmental conditions (e.g. wind, track condition), area covered and sites visited per night varied. All

tracks and roads within the Study Area were surveyed over four sessions, each session being separated by at least two weeks from 26th March to 28th May, 2013. Autumn is one of the best times of year to detect forest owls and arboreal marsupials (Wintle et al. 2005).

The interval between sessions was to allow for temporal and seasonal variation in nocturnal fauna occupancy (i.e. site use) and to avoid animals habituating or being overly disturbed by survey methods. Nocturnal fauna surveys began 30 min before sunset and continued for approximately 3 hours after sunset. All vertebrate fauna species detected during nocturnal surveys were recorded; however, certain techniques were used to target threatened species. The different techniques used were call playback, call recognition, point spotlight search, transect spotlighting and dusk and dawn watches. Call playback, call recognition and point spotlight search were combined within search and playback sites.

3.7.1 Search and Playback Sites

Fifteen sites were chosen at least 1 km apart along tracks and roads throughout the entire Study Area and within 2 km of surrounding region (see Figure 3-2). These sites targeted the sooty owl (*Tyto tenebricosa*), powerful owl (*Ninox strenua*), masked owl (*Tyto novaehollandiae*) and various frog species. These species and some other birds and mammals have distinctive vocalisations and call recognition is the best and primary mode of detection. Surveys (for birds and mammals) were halted if conditions became extreme (e.g. wind >25 km/h, heavy rain), as these conditions were unsuitable for call recognition or playback and animals were less likely to be active. However, these stormy conditions became more suitable for the detection of frogs (e.g. green and golden bell frog *Litoria aurea* and giant burrowing frog *Heleioporus australiacus*) and therefore focus was shifted to recognition of frog vocalisations.

Sites were at least 1 km apart as approximate audible vocalisation distance for owls is 1.5 km (Wintle et al. 2005), and therefore increased probability of detection. Although this may appear to potentially cause an over-estimation in the number of individuals, call recognition was only used as a method of initial detection and further searching was required to confirm presence. These three owl species occur in pairs and their territories range from 600 to 4300 ha (Loyn et al. 2001, Loyn et al. 2011) and therefore, if individuals were present in the approximate 1400 ha Study Area, they would be infrequent and/or in very low densities (at one site).

For the first 10 min at a search and playback site any vocalisations were identified along with estimated location and distance (i.e. call recognition). Owl vocalisations were then played using an mp3 player and either portable speakers or a car stereo. Playing order followed DEPI guidelines for these species (e.g. Loyn et al. 2011), for example, powerful owl was played first as this species is known to respond slowly to elicitation (Wintle et al. 2005), sooty and then masked owl vocalisations (i.e. territorial screams and trilling) were then played and all calls were followed by at least 2 min silence. All species heard were recorded as present, if any of the target species were heard, these were followed by further identification methods (see dusk/dawn watches). Any elicited vocalisations close to the site were followed up by a search with a spotlight (250 lumen portable spotlight). A point spotlight search was conducted upon completion of call playback, searching an approximately 30 m radius. If targeted species were heard or seen within a night, the playback of their call was discontinued to avoid distressing and disturbing the animals.

Call playback was not used for frogs as suitable habitat for FFG or EPBC Act species was absent and it was decided that call recognition (especially during and after rain) was sufficient to identify other threatened species. Surveys during stormy conditions also follow Commonwealth and State survey guidelines. Particular effort was made to listen for frog species (especially near known creeks) during and after rain, regardless of the time of day.

3.7.2 Transect Spotlighting

All paths, tracks and roads within the Study Area and some in the surrounding 2 km habitat (see Figure 3-2) were covered by foot or vehicle to detect any nocturnal vertebrate fauna. After the completion of call playback (see above), transect spotlighting was the primary method to detect all other nocturnal fauna, especially those that do not vocalise. However, if any vocalisations were heard, species and locations were recorded. Transects were traversed at approximately 4 to 5 km/h and roughly 20 m either side of the transects were searched with a spotlight. Nocturnal animals were predominantly located via eye-shine, with some species having very distinctive eye-shine. For example, greater gliders (*Petauroides volans*) have bright white eye-shine and tend to stare at intruders, making them easier to identify than shyer animals (Wintle et al. 2005). The location (i.e. GPS coordinates) of any species identified was recorded from the road or track to avoid any further disturbance to the animal. If any threatened species were detected, a photograph was taken (whenever possible).

3.7.3 Dusk/Dawn Watches

The Study Area was visited regularly during dusk and dawn (during the course of other formal surveys) and therefore every attempt was made to listen and/or detect the presence of threatened species. Some species are crepuscular (active at dusk/dawn) and nocturnal and diurnal species often vocalise at these times.

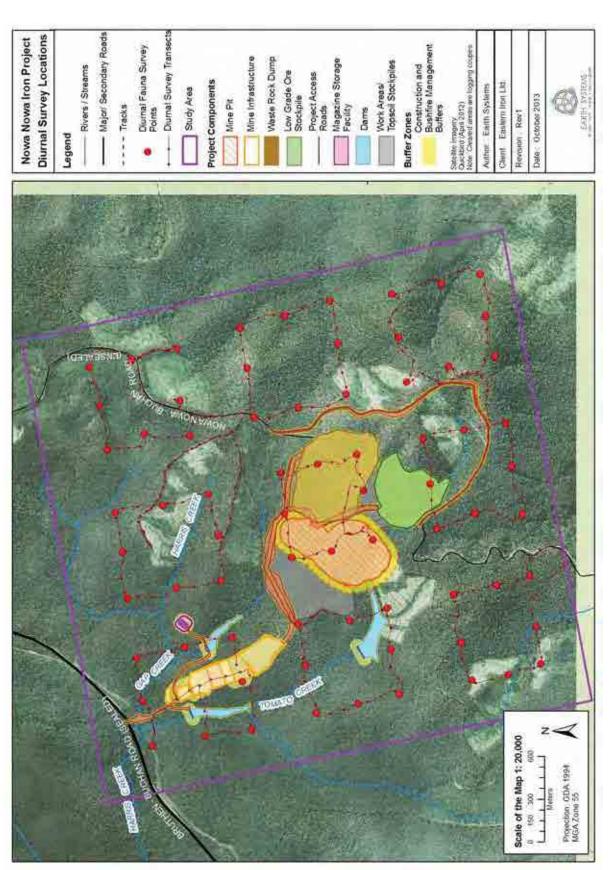
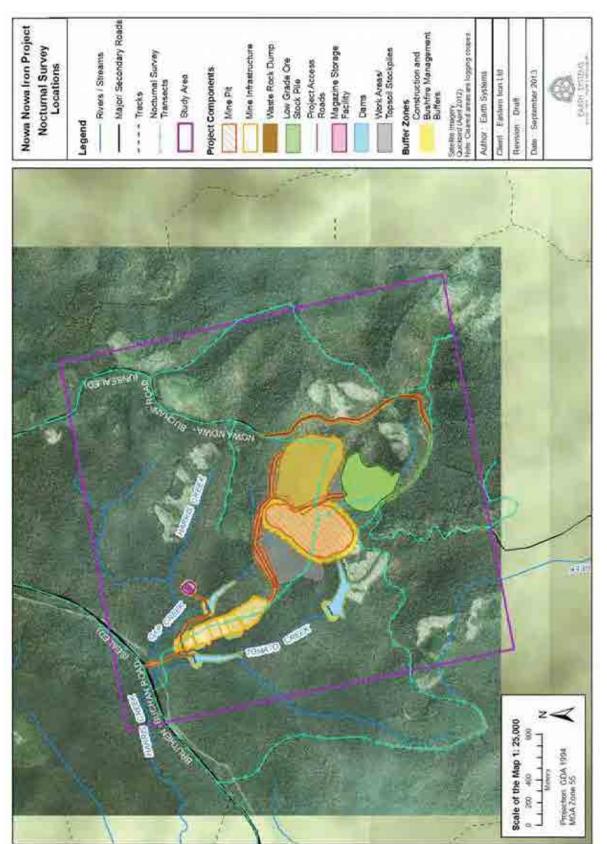



Figure 3-1 Diurnal fauna survey locations; point counts and transects walked within the Study Area

16

3.7.4 Estimating Owl and Glider Detectability and Sufficient Survey Effort

Generally, it is assumed that if a species is not recorded within surveys it is absent. However it is possible the species was present and not detected. We estimated species richness (see Section 3.9) to account for these potential false absences, but this does not indicate which species were not detected. False absences in a fauna assessment (such as this) may result in inadequate conservation and management measures (Wintle et al. 2005), even if using the precautionary principle.

Since nocturnal animals are more difficult to detect than diurnal, it is important to be confident that an animal was not detected because it was absent (or uses the site very rarely) rather than being recorded as a false absence. This confidence is particularly important when assessing the use of an area by threatened species. The Study Area may be within the territorial home-ranges of several threatened species, but the sooty owl, powerful owl, masked owl and greater glider were most likely to occur due to records nearby and suitable habitat being present within the region.

Wintle et al. (2005) calculated single-visit detection and long-term occupancy probabilities for three of these species using a zero-inflated binomial model, given certain environmental variables. Single-visit detection probability (*d*) was the probability that a species will be detected within any one visit, whereas long-term occupancy (*p*) was the probability of sites being occupied over a long period. Wintle et al. (2005) produced detectability models for each of the species based on environmental conditions that most influenced detectability (Table 3-1). It was assumed that masked owl detectability would be similar to the sooty owl as they occupy similar ecological niches and are similar in appearance.

Table 3-1 Detectability models for three threatened nocturnal species potentially inhabiting the
Study Area (Wintle et al. 2005). T = Ambient Temperature, H = Habitat Quality, MP = Moon Phase
(%), Sol = Solar Radiation Index.

Species	Model: logit(<i>d</i>) =
Greater Glider	-1.85 + 0.08T + 3.74H
Powerful Owl	-1.31 – 1.03MP
Sooty Owl	-2.37 + 0.114T + 5.20Sol

Ambient temperature, habitat quality and solar radiation index were measured on site or derived from GIS models. Habitat quality was determined from an average of habitat hectare scores (converted to proportions) of different habitat types within the Study Area (see Annex 1). Moon phase was determined from a calendar and converted to proportions. These environmental parameters varied and therefore an average, maximum and minimum were calculated and used in the model.

Single-visit detectability (*d*) was then inputted into the following model to produce the probability that a species would be detected after v visits, given that it is present.

Pr (species detected at least once) =

$$\sum_{x=1}^{\nu} {\nu \choose x} d^{s} (1-d)^{\nu-x}$$
$$= 1 - (1-d)^{\nu}$$

Detectability curves were produced for each species using the above equation for v visits.

3.8 Incidental Surveys

All vertebrate fauna seen or heard within the Study Area and not seen during formal diurnal or nocturnal fauna surveys were recorded. If threatened species were detected, extra effort was made to locate and record the appropriate variables (e.g. GPS, habitat). Incidental surveys occurred whenever ecologists were traversing the Study Area and not conducting formal surveys.

3.9 Data Analysis

3.9.1 Bird Species Assemblage Differences

Generally, species richness is defined as the number of species, however we have recorded the number of species in an area with a known size and will therefore more accurately define species richness as species density. Bird species density and abundance data were compared between habitat types using semi-parametric analysis of variance statistical models (i.e. PERMANOVA see Anderson 2004, Anderson 2005). No other taxon was as well represented (i.e. large sample size) and therefore only bird density and abundance data were compared across habitats. Habitat types compared were open woodland, open shrubby forest, riparian/damp forest and logging regeneration since they were the main types present in the Study Area (see Section 5.4 for descriptions). Data were averaged over site points, transformed ln(x + 1) to reduce the zero inflated data set and α -priori was set at less than 0.05.

To compare the species diversity in the different fauna habitats, data was analysed using several standard techniques. Standard diversity indices were calculated for all habitat types, these were Simpson's Index and Shannon's Index (Krebs 2009). These indices essentially quantify the proportion or probability that individuals (will) belong to the same species (see Terminology for full description). For example, a low Simpson's Index equates to high diversity, when two individuals are chosen at random the Simpson's Index calculates the probability they belong to the same species.

Generalised Morisita similarity/dissimilarity indices were computed to compare observed species density and abundance data between habitat types (Chao & Shen 2010). These analyses were computed with PAST (Palaeontological Studies) and SPADE (Species Prediction and Diversity Estimation) software that used non-parametric similarity/dissimilarity statistical models (e.g. MDS, ANOSIM; Hammer et al. 2006, Chao & Shen 2010).

These analyses provided an indication of how habitats within the Study Area varied in their biodiversity and if any particular habitat was more diverse.

3.9.2 Estimated Species Richness and General Diversity

Measuring species richness is often used as a proxy of community structure but can neither be accurately measured nor directly estimated by observation (Gotelli & Colwell 2010). Study areas are often too large, they are not closed (i.e. species move in and out) and many species are difficult to detect. Therefore estimating species richness (i.e. undetected species) should be an essential step of an assessment, and in the management of biodiversity.

There are many classic statistical models to estimate species richness and often they over- or underestimate species richness because they ignore some of the fundamental problems of biodiversity sampling. Often it is assumed that detectability of one species is the same as all other species. Detectability is the probability of detecting at least one individual of a given species in a particular sampling period, provided that it is present (Boulinier et al. 1998). Thus, rare species are likely to be detected infrequently. Unlike classic estimators, non-parametric estimators/models use the number of rare or infrequent species to extrapolate the number of undetected species (Chao et al. 2009).

Species incidence (presence/absence) and abundance data was pooled from all sources (e.g. nocturnal and diurnal surveys) to estimate species richness for the entire Study Area. Additionally, the total number of species was pooled as mammal and herpetofauna numbers were not sufficient to run the model by themselves. All species data were analysed using several different types of non-parametric models to produce a range of estimates (Species Prediction and Diversity Estimation program; Chao & Shen 2010). Overall species diversity indices were also calculated for this pooled data.

3.10 Groundwater Dependent Ecosystems

Literature, databases and particularly the BOM Atlas of Groundwater Dependent Ecosystems (BOM 2013a) were searched for evidence of on-site verification and remote modelling of Groundwater Dependent Ecosystems (GDEs) within the Study Area.

Information on groundwater at the site was also sourced from the *Surface and Ground Water Baseline and Assessment* (EES Referral Attachment 5). Groundwater depth recorded in this study was used to infer whether vegetation within the Study Area would be likely to rely on surface expression, subsurface groundwater or caves and aquifers.

3.11 Limitations of Surveys

Limitations of the surveys conducted in the current study included the fact that some flora and fauna species are only identifiable or onsite during particular periods of the year (e.g. flowering/migratory seasons). Additionally, a few flora and reptile species could not be identified to species level. Animals can move and be absent during a single observation session, that is, the entire Study Area cannot be surveyed at the same time.

Since the Study Area is a large area, only a portion could be ground-truthed for EVC distribution. This is a common problem/limitation for any flora and fauna study of a large area, it is impossible to survey a large area in detail. The extent of EVC mapping and flora sampling effort was designed to provide a preliminary indication of vegetation quality and diversity in the area. Further vegetation (habitat hectare) assessments are underway for Spring 2013, when cryptic species are likely to be flowering. The current habitat hectare estimates prepared by Ethos NRM (Annex 1) will be updated as part of this process.

Furthermore, preliminary estimates of vegetation offsets have been calculated using the current Native Vegetation Framework. This framework is set to be superseded by new guidelines for calculating offsets, but the full workings of these new regulations have not been released (refer Section 8.3.1). The limitations of the flora study are also outlined in Annex 1.

4 Regional Biodiversity

4.1 Significant Ecological Communities

4.1.1 Listed EPBC Act Significant Communities

The EPBC Act Protected Matters Search Tool identified that there may be one nationally significant ecological community in the region (within a 10 km zone around the mine site). The search identified White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland community, which is listed as Critically Endangered under the Act as there are few remnant areas remaining. The community is patchy and has been under threat because the historic range included high quality soils that were cleared for agriculture. The remaining patches are so fragmented and degraded that a true representation of the original matrix probably does not exist (Thiele & Prober 2000).

This community can be either woodland or derived grassland (grassy woodland where the trees have been removed). The ground layer can be composed of a sparse, patchy shrub layer, native tussock grasses and herbs and a tree canopy usually of white box (*Eucalyptus albens*), yellow-box (*E. melliodora*) and Blakely's red gum (*E. blakeli*) (Yates & Hobbs 1997). The tree canopy dominates this ecological community and the three main species can be interspersed with other tree species (Thiele & Prober 2000). The dominant life forms in the original community ground layer were herb and grasses, particularly kangaroo grass (*Themeda triandra*) and snow grass (*Poa sieberiana*). Consequently, it is possible for the community to exist without the tree canopy. Of 473 native species that may exist within the community, 167 plant species have been recorded in the region. This does not include the key species listed above.

Notably, this community was not identified in vegetation and flora surveys of the mine site (see Annex 1). The community might exist elsewhere in the East Gippsland region, though is likely to occur in areas with significantly less disturbance than the State Forests surrounding the mine site, which have been managed for timber harvesting.

4.1.2 FFG Act Modelled Communities

Four modelled FFG Act communities have been mapped within the region, all being listed as Rare. These communities are composed of the same EVC (Warm Temperate Rainforest EVC 32) but are listed separately as the patches differ in vegetative structure (listed under no. 274, 362, 363, 364). The EVC is generally described as being dominated by a range of non-eucalypt canopy species above an understorey of smaller trees and shrubs and usually visually dominated by ferns and climbers. It is a closed forest, with trees 20 to 25 m tall occurring along gullies and river flats. None of these small remnant patches of the Rare EVC are within the mine site. However, the closest patch is located approximately 600 m from the mine site (see Annex 1). The patch consists of the Coastal East Gippsland (362), East Gippsland Alluvial Terraces (274) and the Far East Gippsland (364) types.

4.2 Vegetation and Flora

4.2.1 Ecological Vegetation Classes

Two Bioregions exist within the region, the East Gippsland Uplands and the East Gippsland Lowlands. The BIM indicates eight Ecological Vegetation Classes (EVC's) have been mapped within the region (Table 4-1). Apart from native vegetation, other land cover types are common in the region such as agricultural land (Plate 4-1).

EVC Name	EVC No.	Conservation Status	EVC Benchmark
Lowland Forest	16	Least Concern	A very widespread dry forest vegetation type that is found in the foothills of the Great Dividing Range from East Gippsland to the western edge of the Study Area as well as the foothills of the Strzelecki ranges and Wilsons Promontory National Park. The understorey varies from shrubby to heathy to sedgy and may even be grassy as fertility increases.
Shrubby Dry Forest	21	Least Concern	Occurs on a range of rock types in the foothills associated with shallow rocky sites on exposed aspects such as ridges and medium to steep upper slopes on shallow soils. The overstorey is a low, open forest consisting of a range of eucalypts. The understorey lacks a secondary tree layer but a well-developed medium to low shrub layer is present. The ground layer is often very sparse with tussock-forming graminoids being the dominant life form.
Damp Forest	29	Least Concern	Damp Forest grows on a wide range of fertile parent rock types on a variety of aspects, from sea level to submontane elevations. It is dominated by a tall eucalypt layer over a shrub layer of broad-leaved species typical of wet forest mixed with elements from dry forest types such as prickly or small-leaved shrubs. The ground layer includes forbs and grasses as well as moisture- dependent ferns.
Blackthorn Scrub	27	Rare	Found on northerly and westerly slopes of mountains and gullies. Trees are sparse, often present only as a mid-canopy or forming a very open woodland. Dominated by a small tree or tall shrub layer to 6 m tall, the ground layer is generally sparse and species-poor due to low site quality and the density of the overstorey. Vines can be conspicuous in the understorey.
Clay Heathland	7	Vulnerable	Occurs on sites with poor drainage, often on duplex soils. Dominated by heathy shrub species with or without an eucalypt overstorey. The ground layer is dense and diverse with a variety of species.
Riparian Scrub/Swampy Riparian Woodland Complex	17	Least Concern	Can be either areas of shrubland or open forest. Occurs along broad, gently sloping drainage lines where stream alluvium is present. The understorey is dominated by large sedges and amphibious herbs although species diversity is generally low due to the dense cover of shrubs.
Limestone Box Forest	15	Vulnerable	Occurs on generally well developed soils derived from Tertiary limestone that outcrop around coastal streams, gullies and lakes. Open eucalypt forest to 20 m tall with a tall shrub layer understorey and a grass and herb-rich ground layer on sheltered aspects but may be almost completely bare on drier aspects.

Table 4-1 Descriptions of the main Ecological Vegetation Classes within the region (DEPI 2013b),
in order of estimated percentage cover

EVC Name	EVC No.	Conservation Status	EVC Benchmark
Warm Temperate Rainforest	32	Rare	Generally occupies gullies and slopes where mean annual rainfall is >700 mm. Closed forest along small streams and dominated by non-eucalypt canopy, with understorey of trees and shrubs and a matrix of ferns.

4.2.2 Flora

A list of all flora recorded in the region was sourced from the VBA provided by DEPI. There were 1102 different species, sub-species, variants and hybrids of plant (referred to hereafter as "species"), with 200 of these being introduced (not native)¹. Of the 902 native species three species are listed as Vulnerable under the EPBC Act, the Colquhoun grevillea, limestone blue wattle (*Acacia caerulescens*) and leafy nematolepis (*Nematolepis frondosa*) (see Annex 3). These species are also listed under the FFG Act and considered Vulnerable by the DEPI Advisory List. There were four species listed under the FFG Act but not nationally recognised (i.e. EPBC Act). Another 73 species that are recognised as being significant solely on State (DEPI) advisory lists have been recorded in the region (see Annex 3).

A total of 89 State and nationally threatened species may reside in the region based on available habitat (EVC's) and ecosystem modelling (including nine species not recorded previously; see Annex 3).

4.3 Fauna

4.3.1 Birds Recorded During Overview Assessment

Fifty-two species of bird were observed during the overview assessment, six of which were not native to Australia (Table 4-2). No EPBC or FFG Act listed species were observed at any time, however one DEPI-listed species was observed in forested areas within the region. All other species were common and/or widespread within Victoria and/or Australia.

4.3.2 Birds Previously Recorded In, and May Use, the Region

Databases indicated that 196 bird species have been recorded within the region between 1954 and 2009 (DEPI 2013d)². Eight of these species of bird were not native to Australia. Two EPBC Act threatened species were recorded in the region in 1977 (Australian bittern *Botaurus poiciloptilus,* swift parrot *Lathamus discolor*).

Nineteen species recorded in the region are recognised by the FFG Act as being threatened, five also being listed under the EPBC Act. All 19 are also recognised by the DEPI Advisory Lists. A further seven species are recognised by the DEPI but no other legislation. Three of the FFG Act listed species (masked, sooty and powerful owl, *Tyto novaehollandiae novaehollandiae, T. tenebricosa tenebricosa* and *Ninox strenua*) have been recorded several times over many years.

In total, 46 significant bird species have the potential to reside in the region in the future, 33 being previously sighted in the area (Annex 4). Of these 46, 19 are recognised by the EPBC Act, but most of

¹ A full list of species recorded in the region can be provided on request.

² A full list of species recorded in the region can be provided on request.

these are Migratory or Marine significant species, generally associated with Lake Tyers (see *Aquatic and Wetland Ecology Study* – EES Referral Attachment 9).

One species that is of particular conservation interest is the Critically Endangered orange-bellied parrot (*Neophema chrysogaster*), a small parrot of south-east Australia. There are only approximately 50 individuals still living in the wild and the species prefers open heathland and grassland (BirdLife Australia 2013). It is highly unlikely that the species uses the disturbed habitat of the region and the species has never been recorded within the region in previous years.

Order	Family	Common Name	Scientific Name	EPBC Act	FFG Act	DEPI
Accipitriformes	Accipitridae	Black-shouldered kite	Elanus axillaris			
Anseriformes	Anatidae	Australian wood duck	Chenonetta jubata			
Charadriiformes	Charadriidae	Masked lapwing	Vanellus miles			
		Brush bronzewing	Phaps elegans			
Columbiform oc		Common bronzewing	Phaps chalcoptera			
CONTINUE	COMININAC	Rock dove	Columba livia		Introduced	
		Spotted turtle-dove	Streptopelia chinensis		Introduced	
Coraciiformes	Halcyonidae	Laughing kookaburra	Dacelo novaeguineae			
Entroniformac	Accipitridae	Wedge-tailed eagle	Aquila audax			
	Falconidae	Brown falcon	Falco berigora			
Gruiformes	Rallidae	Dusky moorhen	Gallinula tenebrosa			
		Brown thornbill	Acanthiza pusilla			
	Acanthizidae	Weebill	Smicrornis brevirostris			
		White-browed scrubwren	Sericornis frontalis			
		Dusky woodswallow	Artamus cyanopterus			
Daccariformac	Artamidae	Grey butcherbird	Cracticus torquatus			
		Pied currawong	Strepera graculina			
	Campephagidae	Black-faced cuckoo-shrike	Coracina novaehollandiae			
	Climacteridae	Brown treecreeper	Climacteris picumnus victoriae			NT
	Convidae	Australian raven	Corvus coronoides			
		Little raven	Corvus mellori			

Table 4-2 Birds directly and indirectly observed within the region; with conservation status or introduced origin

Order	Family	Common Name	Scientific Name	EPBC Act	FFG Act	DEPI
	Cracticidae	Australian magpie	Gymnorhina tibicen			
	Hirundinidae	Welcome swallow	Petrochelidon neoxena			
	Locustellidae	Rufous songlark	Cincloramphus mathewsi			
	Maluridae	Superb fairy-wren	Malurus cyaneus			
		Bell miner	Manorina melanophrys			
		Eastern spinebill	Acanthorhynchus tenuirostris			
		Little wattlebird	Anthochaera chrysoptera			
	Meliphagidae	Noisy miner	Manorina melanocephala			
		Red wattlebird	Anthochaera carunculata			
		White-eared honeyeater	Lichenostomus leucotis			
		White-plumed Honeyeater	Lichenostomus penicillatus			
	Menuridae	Superb lyrebird	Menura novaehollandiae			
	Monarchidae	Magpie-lark	Grallina cyanoleuca			
	Dachvrenhalidae	Grey shrike-thrush	Colluricincla harmonica			
		Rufous whistler	Pachycephala rufiventris			
	Passeridae	House sparrow	Passer domesticus		Introduced	
	Petroicidae	Eastern yellow robin	Eopsaltria australis			
	Ptilonorhynchidae	Satin bowerbird	Ptilonorhynchus violaceus			
	Rhipiduridae	Willie wagtail	Rhipidura leucophrys			
	Sturnidao	Common myna	Acridotheres tristis		Introduced	
	Stutilitade	Common starling	Sturnus vulgaris		Introduced	

Order	Family	Common Name	Scientific Name	EPBC Act	FFG Act	DEPI
	Turdidae	Common blackbird	Turdus merula		Introduced	
		Galah	Eolophus roseicapilla			
	Caratuidao	Gang-gang cockatoo	Callocephalon fimbriatum			
	Caralunae	Sulphur-crested cockatoo	Cacatua galerita			
		Yellow-tailed black-cockatoo	Calyptorhynchus funereus			
Psittaciformes		Australian king parrot	Alisterus scapularis			
		Crimson rosella	Platycercus elegans			
	Psittaculidae	Eastern rosella	Platycercus eximius			
		Musk lorikeet	Glossopsitta concinna			
		Rainbow lorikeet	Trichoglossus haematodus			

26

4.3.3 Mammals Recorded During Overview Assessment

Sixteen mammal species were seen inhabiting, or dead (e.g. roadkill), within the region (Table 4-3). Only seven of these are native to Australia and none are threatened or of conservation significance. Many of the introduced species seen are considered amongst Victoria's threatening processes (see Section 6.1). One of the most common and widespread introduced mammal's is the European rabbit (Oryctolagus cuniculus; Plate 4-2).

4.3.4 Mammals Previously Recorded and Significant Species that May Reside in the Region

Twenty-five mammalian species have previously been recorded in the region, six of which are non-native. No EPBC Act threatened species have been recorded within the region (Annex 5). Four FFG Act listed species were recorded over 30 years ago in the region.

Literature and data sources indicated that 13 threatened mammalian species may reside within the region. Three of these are Endangered and four are Vulnerable under the EPBC Act (Annex 5). However, it is unlikely that these species are abundant or widespread if they are present.

Table 4-3 Mam introduced orig		I indirectly observed	I in the region, with co	servation	status	s or
Ordor	Family	Common Namo	Scientific Name	EPBC	FFG	DEDI

Order	Family	Common Name	Scientific Name	EPBC	FFG A at	DEPI
		Cottle	Dec toursus	Act	Act	
		Cattle	Bos taurus		roduced	
Artiodactyla	Bovidae	Goat	Capra hircus	Int	roduced	
, a doudory la		Sheep	Ovis aries	Int	roduced	
	Cervidae	Sambar deer	Cervus unicolor	Int	roduced	
	Canidae	Dog	Canis lupus familiaris	Int	roduced	
Carnivora	Canidae	Red fox	Vulpes vulpes	Int	roduced	
	Felidae	Cat	Felis catus	Int	roduced	
Chiroptera	Molossidae	White-striped freetail bat	Tadarida australis			
	Macropodidae	Black wallaby	Wallabia bicolor			
	Macropodidae	Eastern grey kangaroo	Macropus giganteus			
Diprotodontia	Phalangeridae	Mountain brushtail possum	Trichosurus cunninghami			
	Pseudocheiridae	Common ringtail possum	Pseudocheirus peregrinus			
	Vombatidae	Common wombat	Vombatus ursinus			
Lagomorpha	Leporidae	European rabbit	Oryctolagus cuniculus	Int	roduced	
Monotremata	Tachyglossidae	Short-beaked echidna	Tachyglossus aculeatus			
Perissodactyla	Equidae	Horse	Equus caballus	Int	roduced	

4.3.5 Herpetofauna Recorded and may Reside in Region

No reptiles or amphibians were recorded during the overview assessment.

Twelve species of reptile have been recorded in the past in the region but only one is recognised by the DEPI Advisory list (lace monitor *Varanus varius*; Annex 6). No other reptiles were recorded in the region and it is unlikely that EPBC/FFG Act reptile species would occur with any regularity in the future.

Fourteen species of the class Amphibia have been sighted or heard within the region, only one being a nationally significant species; the Vulnerable green and golden bell frog (*Litoria aurea*). This species is listed as Vulnerable under both Commonwealth and State legislation. The green and golden bell frog was recorded once in Hospital Creek in March 1993, 4.5 km from the mine site. Mean rainfall (mm) was higher in March 1993 than the mean rainfall for 1981 to 2010 (BOM 2013b) and therefore water may have been higher in Hospital Creek than normal/mean levels. Additionally, the current condition of Hospital Creek is not conducive to providing habitat for this frog (e.g. polluted stormwater).

Two other DEPI listed species have been recorded in the region (see Annex 6).

4.3.6 Other fauna

No significant fish or invertebrates have been recorded in the region.

Plate 4-1 Agricultural land (beef cattle) within the region

Plate 4-2 European rabbit (*Oryctolagus cuniculus*), a common and widespread animal in the region

4.4 Limitations of the Data Sources

Spatial and count data was sourced from the Victorian Biodiversity Atlas (VBA) courtesy of the DEPI (2013a). This data is collected by scientists and amateurs and therefore may not necessarily be accurate or correct. The DEPI make every effort to check the authenticity of the data, but they cannot ensure data collection method or species identification in the field is rigorous. For example, the same individual bird may be counted more than once or similar species may be misidentified. Many animals are cryptic and or nocturnal and therefore difficult even for trained personnel to correctly identify.

The number of bird species sightings is always considerably higher than any other taxon. It is not necessarily an indication that bird diversity is greater than other groups, but it may simply be an artefact of birds being more conspicuous. There are also many amateur bird observation groups that contribute to the database, much more than any other taxon (recreational-watching) group. Additionally, most of

Australia's mammals and frogs are nocturnal and therefore hard to observe, and reptiles are difficult to survey without the use of trapping techniques.

There is little to no information/data regarding fish and invertebrates within the Study Area and this is probably due to insufficient sampling and little available water in the area. There appears to be little previous flora and fauna data for the mine site. This is unsurprising as it has little to attract recreational flora and fauna groups, as the site has been extensively harvested.

Plants are known to hybridise with similar species and this makes identification very difficult. The accuracy of location data is probably improving with more people using GPS units or GPS applications on their mobile phones. However, older location records may not be as accurate.

Much of the information on vegetation communities in Victoria is sourced from satellite imagery and general mapping. Vegetation is generally modelled on what should, and may, be there, since it would be impossible to survey all of Victoria's vegetation. Additionally, the list of EVCs did not include mosaics and may not be completely exhaustive, as some patches of EVCs are so small they may have been missed (by this review).

Finally, these data sources and literature have been used to provide a preliminary assessment of what may be in the area and does not necessarily reflect what is or will be within the region or the mine site in the future. Therefore all information presented from the literature is used as background and a guide for the more detailed assessments conducted.

5 Study Area Biodiversity

5.1 Literature and Database Results and Discussion

5.1.1 Vegetation and Flora

Recorded in Study Area and Mine Site

Four modelled Rare FFG Act communities have been mapped within the south-east corner of the Study Area. All of these four communities are within one remnant patch of Warm Temperate Rainforest. Notably, this patch is not located within the mine site.

Within the mine site, only one DEPI listed flora species has been recorded previously. The slender wirelily (*Laxmannia gracilis*) was recorded once in 1980 near the junction of Tomato Track and Nowa Nowa-Buchan Road. No other threatened flora (EPBC/FFG Act, DEPI) species have been recorded within the mine site.

With Potential to Inhabit the Mine Site

No threatened ecological communities have been modelled within the mine site. Additionally, due to previous timber harvesting activities it is unlikely that threatened communities would inhabit/re-establish within the mine site in the future.

Of the 89 State and nationally threatened species that may reside in the region, there is potential habitat for 34 DEPI recognised species in the mine site (see Annex 3). However, it is unlikely that any FFG or EPBC Act listed species occur within the mine site due to previous logging, insufficient habitat characteristics and poor connectivity with source populations (see Section 4.2.2). Targeted surveys for the Colquhoun Grevillea (*Grevillea celata*) were undertaken in October 2013 in accordance with the methodology prescribed by the DEPI. No evidence of the Colquhoun Grevillea was found at or near the mine site (refer Annex 2). Additional Spring (2013) vegetation surveys are underway and will be undertaken by Ethos NRM which will include additional targeted surveys where required.

5.1.2 Fauna

Birds

No bird species have been previously recorded within the mine site and only one threatened species has been recorded in the Study Area (sooty owl).

Only one EPBC Act Migratory listed species (black-faced monarch, *Monarcha melanopsis*) may use the habitat of the mine site due to habitat characteristic requirements. However, it has never been recorded on site and is considered unlikely to rely upon habitat within the mine site.

There are several State (i.e. FFG Act, DEPI-listed) significant species that may occasionally visit or use the mine site as part of their much larger territory range (defined as Occasional visitor Annex 4). For example, the three territorial owl species (masked, sooty and powerful owl) have been recorded several times within 10 km of the mine site. Although there have been approximately 5 separate recordings of each species, it is extremely unlikely there is more than one pair of each species. These species are highly territorial and long-lived, and are unlikely to fledge more than one offspring per year (Silveira et al.

2003, Webster et al. 2004). The sooty owl's territory can range between 10-30 km² (Bilney et al. 2011) and therefore there are probably only a maximum of three individuals (pair plus one offspring) of each species hunting in the habitat of the mine site. It is unlikely that the three owl species nest or roost within the mine site, due to a lack of large, hollow-bearing trees.

Mammals

No significant mammals have been recorded within the mine site or the broader Study Area.

Of the seven EPBC Act species previously recorded or potentially occurring in the broader region (Annex 5), there may be sufficient habitat for two of these species to visit or reside in the mine site; the long-nosed potoroo (*Potorous tridactylus tridactylus*) and southern brown bandicoot (*Isoodon obesulus obesulus*), but it is likely that their presence would be more influenced by other threatening processes (e.g. predators).

A spot-tailed quoll (*Dasyurus maculatus maculatus*) was recently captured via a camera trap in the Nowa Nowa region (Powell pers. comm. 2013), however the exact details have not been verified by DEPI (including location). Spot-tail quolls have been recorded outside of the region (>10 km from the mine site) over the last 50 years. Habitat is probably not suitable for quolls within the Study Area.

It is also questionable whether the habitat is of sufficient quality for any FFG Act listed species (e.g. common bent-wing bat *Minopterus schreibersii* GROUP, eastern pygmy possum *Cercartetus nanus*, white-footed dunnart *Sminthopsis leucopus*). The listed bat species is a cave roosting species and is thus more likely to be found to the north, possibly in the Buchan Caves, or in the Victorian Alps. Similar to EPBC Act listed species, there is likely to be a myriad of factors limiting their presence at the mine site.

Herpetofauna

No significant reptiles have been recorded in the Study Area or the mine site. One DEPI listed (Vulnerable) amphibian species (southern toadlet *Pseudophyrne semimarmorata*) has been recorded a few times north of Harris Creek within the Study Area but not within the mine site.

It is likely that the highly mobile and territorial lace monitor uses the mine site.

Nationally and State significant amphibian species are unlikely to inhabit or breed within the Study Area due to the seasonality of water availability. If rainfall is high for several months and there are substantial flows or standing water within the creeks, some species may move into the area. Most species breed during the peak of summer when water is lowest (absent) within the mine site.

5.1.3 Groundwater Dependent Ecosystems

Groundwater Dependent Ecosystems (GDEs) are ecosystems that are partially or completely dependent on underground water for their survival and health. Groundwater can provide a reliable water supply when it is close to the surface and when rainfall is infrequent or low. Groundwater can provide water to plants, wetlands, streams and some animals. The main types of GDEs are:

- Terrestrial vegetation;
- Wetlands;
- Coastal estuarine and near shore marine systems;
- River base flow systems;
- Aquifer and cave ecosystems; and
- Terrestrial fauna (direct drinking source).

These GDEs may be reliant on surface expression of groundwater, subsurface groundwater and/or subterranean groundwater.

The GDE most relevant to the proposed Project is terrestrial vegetation. The other five are unlikely to occur within or nearby the mine site. Terrestrial vegetation GDEs can be defined as 'vegetation communities that do not rely on expressions of surface water for survival, but which have seasonal or episodic dependence on groundwater' (Dresel et al. 2010). However, it is difficult to determine dependency, as a species may use groundwater once every decade and thus be technically defined as groundwater dependent. Additionally, GDEs may be located in areas with little proximal surface water and be located in riparian zones in ephemeral streams (Dresel et al. 2010).

Current groundwater levels (see *Surface and Ground Water Baseline and Assessment,* EES Referral Attachment 5) are estimated to be too deep (~37-50 m) below the surface to provide even a partial water source to most of the species and EVCs within the Study Area. The groundwater depth varies between 50 m within most of the area to 37 m below the creek and drainage lines.

It is assumed that only trees (woody plants) could tap the groundwater, particularly large Eucalypts. Trees typically establish roots within the top 2 m of soil, but have been observed at depths of 10 or more metres (Stone & Kalisz 1991). One of the species that can be found within the EVCs of the Study Area (*Eucalyptus viminalis*) has been observed to grow roots up to 18 m (Johnson et al. 1968).

No on-site assessment of GDEs appears to have been conducted within the Study Area (by the BOM or other agency). Victorian and Commonwealth agencies are currently undertaking remote and composite modelling of GDEs across the country.

Reliance on Surface Expression of Groundwater

The BOM Atlas of Groundwater Dependent Ecosystems indicates that the three creeks (i.e. Gap, Harris, Tomato) intersected by the mine site have high potential for groundwater interaction (BOM 2013a). Where the three creeks intersect (near Buchan-Bruthen Road) has been modelled as having moderate potential for reliance on surface expression of groundwater. The remaining area within the mine site and larger Study Area has no potential for surface groundwater expression.

Reliance on Subsurface Groundwater

According to the BOM Atlas, most of the Study Area is not reliant on subsurface groundwater. The area around the intersection of the three creeks on-site (and just north of this point) has been identified as having low potential for reliance on subsurface groundwater. Considering the depth of the groundwater table, this result is unsurprising.

Reliance on Subterranean Groundwater

The Study Area has not been assessed by the BOM Atlas for reliance on subterranean groundwater, including caves and aquifers. However, the geology of this area precludes the likelihood of caves.

Study Area GDEs

Overall, it appears that the Study Area has few areas of vegetation that are potentially reliant on subsurface or subterranean groundwater. The most likely areas of GDEs are within and along the three main ephemeral creeks within the Study Area. However, due to the depth of the water table in the area, it is therefore highly unlikely that groundwater dependent ecosystems (GDE) occur in the direct vicinity of the mine site (refer Section 6.2.3).

5.2 Vegetation and Flora Field Assessment

A full account of the results of the vegetation and flora assessment is provided in Annex 1 and the key results are summarised below.

Field assessment results:

- No EPBC Act or FFG Act threatened flora species (or their preferred habitat) were identified during the survey;
- Two bioregions intersect the vegetation study area; East Gippsland Uplands (EGU) covers the majority of the Study Area, with a smaller area occurring within the East Gippsland Lowlands (EGL);
- Five EVCs were identified during the field survey. Shrubby Dry Forest is the dominant EVC covering almost 75% of the mine site, with Lowland Forest comprising almost 20%, Riparian Forest 4% and Damp Forest 3%. Warm Temperate Rainforest was recorded within the Study Area but will not be impacted by the mine footprint or other Project components at the mine site.
- Warm Temperate Rainforest has a Bioregional Conservation Status (BCS) of Rare in both bioregions; Riparian Forest has a BCS of Depleted in the EGL and Least Concern in the EGU, and the remaining EVCs have a BCS of Least Concern in both bioregions;
- Vegetation quality recorded at the sample sites ranged between 60 and 70, with some higher scores recorded within the vicinity of Tomato Track;
- Vegetation across the sites surveyed was floristically diverse;
- Low density of large trees, particularly in areas previously impacted by timber harvesting (approximately 50% of the site since the 1960s), was also recorded;
- 141 terrestrial flora species, including 4 weed species and 6 rare species, were recorded during surveys; and
- Colquhoun grevillea (or preferred habitat) was not found within the mine site during targeted spring surveys (see Annex 2 for details).

Additional vegetation quality and other targeted flora surveys will be undertaken in spring 2013. These surveys will be used in conjunction with autumn assessments to determine vegetation loss and offset requirements. The surveys will be conducted during the flowering period for threatened species to determine their presence, suitable habitat or absence.

Plate 5-1 Open woodland with mostly Eucalypt trees and no understorey

Plate 5-2 Logging regeneration habitat with dense ground cover

Plate 5-3 Open shrubby forest, with mostly Eucalypt trees and a shrubby understorey

5.3 Fauna Field Assessment Survey Effort

The Study Area was traversed and surveyed between February and May 2013, with detailed on foot surveying of approximately 500 ha (Table 5-1). Call playback and recognition surveys covered a much more extensive area because owl calls could potentially be heard over 1.5 km from their source. Areas of the 1250 ha Study Area not surveyed on foot were assessed by vehicle with habitat also assessed remotely by high resolution satellite imagery.

Table 5-1 Area covered and time taken to complete habitat, diurnal, nocturr	al and incidental
surveys within the Study Area	

Survey method		Area covered (ha)	Time taken (hh:mm)
Fauna habitat assessment (detailed on foot)		371	N/A
Diurnal point counts and transects (detailed on foot)		131	46:23
Nocturnal searching and dusk/dawn watches	Call playback and recognition	3550	37:40
	Transect spotlighting	200	57.40
Incidental searches		N/A	43:00
Total			127:03

5.4 Fauna Habitat

Several different fauna habitat types were identified within the Study Area, and most habitats were differentiated based on the time since logging. The lowest quality habitats were post-logging regrowth, having been logged within the last 5 to 10 years. Large old trees were generally from the genus *Eucalyptus* and had diameter at breast (1.3 m) height (DBH) of greater than 70 cm. But these large old trees were rare and restricted to riparian and rainforest habitats.

No 'critical habitat' was identified during field surveys or from a search of the literature (EPBC or FFG Acts).

5.4.1 Logging Regeneration Habitat

Sparse Regrowth (Very low quality)

This very low quality habitat had no canopy or sub-canopy with sparse post-logging regrowth (~1-5 years). Vegetation was mostly small shrubs and ground cover from 0.5 to 1.5 m, often with substantial patches of bare ground. One large old seed tree (often dead) per 1 to 2 hectares provided seed propagation for new vegetation, sometimes these trees provided perches for raptors and large parrots. However, the lack of sub-canopy and canopy provides poor connectivity/cover between adjacent patches for animals moving through this area.

Dense Regrowth (Low quality)

One to five years post-logging regrowth with no canopy or sub-canopy, fallen logs present but covered by dense undergrowth (Plate 5-2). Few large old seed trees (often dead), these provided resting perches for raptors and large parrots. Shrub layer provided habitat for small birds and some leaf litter for frogs and small reptiles. This habitat probably provides poor to moderate connectivity between adjacent patches for animals moving through this area.

5.4.2 Open Woodland

Open Forest/woodland (Moderate quality)

Few (~1 per ha) large old trees, with a very sparse to moderate canopy dominated by medium eucalypt trees to a height of 20 to 30m (Plate 5-1). This tree canopy provides ample hollows and several fallen logs for nesting and roosting, although not suitable for larger species such as owls and raptors. Hollows were suitable for possums, mid-sized parrots and nocturnal birds. There was a very sparse or absent shrub and ground layer and no sub-canopy. Fallen logs highly suitable for small mammals and reptiles, leaf litter present for some frog species. Several termite/ant hills present and are probably used by short-beaked echidnas (*Tachyglossus aculeatus*). Common wombat (*Vombatus ursinus*) burrows and scats frequently encountered in this habitat. Scratching on trees and at the base of trees suggests use of the habitat by the lace monitor (*Varanus varius*). There was moderate cover and connectivity for highly mobile species; inadequate/poor ground-cover for small to mid-sized arboreal mammals. Most of this habitat had probably been logged over 50 years ago.

5.4.3 Open Shrubby Forest

Shrubby Open Forest/woodland (Moderate Quality)

Few to several (1-3) large old trees with sparse to moderately dense canopy, dominated by medium to large eucalypt trees of heights between 30 to 40m (Plate 5-3). Moderate shrub and ground layer but subcanopy was absent or very sparse. Ground layer was moderately to highly dense, in places dominated by Austral bracken (*Pteridium esculentum*), with tufted grasses and smaller flowering shrubs. Tree hollows and fallen logs in abundance, providing ample habitat for nesting and roosting species. However, these hollows and logs were probably not suitable for larger species such as owls and raptors whereas they were suitable for possums, mid-sized parrots and nocturnal birds. Fallen logs were probably inhabited by small mammals and reptiles and leaf litter was present for some frog species to reside within. Large reptiles are probably common and often move through this habitat. For example, scratchings on trees and at the base of trees suggested use by the lace monitor. Several termite/ant hills were present and common wombat burrows and scats were frequently encountered. There was moderate cover and moderate ground cover for small to mid-sized arboreal mammals. Most of this habitat had probably been logged over 50 years ago. There was habitat available for gliders and potential perching and hunting habitat for owls.

5.4.4 Riparian/damp Forest

Riparian and Warm Temperate Rain Forest (Moderate to High Quality)

The riparian forest was limited to small patches along Harris, Gap and Tomato intermittent creeks. The warm temperate rainforest was restricted to a gully in the far south-east corner of the Study Area. Few to several (1-5 per ha) large old trees with sparse to moderate canopy dominated by large eucalypt trees to a height of up to 40 m. Occasional or sparse mid-canopy of eucalypts and other native trees. Shrub layer moderate to dense, often composed of Myrtacae species. Ferns abundant in the shrub and ground layer,

high cover of leaf litter and decomposing matter for ground dwelling fauna (e.g. reptiles, frogs). We frequently encountered superb lyrebird (*Menura novaehollandiae*) ground scratchings. Fallen logs and hollow-bearing large old trees were common, but no evidence of forest owl use. If owls were to nest or roost in the Study Area, they would more likely use the trees within the warm temperate rainforest. Moderate to good connectivity and cover, but due to low to moderate quality of surrounding areas unlikely to be home to many threatened species. There was habitat available for gliders and potential perching and hunting habitat for owls. The wetter areas at the creek-line (especially during heavy downpours) may experience increased activity of awakening frogs.

Damp/gully Forest (Moderate to High Quality)

This damp forest was present along all other intermittent creeks or deep gullies. Few (1-2 per ha) large old trees, sparse to moderate canopy dominated by eucalypt trees to a height of 40 m. Very sparse midcanopy of medium eucalypts and other native trees. The shrub layer was sparse, with few areas of leaf litter and decomposing matter for ground dwelling fauna (e.g. reptiles, frogs). There were several hollowbearing medium-large trees and fallen logs. Moderate connectivity and cover, but due to low to moderate quality of surrounding areas unlikely to be home to many threatened species. There was also habitat available for gliders and potential perching and hunting habitat for owls. The wetter areas at the creek-line (especially during heavy downpours) may experience increased activity of awakening frogs.

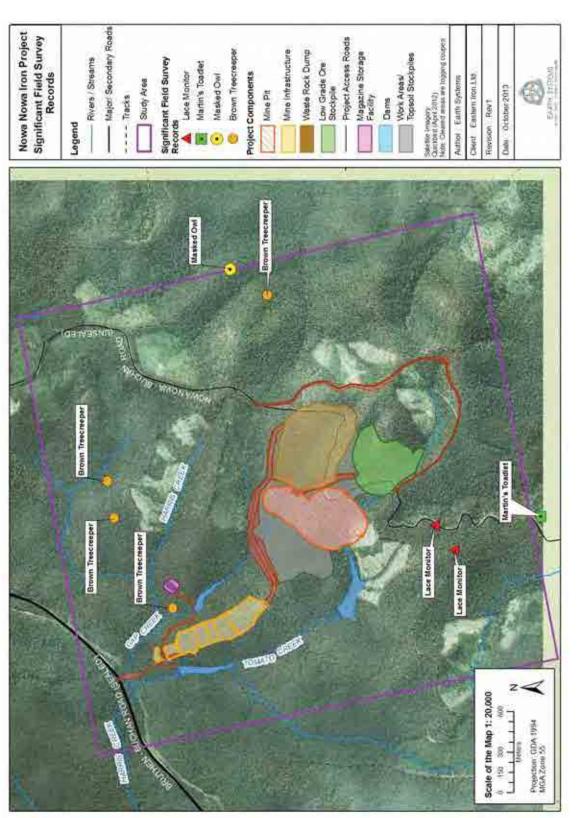
5.5 Birds

No EPBC Act bird species were observed during any of the surveys of the Study Area. Overall, 43 species of bird (26 Families) were seen using, heard or flying over the Study Area (Table 5-2). The most abundant species were the striated thornbill (*Acanthiza lineata*) and the white-eared honeyeater (*Lichenostomus leucotis*), both with 72 individuals recorded. The most commonly encountered species (based on number of sites they were present) were the white-eared honeyeater and the white-throated treecreeper (*Cormobates leucophaea*). Both species were most often observed singly or in pairs, with the honeyeater being present at 28 survey points and the treecreeper at 22 points. A few very distinctive birds were observed, including the superb fairy-wren (*Malurus cyaneus* Plate 5-5). Most birds seen or heard are common and widespread species in Victoria.

A State significant DEPI-listed Near Threatened species, the brown treecreeper (*Climacteris picumnus victoriae*), was observed within four survey points in the Study Area. Four individuals of the Victorian subspecies were seen foraging on the various eucalypt trunks. Despite being sighted only a few times, the species was heard frequently within the Study Area and seems to be able to habituate to living in the highly disturbed habitat. It is expected that the brown treecreeper breeds within the Study Area, but no nests were observed.

One FFG Act listed species, the masked owl, was observed sitting on a branch (presumably) during its nocturnal hunt (19:41 AEST), 1.2 km east-north-east of the mine site (Figure 5-1 and Plate 5-6). The call of this species had been heard on two consecutive nights during call playback and recognition surveys, but its presence was not confirmed until observed during spotlighting transects (see Annex 7). The calls had been estimated being approximately 1 to 2 km south east of the Study Area, and despite surveying these areas (e.g. dusk/dawn, playback) the calls were not heard again. No other threatened owl species calls were heard during any of the surveying periods (Plate 5-7).

Despite extensive searches of the habitat, including the Warm Temperate Rainforest patch to the southeast of the mine site, no evidence of owl nests or roosts was found. It is suspected that all three threatened owl species hunt in the Study Area, but do not nest or roost in the Study Area or nearby. These species may nest and/or roost to the south-east, closer to Nowa Nowa and Lake Tyers Park where there are older and larger trees when compared with the Study Area.


(t)	
EPBC A	
tional (I	
heir na	
uding tl	
ea, inclu	
dy Are	
the Stu	
within t	
served v	
ere obs	
cies w	
the spe	
where t	
points (or sites) w	
nts (or	atus
/ey poi	conservation status
nd surv	nserva
birds a	EPI) co
Table 5-2 Number of birds and survey po	and State (FFG Act. DEPI) co
-2 Num	te (FFG
able 5-	nd Stat
-	a

and State (FFG Ac	and State (FFG Act, DEPI) conservation status	on status						
Order	Family	Common Name	Scientific Name	No. of birds	No. of survey points	EPBC Act	FFG Act	DEPI
Strigiformes	Tytonidae	Masked owl	Tyto novaehollandiae novaehollandiae	~	-		_	EN
Passeriformes	Climacteridae	Brown treecreeper	Climacteris picumnus victoriae	4	4			NT
Continulation	Aegothelidae	Australian owlet-nightjar	Aegotheles cristatus	т				
	Podargidae	Tawny frogmouth	Podargus strigoides	т	~ -			
Columbiformor	Cobidan.	Brush bronzewing	Phaps elegans	, -	,			
	Columbia	Common bronzewing	Phaps chalcoptera	, -	,			
Coraciiformes	Halcyonidae	Laughing kookaburra	Dacelo novaeguineae	9	4			
Ealconiformor	Accipitridae	Wedge-tailed eagle	Aquila audax	2	2			
	Falconidae	Peregrine falcon	Falco peregrinus	, -	,			
		Brown thornbill	Acanthiza pusilla	9	-			
		Yellow thornbill	Acanthiza nana	36	9			
	Acanthizidae	Yellow-rumped thornbill	Acanthiza chrysorrhoa	52	8			
		Striated Thornbill	Acanthiza lineata	72	13			
		Weebill	Smicrornis brevirostris	н	. 			
Passeriformes		Pied butcherbird	Cracticus nigrogularis	2	2			
	Artamidao	Pied currawong	Strepera graculina	9	3			
		Dusky woodswallow	Artamus cyanopterus	S	-			
		Grey butcherbird	Cracticus torquatus	S	1			
	Cinclosomatidae	Eastern whipbird	Psophodes olivaceus	2	1			
	Climacteridae	White-throated treecreeper	Cormobates leucophaea	26	22			

Order	Family	Common Name	Scientific Name	No. of birds	No. of survey points	EPBC Act	FFG Act	DEPI
	Corvidae	Australian raven	Corvus coronoides	Н	-			
	Locustellidae	Rufous songlark	Cincloramphus mathewsi					
	Maluridae	Superb fairy-wren	Malurus cyaneus	12	9			
		Bell miner	Manorina melanophrys					
		Eastern spinebill	Acanthorhynchus tenuirostris	с				
		White-naped honeyeater	Melithreptus lunatus	9				
	INICIPIIAIRA	Red wattlebird	Anthochaera carunculata	26	15			
	-	Yellow-plumed honeyeater	Lichenostomus ornatus	32	9			
	-	White-eared honeyeater	Lichenostomus leucotis	72	28			
	Menuridae	Superb lyrebird	Menura novaehollandiae					
	Neosittidae	Varied sittella	Daphoenositta chrysoptera	10	2			
	Dachucanhalidae	Grey shrike-thrush	Colluricincla harmonica	2	-			
	rauiycepilalidae	Golden whistler	Pachycephala pectoralis	14	6			
	Pardalotidae	Spotted pardalote	Pardalotus punctatus	L	4			
		Southern scrub robin	Drymodes brunneopygia	2	2			
	Petroicidae	Jacky winter	Microeca fascinans	8	5			
	-	Eastern yellow robin	Eopsaltria australis	6	9			
	Rhipiduridae	Grey fantail	Rhipidura albiscapa	13	12			
	Zosteropidae	Silvereye	Zosterops lateralis	18	2			
Deittariformae	Carathidao	Gang-gang cockatoo	Callocephalon fimbriatum	13	4			
	Caratanae	Sulphur-crested cockatoo	Cacatua galerita	S	1			

Order	Family	Common Name	Scientific Name	No. of birds	No. of survey points	EPBC Act	FFG Act	DEPI
				2				
	Psittaculidae	Crimson rosella	Platycercus elegans	13	5			
Strigiformes	Strigidae	Southern boobook	Ninox novaeseelandiae	Н	1			

Key: L – Listed, EN – Endangered, NT – Near Threatened; H – Heard; S – Seen outside of counts.

Rev1

5.6 Mammals

No EPBC Act, FFG Act or DEPI listed mammal species were indirectly or directly detected during surveys. All mammals detected were common and widespread native species (i.e. not listed, black wallaby *Wallabia bicolor* Plate 5-4), in addition to three introduced species (Table 5-3). The most commonly (indirectly) sighted species was the common wombat (*Vomatus ursinus*), with fresh and recent scats and burrows frequent throughout the Study Area and in all habitat types. Other than carcasses by the side of the road, no common wombats were actually seen within the Study Area.

The white-striped freetail bat (*Tadarida australis*) was often observed during nocturnal surveys. The species was identified by its call, as it is the only bat in East Gippsland that can be heard by humans (0.2 – 20 kHz). The white-striped freetail bat's echolocation call ranges between 10.5 and 15.5 kHz (de Oliveira 1998). All other bats that may use the Study Area call at frequencies beyond 29 kHz (Herr 1998, Adams 2012), however, this does not exclude these species from being present onsite.

Table 5-3 Mammals indirectly or directly observed within the Study Area; their abundance or method of detection, number of survey points heard or seen and their conservation status.

Order	Family	Common Name	Scientific Name	Abundance	No. of survey points
Artiodactyla	Cervidae	Sambar deer (intro.)	Cervus unicolor	1	1
Carnivora	Canidae	Red fox (intro.)	Vulpes vulpes	S	F
Chiroptera	Molossidae	White-striped freetail bat	Tadarida australis	>10	F
	Macropodidae	Black wallaby	Wallabia bicolor	9	6
	Dotouridoo	Yellow-bellied glider	Petaurus australis	4	3
Diprotodontia	Petauridae	Sugar glider	Petaurus breviceps	Н	>1
Diprotodolnid	Phalangeridae	Mountain brushtail possum	Trichosurus cunninghami	3	3
	Vombatidae	Common wombat	Vombatus ursinus	S, B, C	F
Lagomorpha	Leporidae	European rabbit (intro.)	Oryctolagus cuniculus	> 2	F
Monotremata	Tachyglossidae	Short-beaked echidna	Tachyglossus aculeatus	В	F

Key: B – Burrow; C – Carcass; H – Heard; S – Scat; F – Frequently observed throughout the site.

Plate 5-4 Black wallaby Wallabia bicolor

Plate 5-5 Superb fairy-wren Malurus cyaneus

Plate 5-6 Masked owl (Tyto novaehollandiae novaehollandiae) observed during nocturnal surveys

Plate 5-7 Open canopy observed during nocturnal surveys

5.7 Reptiles and Amphibians

No EPBC or FFG Act amphibians or reptiles were detected within the Study Area. Only two frogs and three reptiles were directly or indirectly observed within the Study Area (Table 5-4). The DEPI-listed Critically Endangered Martin's toadlet (*Uperoleia martini*) was heard on one occasion, during a particularly heavy downpour, on the southern boundary of the Study Area, along the Nowa Nowa-Buchan Road (Figure 5-1).

The DEPI-listed Endangered lace monitor was observed twice and scratched trees were found throughout the Study Area (Figure 5-1; Plate 5-8). The first lace monitor was seen 200 m west of the Nowa Nowa-Buchan Road, approximately 800 m south of the intersection with Five Mile Track. The second was observed on the Nowa Nowa-Buchan Road, about 350 m north of the first observation.

Table 5-4 Frogs and reptiles indirectly or directly observed within the Study Are	ea; their abundance
or method of detection, number of survey points heard or seen and their conse	ervation status

Class	Family	Common Name	Scientific Name	No. of obs.	No. of survey points	EPBC Act	FFG Act	DEPI
Amphibia	Myobatrachidae	Victorian smooth toadlet	Geocrinia victoriana	Н	5			
		Martin's toadlet	Uperoleia martini	Н	1			CR
Reptilia	Agamidae	Tree dragon	Amphibolurus muricatus	1	1			
Керша	Scincidae	Delicate or garden skink	Lampropholis spp.	1	1			

Class	Family	Common Name	Scientific Name	No. of obs.	No. of survey points	EPBC Act	FFG Act	DEPI
	Varanidae	Lace monitor	Varanus varius	2	2			EN

Key: H – Heard; CR – Critically Endangered; EN – Endangered

Plate 5-8 Lace monitor Varanus varius

5.8 Owl and Glider Detectability

The Study Area was visited 36 times during the survey period. One masked owl was detected and therefore the number of visits and survey effort was sufficient to detect this species.

Powerful owl probability of detection approaches 1.0 between 15 and 25 visits (Figure 5-2). Considering the Study Area was visited 36 times, we can be relatively confident that we would have detected powerful owls using the areas that were surveyed. Greater gliders should have been detected after the first 4 visits if they were present within the areas surveyed (Figure 5-4). However, no greater gliders were seen and hence it is most likely that the species is absent from the areas surveyed. Sooty owl detection probability also reaches 1 after only 6 or 7 visits (Figure 5-3).

The detection probabilities indicate that powerful and sooty owls as well as greater gliders are most likely absent from the areas that were surveyed within the Study Area. However, this does not preclude them from being elsewhere in the region (e.g. the owls have very large territories).

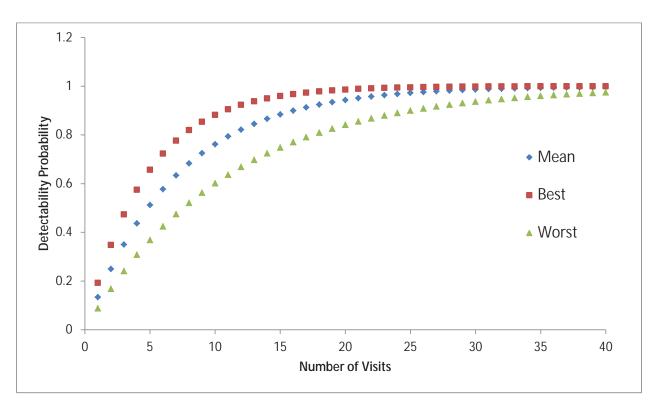


Figure 5-2 Powerful owl probability of detection over a number of visits, with mean and best and worst environmental conditions.

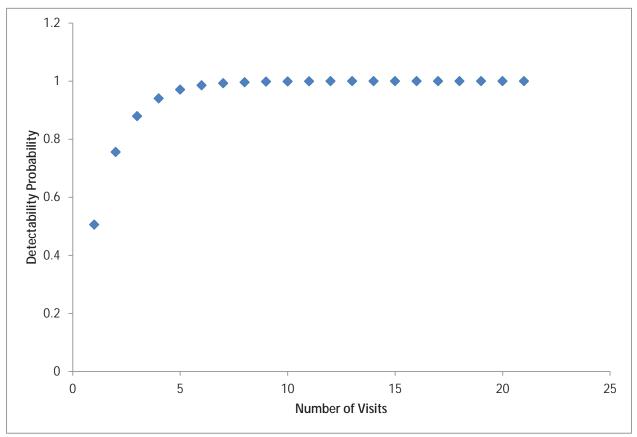


Figure 5-3 Sooty owl probability of detection over a number of visits, with mean and best and worst environmental conditions.

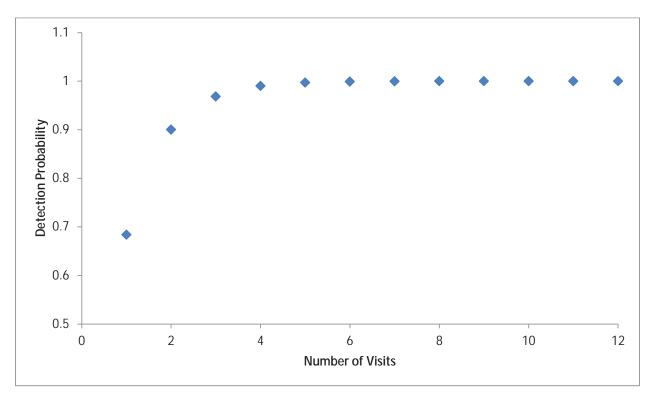


Figure 5-4 Greater glider probability of detection over a number of visits, best and worst scenarios are not illustrated as they mirrored the mean (note: x-axis begins at 0.5 probability).

5.9 Bird Species Assemblage Differences

Overall, bird species density and abundance significantly differed between habitat types ($F_{3, 116} = 5.24$, P < 0.001). The two forest types (i.e. open woodland, shrubby forest) were relatively similar in floristic composition and structure and therefore it was not surprising that species and abundance were not different (

Table 5-5). Similarly, it was not surprising that density and abundance in the two forest types were significantly different from logging regeneration and riparian/damp forest. Logging regeneration areas were devoid of a canopy and often lacked any or extensive vegetation cover. Whereas, riparian and damp forest had a denser canopy, often with a mid-canopy but lacking much ground or shrub layer due to less light availability and would therefore differ to the open forest types.

Interestingly, riparian/damp forest and logging regeneration did not differ regarding bird species density and abundance (

Table 5-5). This result is unexpected, as it would be assumed that riparian and damp forests would have higher density and abundance due to seemingly higher quality habitat. It may be correct or an artefact of the few sample points located in riparian/damp forest (due to this habitat being rare). The number of sampling points was corrected for by averaging abundances and also by using much more powerful semi-parametric analyses.

Table 5-5 Comparison of bird species density, abundance and diversity between different habitat
types (i.e. pairwise PERMANOVA tests; note: there are repeated values within table).

Habitat One (H1)	Habitat Two (H2)	t value	P (Monte	Simpso	n's Index	Shanno	n's Index
			Carlo)	H1	H2	H1	H2
Open woodland	X Open shrubby forest	0.76	0.570	0.09	0.07	2.72	2.88
Open woodland	X Riparian/damp forest	2.67	0.003*	0.09	0.16	2.72	2.04
Open woodland	X Logging regeneration	2.50	0.006*	0.09	0.17	2.72	2.00
Open shrubby forest	X Riparian/damp forest	2.96	0.002*	0.07	0.16	2.88	2.04
Open shrubby forest	X Logging regeneration	2.90	0.001*	0.07	0.17	2.88	2.00
Riparian/damp forest	X Logging regeneration	0.69	0.547	0.16	0.17	2.04	2.00

*Statistically different: <0.05

5.10Estimated Species Richness and General Diversity

In total, 571 individuals from 58 terrestrial fauna species were observed inhabiting or using the Study Area. Forty-three species were classified as rare as they had less than 10 individuals recorded. However, these numbers are an indication of the species assemblage for the habitat surveyed and not for the entire Study Area. Therefore extrapolation of estimated species richness indices provides an indication of the potential number of species that could inhabit the Study Area under different conditions (and models). The various models use the number of rare and abundant species to extrapolate the number of total species expected in a system.

Most models estimated species richness to be between 58 (\pm 0.1) and 73 (\pm 9.1) with an upper outlying estimate of 90.1 (\pm 38.4). It is expected that many of these species would be much more cryptic than the species observed during surveys. These estimates are probably conservative for all terrestrial fauna species, considering that herpetofauna were not extensively sampled for and there could be a few more smaller and cryptic mammal species.

Based on these estimates, literature and database results (see Section 4.3) as well as habitat requirements, it is estimated there is approximately six species of frog (all common except Martin's toadlet), 55 birds, 16 mammals and 12 reptiles present in the Study Area (total 89 species). However, it is highly unlikely that any nationally threatened species number in this 89. As stated previously, the habitat is too poor and the presence of many threatening processes makes conditions unsuitable for nationally threatened species. There is some habitat for State threatened species and their potential presence has been discussed in earlier sections.

Species diversity indices indicate that the species assemblage is generally diverse (Simpson's Index

Table 5-6) and is not dominated by one or two species (Shannon's index between 1.5 and 3.5).

Diversity Index Name	Description	Diversity Index	Standard Error
Shannon's index	Distribution of individuals among species. Individuals distributed evenly as value approaches 4	3.29	0.05
Simpson's index	Ranges between 0 and 1, 0 represents infinite diversity	0.06	<0.01

Table 5-6 Species diversity indices for the assemblage within the Study Area

6 Potential Impacts

6.1 Current Key Threatening Processes

Habitat fragmentation and degradation feature prominently in the current threats to the Study Area (Table 6-1). All habitats within the Study Area have been harvested and/or degraded by logging or associated activities. There are several stages of succession present in the area from recent logging regeneration to older higher quality habitat (see Section 5.4). Harvesting has probably altered the microclimate, hydrology, erosion and the number of weeds and pests. Harvesting would have also led to an increase in vehicular traffic. It is unlikely that the vegetation of the Study Area resembles the pre-European (harvesting) habitat.

It is likely that the Critically Endangered White Box - Yellow Box - Blakely's Red Gum grassy woodlands and derived native grasslands community was historically common in the Study Area. However, the large trees that characterise this community would have been highly sought after for timber and more disturbance-tolerant and quickly regenerating tree species have grown in their place. The Rare Warm Temperate Rainforest was also historically more widespread in the region but has been reduced to only one patch within the Study Area.

Similarly, fauna biodiversity probably does not resemble the original suite of species present on the site. Many species have become extinct from the Gippsland region and introduced species are now common and widespread. In particular, sambar deer, red foxes, feral cats, European rabbits are either abundant or expected to be common within the Study Area. It is also highly likely that feral pigs (*Sus scrofa*) and goats (*Capra hircus*) also use the Study Area. The presence of these species has caused a reduction in biomass and biodiversity of native vegetation and fauna has been listed as threatening processes under the FFG Act (except pigs; Table 6-1).

As the waterways within the Study Area are at the headwaters of the creeks intersecting the area, significant alterations to water flow are not listed as a current threatening process at the site.

Table 6-1 Threatening processes occurring, or have the potential to occur, in the Study Area that have been considered sufficiently severe to

warrant listing under the Victorian Flora and Fauna (FFG) Act	n Flora and Fauna (FFG) /	ct
Threatening Process	System/s Affected	Impact Outcomes and Listed Under the FFG Act as
Degradation and fragmentation of native vegetation	All habitat, including waterways and catchments	Degradation of native riparian vegetation along Victorian rivers and streams Habitat fragmentation as a threatening process for fauna in Victoria Loss of hollow-bearing trees from Victorian native forests Loss of coarse woody debris from Victorian native forests and woodlands Loss of terrestrial climatic habitat caused by anthropogenic emissions of greenhouse gases
Degradation of waterways and catchments	Waterways (including ephemeral)	Alteration to the natural temperature regimes of rivers and streams Removal of wood debris from Victorian streams
Collection of native orchids	Orchid biodiversity, conservation and management	Collection of native orchids
High frequency fire and inappropriate fire regimes	All native vegetation	High frequency fire resulting in disruption of life cycle processes in plants and animals and loss of vegetation structure and composition lnappropriate fire regimes causing disruption to sustainable ecosystem processes and resultant loss of biodiversity
Introduction of non-native animals	All habitats	Degradation and loss of habitats caused by feral horses (Equus caballus) Reduction in biodiversity of native vegetation by sambar deer (Cervus unicolor) Reduction in biomass and biodiversity of native vegetation through grazing by the rabbit Oryctolagus cuniculus Soil degradation and reduction of biodiversity through browsing and competition by feral goats (Capra hircus) Predation of native wildlife by the cat, Felis catus Predation of native wildlife by the red fox Vulpes vulpes
Introduction of 'environmental weeds'	All habitats	Invasion of native vegetation by 'environmental weeds' Invasion of native vegetation by blackberry Rubus fruticosus L. agg
Introduction or altered distribution of native animals and plants beyond their normal range (non-indigenous)	All habitats	Reduction in biodiversity resulting from noisy miner (Manorina melanocephala) populations in Victoria Spread of Pittosporum undulatum in areas outside its natural distribution

Threatening Process	System/s Affected	Impact Outcomes and Listed Under the FFG Act as
		The introduction and spread of the large earth bumblebee Bombus terrestris into Victorian terrestrial environments
Introduction and spread of non-native insects	Native flora and fauna	Threats to native flora and fauna arising from the use by the feral honeybee Apis mellifera of nesting hollows and floral resources
		Loss of biodiversity in native ant populations and potential ecosystem integrity following invasion by Argentine ants (Linepithema humile)
Introduction and corroad of alant and		Infection of amphibians with Chytrid Fungus, resulting in chytridiomycosis
animal pathogens	Flora and fauna	The spread of Phytophthora cinnamomi from infected sites into parks and reserves, including roadsides, under the control of a State or local government authority
		Use of Phytophthora-infected gravel in construction of roads, bridges and reservoirs

6.2 Potential Project Impacts

Potential impacts on terrestrial ecology associated with the development of the Project at the mine site are expected to be moderate due to the significant historical disturbance of the area through timber harvesting and human use. Nonetheless there is the potential for flora, fauna and ecological communities within (or close to) the mine site to be impacted by the Project. The primary impact on these aspects is expected to be associated with the native vegetation clearance required for the Project components.

6.2.1 Native Ecological Communities and Flora

Potential Direct Impacts

Potential impacts of the Project footprint on existing vegetation and flora will result from removal and/or pruning. Therefore, this will only impact upon the vegetation within the proposed Project footprint and buffers. This vegetation is regrowth from previous harvesting. No EPBC Act or FFG Act threatened vegetation, threatened species preferred habitat or ecological communities have been identified as potentially being directly impacted by the Project.

Preliminary calculations of native vegetation loss conducted by Ethos NRM (Annex 1) indicate that:

- The development of the mine site will require the removal of approximately 146 ha of native vegetation (equating to approximately 104 habitat hectares);
- Calculations estimate that the mine site (excluding roads) will require the removal of:
 - 138.42 ha of Shrubby Dry Forest, Lowland Forest, Damp Forest and Riparian Forest (in descending order of ha; i.e. Riparian Forest least ha);
 - Habitat hectares estimated to be 98.73;
 - » 433 Large Old Trees;
 - » In total, 140.56 ha to be removed.
- The diversion of the Nowa Nowa-Buchan Road will require the removal of 7.94 ha, including Shrubby Dry Forest, Lowland Forest and 9 Large Old Trees; and
- The mine access road to the Bruthen-Buchan Road will require the removal of 0.15 ha of Shrubby Dry Forest.

Notably, the single patch of Warm Temperate Rainforest identified in the Study Area will not be directly impacted, as this patch is at least 600 m away from the mine site.

For the purposes of this Study, it has been assumed that 100% of vegetation within the mine site will be effectively removed, including buffer areas. However, some vegetation components (e.g. grassland/shrubs) may be able to be retained in small parts of the buffer areas classified as the 'outer' bushfire management zones around buildings.

Additional vegetation quality and targeted flora surveys will be undertaken in spring 2013. These surveys will be used in conjunction with autumn assessments to determine vegetation loss and offset requirements. The surveys will be conducted during the flowering period for threatened species to determine their presence, suitable habitat or absence. Please note that Colquhoun grevillea was determined as being absent during October surveys of the mine site (see Annex 2).

Potential Indirect Impacts

Vegetation may be indirectly impacted by one or a combination of: increased exposure to light and altered microclimate on clearance edges, increased exposure to weeds and parasites carried by wind and increased traffic, increased erosion and sediment transport, increased dust pre- and post-construction and/or increased risk of fire.

Increased edge effects are created by the remaining fragments (after clearing) having a larger edge than the previous contiguous forest. In this system, the fragments will generally be surrounded by areas of low biodiversity and simple structure (e.g. roads, buildings). This will result in the edge being exposed to increased light (solar radiation), different temperatures, wind and generally a different climate to previous (Murcia 1995). Altered microclimate can encourage or decrease plant growth and consequently can change floristic structure.

The edges may also be exposed to more weed/pest invasion and erosion and sediment transport. It is likely that the area has a high weed and pest load already, however the edges may be invaded by more introduced grasses. The edges, especially along the roads, will erode more quickly without vegetation and any rain will erode this further. Any changes to the sediment loads after heavy rainfall may also alter nutrient cycling.

Construction activities and mine operations are likely to increase the concentration of particulate matter in the air. There is the possibility that the build-up of dust on plants can decrease exposure to light and consequently reduce photosynthesis.

The area is probably already fire prone, but the presence of the Project at the mine site may result in an increased risk of human-induced fire (e.g. cigarettes, arson), if not effectively managed.

It is highly likely that the vegetation is already, or has been, exposed to most (if not all) of these indirect impacts during historical timber harvesting activities. Therefore it is unlikely that these impacts will have a dramatic effect on existing disturbance patterns in the State Forest.

6.2.2 Native Fauna

Potential Direct Impacts

Direct impacts associated with the Project are likely to be limited to accidental death and injury of any native fauna. Similar to other human-based activities, native fauna may be accidentally killed or injured by vehicular traffic, electrocuted by transmission lines or other live structures, inadvertently fly into human-made structures (e.g. windows, power lines) or become trapped in buildings. This does not include the management of introduced species.

Potential Indirect Impacts

Native fauna may be indirectly impacted by the Project by one or a combination of: removal of foraging and/or breeding habitat, intolerance of human activities, increased competition for resources, increased exposure to introduced species (including native) and/or increased predation.

Removal of foraging and/or breeding habitat is more likely to impact upon specialist species that require specific habitat characteristics. Removal of breeding habitat is also more likely to impact upon species than foraging habitat. Nest building is energetically costly and time consuming and nest hollows are often a rare commodity. Nests are also generally at the centre of a species' home range (territory) and for highly territorial species, removal of part or all of their territory may result in conflict with individuals in unaffected territories. This may also result in local or large scale displacement of individuals. However, no specialist species were observed within the Study Area and, therefore, it is unlikely that they breed in the area.

Many native species are intolerant of human activities, and some species are even intolerant of the mere presence of humans (e.g. Beale & Monaghan 2004, Price & Lill 2009). Increased human presence and activity may force some species to leave the area entirely or leave temporarily. Some species may remain but increase their vigilance around people, thereby increasing their stress levels and reducing time for other activities. The mine is expected to operate 24 hours a day and emit noise above current background levels. This may disrupt behaviour and interfere with animal communications. For example, micro-bats rely on sound for navigating and foraging. It is likely that most animals are accustomed to a certain amount of human disturbance due to logging activities in the surrounding State Forest, but noise from pre- and post-construction activities may be more extensive and of a different nature to that of previous disturbances.

Increased competition for resources, exposure to introduced species and predation are likely consequences of reduced habitat and increased fragmentation of vegetation (edge effects). If individuals are not displaced by removal of habitat, these individuals will move into remaining fragments, increasing competition for remaining resources. An area has a limited carrying capacity (number of individuals per area/resources). Although it is highly likely that the number of introduced animals is already high, a few more individuals may immigrate. Additionally, some introduced and native species are disturbance-tolerant or thrive in disturbed areas. The number of these disturbance-tolerant species may increase. Many introduced species are efficient predators (e.g. cats and foxes) and if there is an increase in their number, predation pressure on native species may be greater.

Finally, native fauna have been exposed to many of these indirect impacts by previous disturbance regimes in the Tara State Forest and surrounds. Since fauna have already experienced high levels of disturbance, it is likely they will have an increased tolerance for the additional disturbances caused by the Project.

6.2.3 Groundwater Dependent Ecosystems

The BOMs Atlas of GDEs has estimated that the vegetation along the three creeks intersecting the mine site may be reliant on surface expression of groundwater.

Piezometric levels in the Project area range from approximately 37 to 50 m below ground level. Groundwater discharge / contribution to local streamflows appears not to occur in the Project area. Regionally, discharge of aquifer units closer to the surface may occur as baseflow in the lower reaches of the rivers and smaller creeks flowing over the coastal plains (e.g. potentially Boggy Creek) (DSE, 2010). Additional groundwater discharge may also occur to the Gippsland Lakes and other estuarine bodies (e.g. Lake Tyers) (DSE, 2010). However, such areas do not occur in the direct vicinity of the mine site.

It is therefore highly unlikely that groundwater dependent ecosystems (GDE) occur in the Project area. Some vegetation in the lower reaches of Boggy Creek and around Lake Tyers may use groundwater. However, this is approximately 15 km downstream of the Project area and groundwater levels are unlikely to be impacted by the proposed Project in this area.

Potential impacts on groundwater resources are further described in the *Surface and Ground Water Baseline and Assessment* (EES Referral Attachment 5).

6.3 National and State Threatened Species with Potential to be Impacted

6.3.1 Potential Direct Impacts to Flora and Communities

No EPBC Act or FFG Act species or communities will be directly impacted by the mine site as they have not been recorded in the Study Area or surrounding habitat to date. Additional surveys will need to be undertaken during the flowering period for threatened species to confirm that EPBC and FFG Act listed species are not present within the mine site.

The Project proposes to remove approximately 146 ha of native vegetation at the mine site, and this may directly impact upon the following DEPI-listed Rare flora species (i.e. identified during surveys either in footprint or in Study Area):

- Wallaby bush (*Beyeria lasiocarpa*);
- Gippsland stringybark (Eucalyptus mackintii);
- Forest red box (Eucalyptus polyanthemos longior);
- Paperbark tea-tree (Leptospermum trinervium);
- Austral tobacco (Nicotiana suaveolens); and
- Smooth geebung (Persoonia levis).

Individuals of some or all of these species will be removed and therefore these impacts will need to be offset as part of the Biodiversity Offset Strategy (see Section 8.3). Generally, these species' populations are stable elsewhere in Victoria and/or Australia and the removal of a few specimens (short-term) is unlikely to impact upon the conservation of these species.

6.3.2 Potential Indirect Impacts to Flora and Communities

Please note that only species and communities listed under EPBC Act, FFG Act and DEPI Vulnerable or of higher conservation significance are considered within this section. Many flora species of DEPI Rare status may be indirectly impacted and therefore to see a full list see Annex 3, however, impacts would be similar to those discussed below.

Many of the threatened species discussed in assessments (see Section 4 and 5) will not be subject to significant indirect impacts because they:

- 1. Have never been recorded in the mine site or greater region;
- 2. May be locally or regionally extinct as they have not been recorded in the area for over 20 years;
- 3. Are unlikely or highly unlikely to reside within the habitat of the mine site (see Section 4 and 5 and Annex 3 for likelihood assessments) due to insufficient habitat/local conditions.

FFG Act Modelled Communities

The closest patch of Warm Temperate Rainforest is at least 600 m away from the mine site. The Project will not remove or lop any of the vegetation within or surrounding these communities. However potential indirect impacts from Project activities may include:

• Increased fire risk;

- Increased erosion and sediment transport during heavy rainfall (from land disturbance associated with the diversion of the Nowa Nowa-Buchan Road); and
- Increased exposure to weeds and parasites carried by wind and increased traffic.

EPBC Act and FFG Act Flora Species "Unlikely" to Occur

The following species are considered unlikely¹ to occur in the habitat of the mine site but nevertheless can be considered in regards of mitigation and management (i.e. precautionary principle):

- Maroon leek-orchid (*Prasophyllum frenchii*, EPBC Act EN, FFG Act L, DEPI EN);
 - » Grassland and grassy woodland habitats that are generally damp but well drained
 - » Never recorded in the region
 - Most susceptible to (if present):
 - Exposure to light and altered microclimate on clearance edges
 - Exposure to weeds and parasites carried by wind and increased traffic
 - Erosion and sediment transport
 - Risk of fire
- Colquhoun grevillea (Grevillea celata, EPBC Act VU, FFG Act L, DEPI VU);
 - Terrain tends to be flat or with a slight northerly aspect. Populations occur from c. 140– 300 m above sea level
 - » Last recorded in region in 2008
 - » Current study did not identify any specimens or suitable habitat (see Annex 2)
 - » Most susceptible to (if present):
 - Erosion and sediment transport
 - Risk of fire
 - Leafy nematolepis (*Nematolepis frondosa*, EPBC Act VU, FFG Act L, DEPI VU);
 - Varied habitat ranging from low rock outcrop scrub to tall open forest dominated by Eucalyptus regnans
 - » Last recorded in region in 2002
 - » Most susceptible to (if present):
 - Exposure to light and altered microclimate on clearance edges
 - Exposure to weeds and parasites carried by wind and increased traffic
 - Erosion and sediment transport
 - Risk of fire
 - Leafless tongue-orchid (Cryptostylis hunteriana, EPBC Act VU, FFG Act L, DEPI EN);
 - Reported to occur in a wide variety of habitats including heathlands, dry sclerophyll forests, forested wetlands, freshwater wetlands, grasslands, grassy woodlands, rainforests
 - » Never recorded in the region
 - » Most susceptible to (if present):

¹ Species "highly unlikely" to occur are not discussed here (see Annex 3).

- Exposure to light and altered microclimate on clearance edges
- Increased dust pre- and post-construction
- Exposure to weeds and parasites carried by wind and increased traffic
- Erosion and sediment transport
- Risk of fire
- Thick-lipped spider-orchid (Caladenia tessellata EPBC Act VU);
 - Heathland, heathy or grassy woodland, and grassy or sedgy open forests in well drained sand and clay loams
 - » Never recorded in the region
 - Most susceptible to (if present):
 - Exposure to light and altered microclimate on clearance edges;
 - Exposure to weeds and parasites carried by wind and increased traffic
 - Erosion and sediment transport
 - Risk of fire
- Yellow-wood (Acronychia oblongifolia, FFG Act L, DEPI R);
 - Warmer rainforest and on their margins, also in regrowth rainforest, widespread in coastal districts
 - » Last recorded in region in 2000
 - » Most susceptible to (if present):
 - Erosion and sediment transport
 - Risk of fire

Flora Species with Potential to Reside in Mine Site (Vulnerable DEPI)

These flora species have never been recorded within the mine site and were not recorded during field surveys, but have potential to occur within the site due to habitat requirements.

- Showy boronia (Boronia ledifolia);
 - » Last recorded in region in 2004
 - » Heath and dry sclerophyll forest on sandstone and granite
 - » Most susceptible to (if present):
 - Exposure to weeds and parasites carried by wind and increased traffic
 - Erosion and sediment transport
 - Risk of fire
- Spotted gum (Corymbia maculata);
 - » Last recorded in region in 1980
 - Community dominant, in open forest on somewhat infertile and drier sites on shales and slates
 - » Most susceptible to (if present):
 - Erosion and sediment transport

- Risk of fire
- Wild sorghum (*Sarga leiocladum*);
 - » Last recorded in region in 1999
 - » In woodland on poorer soils
 - » Most susceptible to (if present):
 - Exposure to light and altered microclimate on clearance edges
 - Increased dust pre- and post-construction
 - Exposure to weeds and parasites carried by wind and increased traffic
 - Erosion and sediment transport
 - Risk of fire

6.3.3 Potential Indirect Impacts to Fauna

Fauna Detected Within or Nearby Mine Site

These species were observed using habitat within and/or surrounding the mine site. As these species are typically highly mobile, some with very large territorial ranges, it is unlikely they will be subject to significant indirect impact by Project activities. However, a brief discussion of impacts is included below to guide mitigation and management. Impacts are restricted to those that are most likely to occur or increase due to the Project activities. There are other indirect impacts (e.g. introduced animals) that are already currently occurring within the area and are unlikely to increase significantly due to the Project.

- Masked owl (Tyto novaehollandiae novaehollandiae, FFG Act L, DEPI EN);
 - Inhabits forests, woodlands, caves; roosts in tree hollows, dense foliage, out-buildings, caves
 - » Last recorded in the region in 2007
 - » Probably only an occasional visitor as habitat present for hunting, unlikely to roost on site
 - No evidence of breeding or roosting found within Study Area, species more likely to breed and roost further east and south east
 - » One individual seen, presumably hunting, on Telephone Road
 - Current (high urgency) impacts to masked owls include timber harvesting (Schedvin et al. 2003), which has occurred and will continue to occur within the Study Area
 - Most susceptible to:
 - Removal of hunting grounds
 - Increased human activity, territorial pair likely to flee and avoid area (but may habituate)
 - May avoid artificial lighting, but may also use it to hunt animals attracted by the light
- Brown treecreeper (Climacteris picumnus victoriae, DEPI NT);
 - » Mostly lives in temperate or dry forests, can inhabit disturbed forests
 - » Never recorded in region
 - » Observed on four occasions
 - » No evidence of nests, but suspected to breed in or nearby mine site
 - » Most susceptible to:

- Removal of breeding and/or foraging habitat
- Increased human activity, individuals likely to temporarily flee and avoid area (but may habituate as they are often found in disturbed habitat)
- Lace monitor (Varanus varius, DEPI EN);
 - » Common; semi-arboreal, forested areas
 - » Presence dependent on prey; large home ranges and can travel several km a day
 - » Last recorded in region in 2002
 - » Observed on two occasions
 - » No evidence of breeding, but territories very large
 - Most susceptible to:
 - Removal of breeding and/or foraging habitat
 - Increased human activity, individuals likely to temporarily flee and avoid area (but may habituate)
- Martin's toadlet (Uperoleia martini, DEPI CR);
 - Adults are found in dry forest, shrublands, grasslands, and open and disturbed areas. Mostly near water, but also in dry depressions that flood in winter or spring
 - » Never recorded in region
 - Heard on one occasion, during a particularly heavy rainfall event, on the southern boundary of the Study Area, approximately 1-2 km south of Project components
 - » No removal of habitat in area near where individuals heard, so no impact on foraging or breeding habitat, also not downstream
 - » Most susceptible to:
 - Increased human activity, individuals may move further south-east (but may habituate)

It is likely that foraging habitat will be removed, but both species are highly mobile, and are likely to find foraging grounds elsewhere. Removal of habitat for Project activities is not expected to significantly impact on the local or regional population. For example, the lace monitor occurs in relatively low population densities, being one to three individuals over 1000 to 3000 ha and their large territories typically cover highly degraded habitat. Brown treecreepers also occur in highly degraded and fragmented forest in East Gippsland, and elsewhere across Victoria (e.g. box iron-bark forests; see Kavanagh et al. 2007 for example). Removal of a small proportion of the foraging grounds for these two species is thus unlikely to significantly impact on their foraging activities. There may be temporary displacement, but these species are able to readily habituate to (human-caused) disturbance, since all species forage in highly disturbed/fragmented and degraded habitat. It is also possible that these species will habituate to the mining activities and take advantage of the cleared areas to hunt.

Significant Fauna Species with Potential to Occur

It is possible that other threatened species inhabit the mine site and surrounding habitat but have never been recorded in the area, particularly due to their cryptic nature. An assessment of threatened species habitat requirements and the likelihood of their presence within the mine site found that no (additional) threatened species were "likely" to inhabit the area. "Likely" is defined as a species having habitat requirements met, threatening processes are low and that it is likely that they are detected in the future. The habitat is too disturbed, structural components are absent (e.g. adequate shrub cover) and threatening processes are too frequent and/or in high numbers (e.g. introduced predators, logging activities) for many threatened species.

These species have been identified as having the potential (categorised as "potential" or "occasional") to occur based on habitat requirements and the potential presence of nearby populations (Annex 4 to Annex 6). Only species with "Vulnerable" classifications and above have been included. Please also note that green and golden bell frog and giant burrowing frog are not discussed here as habitat is unsuitable, mine site is too far from permanent water sources and neither was detected during current surveys.

- Black-faced monarch (*Monarcha melanopsis, EPBC Act* Migratory/Marine-Bonn);
 - » Last recorded in region in 1993
 - Habitat present but species is less common in southern section of range and not detected within Study Area
 - Inhabits east coast forests, rainforests, eucalypt woodlands, coastal scrub and damp gullies
 - » Most susceptible to (if present):
 - Increased human activity, individuals likely to flee and avoid area (but may habituate)
- Greater glider (*Petauroides volans*, DEPI VU);
 - » Last recorded in region in 2000
 - » Inhabits wet sclerophyll forest, needs large tree hollows for shelter
 - » Habitat present; may breed in Study Area but no individuals detected
 - » Most susceptible to (if present):
 - Removal of breeding and/or foraging habitat
 - Increased human activity, individuals may temporarily flee (but may habituate as often found in disturbed habitat)
- Long-nosed potoroo (Potorous tridactylus tridactylus, EPBC Act VU, FFG Act L, DEPI NT);
 - » Never recorded in region
 - » Inhabits open forest and woodland and the ecotone in-between
 - Rare species, habitat probably of insufficient quality to permit constant/resident populations, very susceptible to introduced predators
 - » Most susceptible to (if present):
 - Removal of breeding and/or foraging habitat
 - Increased competition for limited resources
 - Increased human activity, individuals likely to flee and avoid area
- Powerful owl (*Ninox strenua*, FFG Act L DEPI VU);
 - » Occasional visitor
 - » Last recorded in region in 2009
 - » Tall open forests, woodlands, roost in large trees in gullies
 - » Habitat probably of insufficient quality to nest or roost, but may forage
 - » Most susceptible to (if present):

- Removal of hunting grounds
- Increased human activity, territorial pair may flee and avoid area (but may habituate)
- May avoid artificial lighting, but may also use it to hunt animals attracted by the light
- Sooty owl (Tyto tenebricosa tenebricosa FFG Act L, DEPI VU);
 - » Occasional visitor
 - » Last recorded in region in 2008
 - » Closed and tall forests, especially in gullies; roost in tree hollows, caves by day; active in canopy at night
 - » Habitat probably of insufficient quality to nest or roost, but may forage
 - Most susceptible to (if present):
 - Removal of hunting grounds
 - Increased human activity, territorial pair may flee and avoid area (but may habituate)
 - May avoid artificial lighting, but may also use it to hunt animals attracted by the light
- Southern brown bandicoot (Isoodon obesulus obesulus, EPBC Act EN, FFG Act L, DEPI NT);
 - » Never recorded in region
 - Inhabits variety of habitats including heathland, shrubland, sedgeland, heathy open forest and woodland
 - » Some habitat may be present, local populations known in greater Gippsland area
 - » Not seen during nocturnal surveys but cryptic and shy
 - » Most susceptible to (if present):
 - Removal of breeding and/or foraging habitat
 - Increased competition for limited resources
 - Increased human activity, individuals may flee and avoid area (but may habituate)
- Southern toadlet (Pseudophryne semimarmorata, DEPI VU);
 - » Last recorded ~700 m north of Harris Creek in 1969
 - Adults inhabit in dry forest, shrubland, grassland, and heaths; under leaf litter and other debris in moist soaks
 - » Some habitat may be present; if creeks flood
 - Most susceptible to (if present):
 - Removal of breeding and/or foraging habitat
 - Increased competition for limited resources
 - Increased human activity, individuals may flee and avoid area (but may habituate)
- Spot-tailed quoll (Dasyurus maculatus maculatus EPBC Act EN, FFG Act L, DEPI EN);
 - Possible visitor, but at least one individual was found near Bruthen (dead on road) in 2010 and Nowa Nowa region 2013
 - » Never recorded in region (within 10 km of mine site)
 - Temperate and subtropical rainforests in mountain areas, wet schlerophyll forest, lowland forests, open and closed eucalypt woodlands

- » Habitat of the Study Area is probably unsuitable
- » Most susceptible to (if present):
 - Removal of foraging habitat
 - Increased competition for limited resources
 - May be hit by vehicles while feeding on road kill (from increased mining traffic)
 - Increased human activity, individuals likely to flee and avoid area (but may habituate)
- White-footed dunnart (Sminthopsis leucopus, FFG Act L DEPI NT);
 - » Last recorded in region in 1978
 - » Occurs in forests and woodlands with an open understorey of low density vegetation; also in grassy fore-dune complexes
 - » Habitat may be present, may be of insufficient quality to sustain population
 - » Most susceptible to (if present):
 - Removal of breeding and/or foraging habitat
 - Increased human activity, individuals may flee and avoid area (but may habituate)

7 Legislation and Policy Implications

7.1 Commonwealth Government and International Treaties

The most pertinent commonwealth and international legislation for the Project are the EPBC Act and several international treaties relating to migratory and marine species. International treaties are governed under the EPBC Act.

7.1.1 Environmental Protection and Biodiversity Conservation Act 1999

One of the primary aims of the EPBC Act 1999 is to provide for the conservation of biodiversity and the protection of the environment. The Act outlines several matters of national environmental significance (MNES), including:

- Wetlands of International Importance (Ramsar Convention);
- Listed threatened species and ecological communities;
- Migratory species protected under international agreements; and
- Commonwealth marine areas.

Under the Act, actions that are likely to have a significant impact upon MNES require approval from the Environment Minister.

No EPBC Act threatened flora species or critical habitats were identified during the field survey of the Study Area. Of the 902 native flora species that have been recorded in the region, there were only three species listed as Vulnerable under the EPBC Act (i.e. Colquhoun grevillea, limestone blue wattle, leafy nematolepis). The Colquhoun grevillea was not found within the mine site (see Annex 2). It is unlikely that the latter two (or maroon leek-orchid, leafless tongue-orchid, thick-lipped spider-orchid) occur within the Study Area as most habitat is too disturbed, being logged recently. Further surveys are being undertaken as part of the approvals process for the Project (spring 2013).

No EPBC Act fauna species were observed during any of the surveys of the Study Area. Databases indicated that two EPBC Act threatened bird species were recorded in the region in 1977 (Australian bittern, swift parrot). It is highly unlikely that either of these inhabit or use the area of the mine site or even the region with any regularity. The literature also indicated that ten Migratory/Marine bird species have been recorded at one time within the region (but not within the Study Area). Similarly, these species habitat requirements preclude them from using the habitat of the Study Area. Black-faced monarchs (Migratory/Marine) have the potential to move through the habitat of the Study Area, but have not been detected in the region since 1993. These birds are very distinctive and are unlikely to be missed during surveys.

No EPBC Act threatened mammal, fish or invertebrate species have ever been recorded within the region. One nationally significant species; the Vulnerable green and golden bell frog (*Litoria aurea*) was recorded once in Hospital Creek in March 1993 during a seemingly higher rainfall period. It is likely that this species has become locally extinct as there is little habitat (foraging or breeding) within the region. The habitat within the Study Area is too poor, there is little habitat connectivity and there are no

populations nearby to source new individuals. Similarly, the giant burrowing frog (*Heleioporus australiacus*) may be found in the surrounding area (>10 km radius), but due to the distance of the mine site from known populations and a more reliable water source, it is unlikely this species is present within the mine site. Additionally, the species was not heard or seen during nocturnal or diurnal surveys. Commonwealth survey requirements include surveys during and after heavy downpours, and these survey conditions were met during the current diurnal and nocturnal surveys.

Southern brown bandicoots and spot-tailed quolls have been recorded elsewhere outside of the region (except for unverified-DEPI quoll sighting 2013). These records range in dates from recent (2010) to old (1978) and therefore it is difficult to determine whether there are sustainable populations nearby for individuals to move into the Study Area. Both species are nocturnal, shy and cryptic and therefore it is difficult to determine their presence or absence. It is possible that the habitat within the mine site is too disturbed for individuals to establish local territories. Habitat structure within the mine site and greater Study Area appears to be too open and simple, with little undergrowth to attract either species (or long-nosed potoroos). The structural diversity of a habitat and high density of undergrowth is particularly important for southern brown bandicoots and spot-tailed quolls (Backhouse 2003, DSE 2009b). Additionally, introduced predators have severely impacted on these species populations, distribution and abundances.

If these species were detected then typically this would involve inclusion of habitat to be protected that includes the detection site. This would also involve overlaying of Special Protection Zones (SPZs) or Special Management Zones (SMZs), however the entire Study Area is already protected under these zones.

7.2 Victorian State Government

7.2.1 Environment Effects Act 1978

The Environment Effects Act 1978 provides for assessment of projects that are capable of having a significant effect on the environment. If it is deemed that the Project may have a significant effect on the environment, the Minister responsible for administering the *Environment Effects Act* 1978 may ask the Proponent to prepare an *Environmental Effects Statement* (EES).

The EES process provides for the analysis of potential effects on environmental characteristics and the means of avoiding, minimising and managing adverse impacts. It also includes public involvement and the opportunity for an integrated response to a proposal. Additionally, the *Environment Effects Act* 1978 works in conjunction with the Commonwealth EPBC Act to allow for a bilateral agreement between the State and Commonwealth governments regarding awarding accreditation for the proposed Project, where an EES is required.

7.2.2 Flora and Fauna Guarantee Act 1988

The Victorian Flora and Fauna Guarantee Act 1988 (FFG Act) was established to provide a legal framework for enabling and promoting the conservation of Victoria's native flora and fauna, and to enable management of potentially threatening processes. One of the main features of the Act is the listing process, whereby native species, communities and potentially threatening process are listed in the schedules of the Act. Permits are required from the DEPI if the Project is likely to impact on FFG Act listed threatened species and communities on public land.

The four modelled FFG Act communities within the patch south-east of Five Mile Track are at least 600 m from the mine site. Thus these communities will not be directly impacted by Project activities and mitigation and management measures will need to be implemented to minimise potential indirect impacts. This patch is already located close to an occasionally used track.

No FFG Act flora species were identified during surveys. Yellow-wood is unlikely to grow within the Study Area, but if it were to occur, may grow within the remnant patch of Warm Temperate Rainforest over 600m from the mine site. Yellow-wood is a characteristic canopy species of two of the four modelled communities (DSE 2009a).

One FFG Act listed species, the masked owl, was observed sitting on a branch (presumably) during its nocturnal hunt, 1.2 km east-north-east of the mine site. Despite extensive searches of the habitat, including the Warm Temperate Rainforest patch to the south-east of the mine site, evidence of owl nests or roosts was not found. It is suspected that all three threatened owl species (sooty, masked and powerful) hunt in the Study Area, but do not nest or roost nearby. Owl detectability calculations suggest that the survey effort was sufficient to detect all three owl species, but mitigation and management measures will be designed to minimise impacts on all three species.

The masked owl was detected within a Powerful Owl Management Area (POMA) and therefore this may be redefined to include a Masked Owl Management Area (MOMA). However, this would not change the current management practices of the area as these two management area types are almost identical.

7.2.3 Catchment and Land Protection Act 1994

The Catchment and Land Protection Act 1994 (CaLP Act) is a key piece of legislation governing the management of pest plants and animals in Victoria. More specifically, landowners are responsible for avoid causing and/or minimising land degradation, including taking all reasonable steps to prevent soil erosion, protect water resources, eradicate regionally prohibited weeds, prevent the growth and spread of regionally controlled weeds and where possible, eradicate established pest animals, as declared under the Act.

Pest animals are common throughout the Study Area and therefore a pest animal strategy will be required to manage and prevent future spread and introductions. The Project will need to work in conjunction and consultation with the DEPI to control pest animals. A few noxious weeds (i.e. not including non-indigenous flora) are present in and around the Study Area. It is likely that weeds will be removed as part of vegetation clearance activities for the Project components and therefore mitigation and management of preventing the spread of seeds will be necessary. A weed management strategy will also involve the eradication and control of weeds on site where feasible to prevent them from re-establishing.

7.2.4 Wildlife Act 1975

The Wildlife Act 1975 provides the administrative and logistic framework for the protection and conservation of native wildlife within Victoria. The Act often works in combination with, or reference to, other acts (e.g. FFG Act) and governs most Victorian wildlife permit / licensing requirements. A permit is required to research, capture, translocate or kill any native wildlife in Victoria, regardless of its conservation status.

If native wildlife is found within vegetation required to be for cleared or lopped for the Project, the wildlife will be encouraged to leave (e.g. creating noise). If wildlife cannot or will not leave, salvage and translocation of such wildlife may be needed. Potential salvage and translocation operations need to be investigated for their efficacy and potential negative impacts (i.e. including consultation with experts and

DEPI) prior to consideration as a mitigation option for protected wildlife. These operations would require permits from the DEPI.

7.2.5 Planning and Environment Act 1987

The Planning and Environment Act 1987 establishes the objectives for planning in Victorian and provides the legislative framework for assessment of potential environmental impacts associated with the Project.

The Act is 'enabling' legislation and does not precisely define the scope of planning. The East Gippsland Planning Scheme is the relevant subordinate instrument for the assessment of the Project. The East Gippsland Shire Council is the responsible authority for administering the Planning Scheme.

The State and local planning policy frameworks of the East Gippsland Planning Scheme establish strategic land use and development policies and practices which promote environmental protection and sustainable development.

Relevantly, clause 52.17 outlines permit requirements regarding removal and lopping of native vegetation in order to protect and conserve native vegetation to reduce the impact of land and water degradation and provide habitat for plants and animals.

Victoria's recent native vegetation policy reforms may have a bearing on the Project regarding the calculation of vegetation loss and offset requirements (refer Section 8.3.1).

7.2.6 Victoria's Biodiversity Strategy

Victoria's Biodiversity Strategy complements the National Strategy for the Conservation of Australia's Biological Diversity and the FFG Act. It provides the overarching direction for biodiversity conservation and management in Victoria. The Biodiversity Strategy is coordinated with other natural resources management mechanisms such as Regional Catchment Strategies, Regional Forest Agreements, and National Parks and Reserve planning.

7.2.7 Forest Management Areas

The East Gippsland Forest Management Plan (EGFMP) covers 1.2 million ha of forest within the region (DSE 1995). The plan has been developed to address the requirements of the above legislation and strategies and incorporate DEPI Forest Management Zones.

Conservation guidelines outlined within the EGFMP state:

- Known populations of nationally and Victorian threatened flora (DEPI Vulnerable and of higher conservation significance) be included within Special Protection Zones (SPZs) or Special Management Zones (SMZs);
- Substantial representative populations of Victorian Rare flora, are poorly known, have few records or are at the edge of their range in East Gippsland to be included in a SPZ or SMZ;
- SPZs and SMZs to include:
 - Greater glider and common brushtail possum (<2 individuals per ha, >10 per km, or >15 per hour of spotlighting)
 - » Yellow-bellied glider (>0.2 per ha, >5 per km, or >7 per hour of spotlighting)
 - » Masked, powerful and sooty owl habitat

8 Management, Mitigation and Monitoring

8.1 General Mitigation and Management

Suitable measures to avoid, minimise and manage impacts to flora and fauna will be required for the Project, which should be outlined in an *Environmental Management Plan* (EMP). These measures will need to be continuously monitored for their efficiency and effectiveness, and improved if necessary.

All management measures will be conducted in consultation and in conjunction with DEPI, as they have several regional and area-specific management plans governing the site. General mitigation and management measures applicable to the development of the mine site are outlined in the following sections.

- Vegetation Removal and Fragmentation:
 - » Minimise area required for the mine site;
 - » Optimise use of already disturbed or cleared areas;
 - » Avoid areas of ecological significance where possible;
 - Implement a vegetation management plan in conjunction and consultation with DEPI and their existing management plans for the area;
 - Offset the loss of quality native vegetation by the protection or improvement/revegetation of native vegetation elsewhere in consultation with the DEPI (and in accordance with Victorian offsetting calculation guidelines).
- Weed and Introduced Animal Control:
 - » Ensure that vehicles and equipment arrive and leave free of vegetation and mud;
 - Provide identification keys for feral animals and noxious weeds to mine personnel (to prevent confusion);
 - » Cooperate with DEPI regarding weed and introduced animal control measures (e.g. euthanasia procedures);
 - » Discourage introduced animals, e.g. food waste should not be left exposed.
- Injured Wildlife Protocol:
 - As part of the EMP, develop an injured wildlife protocol in consultation with the DEPI and ensure that all personnel working with and for the Project are aware of protocol should they find or injure wildlife. The injured wildlife protocol should include:
 - Identification keys of native wildlife that may be present within the mine site (e.g. feral animals to be euthanized in accordance with control procedures above);
 - Contact names and numbers of wildlife carers, veterinarians, ecologists (with wildlife handling experience);
 - Immediate first aid procedures (e.g. keep in dark, warm place).

- Erosion and Sediment Transport:
 - Ensure appropriate measures to minimise erosion and sediment transport are included in the EMP;
 - » Ensure monitoring of turbidity is conducted in local waterways downstream of the mine site.
- Minimisation of Project Disturbance:
 - Minimising noise, light and vibration emissions wherever possible, including in frequencies beyond human hearing;
 - » Ensure mine site access and haul roads are well maintained to minimise noise and dust.
- Bushfire and General Fire Management:
 - » No open flames and abiding by local fire restrictions (as issued by the CFA);
 - » Flammable substances should be kept according to their Material Data Safety sheet;
 - » Diesel vehicles should be used where possible.
- Closure and Rehabilitation:
 - » Develop and implement a rehabilitation and closure plan that allows for the progressive rehabilitation of disturbed habitat over the Project life;
 - » Monitor and assess the success of the plan against predefined criteria;
 - » Offset native vegetation loss in consultation with DEPI.

8.2 Specific Management, Further Surveying and Monitoring

8.2.1 Warm Temperate Rainforest Community

This community will not be directly impacted by the Project. The patch is south-east of Five Mile Track and at least 600 m from the mine site. This patch is already located close to an occasionally used track. Its presence was confirmed by botanists from Ethos NRM (see Annex 1). The community is well documented (by DEPI) and therefore further surveying to establish its layout is probably not necessary. General mitigation and management measures will reduce indirect impacts from affecting this patch.

Current conservation measures for this community in State Forests focus on timber harvesting, altered fire regimes, tourism development and the spread of environmental weeds (DSE 2009a). The East Gippsland Forest Management Plan conservation actions and guidelines state that rainforest patches be surrounded by buffers of 20 to 40 m (DSE 1995). No further management or monitoring measures are expected to be required for this community in addition to the general measures specified in Section 8.1.

8.2.2 Threatened Flora Species

It is not expected that any EPBC and FFG Act threatened flora species occur within the mine site given the results of the field surveys and the substantial historical disturbance that has occurred in the area from timber harvesting and other activities. Regardless, planned surveys are to be undertaken to confirm (or falsify) the absence of Commonwealth and State threatened species. Consultation with authorities determined that spring surveys should target Colquhoun grevillea and these October surveys identified no individual plants or suitable habitat within the mine site (Annex 2; Carter & Walsh 2006). Although consultations determined that other threatened flora are unlikely to occur within the mine site, upcoming surveys will also pay particular attention to identifying the following species or their preferred habitat:

- Maroon leek-orchid (Duncan 2010);
- Leafless tongue-orchid (DSEWPaC 2013b);
- Thick-lipped spider-orchid (DSEWPaC 2013b); and
- Leafy nematolepis (DSEWPaC 2013b).

In general, surveying will involve:

- Conducted during spring 2013, the species' flowering period;
- Transect and/or quadrat surveying within suitable habitat;
- If specimens are detected:
 - » Monitor population over life and upon closure of the mine (e.g. annual surveying)
 - Implement a monitoring and management plan including translocation, propagation and revegetation programs

8.2.3 Forest Owls

The management and conservation of masked, powerful and sooty owl populations are governed by the DEPI and they have published documents and guidelines regarding owl conservation (e.g. Schedvin et al. 2003, Loyn et al. 2011). These guidelines were followed in the current study and were extended to include more surveying and detectability analyses (see Sections 5.5 and 5.8). Considering the results of surveys, it is highly likely that no owls roost or nest within the Study Area. However, it is suspected that the Study Area forms part of each species' hunting territory. It is likely that there is a pair of each species intermittently hunting the habitat within and surrounding the Study Area. Therefore seasonal or annual monitoring of these owls' presence and habitat use can be implemented.

Approximately a third of the Study Area is set aside as Special Protection Zones, predominantly for the protection and management of the three owl species (i.e. Sooty Owl Management Area – SOMA; Powerful Owl Management Area – POMA; Masked Owl Management Area – MOMA). These zones overlap particularly within the south-west corner of the Study Area. These areas (POMA, MOMA, SOMA) are managed for the protection of owl species and their prey but also for sustainable timber harvesting.

In the East Gippsland Forest Management Area the regional target populations range from 100 to 150 pairs over 500 to 800 ha (Schedvin et al. 2003, Silveira et al. 2003, Webster et al. 2004). The masked owl sighted (within a POMA) was presumably part of the known pair within the larger region and the presence of this pair resulted in the designation of the nearby MOMA. Our finding may result in the redefinition of the POMA to include a MOMA. The most important habitat to be protected within these management areas is breeding and/or roosting sites, neither of which is likely to occur in the Study Area.

8.2.4 Nocturnal and Cryptic Mammals and Frogs

The habitat within the Study Area is not of a sufficiently high quality to attract a high diversity of mammals. Habitat structure within the mine site and broader Study Area appears to be too open and simple, with little undergrowth to attract either species. The structural diversity of a habitat and high density of undergrowth is particularly important for many threatened mammals (Backhouse 2003, DSE 2009b). The habitat is also too disturbed and largely too dry for EPBC Act frog species, particularly the giant burrowing frog and green and golden bell frog, neither being detected during the extensive nocturnal spotlighting and call recognition surveys.

Further consultation has been, and will be, undertaken with the Commonwealth and State government regarding the requirement for any further mammal surveys (if required).

8.2.5 Other Fauna

It has already been established that brown treecreepers and lace monitors use some of the habitat of the Study Area and as they are capable of moving long distances, they are likely to move into adjacent habitat for the duration of the Project. If the Project commences, increased human activity in the mine site is likely to encourage many animals to move out of the area.

Although there may be some increase competition within surrounding habitat, these species were not abundant and it is likely they will adapt to the change. This is particularly relevant to the extent that large areas of the Study Area have historically been cleared for timber harvesting. However, the presence of these species will also be included in the Biodiversity Offset Strategy (refer Section 8.3).

8.3 Biodiversity Offset Strategy

Where adverse impacts cannot be avoided, mitigated and/or managed (e.g. direct vegetation loss within Project components), a *Biodiversity Offset Strategy* will need to be developed and implemented to compensate for these direct and indirect impacts on native vegetation and biodiversity. The *Biodiversity Offset Strategy* may involve protecting land, improving land tenure security, scientific research and/or financial investment in biodiversity programs. The *Biodiversity Offset Strategy* should:

- Provide net gain in native vegetation area and biodiversity values;
- Ensure offsets are kept in perpetuity;
- Be enforceable; and
- Involve both on-site and off-site offsets.

Appropriate native vegetation offset sites will need to be identified and secured prior to Project commencement. Offset management plans will also be required covering each offset site which detail the specific works to be implemented.

Since no EPBC Act listed species were detected, specific offsets for these species are unlikely to be necessary. Native vegetation to be removed will require offsets to be set aside in accordance with the *Native Vegetation* Framework and/or *Permitted clearing of native vegetation – Biodiversity assessment guidelines.* These offsets will be calculated to take into account:

- Site based:
 - » Area of native vegetation to be removed;
 - » Condition of native vegetation;
 - Types and conservation status of Ecological Vegetation Classes (EVCs) to be removed; and
 - » Presence of any threatened flora and fauna (of DEPI Rare status and above).
- Landscape level:
 - » Importance of area for Victoria's biodiversity; and
 - » Habitat importance.

As per Annex 1, Ethos NRM report that most of the vegetation within the mine site is likely to have a conservation significance of Medium. A small area of Riparian Forest to be removed has a High conservation significance. Possible increases in conservation significance may occur due to presence of the best 50% or remaining 50% of habitat for rare or threatened flora and fauna. The *Biodiversity Offset Strategy* developed will need to include detailed net gain calculations for proposed vegetation loss, after additional flora surveys are completed. Calculations based on the current legislation estimate that the required native vegetation offsets for vegetation loss associated with the mine site will range from:

- MINIMUM 104.4 HHa (1.26 HHa of High Conservation Significance and 103.14 HHa of Medium Conservation Significance vegetation), to
- MAXIMUM 155.96 HHa of High Conservation Significance vegetation.

An estimated Large Old Tree (LOT) protection target of between 890 and 1772 LOTs will also be required to offset the loss of 443 LOTs.

8.3.1 Reforms to Victoria's native vegetation permitted clearing regulations

Victoria's recent native vegetation policy reforms may have a bearing on the Project regarding the calculation of vegetation loss and offset requirements. The full extent of these implications is not yet known, as the government is still in the process of releasing guidance documents and have not enacted the policy changes at the time of writing.

As indicated by Ethos NRM (Annex 1) the native vegetation Reforms determine assessment requirements for applications to remove vegetation through determination of risk-based pathways, as defined in the *Permitted Clearing of Native Vegetation Biodiversity Assessment Guidelines* (DEPI, 2013). The risk-based pathway is determined by the Location Risk Map available from DEPI Biodiversity Interactive Maps, combined with the extent of proposed native vegetation removal.

Examination of the DEPI Location Risk Map shows that the majority of the main components of the mine site to be within Location A, with the proposed Buchan-Nowa Nowa Road diversion in Location C. Accordingly, the Project would be determined to require the High-risk pathway to be followed. The requirements are detailed in Chapter 7 of the *Guidelines*, which for moderate and high-risk pathways include:

- A habitat hectares assessment report;
- A statement of how impacts on biodiversity from the removal of native vegetation have been minimised;
- The Habitat Importance scores of the native vegetation to be removed; and
- An offset strategy that details how a compliant offset will be secured.

These major steps do not differ greatly from those required by the existing *Native Vegetation* Framework. However, the mechanisms for quantification of offset requirements have been changed. For a more detailed review of the implications of the native vegetation reforms see Section 5.4 of Annex 1.

9 References

- Adams, M. D. (2012). Vertical stratification of insectivorous bats (Microchiroptera) in harvested forests: assessing the role of structural clutter in shaping patterns of flight activity. PhD, University of Woolongong.
- Anderson, M. J. (2004). *DISTLM v.5: a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model.* New Zealand, Department of Statistics, University of Aukland.
- Anderson, M. J. (2005). *PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance*. New Zealand, Department of Statistics, University of Auckland.
- Backhouse, G. N. (2003). Spot-tailed Quoll Dasyurus maculatus; Action Statement FFG Act No. 15. Melbourne, Department of Sustainability and Environment.
- Beale, C. M. & P. Monaghan (2004). Human disturbance: people as predation-free predators? *Journal of Applied Ecology* 41: 335–343.
- Bell, G. (1959). The Iron Ore Deposits of Nowa Nowa, Eastern Gippsland. Victoria, Department of Mines.
- Bilney, R. J., J. G. White, F. A. L'Hotellier & R. Cooke (2011). Spatial ecology of Sooty Owls in southeastern Australian coastal forests: implications for forest management and reserve design. *Emu* 111(1): 92-99.
- BirdLife Australia (2013). Orange-bellied Parrot Recovery Project. Melbourne, BirdLife Australia.
- BOM. (2013a). Atlas of Groundwater Dependent Ecosystems. Canberra, Bureau of Meteorology; Australian Government, from http://www.bom.gov.au/water/groundwater/gde/map.shtml.
- BOM. (2013b). *Climate Data Online*. Melbourne, Bureau of Meteorology, from http://www.bom.gov.au/climate/data/index.shtml.
- Boulinier, T., J. D. Nichols, J. R. Sauer, J. E. Hines & K. H. Pollock (1998). Estimating species richness: the importance of heterogeneity in species detectability. *Ecology* 79(3): 1018-1028.
- Carter, O. & N. G. Walsh (2006). *National Recovery Plan for the Colquhoun Grevillea Grevillea celata*. Melbourne, Department of Sustainability and Environment.
- Chao, A., R. K. Colwell, C.-W. Lin & N. J. Gotelli (2009). Sufficient sampling for asymptotic minimum species richness estimators. *Ecology* 90(4): 1125-1133.
- Chao, A. & T.-J. Shen (2010). Program SPADE (Species Prediction and Diversity Estimation). http://chao.stat.nthu.edu.tw.
- Costermans, L. (2009). *Native Trees and Shrubs of South-Eastern Australia*. Sydney, New Holland Publishers.
- de Oliveira, M. C. (1998). Towards standardized descriptions of the echolocation calls of microchiropteran bats: pulse design terminology for seventeen species from Queensland. *Australian Zoologist* 30(4): 405-411.
- Department of Health (2008). Annual Report on Drinking Water Quality in Victoria 2007-08. Victoria, Victorian Department of Health.
- DEPI. (2013a). *Biodiversity Interactive Map.* Melbourne, Department of Sustainability and Environment, Victorian Government, from http://www.dse.vic.gov.au/about-dse/interactive-maps.
- DEPI. (2013b). Ecological Vegetation Class (EVC) Benchmarks for each Bioregion. Melbourne, Department of Sustainability and Environment, Victorian Government, from http://www.dse.vic.gov.au/conservation-and-environment/native-vegetation-groups-forvictoria/ecological-vegetation-class-evc-benchmarks-by-bioregion.

- DEPI. (2013c). *Threatened Species and Communities Advisory Lists*. Melbourne, Department of Sustainability and Environment, from http://www.dse.vic.gov.au/plants-and-animals/native-plants-and-animals/threatened-species-and-communities/threatened-species-advisory-lists.
- DEPI (2013d). *Victorian Biodiversity Atlas*. Department of Sustainability and Environment. Melbourne, Victorian Government.
- DPI (2007). *Lake Tyers Fisheries Reserve Management Plan 2007*. Fisheries Victoria Management Report Series No. 43. Melbourne, Department of Primary Industries.
- DPI (2012). East Gippsland Fishery Management Plan. Fisheries
- Victoria Management Report Series No. 84. Melbourne, Department of Primary Industries, Victorian Government.
- DPI. (2013). Soils/landforms of East Gippsland. Victoria, Department of Primary Industries, from http://vro.dpi.vic.gov.au/dpi/vro/egregn.nsf/pages/eg_soil_landform_units_waygara.
- Dresel, P. E., R. Clark, X. Cheng, M. Reid, A. Terry, J. Fawcett & D. Cochrane (2010). *Mapping Terrestrial Groundwater Dependent Ecosystems: Method Development and Example Output*. Melbourne, Victoria Department of Primary Industries.
- DSE (1995). *East Gippsland Forest Management Plan*. Melbourne, Department of Sustainability and Environment.
- DSE (2003). *Gippsland Lakes Ramsar Site Strategic Management Plan*. Victoria, Department of Sustainability and Environment.
- DSE (2004). Vegetation Quality Assessment Manual Guidelines for applying the habitat hectares scoring method. Version 1.3. Melbourne, Victorian Government Department of Sustainability and Environment.
- DSE (2008). Colquhoun Grevillea Grevillea celata; Action Statement FFG Act No. 211. Melbourne, Department of Sustainability and Environment.
- DSE (2009a). Rainforests and Myrtle Wilt; Flora and Fauna Guarantee Act Action Statement No. 238. Melbourne, Department of Sustainability and Environment.
- DSE (2009b). Southern Brown Bandicoot Isoodon obesulus obesulus. Melbourne, Department of Sustainability and Environment.
- DSEWPaC (2010). *Gippsland Lakes Ramsar site Ecological Character Description*. Canberra, Department of Sustainability, Environment, Water, Population and Communities; Commonwealth of Australia.
- DSEWPaC (2011). *Survey guidelines for Australia's threatened mammals*. Canberra, Department of Sustainability, Environment, Water, Population and Communities; Australian Government.
- DSEWPaC. (2013a). *EPBC Act Protected Matters Search Tool*. Canberra, Department of Sustainability, Environment, Water, Population and Communities; Commonwealth of Australia, from http://www.environment.gov.au/epbc/pmst/index.html.
- DSEWPaC. (2013b). *EPBC Act Species Profile and Threats Database*. Canberra, Department of Sustainability, Environment, Water, Population and Communities; Commonwealth of Australia, from http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl.
- Duncan, M. (2010). *National Recovery Plan for the Maroon Leek-orchid Prasophyllum frechii*. Melbourne, Department of Sustainability and Environment.
- East Gippsland Shire Council (2012). Nowa Nowa, Wairewa and Lake Tyers Aboriginal Trust Community Plan 2012-2016: Draft. Victoria, East Gippsland Shire Council.
- EGCMA (2005). *East Gippsland Regional Catchment Strategy 2005-2010*. Victoria, East Gippsland Catchment Management Authority.
- EGCMA (2006). *East Gippsland: Our Region*. Victoria, East Gippsland Catchment Management Authority.

- EPHC (2011). National guidance for the management of acid sulfate soils in inland aquatic ecosystems. Canberra, Environment Protection and Heritage Council; Natural Resource Managment Ministerial Council.
- Gotelli, N. J. & R. K. Colwell (2010). Estimating species richness. *Biological Diversity: Frontiers in Measurement and Assessment*. Oxford, UK, Oxford University Press.
- Greig, D. (1999). Field Guide to Australian Wildflowers. Sydney, New Holland Publishers.

Hammer, Ø., D. A. T. Harper & P. D. Ryan (2006). PAST - Palaeontological Statistics. Oslo.

- Herr, A. (1998). Aspects of the ecology of insectivorous forest-dwelling bats (Microchiroptera) in the western slopes of the Australian alps. PhD, Charles Sturt University.
- Johnson, K. L., G. M. Wright & D. H. Ashton (1968). Ecological studies of Tunnel Cave, Mt. Eccles. *Victorian Naturalist* 85: 350-356.
- Krebs, C. J. (2009). *Ecology: the experimental analysis of distribution and abundance*. USA, Pearson Benjamin Cummings.
- Loyn, R. (1986). The 20 minute search: A simple method for counting forest birds. Corella 10: 58-60.
- Loyn, R., E. McNabb & J. MacHunter (2011). *Approved Survey Standards: Sooty Owl Tyto tenebricosa*. Melbourne, Department of Sustainability and Environment.
- Loyn, R. H., E. G. McNabb, L. Volodina & R. Willig (2001). Modelling landscape distributions of large forest owls as applied to managing forests in north-east Victoria, Australia. *Biological Conservation* 97(3): 361-376.
- Menkhorst, P. W., Ed. (1995). Mammals of Victoria. Melbourne, Oxford University Press.
- Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. TREE 10(2): 58-62.
- Orchard, A. E. & A. J. G. Wilson, Eds. (2001). *Flora of Australia, Volume 11A; Mimosaceae, Acacia Part 1*. Melbourne, Inkata Press.
- Price, M. & A. Lill (2009). Visual contact with humans and condition in domesticated budgerigars. *Avian Biology Research* 2(4): 221-228.
- Russell, L. D. (1983). A Report on Three Water Supply Catchments in East Gippsland. Victoria, Soil Conservation Authority.
- Schedvin, N. K., N. Clemann, R. Loyn & E. McNabb (2003). Masked owl Tyto novaehollandiae novaehollandiae Action Statement. Flora and Fauna Guarantee Act 1988. Victoria, Arthur Rylah Institute, Department of Sustainability and Environment.
- Silveira, C. E., N. Clemann & R. Loyn (2003). Sooty Owl Tyto tenebricosa Action Statement. Flora and Fauna Guarantee Act 1988. Melbourne, Arthur Rylah Institute, Department of Sustainability and Environment.
- Simpson, K. & N. Day (1999). Field Guide to the Birds of Australia. Melbourne, Viking.
- Stone, E. L. & P. J. Kalisz (1991). On the maximum extent of tree roots. *Forest Ecology and Management* 46(1–2): 59-102.
- Swanson, S. (2007). Field Guide to Australian Reptiles. Melbourne, CSIRO Publishing.
- Tyler, M. J. & F. Knight (2011). Field Guide to the Frogs of Australia. Victoria, CSIRO Publishing.
- Walsh, N. G. & T. J. Entwisle, Eds. (1996). *Dicotyledons: Winteraceae to Myrtaceae*. Flora of Victoria. Melbourne, Inkata Press.
- Watson, D. M. (2003). The 'standardised search': An improved way to conduct bid surveys. *Austral Ecology* 28: 515–525.
- Webster, A., R. Humphries & K. Lowe (2004). *Powerful Owl Ninox strenua Action Statement No. 92*. Flora and Fauna Guarantee Act 1998. Melbourne, Department of Sustainability and Environment.

Wintle, B. A., R. R. Kavanagh, M. A. McCarthy & M. A. Burgman (2005). Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials. *Journal of Wildlife Management* 69(3): 905-917.

10Annexes

Annex 1 Preliminary Vegetation Assessment and Ecological Vegetation Class Mapping (Ethos NRM)

Preliminary Vegetation Quality Assessment and Ecological Vegetation Class Mapping:

Nowa Nowa Iron Project

Prepared For:

Earth Systems October 2013

ETHOS NRM PTY LTD

 ABN: 44 104 999 528

 PO Box 204, 162 Macleod St

 Bairnsdale, Vic. 3875

 Telephone:
 03-5153 0037

 Facsimile:
 03-5153 0038

 E-mail:
 info@ethosnrm.com.au

 Website:
 www.ethosnrm.com.au

ENVIRONMENTAL, PLANNING & NATURAL RESOURCE MANAGEMENT CONSULTANTS

TABLE OF CONTENTS

Ε	XECU	TIVE SUMMARY	4
1		INTRODUCTION	6
	1.1	OBJECTIVES	
	1.2	SITE LOCATION AND DESCRIPTION	
2		METHODOLOGY	
	2.1	DATA AND LITERATURE REVIEW	
	2.2 2.3	FIELD SURVEY	
	2.4	LIMITATIONS OF FIELD SURVEY AND EVC MAPPING	10
	2.5	ESTIMATION OF NATIVE VEGETATION LOSS AND OFFSETS	
3		FLORA VALUES	
	3.1 3.2	BIOREGION ECOLOGICAL VEGETATION CLASSES	
	3.2 3.2.		
	3.2.		
	3.2. 3.2.		
	3.2.	5 Warm Temperate Rainforest	17
	3.3 3.4	VEGETATION QUALITY AND CONSERVATION STATUS FLORA SPECIES RECORDED	
	3.4		
4		RARE AND THREATENED SPECIES OVERVIEW	
	4.1 4.2	EPBC PROTECTED MATTERS SEARCH DSE RARE & THREATENED SPECIES	
	4.2.	1 Flora	23
	<i>4.2.</i> 4.3	2 Fauna Role of Rare and Threatened Species in the Determination	
	4.5	CONSERVATION SIGNIFICANCE FOR NATIVE VEGETATION	
	4.4	RARE AND THREATENED SPECIES AND THE NATIVE VEGETATION REFORMS	25
5		POLICY AND LEGISLATIVE IMPLICATIONS	27
	5.1	COMMONWEALTH LAWS	
	5.1. 5.2	1 Environment Protection and Biodiversity Conservation Act 1999	
	5.2.	1 Flora and Fauna Guarantee Act 1988	27
	5.2.		
	5.2. 5.2.	5	
		VICTORIA'S NATIVE VEGETATION MANAGEMENT - A FRAMEWORK FOR ACTION	29
	5.3. 5.3.		
	5.4	REFORMS TO VICTORIA'S NATIVE VEGETATION PERMITTED CLEARING REGULATIONS.	
6		LIKELY IMPACTS ON NATIVE VEGETATION	33
	6.1	SUMMARY OF POTENTIAL VEGETATION REMOVAL	33
	6.2	HABITAT HECTARES - ESTIMATE OF VEGETATION LOSS	
	6.3 6.4	LARGE OLD TREES CONSERVATION SIGNIFICANCE & GAIN TARGET	
	6.5	LIKE-FOR-LIKE REQUIREMENTS.	

	6.5.	1 Vegetation or Habitat type of Offset	36
	6.5.		
	6.5.	3 Quality Objectives for Offset	37
	6.5.	4 Proportion of revegetation included in offset	37
	6.5.	5 Vicinity	37
	6.5.	- J	
	6.5.		
	6.6	REFORMS TO VICTORIA'S NATIVE VEGETATION PERMITTED CLEARING REGULATIONS.	37
7		RECOMMENDATIONS FOR FURTHER VEGETATION ASSESSMENT	39
8		REFERENCES	40
9		APPENDICES	
-			
		APPENDIX 1: NOWA NOWA IRON PROJECT INFRASTRUCTURE AND LAYOUT MAP	
		APPENDIX 2: DSE EVC MAPPING APPENDIX 3: HABITAT HECTARE SHEETS	
		APPENDIX 4: FLORA SPECIES LIST RECORDED BY ETHOS NRM, APRIL 2013	
		APPENDIX 5: DF DC P ROTECTED MATTERS SEARCH	
		APPENDIX 0. DSE DATABASE NARE & THREATENED I LORA NECORDS MAP	
		APPENDIX 7: DEPT HIGHWEYEGETATION REFORMS ECCATION RISK MAP	
	5.0	VEGETATION REGULATION	
	9.9	APPENDIX 9: DEPI NATIVE VEGETATION REFORMS STRATEGIC BIODIVERSITY SCO	
	0.0	MAP	
		IVI/~\I	50

TABLES

TABLE 1: VEGETATION QUALITY ASSESSMENT SCORES AT SAMPLE SURVEY SITES TABLE 2: VQA SCORES FOR SAMPLE SITES IN THE EAST GIPPSLAND UPLANDS BI TABLE 3: VQA SCORES FOR SAMPLE SITES IN THE EAST GIPPSLAND LOWLANDS I	OREGION.20
TABLE 4: EPBC PROTECTED MATTERS ONLINE SEARCH TOOL	23
TABLE 5: DSE THREATENED FLORA RECORDS (DSE DATABASE)	24
TABLE 6: DSE THREATENED FAUNA RECORDS (DSE DATABASE)	24
TABLE 7: FOREST MANAGEMENT ZONES SUMMARY	
TABLE 8: SCENARIOS OF IMPACTS OF BEST OR REMAINING HABITAT ON CO	NSERVATION
SIGNIFICANCE	
TABLE 9: SUMMARY OF VEGETATION LOSS ESTIMATES.	
TABLE 10: OFFSET ESTIMATE SUMMARY BASED ON HABITAT SCORE X E CONSERVATION STATUS	
TABLE 11: OFFSET ESTIMATE SUMMARY BASED ON POTENTIAL RARE AND T SPECIES	THREATENED

FIGURES

FIGURE 1:	VEGETATION STUDY AREA LOCALITY MAP	8
FIGURE 2:	EVC MAPPING BY ETHOS NRM WITHIN THE VEGETATION STUDY AREA	13

Cover Photo: Shrubby Dry Forest along	g Tomato Track (Ethos NRM).
---------------------------------------	-----------------------------

Ethos NRM Pty	Ltd			
Document Control				
Client	Earth Systems			
Title	Preliminary VQA & EVC Mapping – Nowa Nowa I	on Pro	oject	
Author	Amie Hill and Kerry Spencer			
Manager	Eric Sjerp			
Version	Final v3.0			
Electronic File Name	13007 nowa nowa iron project prelim veg asst_fin	al.doc>	(
Date Last Saved	9/10/2013 2:25 PM			
Date Last Printed	9/10/2013 2:27 PM	No	Format	Date
Distribution:	Kerry Spencer	1	Draft v1.0 for review	19/04/13
	Eric Sjerp	1	Draft v1.0 for review	22/04/13
	Earth Systems (Megan Price and Daniel Banfai)	1	Draft v1.0 pdf via email	23/04/13
	Eric Sjerp	1	Draft v2.0 for review	19/09/13
	Earth Systems (Megan Price and Daniel Banfai)	1	Draft v2.0 pdf via email	20/09/13
	Eric Sjerp	1	Draft v2.1 for review	9/10/13
	Earth Systems (Megan Price and Daniel Banfai)	1	Final (v3.0) pdf via email	9/10/13

EXECUTIVE SUMMARY

Ethos NRM Pty Ltd has been engaged by Earth Systems to undertake broad-scale Ecological Vegetation Class (EVC) mapping and Vegetation Quality Assessment (VQA; Habitat Hectares) sampling across an 1100 hectare Vegetation Study Area for the Nowa Nowa Iron Project. The Vegetation Study Area covers the proposed mine and associated components and is located in the Tara State Forest approximately 7km north of Nowa Nowa in the vicinity of Tomato Track, Five Mile Road and Nowa Nowa-Buchan Road.

The Tara State Forest is Crown land managed by the Department of Environment and Primary Industries and has been largely disturbed by historical timber harvesting activities.

This study was undertaken based on information and survey sites specified by Earth Systems to provide an overview of potential vegetation loss and implications of the mine on flora and vegetation values.

Habitat Hectare assessment was undertaken to determine the type and quality of vegetation at 17 survey sites, as a representative sample of the different EVCs and bioregions mapped by DSE across the site. Field survey data was used to verify and modify EVC mapping at a broad scale across the Vegetation Study Area, in combination with aerial imagery interpretation and local topography.

The Vegetation Study Area was confirmed as occurring across two bioregions; East Gippsland Uplands (EGU) covers the majority of the Vegetation Study Area and mine Project area, with a smaller area occurring within the East Gippsland Lowlands (EGL).

Five EVCs were identified during the field survey. The Vegetation Study Area consists predominantly of Lowland Forest and Shrubby Dry Forest, with Damp Forest, Riparian Forest and Warm Temperate Rainforest occurring along the creeks and drainage lines. Warm Temperate Rainforest has a Bioregional Conservation Status (BCS) of Rare in both bioregions, Riparian Forest has a BCS of Depleted in the EGL and Least Concern in the EGU, and the remaining EVCs have a BCS of Least Concern in both bioregions.

Vegetation quality recorded at the sample sites was consistent with the DSE modelled quality scores, as most habitat scores ranged between 60 and 70, with some higher scores recorded within the vicinity of Tomato Track. Vegetation across the sites surveyed was floristically diverse. A low density of large trees, particularly in areas previously impacted by timber harvesting (approximately 50% of the site since the 1960s), was also recorded. Old growth forest was not observed during field surveys.

Ethos NRM recorded 141 terrestrial flora species during the field survey, including 4 weed species and 6 rare species. No flora species or communities listed as threatened on the *Flora and Fauna Guarantee* (FFG) *Act 1988* or the *Environment Protection and Biodiversity* (EPBC) *Act 1999* were identified during the survey.

It is recommended that further flora surveys are conducted in Spring to provide a more comprehensive inventory of herbaceous and cryptic species, and to identify if suitable habitat is present for some rare and threatened species to warrant more detailed and targeted species surveys. If required, targeted surveys should be undertaken during the appropriate season. Flora which should be considered for targeted surveys include Slender Wire-lily (*Laxmannia gracilis*), orchids including the EPBC listed Leafless Tongue-orchid (*Cryptostylis hunteriana*) and Maroon Leek-orchid (*Prasophyllum frenchii*), and Colquhoun Grevillea (*Grevillea celata*).

The components of the Nowa Nowa Iron Project which will incur native vegetation impacts include the mine footprint (including open pit, waste rock dump, infrastructure and access/haul roads), the proposed diversion of the Nowa Nowa-Buchan Road, and the proposed mine access track intersection with the Bruthen-Buchan Road. Total native

vegetation loss has been assumed within the mine impact areas, including buffers, totalling 146 hectares (ha). This loss area has been used for the calculation of an indicative loss of native vegetation in Habitat Hectares (HHa) and the minimum likely net gain (offset) requirements.

It is estimated that a total of <u>146 ha</u> of vegetation equating to approximately <u>104 Habitat</u> <u>Hectares (HHa)</u> is proposed for removal as part of the Nowa Nowa Iron Project, comprising of:

- Mine Footprint, estimated loss of 138.42 ha equating to 98.72 HHa;
- Nowa Nowa-Buchan Road diversion, estimated loss of 7.24 ha equating to 5.16 HHa; and
- Bruthen-Buchan Road Access, estimated loss of 0.13 ha equating to 0.10 HHa.

Large Old Trees (LOTs) must also be accounted for when removing native vegetation, and within the Project Areas an estimated 443 LOTs will be removed comprising of:

- Mine Footprint, estimated loss of 433 LOTs;
- Buchan-Nowa Nowa Road diversion, estimated loss of 9 LOTs; and
- Bruthen-Buchan Road Access intersection, estimated loss of 1 LOT.

EVCs which are expected to be impacted within the Project Area footprints and road intersection are predominantly Shrubby Dry Forest, Lowland Forest, and small areas of Damp Forest and Riparian Forest. Most of the vegetation was estimated to have Conservation Significance of Medium based on habitat scores and Bioregional Conservation Status (BCS), except for Riparian Forest which was High, due to a habitat score greater than 0.6 and a BCS of Depleted.

The Project site does not impact on the rare EVC Warm Temperate Rainforest which is located in the south-east corner of the Vegetation Study Area. This Warm Temperate Rainforest vegetation has a Conservation Significance of Very High which requires Ministerial approval for removal, and therefore it is recommended that any impacts on this area be avoided.

There is potential for impacts on several rare flora species recorded by Ethos NRM including Forest Red Box (*Eucalyptus polyanthemos* subsp. *longior*), Gippsland Stringybark (*Eucalyptus mackintii*), Smooth Geebung (*Persoonia levis*), Wallaby-bush (*Beyeria lasiocarpa*) and Paperbark Tea-tree (*Leptospermum trinervium*).

An indicative combined net gain target to offset the loss of 146 hectares (equating to 104 HHa) of vegetation removal associated with the proposed Nowa Nowa Iron Project mine site, is estimated to range from:

- MINIMUM 104.4 HHa (1.26 HHa of High Conservation Significance and 103.14 HHa of Medium Conservation Significance vegetation), to
- MAXIMUM 155.96 HHa of High Conservation Significance vegetation.

An **estimated** Large Old Tree (LOT) protection target of between **890** and **1772 LOTs** will be required to offset the loss of 443 LOTs.

In order to meet DEPI's regulatory requirements, further investigation will be required prior to Project commencement. This will enable accurate quantification of the loss of vegetation within the footprint, assessment of the presence of habitat for rare and threatened species, and calculation of offset requirements. Consultation with DEPI will be required to confirm the further survey requirements of the Project.

This assessment has been prepared using Victoria's Native Vegetation Framework. Potential implications of the Reforms to Victoria's native vegetation policy are discussed throughout the document.

1 INTRODUCTION

The Nowa Nowa Iron Project (the Project) proposed by Eastern Iron Limited, operating through their wholly owned subsidiary Gippsland Iron Pty Ltd, is a greenfield development of a high grade magnetite/hematite deposit generally referred to as 'Five Mile' and within EL4509.

The Project involves an open cut mining operation from a single pit with dry processing at the site to upgrade the material to a saleable product. It is anticipated that the Project will produce up to 1Mt of ore per annum, over an initial mine life of 8-10 years.

The Nowa Nowa Iron Project is located approximately 7 km north of the township of Nowa Nowa, which is situated on the Princes Highway between Bairnsdale and Orbost in East Gippsland, Victoria. The site is wholly within the Tara State Forest (Crown land) which is primarily managed for forestry activities in the vicinity of the proposed works.

It is proposed to transport the ore product from the mine site by road to the existing South East Fibre Exports (SEFE) wharf at the Port of Eden in Edrom, NSW.

The Nowa Nowa Iron Project will have impacts on native vegetation at the mine site, for the proposed diversion of the Nowa Nowa-Buchan Road and for works to upgrade the intersection of the mine access road at the Bruthen-Buchan Road. No additional vegetation loss is expected along the proposed Project transportation route within Victoria.

Ethos NRM Pty Ltd has been engaged by Earth Systems to undertake a preliminary vegetation assessment related to potential vegetation loss associated with the Project to support an Environmental Effects Statement (EES) Referral. Assessment of vegetation type and condition has been undertaken within a broad area, referred to in this report as the 'Vegetation Study Area', which contains the proposed mine site and associated infrastructure.

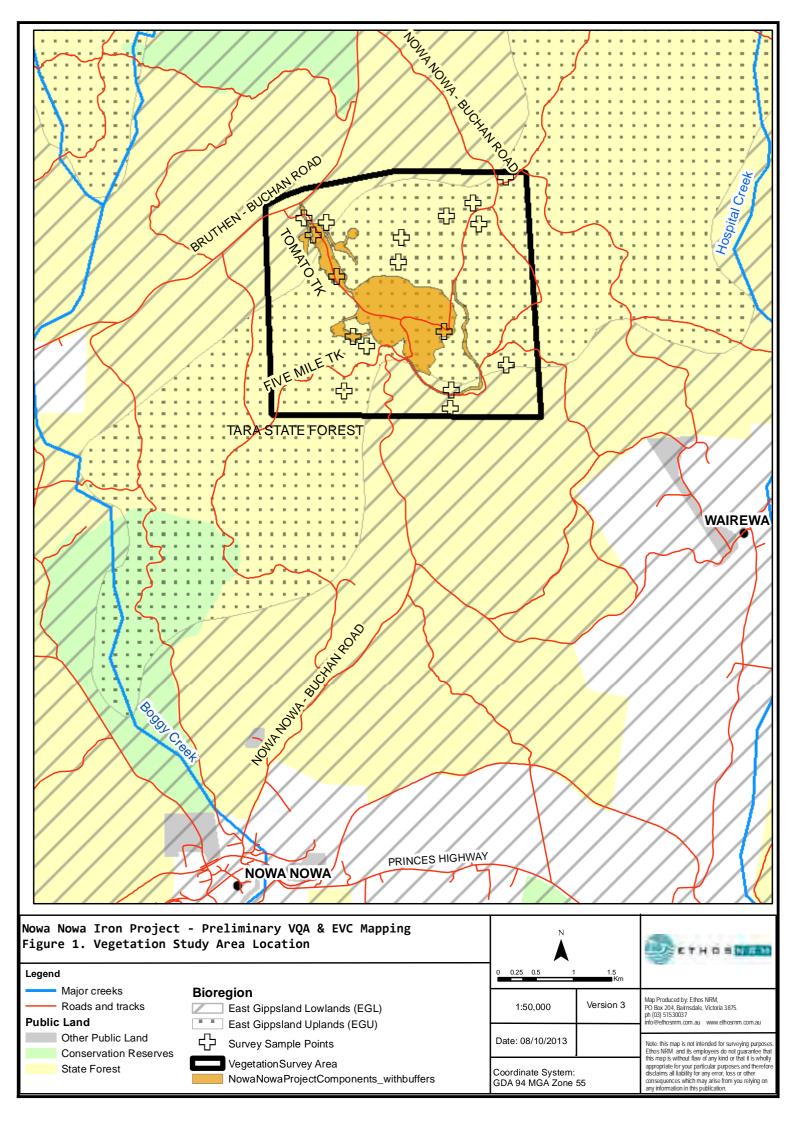
1.1 Objectives

The purposes of this survey and report are to:

- 1. Undertake Vegetation Quality Assessment (VQA) and calculate habitat scores for 15 predetermined survey sample points and 2 additional sample points;
- Undertake broad-scale mapping of EVCs across the Vegetation Study Area polygon based on field observations, DSE EVC mapping and aerial imagery interpretation;
- 3. Provide preliminary indication of the potential vegetation loss (in Habitat Hectares) within:
 - the mine footprint (including all infrastructure except those listed below),
 - the diversion of the Nowa Nowa Buchan Road, and
 - the Bruthen Buchan Road/mine access road intersection.
- 4. Provide advice on legislative obligations, potential impacts of the proposed mine on flora and vegetation values, and further information/survey requirements

This report provides preliminary information on the type and condition of vegetation across the Vegetation Study Area and the likely impact within the proposed mine site footprint on flora and vegetation values.

1.2 Site Location and Description


The Vegetation Study Area is approximately 1100 hectares in size and encompasses all components associated with the Nowa Nowa Iron Project. The Vegetation Study Area was determined prior to delineation of the mine footprint, and included a broad area surrounding the proposed mine site. Site access is proposed from the Bruthen-Buchan Road which is managed by VicRoads. Refer to **Figure 1** for the mine site location.

The topography across the Vegetation Study Area is undulating, with several creeks dissecting the site. The steepest slopes occur to the south of Five Mile Track, with moderate slopes along Harris Creek and its tributaries in the north to north-west of the site. Areas to the east and west edges of the site have lower relief with relatively flat, wide spurs. Soils are generally well draining silty loams, with exposed rock dominant on dry spurs and slopes, with lower slopes and sheltered aspects having higher clay content and lacking the rock component.

The area within and surrounding the mine site is zoned Public Conservation and Resource Zone (PCRZ) under the East Gippsland Planning Scheme (DPCD, 2013), and is covered by the Wildfire Management Overlay (WMO) and the majority of the site is covered by the Erosion Management Overlay (EMO).

Forest Management Zones across the Vegetation Study Area and the mine site include parts of several different Special Management Zones (SMZs) and Special Protection Zones (SPZs), identified using DSE's Biodiversity Interactive Map (DSE, 2013a). Section 5.2.4 provides more detail on Forest Management Zones.

Logging history available from DSE's Biodiversity Interactive Map (DSE, 2013a) shows that timber harvesting has impacted approximately 50% of the Vegetation Study Area since the 1960s. Within the last 15 years, approximately 20% of the total Vegetation Study Area has been subject to timber harvesting.

2 METHODOLOGY

This report has been prepared primarily to address current native vegetation policy requirements prescribed by Victoria's Native Vegetation Management - A Framework for Action (DNRE, 2002; herein referred to as the '*Framework*'). However, at the time of writing, it is acknowledged that a new policy is proposed; Reforms to Victoria's Native Vegetation Permitted Clearing Regulations (DEPI, 2013) which will have implications for the calculation of offset requirements for this project. Ethos NRM has incorporated comments on potential implications of the new policy where relevant throughout this document based on information currently available from the Department of Environment and Primary Industries (DEPI). Further details regarding this are included in Sections 4.4, 5.4 and 6.6.

2.1 Data and Literature Review

This report has used a number of data sources to aid in the identification of potential flora and fauna values associated with the proposed vegetation removal, as well as any other conditions that may be relevant to the quantification of vegetation loss and calculation of the Offset like-for-like conditions. The report has reviewed the following data sources:

- Biodiversity Interactive Map (DSE interactive maps);
- Planning Maps Online;
- DSE rare and threatened species database;
- EPBC on-line Protect Matters Search Tool; and
- Ecological Vegetation Class Descriptions and Benchmarks.

2.2 Field Survey

A field survey within the Vegetation Study Area of approximately 1100 hectares surrounding the proposed mine site was undertaken on the 26th and 27th of March and 5th of April, 2013.

Habitat Hectare assessment (using the Department of Sustainability and Environment (DSE) prescribed methodology: Vegetation Quality Assessment Manual (DSE, 2004a)) was undertaken to determine the type and quality of the vegetation at 15 specified sample survey sites. The sample survey sites were selected in consultation with Earth Systems, as a representative sample of the different mapped EVCs and bioregions across the site.

During field investigations, an additional two sites were also scored, as they comprised either an EVC (Warm Temperate Rainforest) or vegetation condition (Shrubby Dry Forest near the Bruthen-Buchan Rd – Tomato Track intersection) not represented in the initial 15 sites.

Information which was acquired from on-site vegetation quality assessment includes:

- Site Description (location) and Site Specific Details;
- Ecological Vegetation Class descriptions; and
- Habitat Hectares Assessment (VQA) of 17 sample sites.

All field assessments were undertaken by a DSE accredited Native Vegetation Assessor.

2.3 EVC Mapping

EVC mapping of the 1100 ha area surrounding the proposed mine site was undertaken at a broad scale, and based on a combination of field observations, DSE EVC mapping, aerial imagery interpretation, aspect and topography.

In addition to the 17 VQA sample sites, ground-truthing of vegetation types and boundaries was undertaken in locations which appeared to be different to the sample sites, and with a focus on the Project area. In particular, further ground-truthing was undertaken near the proposed upgrade to the Bruthen-Buchan Road for mine site access, and along creeklines within the mine footprint.

Additional observations regarding EVC distribution and general condition were recorded while walking to sample sites and driving along tracks within the survey area (all except the southern extent of the Nowa Nowa-Buchan Road and eastern extent of Five Mile Track were traversed).

2.4 Limitations of Field Survey and EVC Mapping

Certain flora species are only readily identifiable onsite during periods of particular environmental and climatic conditions. The cover and diversity of herbaceous species was generally low, however it would be expected that both diversity and cover of herbaceous species would increase particularly within areas of Lowland Forest and moister localities during Spring. A variety of grasses, herbs, ferns and shrubs were identified to genus and not species level during the survey due to the lack of flowering/fruiting/reproductive material available. However, the information collected is considered sufficient to provide an accurate determination of the quality of vegetation at the sample sites.

Only a portion of the Vegetation Study Area was sampled for vegetation quality and ground-truthed for EVC identification and distribution. Whilst undertaking field surveys observation of patterns of occurrence of EVCs within the landscape was recorded, and this information has provided the basis to enable the broader scale mapping of EVCs across the Vegetation Study Area. For example, in areas not visited, slope, slope position and aspect were primary determinants of the EVCs attributed. Where clear patterns were not observed, DSE EVC mapping was used as the default.

Boundaries of EVCs are often not discrete, and eco-tones (areas of EVC overlap) can be 100 metres or more wide, in particular where topographic relief was low at the survey site. Broad eco-tones were observed between Shrubby Dry Forest and Lowland Forest in such circumstances, and can partly be attributed to the similarity of the floristics of these two EVCs at the Vegetation Study Area. The most well-defined EVC boundaries tended to be along creeklines, where the EVC along the creekline was a 'damper' EVC than the EVC on the adjacent slope, and where there was also a greater difference in floristic assemblages.

This lack of precision in EVC boundaries (eco-tones) is inherent in EVC mapping, and is expected to have only a minor impact on the estimation of vegetation loss in Habitat Hectares, due to generally low variation in condition and similar floristics between related EVCs across the Vegetation Study Area.

2.5 Estimation of Native Vegetation Loss and Offsets

Estimation of vegetation loss from proposed works associated with the Nowa Nowa Iron Project mine site was calculated within an impact footprint provided by Earth Systems.

The impact footprint comprises all related infrastructure, dams and roads including the following buffers:

- Mine pit 50m
- Buildings (inner and outer bushfire management zones) 59m
- All other components 5m

Total loss of native vegetation has been assumed within the proposed mine footprint, associated infrastructure and access tracks, including buffers. Refer to Appendix 1 for the Project Infrastructure and Layout Map provided by Earth Systems.

The broad-scale EVC mapping of the Vegetation Study Area and VQA sample sites were not sufficient to prescribe habitat zones for the calculation of native vegetation loss, to meet all requirements of the *Framework*, within the proposed mine site impact footprints. However the data collected was used to ascribe estimated condition scores across the site to provide an estimation of indicative vegetation loss and offset requirements in Habitat Hectares.

This involved attributing mapped EVC polygons within the mine footprint with the habitat score of the estimated most similar VQA survey sample site, based on field survey observations of EVC distribution and condition, Aerial Photograph Interpretation, topography and proximity.

The scale of the EVC mapping and sampling effort at the mine site is not adequate for the determination of conservation significance and offset like-for-like criteria, and hence calculation of the net gain offset requirement, as specified in the Native Vegetation Framework (DNRE, 2002). However, based on the data collected, broad analysis of likely conservation significance determinations has been undertaken to provide an indicative range of offset requirements in Habitat Hectares. The best or remaining habitat for individual threatened species and communities has not been determined due to the broad scale of data collection, limited sampling within the mine footprint, and forthcoming changes to the State vegetation policy.

A detailed Habitat Hectare assessment will need to be undertaken within the mine site during the approvals process for the Project to quantify the vegetation loss and offset requirements.

3 FLORA VALUES

Flora values have been assessed across the Vegetation Study Area, which includes coverage of a broader area than the proposed mine impact footprints.

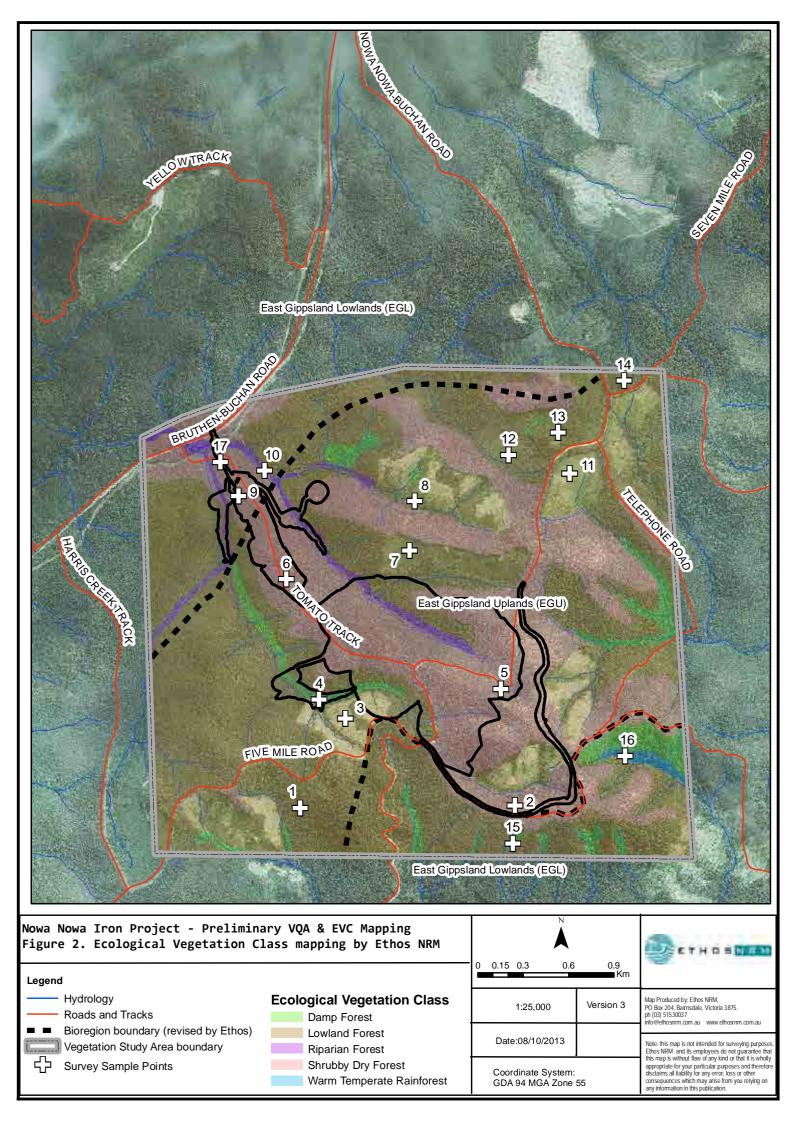
3.1 Bioregion

The Vegetation Study Area is dissected by two bioregions, the East Gippsland Lowlands and East Gippsland Uplands, with the latter covering about two thirds of the Vegetation Study Area and almost 95% of the mine footprints. The East Gippsland Lowlands occur in lower relief areas to the south-east and north-west of the Vegetation Study Area. The East Gippsland Uplands dominate the centre of the Vegetation Study Area with generally higher elevation and steeper slopes, extending from the north-east to south-west and extending beyond Mount Nowa Nowa.

The East Gippsland Uplands comprise of tablelands and mountains up to 1400 metres in altitude. The vegetation is dominated by Shrubby Dry Forest and Damp Forest on the upland slopes, with Wet Forest ecosystems restricted to higher altitudes (DPI, 2013).

The East Gippsland Lowlands comprise gently undulating terraces flanked by coastal plains, dunefields and inlets. The vegetation is dominated by Lowland Forest with Damp Forest and Shrubby Dry Forest ecosystems interspersed throughout the foothills (DPI, 2013).

In some sections of the Vegetation Study Area it is difficult to locate the on-ground bioregion boundary, as the boundary does not appear to align with obvious topographic features. This is particularly notable in the north and north-west sections, for which DSE mapped boundaries have been used. The boundary between the bioregions was more obvious on-ground in the south-east corner and where a discrepancy with the mapped boundary was observed. Hence, for the purposes of EVC mapping and habitat hectare calculation, a portion of the DSE mapped bioregion boundary was altered by Ethos NRM to align with Five Mile Road where it follows a ridgeline east of the Nowa Nowa-Buchan Road.


3.2 Ecological Vegetation Classes

A total of five Ecological Vegetation Classes (EVCs) were identified within the Vegetation Study Area by Ethos NRM during the field survey, including one EVC (Riparian Forest) which was not included in DSE's modelled EVC layer (DSE, 2013a; refer to Appendix 2). The distribution of EVCs across the site varied from the DSE EVC modelling, with the main differences being that Lowland Forest (EVC 16) is more extensive, Shrubby Dry Forest (EVC 21) and Damp Forest (EVC 29) more restricted, and Riparian Forest occurring in some areas mapped as Damp Forest (EVC 18) along creeks.

Lowland Forest was the dominant EVC mapped by Ethos NRM, representing approximately 65% of the Vegetation Study Area. Shrubby Dry Forest was restricted to ridges and northerly aspects, and was more prevalent in the East Gippsland Uplands bioregion, occurring across almost 30% of the Vegetation Study Area. The remaining EVCs comprised less than 10% of the Vegetation Study Area, including; Damp Forest 4.1%, Riparian Forest 1.6% and Warm Temperate Rainforest (EVC 32) 0.4%.

Within the mine footprint, Shrubby Dry Forest is the dominant EVC covering almost 75% of the mine site, with Lowland Forest comprising almost 20%, Riparian Forest 4% and Damp Forest 3%. Warm Temperate Rainforest will not be impacted by the mine footprint or other Project components at the mine site.

The distribution of EVCs mapped within the Vegetation Study Area and the locations of sample sites are displayed in **Figure 2**. EVC descriptions below provide typical floristics and structure of vegetation at the survey sites.

3.2.1 Lowland Forest

Lowland Forest was the most widespread EVC within the vegetation survey area, occurring on moderate slopes to relatively flat areas. The eucalypt canopy species were diverse across the Vegetation Study Area, with White Stringybark (*Eucalyptus globoidea*) and Silvertop (*Eucalyptus sieberi*) dominant, with Messmate (*Eucalyptus obliqua*) and Mountain Grey-gum (*Eucalyptus cypellocarpa*) also commonly recorded. There were very few canopy trees remaining in logging coupes.

Understorey trees were uncommon and included Sallow Wattle (*Acacia longifolia*) and Cherry Ballart (*Exocarpos cupressiformis*).

The shrub layer was diverse, and frequently recorded species included; Shiny Cassinia (*Cassinia longifolia*), Common Cassinia (*Cassinia aculeata*), Narrow-leaf Bitter-pea (*Daviesia leptophylla*), Large-leaf Bush-pea (*Pultenaea daphnoides*), Common Heath (*Epacris impressa*), Snowy Daisy-bush (*Olearia lirata*), Narrow-leaf Geebung (*Persoonia linearis*), Shrubby Platysace (*Platysace lanceolata*), Hairy Mint-bush (*Prostanthera hirtula*), Hop Goodenia (*Goodenia ovata*), White Marianth (*Rhytidosporum procumbens*), Blue Dampiera (*Dampiera stricta*), Tangled Guinea-flower (*Hibbertia empetrifolia*) and Honey-pots (*Acrotriche serrulata*).

The herbaceous layer generally had moderate diversity, which varied across the site, and often higher in coupes where the shrub layer was dense or on more damp sites. Herb species included Milkmaids (*Burchardia umbellata*), Bedstraw (*Galium spp.*), Germander Raspwort (*Gonocarpus teucrioides*), Bottle-daisy (*Lagenophora spp.*), Nodding Blue-lily (*Stypandra glauca*), Ivy-leaf Violet (*Viola hederacea*), Pennywort (*Hydrocotyle spp.*) and Wood-sorrel (*Oxalis spp.*).

Grasses were diverse, and included species such as; Forest Wire-grass (*Tetrarrhena juncea*), Reed Bent-grass (*Deyeuxia quadriseta*), Silvertop Wallaby-grass (*Joycea pallida*), Spiny-headed Mat-rush (*Lomandra longifolia*), Small Grass-tree (*Xanthorrhoea minor*), Red-fruit Saw-sedge (*Gahnia sieberiana*), Spear-grass (*Austrostipa spp.*), Paroo Lily (*Dianella caerulea*), Common Rapier-sedge (*Lepidosperma filiforme*), Variable Sword-sedge (*Lepidosperma laterale*) and Weeping Grass (*Microlaena stipoides*).

Bracken (*Pteridium esculentum*) was common throughout most of the Lowland Forest, but other ferns were present in damper areas near gullies, such as Common Maidenhair (*Adiantum aethiopicum*) and Rough Tree-fern (*Cyathea australis*). There were few scramblers including Common Apple-berry (*Billardiera scandens*) and Forest Clematis (*Clematis glycinoides*).

3.2.2 Shrubby Dry Forest

Shrubby Dry Forest occurs along exposed ridgelines, and was restricted to the upper slope where gradients drop steeply into adjacent gullies in the north-east and south-east. In areas of lower relief, such as along Tomato Track, the EVC was more widespread, occurring up to the edge of Riparian Forest, where a distinctive eco-tone dominated by a tall shrub layer occurred between the two EVCs.

The eucalypt canopy was relatively open and diverse, with a varying composition across the Vegetation Study Area. Widespread species included Yertchuk (*Eucalyptus consideniana*), Red Stringybark (*Eucalyptus macrorhyncha*), Red Ironbark (*Eucalyptus tricarpa*) and Brittle Gum (*Eucalyptus mannifera*). Rare species Gippsland Stringybark (*Eucalyptus mackintii*) and Forest Red Box (*Eucalyptus polyanthemos subsp. longior*) were recorded along Tomato Track.

Understorey trees were sparse and included Black She-oak (*Allocasuarina littoralis*) and Cherry Ballart (*Exocarpos cupressiformis*).

Shrub density was variable across sites and is possibly related to fire regime. Some of the more frequently recorded shrubs were Common Cassinia (*Cassinia aculeata*), Narrow-leaf Bitter-pea (*Daviesia leptophylla*), Large-leaf Bush-pea (*Pultenaea daphnoides*), Common Heath (*Epacris impressa*), Narrow-leaf Geebung (*Persoonia linearis*), White Marianth (*Rhytidosporum procumbens*), Blue Dampiera (*Dampiera stricta*), Smooth Parrot-pea (*Dillwynia glaberrima*), Grey Guinea-flower (*Hibbertia obtusifolia*), Rough Guinea Flower (*Hibbertia aspera*), Hairy Pink-bells (*Tetratheca pilosa subsp. latifolia*) and Honey-pots (*Acrotriche serrulata*).

Herbaceous cover was low, and included species such as Germander Raspwort (*Gonocarpus teucroides*), Nodding Blue-lily (*Stypandra glauca*), and Bluebell (*Wahlenbergia* spp.).

Graminoids were diverse and patchily distributed including; Spiny-headed Mat-rush (*Lomandra longifolia*), Small Grass-tree (*Xanthorrhoea minor*), Paroo Lily (*Dianella caerulea*), Common Rapier-sedge (*Lepidosperma filiforme*), Leafy Purple-flag (*Patersonia glabrata*), Oat Spear-grass (*Anisopogon avenaceus*), Forest Wire-grass (*Tetrarrhena juncea*) and Weeping Grass (*Microlaena stipoides*).

Ground ferns were generally absent and the most common scrambler recorded was Common Apple-berry (*Billardiera scandens*).

3.2.3 Damp Forest

The tall eucalypt canopy was dominated by Messmate (*Eucalyptus obliqua*) and Mountain Grey-gum (*E. cypellocarpa*) over understorey trees of Blue Oliveberry (*Elaeocarpus reticulatus*).

The medium to tall shrub layer was moderately dense, including; Shiny Cassinia (*Cassinia longifolia*), Prickly Currant-bush (*Coprosma quadrifida*), Snowy Daisy-bush (*Olearia lirata*), Large Mock-olive (*Notelaea venosa*), Wallaby-bush (*Beyeria lasiocarpa; rare*), Burgan

(Kunzea ericoides) and Common Correa (Correa reflexa).

The diverse ground layer included herbaceous species such as: Austral Brooklime (Gratiola peruviana), Angled Lobelia (Lobelia anceps), Dwarf Nertera (Leptostigma reptans), Ivy-leaf Violet (Viola hederacea) Germander Raspwort (Gonocarpus teucrioides) and Stinkweed (Opercularia spp.).

Graminoids included Variable Sword-sedge (*Lepidosperma laterale*), Spiny-headed Matrush (*Lomandra longifolia*), Red-fruit Sawsedge (*Gahnia sieberiana*) and Forest Wiregrass (*Tetrarrhena juncea*).

A variety of ferns were present including; Fishbone Water-fern (*Blechnum nudum*), Gristle Fern (*B. cartilagineum*), Shiny Shieldfern (*Lastreopsis acuminata*), Common Maidenhair (*Adiantum aethiopicum*), Austral Bracken (*Pteridium esculentum*) and Rough Tree-fern (*Cyathea australis*).

Several scramblers and climbers were recorded, comprising; Bearded Tylophora (Tylophora barbata), Wombat Berry (Eustrephus latifolius), Wonga Vine (Pandorea

pandorana), Twining Glycine (*Glycine clandestina*) and Forest Clematis (*Clematis glycinoides*).

Damp Forest was only recorded in the upper reaches of relatively steep, sheltered gullies with a southerly aspect. The quality of this EVC varied across the Vegetation Study Area, as some occurrences of the EVCs were lacking structural components such as woody life-forms and canopy cover, had lower species diversity, and low density of large old trees and logs.

3.2.4 Riparian Forest

Riparian Forest occurred as linear corridors along Harris Creek, Tomato Creek and Gap Creek. The tall eucalypt canopy was dominated by River Peppermint (*Eucalyptus elata*), with Mountain Grey-gum (*E. cypellocarpa*), Gippsland Peppermint (E. *croajingalensis*) and

Messmate (E. obliqua) also present.

The understorey tree Blue Oliveberry (*Elaeocarpus reticulatus*) was common, with tall shrubs including Sweet Bursaria (*Bursaria spinosa*), Burgan (*Kunzea ericoides*) and Paperbark Tea-tree (*Leptospermum trinervia, rare*).

A dense small to medium shrub layer included; Tree Lomatia (*Lomatia fraseri*), Shiny Cassinia (*Cassinia longifolia*), Prickly Currant-bush (*Coprosma quadrifida*), Snowy Daisybush (*Olearia lirata*) and Common Flat-pea (*Platylobium obtusangulum*).

Scattered small herbaceous species recorded included; Austral Brooklime (*Gratiola peruviana*), Small St John's Wort (*Hypericum gramineum*), Germander Raspwort (*Gonocarpus teucrioides*), Ivy-leaf Violet (*Viola hederacea*), Bluebell (*Wahlenbergia* spp.), Pennywort (*Hydrocotyle* spp.) and Stinkweed (*Opercularia* spp.).

Graminoids were dominant in the ground layer, and included species such as; Tussockgrass (*Poa* spp.), Spiny-headed Mat-rush (*Lomandra longifolia*), Wood-rush (*Luzula* spp.) and Variable Sword-sedge (*Lepidosperma laterale*).

Ground-ferns were diverse including; Gristle Fern (*Blechnum cartilagineum*), Fishbone Water-fern (*B. nudum*), Shiny Shield-fern (*Lastreopsis acuminata*), Common Maidenhair (*Adiantum aethiopicum*) and Austral Bracken (*Pteridium esculentum*).

Scramblers recorded were Common Apple-berry (*Billardiera scandens*) and Purple Coralpea (*Hardenbergia violacea*).

3.2.5 Warm Temperate Rainforest

Warm Temperate Rainforest was recorded in a single gully in the south-east corner of the Vegetation Study Area, in the location mapped by DSE. Only the upper section of the EVC was visited, but appeared to increase in area and canopy cover further down the gully. It is not expected to occur elsewhere within the current Vegetation Study Area.

The non-eucalypt canopy comprised of Lilly Pilly (*Syzygium smithii*) and Blue Oliveberry (*Elaeocarpus reticulatus*) over understorey trees including Hazel Pomaderris (*Pomaderris aspera*) and Blanket Leaf (*Bedfordia arborescens*).

The ground layer was scattered and generally sparse, with small to medium shrubs such as Shiny Cassinia (*Cassinia longifolia*), Prickly Currant-bush (*Coprosma quadrifida*), Snowy Daisy-bush (*Olearia lirata*) and Large Mock-olive (*Notelaea venosa*).

Herbaceous species included Shade Nettle (*Australina pusilla*), Forest Nightshade (*Solanum prinophyllum*), Kidney-weed (*Dichondra repens*) and rare species Austral Tobacco (*Nicotiana suaveolens*).

Scattered graminoids included Tall Saw-sedge (*Gahnia clarkei*) and Weeping Grass (*Microlaena stipoides*).

There were few ferns including Mother Shield-fern (*Polystichum proliferum*), and abundant climbers such as; Austral Sarsaparilla (*Smilax australis*), Wonga Vine (*Pandorea pandorana*), Wombat Berry (*Eustrephus latifolius*), Bearded Tylophora (*Tylophora barbata*) and Forest Clematis (*Clematis glycinoides*).

3.3 Vegetation Quality and Conservation Status

Vegetation quality varied across the site, and largely depended on the density of large old trees (LOTs), eucalypt canopy cover and logs. Sites with the highest habitat scores were due to high diversity of understorey species and moderate to high density of LOTs. Habitat scores and estimated LOT densities are summarised in **Table 1** below, and details of VQA (Habitat Scores) are provided in **Tables 2 and 3** in **Section 3.4**.

Vegetation quality recorded at the sample sites corresponds well with the DSE modelled quality scores (DSE, 2013a), with most habitat scores being between 60 and 70, and some higher scores recorded within the vicinity of Tomato Track.

Bioregional Conservation Status (BCS) is defined by DEPI to describe how threatened or rare an EVC is within a bioregion, by comparing the current extent of an EVC compared to the predicted extent pre-European settlement (pre-1750). BCS contributes to decision-making for approval of native vegetation removal and determination of offsets under the Native Vegetation Framework (DNRE, 2002).

Of the vegetation impacted by the Project, Lowland Forest, Shrubby Dry Forest and Damp Forest have a BCS of Least Concern in both bioregions within the Vegetation Study Area, and Riparian Forest is Depleted in the East Gippsland Lowlands and Least Concern in the East Gippsland Uplands. The BCS and Habitat Scores of the EVCs recorded during the field survey are summarised in **Table 1** below. Further detail is provided on the completed Habitat Hectare scoring sheets in **Appendix 3**.

Sample Survey Site/s	EVC #	EVC Name	Bioregion	Bioregional Conservation Status	Habitat Score /100	Large Old Trees/ ha	Comments
1	16	Lowland Forest	East Gippsland Lowlands	Least Concern	74	7	Mid-slope on south aspect, good quality
2	21	Shrubby Dry Forest	East Gippsland Uplands	Least Concern	72	0	Lacking LOTs
3, 11*	16	Lowland Forest	East Gippsland Uplands	Least Concern	67	3	Logging coupe, sparse-moderate shrub layer
4	29	Damp Forest	East Gippsland Uplands	Least Concern	82	6	On Tomato Creek, LOTs moderate, understorey diverse floristically and structurally
5, 6	21	Shrubby Dry Forest	East Gippsland Uplands	Least Concern	71	3	Mid-slope on north aspect, sparse LOTs and canopy
7, 13*#	16	Lowland Forest	East Gippsland Uplands	Least Concern	66	1	Logging coupe, dense medium shrub layer
8, 12, 14*	16	Lowland Forest	East Gippsland Uplands	Least Concern	72	4	Moderately diverse, LOTs moderate
9	21	Shrubby Dry Forest	East Gippsland Lowlands	Least Concern	69	4	Mid-slope to ridge, moderately diverse, LOTs moderate
10	18	Riparian Forest	East Gippsland Lowlands	Depleted	69	2	Restricted to narrow linear corridor along creekline, up to 20m wide, few LOTs within corridor
15#	29	Damp Forest	East Gippsland Lowlands	Least Concern	63	7	Low density of shrub and tree layers
16#	32	Warm Temperate Rainforest	East Gippsland Lowlands	Rare	69	0	Small section in south west corner of survey site only, in large, deep gully (not impacted by mine footprint).
17	21	Shrubby Dry Forest	East Gippsland Lowlands	Least Concern	76	6	Dense tall shrub layer, adjacent to Riparian Forest

Table 1: Vegetation Quality	Assessment scores at	sample survey sites
-----------------------------	----------------------	---------------------

*Sample survey sites have been grouped where EVC, bioregion, Habitat Score elements and LOT density estimates were the same #Sample survey sites not used in calculation of native vegetation loss within mine impact footprints

3.4 Flora Species recorded

Ethos NRM recorded 141 flora species during the field survey, including 137 species of native plants and 4 weed species. A list of the flora species recorded is included in **Appendix 4**, with an indication of which survey sites they were present or if they were incidental records detected during ground-truthing. Six rare flora species were recorded including Forest Red Box (*Eucalyptus polyanthemos* subsp. *longior*), Gippsland Stringybark (*Eucalyptus mackintii*), Smooth Geebung (*Persoonia levis*) in Shrubby Dry Forest along Tomato Track, Wallaby-bush (*Beyeria lasiocarpa*) in Damp Forest near the Warm Temperate Rainforest, Austral Tobacco (*Nicotiana suaveolens*) in Warm Temperate Rainforest, and Paperbark Tea-tree (*Leptospermum trinervium*) in Riparian Forest. The identity of Smooth Geebung (*Persoonia levis*) is not completely certain, as

fruit is required to confirm identification of this species, which was not present at the time of survey.

Weed species included Flatweed (*Hypochoeris radicata*), Dandelion (*Taraxacum officinale* spp.agg.), Fleabane (*Conyza* spp.) and Blackberry (*Rubus fruticosus* spp. agg.). Blackberry is a declared noxious weed listed as a under the *Catchment and Land Protection Act 1994*, it was recorded once only along the Nowa-Nowa Buchan Road near survey site 5. Fleabane was only recorded along a logging coupe track near survey site 13. Flatweed was widespread, but in low densities across the site, with higher densities occurring near creeks and roads.

Habitat Zone			SITE 2	SITE 3 & 11	SITE 4	SITE 5 & 6	SITE 7 & 13 #	SITE 8, 12 & 14
Bioregion			EG Uplands	EG Uplands	EG Uplands	EG Uplands	EG Uplands	EG Uplands
EVC #: Name			21: Shrubby Dry Forest	16: Lowland Forest	29: Damp Forest	21: Shrubby Dry Forest	16: Lowland Forest	16: Lowland Forest
EVC Bioregion	al Conservation Status		LC	LC	LC	LC	LC	LC
		Max Score	Score	Score	Score	Score	Score	Score
	Large Old Trees	10	0	2	4	2	1	4
	Canopy Cover	5	5	0	5	4	0	4
	Understorey	25	15	15	20	15	15	15
	Lack of Weeds	15	15	15	15	15	15	15
dition	Recruitment	10	10	6	10	6	6	10
Site Condition	Organic Matter	5	3	5	5	5	5	5
SI	Logs	5	5	5	4	5	5	2
	Total Site Score	75	53	48	63	52	47	55
	EVC standardiser (e.g. 75/55) [1]		n/a	n/a	n/a	n/a	n/a	n/a
	Adjusted Site Score		n/a	n/a	n/a	n/a	n/a	n/a
value	Patch Size	10	8	8	8	8	8	8
-andscape value	Neighbourhood	10	7	7	7	7	7	7
Land	Distance to Core	5	4	4	4	4	4	4
Habitat Score 100		72	67	82	71	66	72	
Habitat points		1	0.72	0.67	0.82	0.71	0.66	0.72
Conservation S status x Habita	Significance: Conservations to Score	on	Medium	Medium	Medium	Medium	Medium	Medium
Estimated LOT	S/ha		0	3	6	3	1	7

 Table 2: VQA Scores for sample sites in the East Gippsland Uplands bioregion

[1] For non-forest or woodland vegetation or other vegetation types where some elements of the score are not relevant

Sample survey sites not used in calculation of native vegetation loss within mine impact footprints

Habitat Zone			SITE 1	SITE 9	SITE 10	SITE 15 #	SITE 16 #	SITE 17
Bioregion			EG Lowlands	EG Lowlands	EG Lowlands	EG Lowlands	EG Lowlands	EG Lowlands
EVC #: Name			16: Lowland Forest	21: Shrubby Dry Forest	18: Riparian Forest	29: Damp Forest	32: Warm Temperate Rainforest	21: Shrubby Dry Forest
EVC Bioregic Status	onal Conservation		LC	LC	D	LC	R	LC
		Max Score	Score	Score	Score	Score	Score	Score
	Large Old Trees	10	4	2	3	2	0	3
	Canopy Cover	5	4	4	2	2	5	5
	Understorey	25	15	15	15	15	15	20
	Lack of Weeds	15	15	15	15	15	15	15
dition	Recruitment	10	10	6	6	3	6	6
Site Condition	Organic Matter	5	5	3	5	5	5	3
S	Logs	5	2	5	4	2	4	5
	Total Site Score	75	55	50	50	44	50	57
	EVC standardiser (e.g. 75/55) [1]		n/a	n/a	n/a	n/a	n/a	n/a
	Adjusted Site Score		n/a	n/a	n/a	n/a	n/a	n/a
value	Patch Size	10	8	8	8	8	8	8
-andscape value	Neighbourhood	10	7	7	7	7	7	7
Lands	Distance to Core	5	4	4	4	4	4	4
Habitat Score 100		74	69	69	63	69	76	
Habitat point	s = #/100	1	0.74	0.69	0.69	0.63	0.69	0.76
Conservation Conservation	n Significance: n status x Habitat Score		Medium	Medium	High	Medium	Very High	Medium
Estimated LC			7	4	2	7	0	6

Table 3: VQA Scores for sample sites in the East Gippsland Lowlands bioregion

[1] For non-forest or woodland vegetation or other vegetation types where some elements of the score are not relevant #Sample survey sites not used in calculation of native vegetation loss within mine impact footprints

4 Rare and Threatened Species Overview

Victoria's Native Vegetation Management - A Framework for Action (DNRE, 2002; herein referred to as the '*Framework*') considers threatened flora, fauna and communities through the process of determining *Conservation Significance*. On-site observations of threatened flora, fauna and communities are supplemented by a desktop search to identify presence of, or potential for habitat of threatened species or communities within 5 km of the study area based on previous records of occurrence or habitat modelling. Species listed as rare or threatened on DSE's Advisory Lists are considered, which includes species listed under Victoria's *Flora and Fauna Guarantee* (FFG) *Act 1988* and the Commonwealth *Environment Protection and Biodiversity Conservation* (EPBC) *Act 1999*.

Results of desktop searches provided below identify a range of flora, fauna, communities and other landscape values that must be considered by the *Framework*, and assessment of the likelihood of occurrence of these values contributes to the determination of Conservation Significance. This is discussed in more detail in **Section 4.3**.

4.1 EPBC Protected Matters Search

An online EPBC Protected Matters Search was undertaken and the results identified the following Matters of National Environmental Significance within a 5km radius of the centre of the Vegetation Study Area (see **Appendix 5**).

The EPBC Protected Matters Search results included:

- 1 Wetland of International Importance (RAMSAR);
- 17 Threatened flora and fauna species and 12 Migratory species; and
- 1 Threatened Ecological Community.

The Vegetation Study Area is not within the Gippsland Lakes Ramsar site. However it is within the Boggy Creek catchment which, as a tributary to Lake Tyers, flows into the Gippsland Lakes Ramsar site.

The listed Threatened Ecological Community White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derive Native Grassland (critically endangered) may occur within area. Neither this, nor any other EPBC listed communities, were identified within the Vegetation Study Area.

Threatened species are listed in **Table 4** below, and include 3 birds, 1 fish, 4 frogs, 7 mammals and 2 plants. No EPBC listed plants were identified within the Vegetation Study Area.

The Leafless Tongue-orchid is recorded only from immediately west of Orbost to Mallacoota in Victoria (VBA 2013; SEWPaC, 2008), where it occurs on *Xanthorrhoea resinosa* plains and adjacent heathlands and heathy woodlands, on moist, sometimes peaty, sandy soils (SEWPaC 2008; Backhouse & Jeanes, 1995). These habitats were not observed within the Vegetation Study Area, and are not expected to occur within the mine footprint.

Maroon Leek-orchid has a more scattered location in eastern Victoria, with the closest records to the mine site occurring near Murrindal, more than 25km to the north, Gillingal, about 40km to the north-northwest, and west of Bairnsdale, more than 40km from the mine site. Maroon Leek-orchid occurs in grasslands, grassy woodlands and heathlands, on sandy soils or black clay loams, in generally damp but well drained sites (DSE, 2003). These habitats were not observed within the Vegetation Study Area, and are not expected to occur within the mine footprint.

SCIENTIFIC NAME	COMMON NAME	EPBC STATUS	TYPE OF PRESENCE
BIRDS			
Botaurus poiciloptilus	Australasian Bittern	Endangered	Species or species habitat likely to occur within area
Lathamus discolor	Swift Parrot	Endangered	Species or species habitat may occur within area
Rostratula australis	Australian Painted Snipe	Vulnerable	Species or species habitat may occur within area
FISH			
Prototroctes maraena	Australian Grayling	Vulnerable	Species or species habitat may occur within area
FROGS			
Heleioporus australiacus	Giant Burrowing Frog	Vulnerable	Species or species habitat likely to occur within area
Litoria aurea	Green and Golden Bell Frog	Vulnerable	Species or species habitat likely to occur within area
Litoria littlejohni	Littlejohn's Tree Frog	Vulnerable	Species or species habitat may occur within area
Litoria raniformis	Growling Grass Frog, Southern Bell Frog,	Vulnerable	Species or species habitat likely to occur within area
MAMMALS			
Dasyurus maculatus maculatus	Spot-tailed Quoll, Tiger Quoll (SE mainland population)	Endangered	Species or species habitat may occur within area
Isoodon obesulus obesulus	Southern Brown Bandicoot (Eastern)	Endangered	Species or species habitat may occur within area
Petrogale penicillata	Brush-tailed Rock-wallaby	Vulnerable	Species or species habitat may occur within area
Potorous longipes	Long-footed Potoroo	Endangered	Species or species habitat likely to occur within area
Potorous tridactylus tridactylus	Long-nosed Potoroo (SE mainland)	Vulnerable	Species or species habitat may occur within area
Pseudomys novaehollandiae	New Holland Mouse	Vulnerable	Species or species habitat likely to occur within area
Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Foraging, feeding or related behaviour known to occur within area
PLANTS			
Cryptostylis hunteriana	Leafless Tongue-orchid	Vulnerable	Species or species habitat may occur within area
Prasophyllum frenchii	Maroon Leek-orchid	Endangered	Species or species habitat likely to occur within area

Table 4: EPBC Protected Matters Online Search Tool

4.2 DSE Rare & Threatened Species

DSE database searches were undertaken to identify species records within a 5km radius of the centre of the Vegetation Study Area. The results are provided below.

4.2.1 Flora

Ten flora species listed on DSE's Advisory List of Rare or Threatened Plants in Victoria (DSE, 2005) have been previously recorded within or near the Vegetation Study Area (see **Table 5**), and record locations are shown in **Appendix 6**. These species include 2 vulnerable, 7 rare, and one poorly known species. Two species are also listed under the FFG Act, Yellow-wood (*Acronychia oblongifolia*) and Colquhoun Grevillea (*Grevillea celata*); the latter is also listed as vulnerable under the EPBC Act. Yellow-wood is associated with Warm Temperate Rainforest, and may occur within this community in the Vegetation Study Area.

Colquhoun Grevillea has a restricted distribution around the Bruthen area, including along Lyles Break approximately 5km south-west of the Project site (VBA, 2013). The Project site is outside of the known distribution of this species, and typical habitat for this species was not observed at the study site. However, further vegetation surveys within the mine

footprint should increase certainty regarding the likely presence or absence of this species.

The only rare or threatened species previously recorded within the Vegetation Study Area is Slender Wire-Iily (*Laxmannia gracilis*). The poorly known Long-flower Beard-heath (*Leucopogon juniperinus*) does not require further consideration in the determination of conservation significance. None of the species listed below were recorded during the field survey.

SCIENTIFIC NAME	COMMON NAME	CONS	No.		
SCIENTIFIC NAME		FFG	Vic. Adv.	EPBC	records
Acronychia oblongifolia	Yellow-wood	L	r		1
Eupomatia laurina	Bolwarra		r		2
Grevillea celata	Colquhoun Grevillea	L	v	VU	4
Lachnagrostis scabra	Rough Blown-grass		r		1
Leucopogon juniperinus	Long-flower Beard-heath		k		1
Laxmannia gracilis	Slender Wire-lily		r		2
Lysimachia japonica	Creeping Loosestrife		v		1
Ozothamnus argophyllus	Spicy Everlasting		r		1
Pittosporum revolutum	Rough-fruit Pittosporum		r		3
Platysace ericoides	Heath Platysace		r		1

Table 5: DSE Threatened Flora records (DSE database)

L = listed as threatened under the FFG Act 1988; v = vulnerable in Victoria, r = rare in Victoria, k=poorly known (DSE, 2005); VU = vulnerable nationally (listed under EPBC Act).

Other rare flora species recorded by Ethos NRM during the survey included Forest Red Box (*Eucalyptus polyanthemos* subsp. *longior*), Gippsland Stringybark (*Eucalyptus mackintii*), Smooth Geebung (*Persoonia levis*), Wallaby-bush (*Beyeria lasiocarpa*), Austral Tobacco (*Nicotiana suaveolens*), Paperbark Tea-tree (*Leptospermum trinervium*).

4.2.2 Fauna

Sixteen fauna species have been recorded within 5km of the Vegetation Study Area on the DSE database (see **Table 6**). Two species are endangered, seven species are vulnerable, 6 are near threatened and one species is data deficient in Victoria. Eight of the fauna species are listed as threatened under the FFG Act, and two species are listed as vulnerable under the EPBC Act. Fauna listed on DSE's *Advisory List for Threatened Vertebrate Fauna in Victoria* (DSE, 2013b) as endangered or vulnerable must be considered in the determination of conservation significance within the *Framework*, however near threatened and data deficient species do not require further consideration. Lace Monitors were recorded twice during the field survey just to the north of the Vegetation Study Area on the Nowa Nowa-Buchan Road. No other rare or threatened fauna species were recorded during the field survey.

SCIENTIFIC NAME	COMMON NAME	CONS	No.		
SCIENTIFIC NAME		FFG	Vic. Adv.	EPBC	records
Ardea modesta	Eastern Great Egret	L	v		1
Calamanthus pyrrhopygius	Chestnut-rumped Heathwren	L	v		1
Cercartetus nanus	Eastern Pygmy-possum		nt		2
Cinclosoma punctatum	Spotted Quail-thrush		nt		2

Table 6: DSE Threatened Fauna records	(DSE database)

	COMMONINAME	CONS	No.		
SCIENTIFIC NAME	COMMON NAME	FFG	Vic. Adv.	EPBC	records
Gallinago hardwickii	Latham's Snipe		nt		2
Haliaeetus leucogaster	White-bellied Sea-Eagle	L	v		1
Litoria aurea	Green and Golden Bell Frog		v	VU	1
Litoria raniformis	Growling Grass Frog	L	е	VU	1
Melanodryas cucullata cucullata	Hooded Robin	L	nt		40
Ninox strenua	Powerful Owl	L	v		7
Phalacrocorax varius	Pied Cormorant		nt		1
Pseudophryne dendyi	Dendy's Toadlet		dd		27
Pseudophryne semimarmorata	Southern Toadlet		v		7
Sminthopsis leucopus	White-footed Dunnart	L	nt		1
Tyto tenebricosa tenebricosa	Sooty Owl	L	v		22
Varanus varius	Lace Monitor		е		2

L = listed as threatened under the FFG Act 1988; e = endangered in Victoria, v = vulnerable in Victoria, nt = near threatened in Victoria, dd=data deficient (DSE,

2013b); VU = vulnerable nationally (listed under EPBC Act)

4.3 Role of Rare and Threatened Species in the Determination of Conservation Significance for Native Vegetation

When threatened species have been recorded within close proximity to the area of vegetation removal, the importance of the vegetation in providing habitat for these species is assessed. This is determined by a decision making process of whether the vegetation meets the habitat requirements for the threatened flora and fauna species and if so whether the site is the best 50% or remaining 50% of habitat, rather than direct presence of taxa. This process is outlined on *Table 2 of Native Vegetation – Guide for assessment of referred planning permit applications* (DSE, 2007).

Whether or not the best 50% or remaining 50% of habitat for threatened flora and fauna occurs at the site of vegetation removal in turn contributes to the determination of *Conservation Significance*, which is defined in *Appendix 4 Table 5* of the *Framework* (DNRE, 2002).

Determination of the Conservation Significance of a Habitat Zone is important, as it has implications for the likelihood of gaining approval to remove vegetation, by DSE and also for the offset requirements. For the purposes of this investigation broad assumptions on the habitat have been applied across the Vegetation Study Area based on detailed information collected at the seventeen survey sample sites.

As part of the approvals process for the Project, further field survey is required to accurately map Habitat Zones, quantify vegetation condition and habitat attributes present for rare and threatened species within the mine site if the project progresses. This would enable a detailed assessment of the Best and Remaining 50% of Habitat specific to the defined footprint of impact for the project, as part of a VQA and Net Gain Report. The determination of the presence and quality of fauna habitat would be based on recommendations from Earth Systems fauna survey results.

4.4 Rare and Threatened Species and the Native Vegetation Reforms

The Native Vegetation Reforms apply a risk-based method to determine assessment requirements for applications to remove native vegetation. Where an application to remove native vegetation is determined to fall within the **moderate** or **high-risk pathways**, as the Nowa Nowa Iron Project would be due to the extent of vegetation loss,

assessment of impact on rare and threatened species habitat needs to be considered. Refer to section 5.4 for more detail about the process.

A list of species from an extent search of Species Distribution Models coinciding with an area approximately equal to the Vegetation Study Area is included in **Appendix 8**. The extent search results included 58 flora and 55 fauna species, which may need to be interrogated for significant impacts due to proposed native vegetation removal for the Nowa Nowa Iron Project. DEPI proposes a purpose built tool to assist with undertaking this analysis; however it is not yet available.

5 Policy and Legislative Implications

5.1 Commonwealth Laws

5.1.1 Environment Protection and Biodiversity Conservation Act 1999

The *EPBC Act 1999* is the Australian Government's environmental legislation which provides a legal framework to protect and manage nationally and internationally significant flora, fauna, ecological communities and heritage places, defined in the EPBC Act 1999 as Matters of National Environmental Significance (SEWPAC, 2013).

If a proposed action has the potential to have a significant impact on a Matter of National Environmental Significance, then an EPBC Referral is required to determine whether approval will be granted to undertake the activity, and if the action is classified as a controlled or uncontrolled action.

No EPBC Act listed flora species or ecological communities were identified during field surveys. Based on observations across the Vegetation Study Area, suitable habitat for communities and flora species identified in the EPBC Protected Matters Search Tool (see 4.1) are not expected to be present within the mine site.

5.2 State Laws and Policy

Legislation relevant to native vegetation conservation and management in Victoria include the *FFG Act 1988*, the *Planning and Environment Act 1987* and the *Catchment and Land Protection Act 1994*.

Relevant policy documents include Victoria's Biodiversity Strategy (1997), the East Gippsland Native Vegetation Plan (2008) (Draft) and Forest Management Zones contained within Forest Management Plans and Victoria's Native Vegetation Management – A Framework for Action (the *Framework*).

At the time of writing the Victorian Department of Environment and Primary Industries was intending to replace the *Framework* with 'Reform's to Victoria's native vegetation permitted clearing regulations'. This will be introduced through an amendment to the Victorian Planning Provisions in late September 2013.

5.2.1 Flora and Fauna Guarantee Act 1988

The *FFG Act 1988* is the Victorian Government's legislation for the conservation of threatened species and communities and for the management of potentially threatening processes. The FFG Act provides for the listing of threatened plant and animal species and ecological communities (Threatened List) and potentially threatening processes (Processes List). It also contains provisions for **protected flora**, which are not listed as threatened, but declared to be protected under section 46 of the FFG Act.

A permit is not required from DSE to remove flora or fauna from Crown Land which has legal protection under the Act, for exploration or mining works authorised by an Exploration or a Mining licence issued under the Mineral Resources Development Act 1990 (Flora and Fauna Guarantee [Mineral Resources Development] Order 1994).

While no flora species or communities listed as threatened under the FFG Act were recorded within the mine site, there is potential the Nowa Nowa Iron Project will indirectly trigger events which constitute a Threatening Process under the FFG Act. Further assessment of the nature of these impacts and their likelihood of occurrence is required, should the project progress.

Warm Temperate Rainforest was recorded within the Vegetation Study Area, and is listed under the FFG Act. While the current mine footprint does not have direct impact on Warm

Temperate Rainforest, any potential future changes to the footprint should attempt to avoid impacts on this community.

5.2.2 Catchment and Land Protection Act 1994

The Catchment and Land Protection Act 1994 (CALP Act) contains provisions relating to catchment planning, land management, noxious weeds and pest animals. The Act provides a legislative framework for the management of private and public land. It sets out the responsibilities of landowners declaring that they must take all reasonable steps to:

- avoid causing or contributing to land degradation which causes or could cause damage to land of another landowner
- protect water resources and conserve soil
- eradicate regionally prohibited weeds and prevent the growth and spread of regionally controlled weeds
- prevent the spread of and eradicate established pest animals (Environmental Law Online, 2005).

In essence, the Act establishes a framework for the integrated management and protection of catchments to improve long-term land productivity and conservation of the environment (Environmental Law Online, 2005).

5.2.3 Planning and Environment Act 1987 (Local Government Regulations)

Planning schemes contain provisions relating to the management of native vegetation, where a permit to remove, destroy or lop native vegetation may be required. Where vegetation removal occurs on Crown Land managed by the DEPI, permits for removal of vegetation under the Mineral Resources and Sustainable Development Act 1990 are addressed through a Work Plan or Work Authority issued by the former Department of Primary Industries (DPI) Earth Resources.

5.2.4 East Gippsland Forest Management Plan

Forest Management Zones have been established across State forest in Victoria and identify priorities for forest use within a Forest Management Plan specific to a regional area. Each Forest Management Plan is developed in accordance with the *Forest Act 1958, National Parks Act 1975, Land Act 1958, Reference Areas Act 1978, Heritage Rivers Act 1992, Flora and Fauna Guarantee Act 1988* and the *Catchment and Land Protection Act 1994* (DSE, 2004b).

Certain areas of State Forest covering the project area are designated for special management. This designation may be related to vegetation or landscape values, or specifically defined to protect a particular species or ecological community.

A Zoning Scheme has been developed by the DSE that defines a number of categories for forest management areas including:

- **Special Protection Zone (SPZ)** to be managed for conservation. Timber harvesting is excluded. It forms a network designed to complement conservation reserves
- **Special Management Zone (SMZ)-** to be managed to conserve specific features, while catering for timber production under certain conditions
- General Management Zone (GMZ)- to be managed for a range of uses, but timber production has a high priority.

The Mineral Resources Sustainable Development Act 1990 defines State Forest as unrestricted Crown land and Special Protection and Special Management Zones have no formal authority over mining activities. Management of biodiversity values within State Forest, including those located in SPZ and SMZs are required to adhere to the principles of Victoria's Native Vegetation Management Framework (Avoid, Minimise and Offset) and in accordance with the *FFG Act 1988*.

Forest Management Zones were identified using DEPI's Biodiversity Interactive Map (DEPI, 2013). The majority of the mine footprint is within Special Management Zones which are managed for apiary, road landscape and fire management values. The southeast portion (c. 30 ha) of the mine footprint, and the proposed Nowa Nowa-Buchan Road diversion occur within an SPZ which comprises National Estate Biodiversity and Old Growth values and is a Powerful Owl Management Area.

No old growth forest was observed during field surveys within the Vegetation Study Area; the area has been subject to extensive timber harvesting activities, and fire has been introduced through most of the site. Large, senescent trees were observed infrequently across the site.

Powerful Owls have been recorded previously within the area surrounding the Project site, but were not recorded within the Project site during fauna surveys conducted by Earth Systems. Availability of suitable habitat for Powerful Owl is expected to be limited within the Project site.

Table 7 details the SMZ and SPZ within the survey area, the value assigned to that area, and indicates where they occur within the survey area.

F MZ Туре	Site Number	FMZ Values	Locations
SMZ	M-803-14	Apiary, Road Landscape, Fire Zone 2	Majority of mine footprint from Bruthen Buchan Road to Tomato Tk/ Buchan-NowaNowa Rd intersection (north-west half of the survey area).
SMZ	M-805-02	Apiary, Fire Zone 1	Mine footprint adjacent to but not within this zone (East and south- east of the survey area).
SPZ	P-805-01	РОМА	Mine footprint not within this zone (South-east corner of the survey area).
SPZ	P-805-02	POMA, National Estate Biodiversity, EVC_OG (EVC 29, 4000)	South-east portion of mine footprint and all of Buchan-Nowa Nowa Road diversion (South-east of the Nowa Nowa-Buchan Rd, east of Tomato Tk intersection).
SPZ	P-803-10	Linear Reserve, POMA, SOMA, MOMA, National Estate Biodiversity, Local Use, Flora (Grevillea celata), Mt Nowa Nowa Fire Tower	Mine footprint adjacent to but not within this zone (South-west corner of the survey area).

Table 7: Forest Management Zones summary

Forest Management Zones (FMZs): SMZ = Special Management Zone; SPZ = Special Protection Zone. POMA = Powerful Owl Management Area; SOMA = Sooty Owl Management Area; MOMA = Masked Owl Management Area

5.3 Victoria's Native Vegetation Management – A Framework for Action

The *Framework* is the Victorian State Government's strategy to protect, enhance and revegetate Victoria's native vegetation. All proposed developments and works in Victoria, whether undertaken by private citizens or the private or public corporate sector, are subject to the provisions and requirements of the *Framework* (DNRE, 2002).

The main goal of the *Framework* is to achieve a reversal of the long-term decline in the extent and quality of native vegetation, leading to a '*Net Gain*'. The *Framework* documents a three-step approach to achieving net gain and aims to (DNRE, 2002):

- 1. **avoid** adverse impacts, particularly those resulting from native vegetation clearance;
- 2. **minimise** impacts, where they are unavoidable, through appropriate consideration in planning processes and expert input to project design or management; and
- 3. identify appropriate offset options.

Documentation of consideration given to the three-step approach must be provided in any application to remove native vegetation.

Regardless of the relevant native vegetation policy applicable for further approvals of this Project, removal of native vegetation will require quantification in Habitat Hectares, identification of an appropriate offset and approval from DEPI for the Project to progress.

5.3.1 Quantifying Native Vegetation Loss and Offset Requirements

Based on the vegetation habitat scores recorded during the field survey (VQA) and Bioregional Conservation Status (BCS) of the identified EVCs, most of the vegetation within the survey area is likely to have a conservation significance of MEDIUM. The exception is the small area of Riparian Forest in the East Gippsland Lowlands bioregion, which based on habitat scores and BCS, has HIGH conservation significance.

Possible increases in Conservation Significance may occur due to presence of the best 50% or remaining 50% of habitat for rare or threatened flora and fauna identified in sections 4.1 and 4.2. Further field surveys will need to be undertaken as part of the approvals process for the Project to enable calculation of conservation significance, and hence offset requirements for the mine footprint. However, scenarios in **Table 8** below adapted from the *Framework* (Appendix 4, Table 5; DNRE, 2002) outline if and where it may be expected likely for the conservation significance to increase to High or Very High based on work done to date within the broader Vegetation Study Area. A broad assumption has been made for fauna habitat, although no judgement of the presence of best or remaining 50% of habitat for individual species has been made.

Conservation Significance	Best or Remaining 50% of habitat for threatened species	Examples of species to be considered (based on database search results and field survey)	Likely areas that may be affected
MEDIUM	Remaining 50% of habitat for rare species (flora only);	Rare flora: Yellow-wood, Bolwarra, Rough Blown-grass, Spicy Everlasting, Rough-fruit Pittosporum, Heath Platysace, Slender Wire-lily, Paperbark Tea- tree, Forest Red Box, Smooth Geebung, Wallaby-bush	Lowland Forest and/or Shrubby Dry Forest likely to be remaining 50% due to widespread extent of logging across the site, for Heathy Platysace, Slender Wire- lily, Red Box, Gippsland Stringy,Persoonia. Riparian Forest remaining 50% for Paperbark Tea-tree.
HIGH	Best 50% of habitat for rare species (flora only); Remaining 50% of habitat for threatened species (vulnerable, endangered, critically endangered)	Rare flora: Yellow-wood, Bolwarra, Rough Blown-grass, Spicy Everlasting, Rough-fruit Pittosporum, Heath Platysace, Slender Wire-lily Threatened flora: Colquhoun Grevillea, Creeping Loosestrife, Leafless Tongue-orchid Threatened fauna: Eastern Great Egret, Chestnut-rumped Heathwren, White-bellied Sea- Eagle, Green and Golden Bell Frog, Growling Grass Frog, Powerful Owl, Southern Toadlet, Sooty Owl, Lace Monitor	Possible Best 50% for flora associated with Warm-temperate Rainforest (Yellow-wood, Bolworra, Pittosporum), although currently not impacted by the mine footprint. Fauna not assessed in this study, although there is potential for remaining 50% for Lace Monitor in Lowland and Shrubby Dry Forest, as it was recorded on-site during the survey. Also potential for Powerful Owl habitat in Warm Temperate Rainforest and less disturbed areas of Damp Forest.

 Table 8: Scenarios of impacts of Best or Remaining Habitat on Conservation Significance

Conservation Significance	Best or Remaining 50% of habitat for threatened species	Examples of species to be considered (based on database search results and field survey)	Likely areas that may be affected
VERY HIGH	Best 50% of habitat for threatened species (vulnerable, endangered, critically endangered)	Threatened flora: Colquhoun Grevillea, Creeping Loosestrife Threatened fauna: Eastern Great Egret, Chestnut-rumped Heathwren, White-bellied Sea- Eagle, Green and Golden Bell Frog, Growling Grass Frog, Powerful Owl, Southern Toadlet, Sooty Owl, Lace Monitor	None – for flora; presence of suitable habitat for Grevillea and Loosestrife unlikely, given very restricted distributions of these species. Unlikely to be Best 50% of habitat for any species given high intensity of logging within the survey area, and general low density of large old trees (large tree hollows).

5.3.2 Offsetting Native Vegetation Losses

Where vegetation removal cannot be avoided, provision of offsets to compensate for the loss and achieve a 'net gain' must be undertaken. Offsets are achieved through the long-term protection, enhancement and management of the quality and quantity of native vegetation.

A detailed net gain calculation for proposed vegetation loss will be required within the final mine footprint if the Project progresses, to enable quantification of the offset and like-for-like requirements. Offsets can be sourced through accredited Bushbroker native vegetation Brokers.

5.4 Reforms to Victoria's native vegetation permitted clearing regulations

Reforms to Victoria's native vegetation policy are likely to have implications for the calculation of vegetation loss and offset requirements. The full extent of implications on the Nowa Nowa Iron Project are not yet known, as all the relevant data and guidance documents were not available at the time of writing.

The native vegetation Reforms determine assessment requirements for applications to remove vegetation through determination of **risk-based pathways**, as defined in *Chapter* 6 and *Table 3* of the *Permitted Clearing of Native Vegetation Biodiversity Assessment Guidelines* (DEPI, 2013; referred to as the Guidelines). The risk-based pathway is determined by the *Location Risk Map* available from DEPI Biodiversity Interactive Maps, combined with the extent of proposed native vegetation removal.

Examination of the DEPI *Location Risk Map* (refer to **Appendix 7**) shows that the majority of the mine site to be within **Location A**, with portions of the Clean Water Dam (Mine footprint) and proposed Buchan-Nowa Nowa Road diversion in **Location C**.

Referring to *Table 3* in the *Guidelines*, given the presence of small portions of the Project in Location C, and the extent of proposed native vegetation clearing, the Nowa Nowa Iron Project would be determined to require the **High-risk pathway** to be followed. The requirements are detailed in *Chapter 7* of the *Guidelines*, which for moderate and high-risk pathways include:

- A habitat hectares assessment report
- A statement of how impacts on biodiversity from the removal of native vegetation have been minimised
- The Habitat Importance scores of the native vegetation to be removed
- An offset strategy that details how a compliant offset will be secured.

These major steps do not differ greatly from those currently required by the *Framework*. However the mechanisms for quantification of offset requirements have been changed.

Conservation Significance no longer forms part of the assessment process, and Bioregional Conservation Status of EVCs does not directly impact on offset requirements. Threatened species are considered through DEPI Habitat Importance Models which are not currently available; however Species Habitat Distribution Models indicate lists of species within the area which may need to be considered in defining offset requirements.

A *Strategic Biodiversity Score* is an element used to calculate the offset requirement. Within the Project area, the *Strategic Biodiversity Score* is mostly in the lowest category (0.01-0.20), with approximately 10% of the mine footprints in the second lowest category (0.21- 0.40) and 10% in the middle category (0.41-0.60). The two highest categories are not mapped within the Project area. For DEPI *Strategic Biodiversity Score* map refer to **Appendix 9**.

Offsets compliant with the *Guidelines* will need to meet the following requirements, as described in *Chapter 9* of the *Guidelines*:

- Specific offset attributes (where a significant impact on a given species has been determined) for **each** relevant species
- General offset attributes (where no significant impacts on rare or threatened species have been determined) must be:
 - A minimum of 80% of the *Strategic Biodiversity Score* of the native vegetation to be removed; and
 - Within the same Catchment Management Authority boundary as the native vegetation to be removed.

6 Likely Impacts on Native Vegetation

Likely impacts of the Project mine site on native vegetation values have been inferred from data collected across the broader Vegetation Study Area. Vegetation types (EVC) and condition are expected to be similar to those observed during field surveys, although smaller scale variations may occur.

To assess vegetation loss within the *Framework*, a site must meet the definition of either a remnant patch or scattered trees. A remnant patch is an area of vegetation with or without trees where at least 25% of the understorey vegetation is native or where a group of three trees have a canopy cover of at least 20% (DNRE, 2002).

The native vegetation contained within the survey site and likely to be impacted by the proposed activities has been assessed as a remnant patch.

This section refers to the mine footprint (including infrastructure, access tracks and buffers) provided to Ethos NRM by Earth Systems, to provide an indication of the scale of native vegetation removal, and allow discussion of the likely vegetation impacts and identification of potential issues. The broad scale of the field assessment does not enable accurate calculation of vegetation loss in habitat hectares. Further detailed survey is likely to be required within the final Project footprint to determine the net gain and offset like-for-like requirements to compensate for the proposed vegetation loss. This will need to be undertaken as part of the approvals process for the Project.

Impacts at the Project mine site have been estimated based on sample habitat scores from the vegetation survey area within proposed disturbance areas provided for:

- the mine footprint (including all infrastructure except those listed below),
- the diversion of the Nowa Nowa Buchan Road, and
- the Bruthen Buchan Road/mine access track intersection.

6.1 Summary of Potential Vegetation Removal

The Project footprint for the Nowa Nowa Iron Project is estimated to result in the complete removal of approximately 146 hectares of vegetation.

Four EVCs are likely to be impacted, with the majority of vegetation impacts occurring within the East Gippsland Uplands bioregion, and a small portion within the East Gippsland Lowlands. Shrubby Dry Forest (EVC 21) and Lowland Forest (EVC 16) which are the principal EVCs across the proposed vegetation removal areas, and have BCS of least concern in both bioregions. Damp Forest (EVC 29) and Riparian Forest (EVC 18) will also be impacted. Damp Forest is least concern in both bioregions, while Riparian Forest is least concern in East Gippsland Uplands, and depleted in East Gippsland Lowlands. The removal of Riparian Forest will mostly be from the East Gippsland Uplands bioregion.

Proposed vegetation removal is summarised in **Table 9** below. Also refer to **Figure 2** for the location of proposed vegetation removal related to the EVCs and sample sites.

6.2 Habitat Hectares - Estimate of Vegetation Loss

In order to calculate the offset requirements for the removal of vegetation on the site, the Habitat Score is multiplied by the area of vegetation to be removed, to give the Habitat Hectare Score. Based on the sample habitat scores calculated during the field survey and EVC mapping, scores have been attributed broadly across the Project area to enable an estimate of vegetation loss to be quantified.

Within the Mine Footprint, and estimated 138.42 hectares of vegetation equating to 98.72 Habitat Hectares (HHa) will be removed. Within the proposed diversion of the Nowa Nowa-Buchan Road, an estimated 7.24 hectares equating to 5.16 HHa will be removed.

At the mine site access road intersection on the Bruthen-Buchan Road an estimated 0.13 hectares equating to 0.10 HHa will be removed.

All loss calculations include buffers around proposed footprints as defined in Section 2.5.

It is **estimated** that a total of <u>146 Ha</u> of vegetation equating to approximately <u>104 HHa</u> is proposed for removal for the Nowa Nowa Iron Project.

	Mine Footprint	Nowa Nowa- Buchan Rd Diversion	Bruthen- Buchan Rd Access	Totals
Area of vegetation removal (ha) ¹	138.42	7.24 0.13		145.79 ha
Habitat Hectares (HHa) loss estimate	98.72	5.16	0.10	103.98 HHa
Large Old Trees (LOTs) loss estimate	433	9	1	443 LOTs
EVCs present	Shrubby Dry Forest, Lowland Forest, Damp Forest, Riparian Forest	Shrubby Dry Forest, Lowland Forest	Shrubby Dry Forest	4 EVCs
Bioregions present	East Gippsland Uplands & East Gippsland Lowlands	East Gippsland Uplands & East Gippsland Lowlands	East Gippsland Lowlands	2 Bioregions
Survey Sample Point Habitat Scores used in calculations	1,2,3,4,5,6,9,10, 14,17	2,3,5,6,14	17	10 survey sample points
Area (ha) of vegetation in logging coupes (<10 years)	3.3	0.8	Nil	4.1 ha
Non-vegetated areas (existing tracks, other disturbed areas) ²	2.14	0.70	0.02	2.86 ha
Total area (ha) within Mine footprint ¹⁺²	140.56	7.94	0.15	148.65 ha

Table 9: Summary of vegetation loss estimates.

6.3 Large Old Trees

The *Framework* (DNRE, 2002) stipulates requirements to both **protect** large old trees and **recruit** new trees as a part of the offset for clearing of any large old trees within a remnant patch of native vegetation.

Large old trees (LOTs) were estimated from sample plots across the vegetation survey area in varying densities, and will be removed within the Project Areas. Estimated loss of LOTs is included in **Table 9** above; offset requirements are included in **Tables 10 and 11** in **Section 6.4** below. In summary, an estimated 443 LOTs will be removed; 433 from the Mine Footprint, 9 from the Buchan-Nowa Nowa Road diversion and 1 from the mine site access intersection with the Bruthen-Buchan Road.

6.4 Conservation Significance & Gain Target

Following calculation of the quality x quantity of the vegetation to be removed by Habitat Hectare Assessment, the likely Conservation Significance of each Habitat Zone has been

detailed below in order to estimate the likely vegetation offset requirements for the Nowa Nowa Iron Project.

Table 5 of the *Framework* specifies that the Conservation Significance of an area is determined according to the relationship between the Conservation Status of the vegetation present and the quality of the vegetation as determined by the Habitat Score (DNRE, 2002). The presence of threatened flora or fauna also influences the Conservation Significance of a site. As detailed in Sections 4.3 and 5.3 of this report, a broadly applied habitat assessment has been undertaken in order to estimate the likely offset requirement for the Project. More detailed assessment specific to the footprint of impact will be required at a later date to confirm these assumptions.

Therefore two estimates of Conservation Significance are provided, to indicate the minimum, and likely maximum offset requirements in Habitat Hectares. Minimum offset requirement estimates are based on determination of Conservation Significance from sample Habitat Scores x BCS (refer to **Table 10**), and likely maximum offset requirements have assumed a conservation significance of High across the entire site due to potential presence for rare and threatened species habitat (refer to **Table 11**). Very High Conservation Significance within the mine footprint has been considered unlikely due to the extensive timber harvesting activities which have occurred across the Project area. It is expected that the actual offset requirement will be somewhere in between the two estimates.

Calculation of a **Gain Target** (Offset Requirement) is undertaken by multiplying the area to be cleared in Habitat Hectares by the offset multiplier. The offset multiplier is determined by the Conservation Significance within Table 6 of the *Framework* (DNRE, 2002). The Net Gain Target is the amount of gain that is needed to offset the loss, measured in Habitat Hectares.

A multiplier of 1 is applied to areas of Medium Conservation Significance and 1.5 to areas of High Conservation Significance, in order to determine the offset requirement or Gain Target.

The offset requirement for LOTs is determined by the Conservation Significance of the Habitat Zone from which the LOTs are removed. The likely offset for removal of Large Old Trees has been estimated to be the protection of a between 890 and 1772 LOTs.

Conservation Significance of vegetation	Mine Footprint loss	Nowa Nowa- Buchan Rd Diversion loss	Bruthen- Buchan Rd Access loss	Total Estimated Loss	Offset Multiplier	Estimated Offset Totals
HIGH	0.84 HHa of Riparian Forest in EG Lowlands	Nil	Nil	0.84 HHa	1.5	1.26 HHa
	2 LOTs	Nil	Nil	2 LOTs	4	8 LOTs
MEDIUM	97.88 HHa	5.16 HHa	0.10 HHa	103.14 HHa	1	103.14 HHa
	431 LOTs	9 LOTs	1 LOTs	441 LOTs	2	882 LOTs
TOTALS						104.4 HHa
						890 LOTS

Table 10: Offset estimate summary based on Habitat Score x Bioregional Conservation Status

Conservation Significance of vegetation	Mine Footprint loss	Nowa Nowa- Buchan Rd Diversion Ioss	Bruthen- Buchan Rd Access loss	Total Estimated Loss	Offset Multiplier	Estimated Offset Totals
HIGH	98.72 HHa	5.16 HHa	0.10 HHa	103.98 HHa	1.5	155.96 HHa
	433 LOTs	9 LOTs	1 LOTs	443 LOTs	4	1772 LOTs

Table 11: Offset estimate summary based on potential rare and threatened species

The loss of 146 hectares equating to 104 HHa of vegetation removal associated with the Nowa Nowa Iron Project mine site, will require an offset ranging between:

An **estimated minimum** combined net gain target of **104.4 Habitat Hectares (HHa)** comprised of:

- **1.26 HHa** of **High Conservation Significance** vegetation, and
- 103.14 HHa of Medium Conservation Significance vegetation

An estimated maximum combined net gain target of:

• 155.96 HHa of High Conservation Significance vegetation.

An **estimated** Large Old Tree (LOT) protection target of between **890** and **1772 LOTs** will be required to offset the loss of 443 LOTs.

6.5 Like-for-Like Requirements

Offset criteria requirements are graded within the *Framework* according to identified Conservation Significance. The following sections summarise the rationale for achieving offsets in the context of the *Framework*, but not specific to the Nowa Nowa Iron Project, as Like-for-Like Requirements have not yet been determined. A formal agreement is required in all instances to secure the ongoing protection and management of the nominated offset site.

6.5.1 Vegetation or Habitat type of Offset

For vegetation of HIGH Conservation Significance, the offset area must be in the same vegetation / habitat type or Very High Significance vegetation / habitat in the same Bioregion (DNRE, 2002). If the highest Conservation Significance rating is triggered by the presence of threatened species habitat then the identified habitat must also be provided by the Offset.

For vegetation of MEDIUM Conservation Significance, the offset area can consist of any EVC within the Bioregion, or be Very High of High significance vegetation / habitat in an adjacent Bioregion (DNRE, 2002). This approach is likely to be relevant for most of the proposed vegetation removal associated with the Nowa Nowa Iron Project.

6.5.2 Landscape Role

Due to the different levels of Conservation Significance determined for each component of the proposed vegetation loss, the landscape role required to be provided by the offset site also differs.

For vegetation of HIGH Conservation Significance the landscape role of the offset site must provide similar or more effective ecological function **or** similar or more effective land protection function as impacted by the loss within the offset site (DNRE, 2002).

For vegetation of MEDIUM Conservation Significance the landscape role of the offset site must provide similar or more effective land protection function as impacted by the loss within the offset site (DNRE, 2002).

6.5.3 Quality Objectives for Offset

The area of vegetation proposed as the offset when clearing in HIGH Conservation Significance areas must be at least 75% of the quality being lost.

The area of vegetation proposed as the offset when clearing in MEDIUM Conservation Significance areas, must be at least 50% of the quality being lost.

6.5.4 **Proportion of revegetation included in offset**

For clearing in HIGH Conservation Significance sites only 25% of the proposed offset can be revegetation. For clearing in MEDIUM Conservation Significance sites only 50% of the proposed offset can be revegetation. These values are calculated in Habitat Hectares.

6.5.5 Vicinity

For clearing in HIGH Conservation Significance sites, the gain must be within the same Bioregion as the loss (DNRE, 2002).

For clearing in MEDIUM Conservation Significance sites, the gain must be within the same Bioregion as the loss or within an adjacent Bioregion if the offset is located in Very High or High significance vegetation (DNRE, 2002).

6.5.6 Timing

For clearing in areas of both HIGH and MEDIUM Conservation Significance, the offsets are to be initiated as soon as possible after the loss occurs but no more than 1 year following (seasonal requirements will be considered).

6.5.7 Security of Gain

A number of mechanisms exist to secure third-party offset sites, including agreements made under the *Conservation Forests and Lands Act 1987* or the *Planning and Environment Act 1987*, as well as conservation covenants made under the *Victorian Conservation Trust Act 1972*. These agreements and covenants must be registered on-title.

6.6 Reforms to Victoria's native vegetation permitted clearing regulations

Reforms to Victoria's native vegetation policy use Habitat Hectares to derive two types of units to determine offset requirements. A **general biodiversity equivalence score** is derived from the mapped *Strategic Biodiversity Score*, which is multiplied by Habitat Hectares. A **specific biodiversity equivalence score** is derived from the mapped *Habitat Importance Score* from the model for each species which has habitat mapped within the native vegetation removal area. Offsets are then calculated through determination of the appropriate risk factor, to derive **risk adjusted general or risk adjusted scientific biodiversity equivalence scores**.

Given the current lack of available tools to allow full analysis of offset requirements under the *Reforms*, only an indicative **general offset requirement** has been provided here. *Habitat Importance Models* are not yet available, so the **specific offset** cannot be determined. Given the large area of native vegetation removal, there are likely to be at least small areas requiring specific offsets, for a subset of the species identified in **Appendix 8**.

Starting with a native vegetation loss of 103.98 HHa (see Table 9), an estimated range in *Strategic Biodiversity Score* of 0.2 to 0.6, and a *general offset risk factor* of 1.5, the

following indicative range for general offset requirements for the Project have been calculated:

- Minimum: 103.98 HHa x 0.2 x 1.5 = 31.19 General Biodiversity Equivalence Units
- **Maximum**:103.98 HHa x 0.6 x 1.5 = 93.58 General Biodiversity Equivalence Units

To offset the loss of 146 hectares equating to 104 HHa of vegetation removal associated with the Nowa Nowa Iron Project mine site, estimated offsets required are:

- Between 31.19 and 93.58 General Biodiversity Equivalence Units
- Strategic Biodiversity Score of between 0.16 and 0.48
- Within the East Gippsland Catchment Management Authority boundary
- Unknown Specific Biodiversity Equivalence Units

7 Recommendations for Further Vegetation Assessment

It is recommended that further vegetation assessment be undertaken within the mine footprint to address limitations of this Preliminary Vegetation Assessment (limited survey effort and coverage within the mine footprint, and seasonality), and to provide sufficient information to meet approval requirements for the Project.

Completion of detailed EVC and Habitat Zone mapping within the mine footprint would enable accurate calculation of proposed vegetation removal and quantification of offset requirements, as well as collection of a detailed flora list. Such surveys would also allow for the identification of potential habitat for threatened flora species, to define the need and locations for targeted searches.

Flora species which may require targeted surveys within and surrounding the footprint, if suitable habitat is identified, include;

- rare flora with restricted distributions or previously recorded within the study area such as Slender Wire-lily (*Laxmannia gracilis*),
- EPBC listed flora which are cryptic or with poorly understood habitat requirements such as Leafless Tongue-orchid (*Cryptostylis hunteriana*) and Maroon Leek-orchid (*Prasophyllum frenchil*),
- Other rare or threatened species identified by the desktop search as being recorded within 5km of the mine site, to be determined through consultation with DEPI.

Detailed EVC and Habitat Zone mapping and targeted surveys should be conducted in Spring to detect herbaceous and cryptic species not visible during field surveys in Autumn 2013, to improve detection of rare and threatened species, and to contribute to a more comprehensive list of flora within the mine footprint.

Less cryptic taxa, including shrubs such as Colquhoun Grevillea (*Grevillea celata*) which flowers in Spring (DSE, 2008), may not require targeted searches in addition to detailed habitat hectare related flora survey within the mine footprint, as surveys during Spring flowering time will improve detection rates.

EPBC listed taxa identified as having potential to occur within the mine site by the EPBC Protected Matters Search tool, the Maroon Leek-orchid and Leafless Tongue-orchid, are considered unlikely to occur based on the lack of suitable vegetation and habitat types observed during the preliminary vegetation survey. However, if additional vegetation assessment identifies suitable habitat for these species within the mine footprint, targeted surveys should be undertaken in Spring/Summer to coincide with flowering (Maroon Leek-orchid from late October to late November, and Leafless Tongue-orchid from November to February).

If threatened flora populations are located within the mine footprint, the size of populations within and surrounding the Project site may need to be quantified to better understand the relative impacts of the proposed mine on threatened flora.

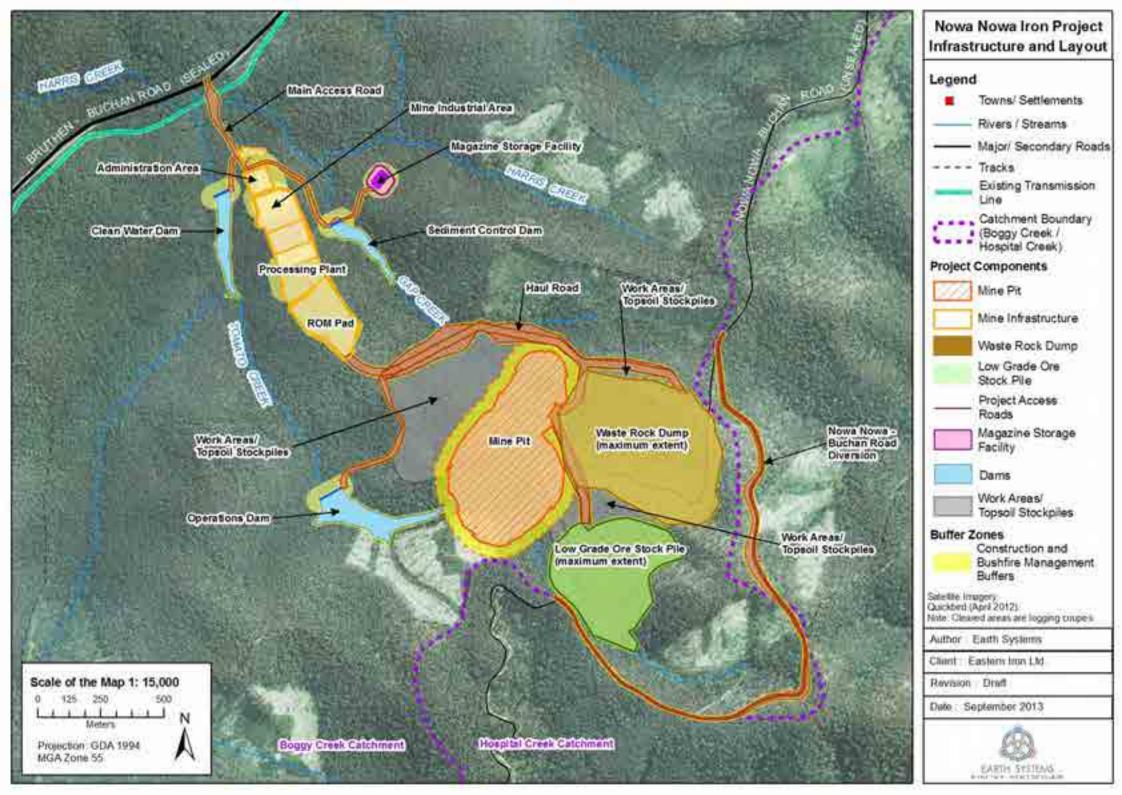
Ethos NRM is aware that additional vegetation assessment and flora surveys are planned for Spring to address limitations of this Preliminary Vegetation Assessment and to confirm the unlikely impacts of the Project on threatened species.

8 REFERENCES

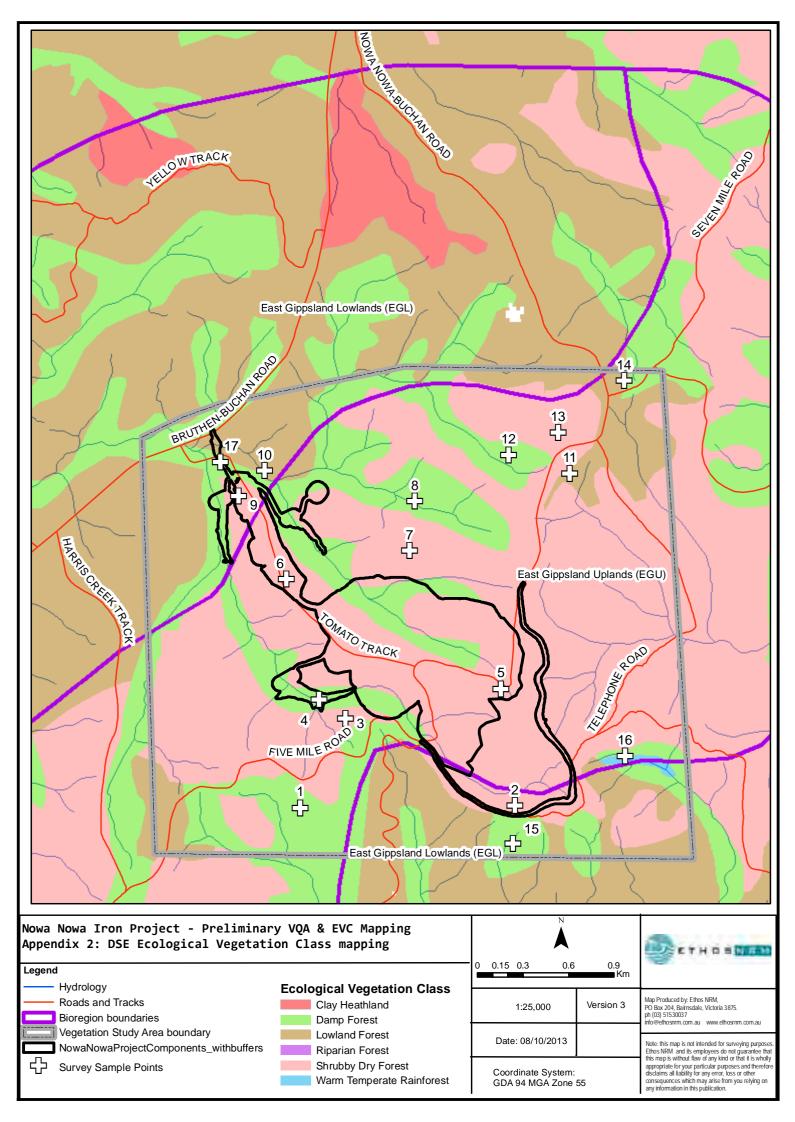
- Backhouse, G. & Jeanes, J., 1995. *The Orchids of Victoria,* Melbourne University Press, Melbourne.
- DEPI, 2013. Permitted clearing of native vegetation Biodiversity Assessment Guidelines. Victorian Government Department of Environment and Primary Industries, Melbourne, May 2013.
- DNRE, 2002. Victoria's Native Vegetation Management A Framework for Action. The State of Victoria, Department of Natural Resources and Environment.
- DPCD, 2013. *Planning Property Report.* <u>www.dpcd.vic.gov.au/planning</u> website accessed on 03/04/2013. Victorian Department of Planning and Community Development.
- DPI, 2013. Bioregions of Victoria Victorian Resources Online. <u>http://vro.dpi.vic.gov.au/dpi/vro/vrosite.nsf/pages/biodiversity_bioregions_vic</u> website accessed 03/04/13. Department of Primary Industries, State Government, Victoria.
- DSE, 2003. Flora and Fauna Guarantee Act 1988 Action Statement No. 154: Maroon Leek-orchid Prasophyllum frenchii. The State of Victoria, Department of Sustainability and Environment, Melbourne.
- DSE, 2004a. Vegetation Quality Assessment Manual Guidelines for applying the habitat hectares scoring method. Version 1.3. Victorian Government Department of Sustainability and Environment, Melbourne.
- DSE, 2004b. Forest Management Plan for Gippsland. Department of Sustainability and Environment. Victorian Government.
- DSE, 2005. Advisory List of Rare or Threatened Plants in Victoria 2005. Victorian Department of Sustainability and Environment, East Melbourne, Victoria.
- DSE, 2007. Native Vegetation Guide for assessment of referred planning permit applications, Department of Sustainability and Environment, State Government, Victoria.
- DSE, 2008. Flora and Fauna Guarantee Act 1988 Action Statement No. 211: Colquhoun Grevillea Grevillea celata. The State of Victoria, Department of Sustainability and Environment, Melbourne
- DSE, 2013a. Online Mapping Biodiversity Interactive Map. <u>www.dse.vic.gov.au</u> (website accessed 27/02/2013). Victorian Department of Sustainability and Environment.
- DSE, 2013b. Advisory List of Threatened Vertebrate Fauna in Victoria 2013. Victorian Department of Sustainability and Environment, East Melbourne, Victoria.
- Environmental Law Online, 2005. Catchment and Land Protection Act 1994. Retrieved 15/02/2011 from Environmental Law Online. http://www.envirolaw.org.au/sources/legislation/calpa1994267.
- SEWPAC, 2008. Approved Conservation Advice for Cryptostylis hunteriana (Leafless Tongue-orchid). Australian Government Department of Sustainability, Environment, Water, Population and Communities.
- SEWPAC, 2013. *Matters of National Environmental Significance*, viewed 27/02/13 <u>http://www.environment.gov.au/epbc/protect/index.html</u>. Australian Government Department of Sustainability, Environment, Water, Population and Communities.

- Viridans, 2013a. *Wild Animals of Victoria on the Web,* Viridans Biological database 2013, Viridans Pty Ltd, Victoria.
- Viridans, 2013b. *Wild Plants of Victoria on the Web,* Viridans Biological database 2013, Viridans Pty Ltd, Victoria.
- Walsh, N.G. and Entwisle, T.J. (eds)(1994). *Flora of Victoria. Volume 2. Ferns, Conifers, and Monocotyledons.* Inkata Press.
- Walsh, N.G. and Entwisle, T.J. (eds)(1996). *Flora of Victoria. Volume 3. Dicotyledons. Winteraceae to Myrtaceae.* Inkata Press.
- Walsh, N.G. and Entwisle, T.J. (eds)(1999). Flora of Victoria. Volume 4. Dicotyledons. Comaceae to Asteraceae. Inkata Press.

Rare and Threatened Species Data Source (DSE)


- Data Source: 'Victorian Flora Site Database', © The State of Victoria, Department of Sustainability and Environment (accessed via the 'Flora Information System', [December 2010] - © Viridans Biological Databases). The contribution of the Royal Botanical Gardens Melbourne to the database is acknowledged.
- Data Source: 'Atlas of Victorian Wildlife', © The State of Victoria, Department of Sustainability and Environment (accessed via the 'Victorian Fauna Database', [December 2010]- © Viridans Biological Databases).

VBA, 2013 Data Source (DEPI)


Data Source: 'Victorian Biodiversity Atlas', © The State of Victoria, Department of Environment and Primary Industries (accessed September, 2013]).

9 APPENDICES

9.1 Appendix 1: Nowa Nowa Iron Project Infrastructure and Layout Map

9.2 Appendix 2: DSE EVC Mapping

9.3 Appendix 3: Habitat Hectare Sheets

Version 1.3 - October 2004

Site Nation/Ne	Location 217 10 Surget	Date 24/5/13 Environment
Alexanda) - CTTT (See 21.51.51.51.51.51.51.51.51.51.51.51.51.51	Map Namw/No.	AMD / MGA
Tenure <u>Order for Formal</u> Eve	Contact Euresi	Boregeo EG applands

'Site Condition Score'

Understorey Life forms

arge Trees	500	re	1.
Category & Description	16 Canopy Health *		
category a pascription	> 2019	38-70%	< 30%
None present,	0	0	0
 0 to 20% of the benchmark number of large trees/ha 	3	х.	500
 Zone to retris of the benchmark, number of large brees/file 	4	3	.3
 40% to come of the benchmare, number of large trees/ha 	4	197	540
> 70% to 100% of the Sentimask number of large trees ha		UE -	561
The benchnisck number of large	10	.9	- B -

Large likes) are softend to domestic at second Rought (right)

over EVC benchmark.

⁴ Estimate proprimen of an expected healthy carboy cover that is present

The rest mining due to tree doubt or double, or multitop effectation.

Tree Canopy Cover	Sco	re	4
Category & Description		1001	
category a Description	> 70-	30-7075	×. 30%
< 10% of benchmark cover	U	.0.	0
< 50% or > 150% at benchmark cover	3	2	1
- Simi-or - 1 Strik of benchmark cover	5	(4)	-1

Tiret cacopy is defined as those cavepy the species maching > 80%, of statute - toget - see EVC tetrictman description.

* Estimate proportion of an expected heating except cowe that is present in it in the mining due to bee depth or deptine, or invested infortation).

Lack of Weeds	Sco	ire	15
Category & Description	719	ph thirstot' mee	ndy *
- We define the set of the set of the set	diane	50m	> 507%
> MHG cover of weeds.	4	1	Q.
25 : 50% cover of weeds	2	6	÷.
5-25% cover of weeks	11	9	12
< 5% stores of weeds**	(15)	13	- 11

* proportion of weed lower shall be high thesalt weeds - and EVC trendshalls for guide. "High timpet" weed species are defined an these introduced species (rickuling rish-indigenous "outputs") with the abeity to out compete and tubotanisely reduce we for more indigenous the times in the longer term assuming re-going commit alls characteristics and desumance regime.

The EVC boocheriacs will typical weed species for the EVE write bioregies and provides all eministic of their "invasivaness and "impact". In general, those weed species considered to have a high impact we considered right chinal regardless of their invasivaness.

 ** if follow wood sover it requiptin (-1 %) and high threat wood species are present then as re 12

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (*)	Modified (~')
	2/4	1.67 3	1.	1.001
- T	119 2	11/102	1.52	1
- 41.5	513	351 15	100	×
38	813	1.017.10	1.1	1.0
K		1 1 1	1.1	1.1
- A A	109.1	-2 L	10.	
1000	3314	\$ X 50	1.	1.1
1.76	211	175	1.1	10
1 plle -	130V Q.	- Y Fai	- 36	-
	- 王作 - 年	法方的	12	× .
194	02 1	- 4-1-		-
1.5		二 7. 登	10	
- 26	513	195-	1	1.
10.	mater	SAR	<u> </u>	
	1	1	400/	5.
	-1	1	/ ci-	1.1
Present	For Me forms with binchmark cover of < 10%, considered present 0 • any speciment are observed. For Mis forms with banchmark cover of x 10%, considered "present" if • The Me form occupies at least 10% of benchmark over			
Modified	 substantially 'root < 50% of the? No reproductly 		ni has either I drienity (ol. envi any obsirv	-ini
Lengtly only where title form at "prefame")	 S0% of parts S0% of parts S0% of parts 	hmark speciel div timark cover due	m hvo, esther mrsity, or targity tal inim	

Department of Sustainability and

spectrems but the rover of reproductively marule spectrum (4 × 19% of the residemark cover.

Inderstorey	Score	15
Category & Description		199
All strata and Life torms effer	tively absorb	0
Up to 50% of life forms prese	sht.	5.
 SIME to 90% of Life forms present 	 of those present, < 50% substantially modified of those present, < 50% 	10
90% of Life farms meant	 of those present, a 50% substantially modified 	B
	 of those present, < 50% substantially modified 	: 20
	 of those present, none substantially modified 	

Version 1.3 October 2004

'Landscape Context Score'

ecruitme	ent	5	core	10
Category &	Description		High diversity*1	Low diversity**
j	within EVE not its avents	iven by spinodic	0	0
No evidence of a recruitment	within EVC	dear evidence of appropriate spisodic event	÷.	30
icohort**	dilven by npisodic events*	co Unar evidence of appropriate episodic event	<u>*</u>	5
Evidence of at least one	proportion of native woody	< 30%	3	4
recruitment, 'coburt' as at	species present. that have	30 - 70%	6	4
linatt one life-form	adequate recruitment"	0.2046	10	3

+ subort mines to a group of woody private instabilitation in a single operate (car) include suppressed caropy species individuate).

- refer to EVC benchmark for climituation.

" binst multiple askafypt carropy species as one species.

* high diversity defined as a 50% of trendshaks woody reasons diversity

Organic Litter	Score		
Category & Description	Dominated by native organic litter	Cominated by non-native organic little	
< 10% of benchmark cover	101	Ũ.	
< 50% or > 150% of benchmark cover	: 31.	2	
> 50% or = 150% of benchmark cover			

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment
Eucarypt canopy (combined species)	21
Condenia indiana	1.
Harman Andrew State	V.
An and a second se	-2
number of woody spp. In EVC benchmark (SS and taller)	15

.ogs	Score		
Category & Description	Linge logs present*	Large logs absent*	
< 30% of benchmark length		÷.	
< 50% of benchmark length	3.	2	
S0% of benchmark length	5	4	

21

sample logis defined as these with diameter ≥ 0.5 of conclumars large tree dbt.

presided of target tog length to a 25% of EVC benchmark tog toright-

attentit # sarge kky length is = 25% of EVC benchmark log tongth.

Patch Size Score **Category & Description**

1
2
6
(8)
40

* lognificantly disturbed durined as per RFA 138 Growth' analyses eq. roading couper, gracing etc. - effectively most parches within hygmenical landucages.

r

Radius from site	% Native vegetation	Weighting	
00 mi	/ 04	0.03	3
1-80%	1940	0.04	
S 8/11)	181	0.03	fiet4
	subtract 2 if the 'significant!	neighbaurtiood is y disturbed	-2
		Add Values and 'round-off'	-70

Multiply % native vegetabors a Vesgeting for each radius from the zone (eg. 40% × 0.03 = 1.2); then add values to dollary final heighbourhood value

Distance	Core Area not significantly disturbed*	Core Area significantly disturbed*
> \$ 8m	d j	0
Etth Silvert		17
< 1 Nm	16.	2
contiguovis	5	(A)

. . defined as per WFR told Gowth' analyses.

	3	Site	Con	ditic	on Sc	ore'		C	ndsc onte icore	xt	
ponent	100	nopy Coner	Weeds	Kaas	west	Littler .			urbood	1.10 CONT ARKIN	Total
Compoi	cargo To	The Ca	Linck uf	tioput	the com	Organo	if(o)	Pattern S	Neighbo	Distance	100
Score	÷	A	15	15	W.	S	2	8	1	+	34

Map Name/No:

Version 1.3 - October 2004

Department of Sustainability and Environment

Large Trees

3

Location 5 mileste

Assessmenty Division A.H. + P.S.

Location 2 P

Bate 2

AMG / MGA

Tempe State Freit

we Shriddy Dry Fordst

moregion Ste Uptante

'Site Condition Score'

Understorey Life forms

Category & Description	2563	Canosiy Ne	alth *	
category a pescription	> 70%	30-70%	< 30Pm	
Norse present		140	0.000	
9.0.10.20% x2 the binschmark municer of large trens(h)	Э.	ić.	10	
 20% to A0% of file tangtmark, number of large transitiva 	4		\cdot_{ij}	
 40% to 70% of the benchmark, number of large trees/he 	4	-5	- Al	
 200s to 200% of the beechmark sumble of large totes/net 	8	.,	0	
one perchanask number of large trensitia	10	191	8	

Score

samps trees are defend by illamour at broad neight (dim).

- sed EVC benchmark.

* Estimate proportion of an expector twaithy tanget used that is present

(i.e. not mining due to tree thistif or doctrie, or mulbeco infestation).

Tree Canopy Cover Sco		re	10
Category & Description	50.	Camopy His	with *
category a Description	> 70%	30-70	< 30%
< 10% of benchmark cover	2	-12	n
< 50% or > 150% of benchmark cover-	1	12	1
- 50% or 1.150% of benchmark cover	13		13

These sales of electricitian these carries inter solores maching i table of manufer telephic - see DVC technicals description.

* Extension proportion of an expected healthy canagy cover that is present (i.e. off minimip due to free death or decline, or mittered infestacion)

ack of Weeds	50	ore	15		
Category & Description	Tright thinnat "memory "				
category a pescription	None	≤ \$256	> 50%		
> 50% cover of weath	- A	2	0		
25 50% cover of weeds	1 ž	6	- 41		
5 - 75% cover of weeds	14	8	- 55		
< 5% cover of vesential	(15)	18	11		

* properties of event could share to high theost weaks - see both benchmark for game.

might threat wind species are defined as those attroduced species (including con-indigenous 'nation') with the attrity to oct-sockets and substantials include one or norm indigenous its forms in the longer term assuming or going current site characteristics and deturbance regime.

The EVC beschman, run biplical week species for the EVC in the bioregist and provides in estimate of their invasioniesal and impact, in general, these wood species considered to have a right instead on unsadered with thread operations of their invasioness.

1* If takes would cover in receiption (< 1%) and high threat would species are present them score (17).

LF Code from EVC beochmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (<)	Modified (<)
12	1. 2.3.1	313	- 1	×
11	217	— 7 19		-
5.65	310	18130	- X-1	15
-2.5	61 2	12/1 5		
: 6/19B	#X 5	175	1	1.
112	and the second	A - X -	10	-
Lat G	OX 2	215	- K	-
MIR	510	51.10	5.0	- 52
41.14	1 1	1	-7-	132
T.F.	37.2	- 1 C	12	
150	111 21	1.5	Nº 1	1.2
UL.	nil na	151 / 10	1	
5/6	100 J. 10	3 1/10	12	
	1 1			
	X.	- X.	A.	ALC:
	1 11	- ()	182	20 7
Present	 any spectrums any spectrums with 'premot' at the file forms with 	Denchmark coole copies at least 10	of = 10%, co	indered R contr
Modified	File Me forms with substantially mod • 50% of the t • no reproductive	ified" if the SA for which man special	thereity; in	
Licoly only where the turns to "Jenser(")	For Kin tarms with substantially mod < < 50% of been < < 50% of been < < 50% of been	thenefimialik, cover Ried' if the INE for htmark cover; or htmark species doe	of = 10%, the n has ether colly; pr arooly to error	n rocokolivez

Understorey	Score	ŝ
Category & Description		
All strata and Life forms effective to S0% of Me forms press	Constant and the second s	0
50% to 90% of Life forms president	 of those present, is 50%. white daily modified 	10
	 of those present, < 50% substantially modified 	15
= 90% of the forme present	 of those present, a 50% substantially randoled 	118
	 of those present, < 50% substantially modified 	-20
	 of those present, none substantially modified 	- 25

In = 10% of the pentimark cover

Version 1.3 October 2004 Ť

Category &	Description	High diversity**	Low diversity*1	
	vottun EVC not de events	iveri by episodic	Q.:	Q
No evidence of a perurbneat "cohort" within EVC driven by episodic events?	WITH EVE	Dear evidence of appropriate episodic event	0	0
	no clear evidence of appropriate spisoldc event	50	3	
	proportion of native woody	< 30%	3	:1
	spocies present	30 - 20%	6	a.
Mest one	adequater recoultment?	20 th	10	.8

- 'convert' refers to a group of wondy plane patational or a single operate (can

ing halfer suppressed startency spectres, indiventance

* refer to EVC boochmail for classication

" issue multiple except cansay species as one species

* high dimenity defined all - 50% of benchmark woody species diversity

Organic Litter	Score	3
Category & Description	Dominated by native organic litter	Dominated by Inon-native longanic little
< 10% of benchmark cover	0	0
< 50% or > 150% of benchmark cover	100	- R
5 Salls or = 150% of benchmark cover	5	

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment (V)
Eucelypt caropy (combined species)	
Received and the second	3
Aller & Martin	- X
number ist woody upp. In SVC benchmark (SS and taker)	13

ogs	2	core
Category & Description	Large logs present*	Large loos absent
< 10% of benchmark length	0	0
< 50% of benchmark length	÷.	10
= 50% of benchmark length	13	4

Large logs defined as those with charafter > 0.5 of benchmark large mie dtd-

* present if large hig longth is 25% of KVC benchmark sig longth.

absent if large log length in 4, 25% of EVC benchmulk log longth.

'Landscape Context Score'

ł

Patch Size	Score 8	_
Category & Description		
<2.5A	1	
Setween 2 and 5 he	表	
Servicent 5 and 10 ha	4	
Between 10 and 20 ha	6	
> 20 haubut significantly disturbed?*	8	
> 20 No, but not significantly disturbe	4 ¹⁴ 10	

* repriharity itsturbed defined as per RFA Citil Growth' analytes og, roadlig, coupes, gracing Hz. - effectively mod patches, within magnitured lancaceper.

1

٦

Radius from site	% Native vegetation	Weighting	
id0 m -	1.39	0.03	- 2
1000	10212	0.04	1.6
i.im	19.00	10.6	24
		neighbourhood is y disturbed!	32
		Add Values and 'round-off'	7.5

3

Multiply this radius vegetation \star Weighting for such radius from the cone (eg. 40%, \star 0.01 + 1.2), then and values to obtain final heighbourhood value

Distance to	Core Area	Score
Distance	Core Area not significantly disturbed*	Core Area significantly disturbed*
> 3 km	9	ġ.
Ltp % Kmi		15
< 1 hm	546	- R:
contiguous	4	- E

· defined as per RFR 'Old Growth' analysiss.

	'Site Condition Score'					C	'Landscape Context Score'				
Component	iles	sopy Canes Weeds Weeds Utter Litter		\$	portrooit	In TOME AND	Total				
Com	Tinge T	Tree Co	LINCK OF	Unders	Second	Organic	story	Patty 5	Neighb	Distance	100
Score	Ď	3	15	ß	13	10	Ś	8	7	ų.	72

Version 1.3 - October 2004

Department of Sustainability and Environment

Site Nami/No.	Location	Date 16/2/3 Environment
Assessor(a)		AMG / MGA
Tenure 144 PE Toriega	EVE Lastely of Friday	Biotegion EA Uplands

'Site Condition Score'

Understorey Life forms

12

Large Trees	Sco	ne -	100	
Category & Description	100	1000		
category a pescription	> 70%	30-70%	< 30%	
None presimi	0	0	-0	
> 0 to 20% of the benchmark number of large transitia.	÷.	$\overline{\mathcal{D}}$	а	
> 20% to 40% of the benchmark incider of large mmulta	÷	3	- (i)	
> 49% to 70% of the beechnark rumber of large trees/tu	6	5	141	
= 70% to 100% of the benchmark number of large toses/tia	8	38		
 The benchmark number of large trees/ha 	10	9		

Liege bore are delived by diameter at trends (sogin core)

use EVC benchmary.

* Estimate properties of an expected healthy namely cover that is present

(10.009)mining this to bee cleate in decrive, an exitintee intertation).

Tree Canopy Cover	Score	0
Category & Description	Canopy	Health *
Category & Description	+ 70 = 30-70	79% < 30%

		The second second	
= 157% of benchmark pays	0	0	.0.
< 50% te > 150% of tienchouse cover-	3	2	1
> 50% or < 150% of benchmark cover	363	- A	8

Tree accept is defined as these carepy the species reaching a 80% of mature length r site EVE benchmark description.

· Estimate proportion of an expected healthy caroopy cover that is present

(i.e. not many due to free death or discline, in manager infestation).

ack of Weeds	So	ore	15		
Category & Decretation	Trigh threat' weads.*				
Category & Description	None	÷ 50%	> \$2%		
> 50% cover of weeds 25 - 50% cover of weeds	1	1	-0 -4		
5 - 25% cover of weeds	11	- 365	100		
< 5% cover.of weeds**	180	13	11		

* projection of send cover that to their firmed waters - set EVC percentary, for gaster

Fligh thread wood spoces are defined as those introduced spoces (including non-indipension) with the attribution complete and substantially reduce one or more indipension the tomar in the tonger term assuming on-using commit wile characteristics and disturbance regime.

The EVE trenchmark hits typical wood species for the EVE in the tectogous and provides an infatture of their "invationness" and "impact". In general, those wood species considered to have a fron instant are considered into intrait regardless of their invationess.

** if total event cover is healigible ((Pa)) and high thrash whell species are primarily then cover ()?.

LF Code from EVC binchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (<)	Modified			
1.T.	1000	15	- N	V			
1	1.67 2	- 27	1.2	10-12-1			
10.2	51.2	100(120	¥.	V.			
2.2	11/2	30/10	1	× -			
P.5"	2.6.11	271					
1.67	-04-11	=1.1	1.0	-			
- MTI	三三年 日	5 5 15	- 5	-			
1.22.2	2/11	10.5	- V.	10			
1.16.1	11 61	1.1.1.4	1	2			
ACL	2.7.2	2.1	1	12			
1000	121	X. D	- V.	100			
-16E	8 E - 1	115	1	- 1			
21	V.C	N 5		- V -			
AL	interfactoria	-11.10		-			
	/	1	0/	14.			
	T_{c}	1	1.79	0.			
Present	For site terms with benchmark cover of < 10%, considered "present" # • unity specifiers are observed For site forms with boostemark cover of = 10%, considered Systems" # • the file form occupies at most 10% of terrotiment cover						
Modified (apply only offers (a form (a	Per life forms with substantially mod- = 50% of the 2 maniprobative for life forms with substantially mod- = 50% of benc = 50% of benc	benchmark cover ded' if the live for entitimark species fv-mature species benchmark user field if the live for timark users, or	of <10%, the inhan either aliversity; or ios are closely of < 10%, the blas either.	n Canederiul			

(HEERING)	 4 50% of terrelation's species (averyage) of
	 3 50% of benchmark cover due largely to immature cancers
	Abdomens but the cover of improductively-metals specimenal as < 20% of the tenchmank solver.

Understorey	Score	15
Category & Description		
All strata and Life forms effect	tively absent	0
Up to 50% of the forms prese	z#	5;
50% to 90% of Life factor present	 of those present, - Sink substantially modified of those present, < 50% substantially modified 	10
e 90% of Life forms present	 of those present, < 50% solidaritally rundified 	15
	 of those present, < 50% substantially modified 	- 20
	 of those present, repair sidestaribully modified 	- 346

Version 1.3 October 2004

Recruitme	int	5	core	6
Category &	Description		High diversity+	Low aversity**
	within EVC not de revents	iver, by episodic	(0)	α
No évidence of a vecutiment	wethin EVC	Dear evidence of appropriate episodic event	30)($\widetilde{\theta})$
cohurt** dilven by episodic avents*	no clear evideoce of appropriate episodic event		£	
	propertion of native woody	< 30%	3	17
recruitmant tophost in at	statutes present.	30 - 70%	(1)	3.
	indequarts (recruitment)	1 70°m	10	\$

+ conort neitry to a group of woody plants established in a wrige episode (call

include toppressed careiny species individual().

- vefer to EVC beochmark for clarification.

If their multiple pocatypt canopy species as and species.

" high storenisty defined as a 50% of benchmark scooly spoors liver

Organic Litter	Score	
Category & Description	Dominated by native organic litter	Dominated by non-native organic little:
< 10% of benchmark cover	0	0
< 50% or > 150% of benchmark cover	3	
= 50% or < 150% of benchmark cover	3	4

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment (*)
Eucelypt carriety (combined species)	1.8
Another a grant a	5
Certifier a contracta	1.5
Realizer Residents	- 2
Deans Mr. Phil D'h.	5
Service 1 Hup-rite	
(ist in	- X-
The base of starts	1
And all shares	1
VERIMAN [ALA] [3	2.7
pleing remains begins	- × 1
surriber of woody upp. in KWC feerchmark (DS and Later)	13

Logs	Score			
Category & Description	Large logs present*	Large logs absent*		
< 10% of hendliment kingth	0	đ		
< 50% of benchmark length		2		
: 50% of benchmark length	5	10 m		

Large logs defined as these with clametia ± 0.5 of boochmail sear the ritm.

* present if large kig length is a 25% of EVC terrchitian kig kingth.

photod # large log imight is = 25% of EVC functionark log stright.

'Landscape Context Score'

Patch Size	Score	- <u>A</u>
Category & Description		
< 2 he		1
Betwees 2 and 5 ha		12
Between 5 and 10 he		11.
Metormery 10 and 20 her."		.8
# 20 fee, but 'significantly disturbed	•	(3)
> 20.5H, Buil not "segreficantly statur	beid"#	10

" significantly (listizated) defined as per RPA fold Growth analysizs eq. reading. scopes, graving etc. - effectively trimit perches within fragmented landscapes.

Radius from site	% Native vegetation	Weighting	
000 in	186	0.03	
i joit	190N T	0.04	
i.lign	157	0.03	74
		neightiolichood in y disturbed"	
		Add Values and 'round-off'	119

Motions is address supported in a weighting for each value, from the zero radii 40% v 0.03×121 then add values to determ from Neighbourhood values.

Distance to	Core Area	Score
Distance	Core Area not significantly disturbed*	Core Area significantly disturbed*
> \$ km	0	9
1:58 5 km	2	
< £ km	34	a
contiguous:	5	(A) -

· defined as per RM. Out Growth: analysis

	3	'Site	Con	ditio	on So	ore'	a	C	ndsc onte icore	xt	
ponent	1002	stopy Caves	Wentle	Durit	2090	Litter			pintrood	o to Coeli Avuit	Total
Comp	Large 1	Title Co	(and all	Linderst	RECTURE	Oppose	8	Patro 5	hmp of	Distanto	100
Score	2	10	15	12	6	5	5	ė	37	Te-	67

Map: Nember/No.

EG MM

Version 1.3 - October 2004

Department of Sustainability and Environment

Sent Anniette					
	1.00				
Alacouty	1.5	21.21	27.	100	

18

Location - First

AMG / MGA

Oate

tenne : L'ALTI (DATE)

Can Domartin-

Large Trees

DALS:

EVE DONS

Score

Boregion 154 2 Head

'Site Condition Score'

Understorey Life forms

Category & Description	% Canopy Health				
caregory a bescription	> 70%	30-70%	< 20%		
Renne present	9	0	-0.		
= 0 to 20% of the benchmark number at large frees/fig.	×.	38	Эį		
> 2016 to 40% of the banchmark - tumber of large trees/he	(\mathbf{T})		\mathcal{A}		
 Whe hardwork of the benchmark number of large brees/ha 	6	3	+		
> 70% to 100% of the benchmark number of large trees/ha	8.	21	0		
I the benchmark number of large trend ha	10	- 0	÷8		

Liege been and defined for disations of breast tanget retary

wher EVC benchmunk

" Elemente proportion of an expected relating canopy cover that is present.

(ver not mixing due to tree death or doidrie, in mistation intestation).

Tree Canopy Cover	Sci	ore	5
Category & Description		Canopy Hea	100
carrigory a description	> .42%	.約-20%	< 30%
= 10% of benchmark kower	.0	4	Ū
< 50% or > 450% of benchmark cover	183	22	1

Software = 1557% of heredimark cover
 (5) 4 3
Tree second is sufficient without software larger bet species rearring = 85% of masure

heart - see IVC teechmale alexander

 Estimate proportion of an expected facility carvoy cover that is pessed (i.e. not missing due to tree death or decline, or missistee infectation)

ack of Weeds	Sco	ve	(5
Category & Description		th threat week	708L*
Category & Description	None:	∈-50%	> 50%
> 50% cover of weekly	4	2	
25 = 50% cover of weierin	1 5	6.	- 4
5-25% cover of words	10	90	- 2
< 5% smm of weeds**	15	11	111

* proportion of overfactory cluster regist towards overface by descriminants for quart

tage threat went species are definition threat introduced sphere. (including port-subproduct "setures") with the entity to out-competer and subparentally relace one or noise independent if foots in the knops term assuming program carety are transmitted with doluthace regime.

The EVC descriptions with bipscal would species for the EVC at the bioregipter and provides on electrotic of their "invaniences," and "impact" in general, these would species considered to have a high instantism considered with threat regardless, of their invaniences.

First if titler would cover is negligible (<1%) and high threat would species are present them scient (13);

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (~)	Modified {~}
17	213	1215	1	100
T	213	11:57.15		1
10.5	ET IO	20735		1
12	5/2	515	1.1	1
TH	SVE	-7.1:	36	-
ATAL	115	3.2.10	×	1
2234 (CITY I	C11	1	1
175-	1 1 2	11.0	8	11
146	147	12 -		~
MT4	五 戊 祐	<31.12	1.2	2
Into G	1. T.F. J.	2.11		1.0
1E	1 EV 4	20120	1	
THE	1.0	1.5		6
57		2 100		1
-13 cm	NGT OA	8-120		1.1
	1.5	- F	NOST	
Prosent	 For the forms with present of present of . The life form or 	benchmark.covy copies at mast 10	r of = 10%, an	ro-isknot
Modified	For the farms with substantially 'mod = 50% of the t • no reproduction	i benchimatek cover infect if the title for whichmark species ity-matum species	in five either divenity; or	
LADDIa dola where she form is (pression)	For the forms with substantially 'Hod • < 50% all benc	Denctimark cover Rod' If the RFs for himark covert; of himark species driv	of > 10%, the minus ether: motor or	o coosadyydd

 Close of concriminal species diversity: or
 S0% of concriminals cover due langety to immuture canops volociments built the cover of reproductively reature spectments is < 10% of the terrichmark cover

Inderstorey	Score	22
Category & Description		1
All strate and Life forms effect Jurite 50% of Me forms press	a second s	0. 5
> 50% to 90% of Life forms prosing	 of those present, > 50%. substantially modified 	:49.
	 of those present, < 50% substant/any modified 	-15
1 90% of Life forms present	 of those present, = 50% substantially rood/fed 	146
	 of them present, < 50%, substantially readified 	200
	 of those present, loose substantially modified 	-25

Version 1.3 October 2004

tecruitme			The second second	11111111111
Category &	Description	High diversity**	LUW divestly**	
	wative EVC not di evanta	iren by epilodic	R	:9
No evidence of a recruitment	withun EVC	clear evidence of appropriate apisodic event	<u>R</u>	0
'cohort*	ebitropic events.«	no Deer evidence of appropriate episodic event	30	3
	proportion of native woody	< 30%	- 2	-
recruitment tonert" in al	The second second second	$-30^\circ - 70^\circ H_0$	6	3
inett one life-form	ecculment"	± 70%	10	ā

+ schort inters to a group of woody planes establiduet was ungle apende (carl

include impersented carrooy speciels individuals?

- refecto EVC benchmark for caleRcaboo.

I usual multiple excelypt canopy species as she species.

* high diversity defined as a 50% of lavelymark woody species divertify

Organic Litter	Score	1
Category & Description	Dominated by native organic littler	Dominated by non-native organic litter
< 10% of benchmark covin	2002	ti -
< 50% or > 150% of benchmark cover	3	2
= 50% or = 150% of benchmark cover	(5)	

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment. (*)
Epcnivpt canopy (combined species)	12
Differia litett	
Herrorthere.	
Gale attack agents	7
Comista Tren micas	2
Contra and deplate	
Kinder Milled	~
Referencep (F. Reference) (1991)	
consequences and and a second s	

manager of woody upps in FVC constitution (55 and Januar)

ogs	Score		
Category & Description	Large 1096 present*	Large loos absent?	
< 10% of teachinalk length	0	8	
< 50% of benctimark length	0.6	2.	
s.50% of benchmark length	- 5	(B)	

Course of

Large logs defined as those with diameter > 0.5 of terrotymers large tree dol-

T present if large tog length is a 25% of EVE benchman, log longth,

about # large tog longth is < 25% of EVE boxcimath log longth.

'Landscape Context Score'

Patch Size	Score 8	
Category & Description		
± 3.214	1	
Between 2 and 5 ha	2	
Between 5 and 30 he		
Betterment 10 and 20 ha	6	
20 ha, but 'significantly disturbed'*		
= 20 ha, but not 'significantly disturb	ed?" 10	

Radius from site	% Native vegetation	Weighting	
100 m	lsa I	0.03	
L KAR	1.000	0.04	
5 N/IF	31	0.03	11.4
	subtract 2 if the "significant	neightboathood in y disturbed"	.2
		Add Values and 'round-off'	- 24

* to respect 20%.

Multiply to radius seguration z. Weighting for each radius horn the zone (e.g. 40% z 0.03 \times 3.2); then add values to intravi that telephotochinod values

Distance to	Core Area	Score
Distance	Core Area not significantly disturbed*	Core Area significantly disturbed*
- S km	(F)	0
1 to 5 km	2	¥.
< 1 300	4.	3
conditions	5	8.1

* defined as per 875 'Out Growth' analysis.

	- 2	Site	Con	ditic	on Sc	ore		C	ndsc onte icore	xt	
ponent	1642	and Curvey	Weeds	estatiny	1.mm	Line -		5	post-	In to: Core Anna	Total
Com	Large T	Tresta	la cui	Unders	Recruits	Organic	togs	Putch S	Newton	Distation	100
Score	ų	5	15	20	та	5	4	î	7	4	82

Map Nartio/No.

Version 1.3 - October 2004

Department of Sustainability and Environment

	4.0.0		
Contraction.	Public and	ALC: N	10.
1014/02	100311	100210	* L

Terrer

Later B Date 27/11/13

000000163	

Lincationi	3.122	S. 19.	541

AMG / MGA

Note Event

Feller the	
	CHOP1

pon the Uplands

'Site Condition Score'

Understorey Life forms

Large Trees	Sco	re	10	
Category & Description	% Canopy Hea		ittr=	
certifiery a costantian	> 70	30-70%	< 30%	
None present	0.	20	0	
> 0 to 20% of the beachmark number of large trees/ha	Â.	2	4	
 20% to 40% of the bioschmark number of large topic/ke. 	÷.	191 -	ŝ	
 RP% bp,70% of the benchmans number of large troes/has 	6	8	1	
 mm to zom of the benchmark our ber of large troes/ha 	8	\mathcal{P}	,ń.	
the benchmark number of targe meen/ha	2.10	1.01	8	

-X.U. 4 R.F

SVC

1-hope been and mellined by character at breast percent cable.

- see EVC terrormania

· Estimate processories of an expected healthy alongly cover that 4 present

() # yot mixing dut to live death in details, or midbles infestation)

Tree Canopy Cover	Sco	re	1
Category & Description	66.1	Canopy Her	· (d)
Carryory a Description	> RP0	312-717%	< 30%
= 1015 of terretyraris sover	10.	10	0

< 50% pr = 150% of benchmark cower a 50% of <159% of treatmark cover 5 34 a The carry is densed in itema carries free speces reacting a little of manage

height - seal 8 VE, benchmark absicription."

* Elitibility proportion of an expected healths carego/ cover that + prevent

() is not minuing our to live depth or stechne, as motione infercation).

ack of Weeds	Sec	ire:	15
Category & Description	high throat" models *		
Category & Description	Nane	<i>≤ 50%</i>	> 50%
> Mrin.cover of weeds	4	10	- (C.
23 - 50% cover of weeks	7		14
5 - 25% obver of weeds	i.t		- 191
· Sile-cover of separate? -	15	- 13	111

* proposition of wood cover that 50 Sept Drived, writtle, with TVG Demonstration for Quick Trigh Timmer word species are alshined as these smootuced species (including coll indigecous "withins") with the jeliety to out compete and substantia/y reduce dreast more indigeonus are failing at the longer term assuming pri-going surrent site classication and exturbance regime

The EVC benchmaik like typical werd species for the EVC in the biorepon and provides an estimate of their investigeness and impact. In general, three week species considered to have a right storagt any considered high thread repardless. M Shert my manness

11 If total wind cown is prophytols (2(15)) and high thread wind Saechin are presient that some 117.

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (*')	Modified (*)
(ET		1137 5	1	040
12	57.1	- 1 kg	14	-
310	19-1-0	151.10	1.1	- K
101	187 5	51	1.14	14
	1018	27.3	- VI	14
114	211	1-10-0		100
1.416	1212	- 63		
N:::L	118	10 D	1	2
1010	201	- 1. t	-2	- 2
i de E	G1/2	-1.1	-	-
52	12.15	243	1	~
13.L	and from	S AL	1.0	1
610	- C () ()	OTIS	8	-
	- P - 1	- b		
	<i>n</i>	1.	W	10
	11	1.	113	
Present	 Any specimum Any specimum Fut this torms wat present it 	i denotimark cover ane reserved i benchmark cover isigies at feeld 10	of = 19%, co of) 10%, co	odenniil
Modified	Peri Milli Torrini, with substantiality 'med + < 50%, of the t + no reproductive	t benchmark rower blied. If the offer form anterfation's spaces by mathematic spaces interactionally coviet	of « Hitta, itter ii has eitter ilioimily, itt itte inn obury	n carodered

Reply only	For life forms with trenchmails cover of a 10%, then considered
where site	substantially 'woolfied' if the life found has either
Rotts iii	 < SD% of bonchmark (over) of
persit(T)	 A 50% of benchmark sphool diversity; pr

	30% of benchmark cover dual largely to innoiture caroov	
	speciment but the saver of reproductively-initiate speciment	i
	to a 10% of the benchmark cover	

Inderstorey	Score	15
Category & Description		nii -
All strata and Life forms offer	tively albertin	- BD
Up to 56% of 66 formin press	eil.	- 5
50% to 90% of Life forms, present.	 of those present, is 50% substantially modified 	-49:
	 of those present, < 50% isobstantomy readitied 	15
90% of Ure forms present	 of these present, ~ 50% substantially modified 	: 15:
	 of those present, < 50%, substantially modified 	20
	 of those present, nove substantially modified 	-285

Version 1.3 October 2004 T^{*}

tecruitme	an		core	2.52.002
Category &	Description		High aversity**	Low. diversity*
	viittiisi EVC not di evrints	wert by aphodic	0	0.0
No evidence of il recruitment	within EVC	clair evidence of appropriate approace event	0	<u>.</u> 9
(cirort**	strivers by epinodic events ²	no CBAB evidence of appropriate apisodic event	3	5
Evidence of at least one	proportion of native woody	× 30%	3	1
recruitment schert" in at	species present that llave	10 - 70%	6	3
inest one	adoquatri reccuitment	2 70%	10	3

+ 'conort' refers to a group of woody patros estamatient in a single symodel (cart

metade suppressed canopy species estivituals

- refer to EVE becommits for childreners.

1 Email multiple apparight canopy species in one species

- replications/sy aklined as a 50% of territorialik woody species diversity

Organic Litter	Score	2
Category & Description	Dominated by native organic litter	Dominated by ribri-native organic litter
< 10% of benchmark cover	0	0
< 50% or > 150% of benchmark cover	3	2:
= 50% or = 150% of benchmark cave: -	5	÷

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment
Escalwer canopy (combined species)	- 5-
Belling lander	2
Stars Greek Landson and a second a	The start
ressentia milita (hirs.ga fright) pris. Canona speciala	- 214
Respectories designed	120
California philippine	N°.
CHET IN PS 1	- 52
where of south and to be the second set over the	1.000

ĥ.

maniper of woody upp. In EVE Devolution's (55 mill 1881)

Logs	S	core
Category & Description	Large kopt present*	Large iccp absorit*
< 10% of benchmark length	, Ø.	0
< 50% of benchmark length		ž.
= 50% of benchmark length	5	.9

Larga kdp skrimt is three with standar y 4.5 of beetmark large tree dot. * present if large top length is a 25% of £VC benchmark log largets.

second if large log length is = 25% of EVC beschmark log is ligh-

'Landscape Context Score'

Ŧ

Patch Size	Score
Category & Description	
=. 3 ha	4
Between 2 and 5 tial	2
Between 5 and 10 he	
Bellweeters 10 and 20 his	6
= 20 ha, but 'significantly distortied'*	1
= 20 his but not significantly deturb	ed.* 10

- significantly distorted defined as per RPA City Growth analysis eg. touting, schools, grising etc. - infectively must patcher within fragminited landscapes

Radius from site	% Native vegetation	Weighting	
100.00	POLL	0.115	- 32
1.000	106	.0.04	16
5.km		0.03	121
	subtract 2 if the 'significant	neightiourhood w y distartied	-2
		Add Values and 'round-off'	$-\overline{Z}q$

Fulliply % native vegetation a weighting for each radius from the zone (og. 40% x 0.03 = 1.3), then add values to obtain that Neighbourhood value.

0.000000000000	Core Area	Score
Distance	Core Area not significantly disturbed*	Core Area significantly disturbed*
> 5.km	0	0
1 10 5 km	2	- Ji
< 1 am	(C)	Di .
CONDENDATE	5	4

* defined as per RF# 'Did Grantti' environme

	2	Site	1000		25.012			C	ndsc onte icore	xt	
ponent	1000	might Cover	Weeds	(oright	1	-ma-		- 40	tood.	6 TO/CORE APRIL	Total
Compon	Large T	The G	lock of	Linderstory	Recruits	O-ganic	troitt	Platon S	neighbr	Cletterio	100
Score	2	45	15	15	i di	E.	ŝ	2	3	84	71

www.dse.vic.gov.au

Version 1.3 - October 2004

Department of Sustainability and Environment

-	40.00		146.6		
586	740	it t tae	1.04	10.	
				· · · ·	

23505567(3)

Locationi

Looton Torrest Tre	Date :
Mag Manse/No	AMC / MGA

Understorey Life forms

e.,	m			
1.6				

OW

Laborator Storen

.........

E.V.L

En Inland Boregion

'Site Condition Score'

arge Trees	Sco	Score		
Category & Description	363	100 *-		
Category & Description	> 2016	30-70%	× .30%)	
finon present	0	- 10 -	0	
9 to 20% of the benchmark number of large brensmal	ý.	(G)	- ŝi	
> 20% to 40% of the benchmore runnber of large hoss/ha	3	31	1	
= 40% to 70% of the benchmark, number of large trees/ha	6	1	3	
 rom to them of the benchmark number of large troes/his 	<u>8</u> .	\mathcal{P}^{1}	- 34	
The beschmark number of large trees ha	10	191		

Unperformance and and real by charments at trouble longers antering

- see FVC temperaries

* Estimate processor of an expected healthy cacepy cover that a petsent

(i.e. restringing that to tree death-raidboling, or matteries adjustation).

Tree Canopy Cover	Sco	re	+
Category & Description	1.44	Callopy Hea	100791
caregory a pescription	> 70710	30:27%	< 30%
s 10% of benchmark cover	6	10	0

< 50% or > 150% of benchmark invest 3 y Q, = 50% or < 150% of tenchmark cover 16 90 à

Their caregy is defined in these caregos mer species reacting a little of manufe Another which is the two musical administration

I Estimate properties of an expected healthy optopy come that is present

() # . doi /vooling druf (i) free death of micks, at mattered attendation).

Lack of Weeds	So	are	15		
Catagory & Description	Togh Ihmuit' weeds *				
Category & Description	Notie:	50W	> 50%		
= 50% cover of weeds	4	2	0		
25 - 50%s count of annths	7	N.	14.1		
\$ - 25% cover of weeds	- Ú	9	-9		
= 3% cover of weeds**	B	343	-11.		

* proportion of weak source pair to hepropriet, weapy - new Exil Deveryment for guide THIGH THREE WARD specials are defined as these introduced species (including noivintigenmie Vernies') with the ability to out compete and substantially

reduce one or more indipondus are forms in the longer terms assuming on-going summer wild characteristics and diductance regime

The EVC benchman likes typing were species for the FVC is the borregion and provides an estimate of iters' invariantees' and impact. In general, those weed silectes considered to have a mun instant an considered high inwait repartiess. Lifebour meaning the

** If fotal wend could in weglightle (+1%) and high thread wend species are presient (Nett 10.049-11))

LF Code from EVC benchmark	# spp observed / Beochmark spp.	% cover observed / Benchmark % cover	Present (~)	Modified (*)
	1.1.1	1615	N.	1
×	07 U	-1. m		
1/50	5 A & I	125(20)	1.1	· · ·
	9497 <u>–</u>	3.7		×
111-11-	9 (5	2.15	V	
LTG	E (- t - t -	1.1.1	1000	×
LNG_	27.2	$= \mathcal{X} \subset$		
NIG.	2.0.5	P (13)		1
Million	2 カー	2 / fri	1	×
SE	012	= A IC	41.	
100	1 4 7		1	1
ē)	m Kara	210	- C	
810	1000	3 (16	1	
	1	- Î	teZ.	3.4
	11	f.	713	
Present	 any spectrums any spectrums the terms with "pleased" all 	h ferri Timark zové aro osoanvez: 1 benchintark cove cogies at Juani 10	of 6 10%2 co	nsideriod
	For Mt form with	terchman cover sted: # the life for	of < rom, the	

Modified Interproductively-mature specimens and observes. (lipply anly For its forms with benchmark osser of a 10%, then occupation: Atlante Rel substantially 'modified' if the IR: form has sittlen: dorrer as # 50% of benchmark coost; or "pressont") 4.50% of benciment uplotes driversity; or

3 50% of beachmark cover due largely to emissive cancourt speciments but the coses of reproductivally riskure speciment. is - zithi of the benchmark zawer-

Inderstorey	Score	15
Category & Description		
All significante and Life forms effect	zively laborit.	1
Up to 50% of the tonny press	ed.	5
50% to 90% of Life forms present	 of those present,	
	 of those present, < 50% substantially modified 	10
90% of the forms present	 of these present, > 50% substantially modified 	18.
	 of these present, < 50% hidstantially modified 	-20
	 of those present, noise substantially modified 	.99

Version 1.3 October 2004

Category &	Description		High. diversity**	Low diversity*
	within EVC nut di events	wen by episodic	0	Ű.
No evidence of a recoultment condett* driven by episodic events.*		clear evidence of appropriate spisodic event	<u>9</u>	0
	no clean evidence of appropriate episodic event	(\$	5	
Evidence of It least one	proparbon of mittive woody	><30%	3	112
ecoutment.	species present that have	$\mathrm{III}=70^{10}\mathrm{m}$	1 de la compacta de l	.7
inast omt Ife 30mm	edequaliti rocrustment*	20%L	10	3

conort minute to a group of woody plants established in a simply spoode [tant

include suppressed canopy species addythins?

· mftr to EVC bevelintark for classication

P

I must multiple society of carropy species as one species.

* high diversity defined as 2 50% of beactmark woods species diversity

Organic Litter	Score	
Category & Description	Dominated by rative organic littler	Dominated by non-native organic littler
< 10% of benchmark cover	0	0
< 50% or > 150% of benchmark cover	3	2
= 50% or < 150% of benchmark over	- 5	

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment
Eucallypt carropy (combined species)	1.10
Ovulla Symplectia	
CANTER STATES AND ADDRESS	6.7
Gand Olivi, S. K.S.	- 6
Town of the Palacity	5
Charles - Section in	
Evenin history	
Remove Seen front play	N. 8
Alexandra Sector	- X
Carela presidente de la composición de la composicinda composición de la composición de la composición	
under of weady spp. in FVC Territorum's COS limit ratio a	A

Logs	Score			
Category & Description	Large logs present*	Limper logs absent?		
< 10% of bendtimark length	è.	0		
< 50% of benchmark length	2	2		
- S0% of benchmark length				

Large tops defined as those with character > E.S. of territornary salign trees abo

* present if large mg angth is a 25% of 8VC benchmark log langth.

if absent it large top impth is < 25% of EVC be-similar top largely.

Patch Size	Score	8
Category & Description		
< 2 ha :		1
Betwweet 2 and 5 ha		3
Between 5 and 10 hit		4
Bittimenn 10 and 20 ha		6
= 20 Ha, but Significantly distur	beti**	8
20 ha, but not significantly its	sturber*	-10

* Segretizantly inducted defined as per RPA Citi Growth' anaryses og rödding. miges, gamony etc. - effectively most patches within Regenerated landscapes.

Radius from site	% Native vegetation	Weighting	
100.11	100	0.03	
1.6m	1/232	0.04	19
6. Arm	69	6,03	-1-0
		neighbauthood is. y disturtied	~ 6
		Add Values and 'round-off'	17.9

* DE (NUMMER, 20%).

Multiply γ_1 natives vegetation a weighting for each radius trunt the zone (e.g. 40% \times 0.0) \simeq 1.3), then add values to obtain finial Neighbourhood value

'Landscape Context Score'

Distance	Core Area not significantly disturbed*	Core Area significantly disturbed*
> 5 R(T)	0	
1.10.5 km	2	1
< 1.8m		3.
combiguarde		4

· defined as pet 878 'OU Growth' analyses

		Site	Con	ditio	on So	ore'		C	ndsc onte icore	xt	-
Component	(cet	many Cover	Weeds	terny	21-joint	(Hie		144	turtrood	0 to Cort Area	Total
Com	Large 7	Tree Co	iuó ()	Unders	Route	Dequese	1001	Fatth S	liegeb	Céstano	100
Score	3	4	IS.	đ	6	à	100	8	17	Ц	124

Version 1.3 - October 2004

Department of Sustainability and Environment

Site Name/Ne.	
Assessor(1)	140.7
tenne 1213 finist	6VC

Profession and the second s Plan famini/fan Die-

Lasabon

AMG. MGA .

Date

Understorey Life forms

Boroppo Station

29310

'Site Condition Score'

< 30% 0

2

÷

'n

Large Trees	Sco	re	- Fr
Category & Description	- 166	Canopy He	atri=
consympt a pescription	> 20%	30-70%	143
None present	-0	0	1
> 0 to 20% of the benchmark number of large trens/ha	3	(i)	á
> 20% to 40% of the tienchmark months of large transitia	ň.	1	1
HONE to 70% of the boochinare, Humber of large teen/ha	0	\$	
= 70% to 100% of the benchmark	1	1.1	1.00

- the beactmark number of large trees/hd

Large trees are defined by during at trainin heger (attr)

inne EVC beitchriden.

number of large trees/has

Further proportion of an expected featby decoy over that is present (i.e. not immung due to bee death or declars, or middebee infectation).

1.11

4

Free Canopy Cover	Sco	re	2
Patanan P Pananinting	W.	anth +	
Category & Description	> 70%	30-70-	< 30%
<. 10% of bonchmark cover-	0	.0	:0
< 50% or = 150% of tenchmark cover	1.1	121	1
50% or < 150% of benchmark count	34		- B

Tree cocopy is defined in these cancey time spoces viecting) BPs, of mature Image: - see SVE, benchmark description

· Estimate proportion of all expected nearing samply roser that a prevent

11-4111006-275686#	99 PHE	10 Vee	: 00007+0I	Dec Intel	or multiture in	Vetlition1

ack of Weeds	Sco	ne	100	
Category & Description	Wigh threat weeds *			
consystery at second public	Note	< 50%	> 50%	
< \$0% cover of weeds	4	22	0	
25 - 50% Libyer of weekda	\tilde{r}	1.67		
E-25% power of weeds."	12.	9	- 194	
< 5% cover of wends**	15	43	:11	

* amportion of weed cover due to 'trafs firmal' weeds - see EVC tenchmark for guide. High thread whad spoces are defined as those estroduced species (including non-indigenous (sufficient) with the ability to out compete and substantially

radiace one of most indigenous life forms in the kinger term assuming on-going current sille characteristics and disturbance regime

The EVC benchmark (Mo based send species for the EVC is the portugion and provides an introde of their "incationness" and "impact". In general, these wood species committeed to have a fight impact are considered with the of reportions of their increases.

** If total second cover in integrigible (in 1%) and high thread second species are interact them score 117.

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (*')	Modified (*)
- 11	111	115	2	1.64
- T	11 20 1 -	2 9.15	1	1.1
ALC	(= d)	157.15	1.12	× .
13	14 3 7 1		1 V	1.0
1.AL	L Sh X	- 0.1		-
DAH:	13.16	5. 7. IT	14	9
22	$\pm I \rightarrow \cdots$	- F	- 2	1.1
LITE .	1.1.70.2	2 7.5	- 2	- 2
6.015	1. 6. 1. 11	142		LIC .
10774	2 X.u.	12 1.20	4	11
ALL CO.	1 1 7 T	5 2 1	×	36
6E	37.00	12/101		1
147	ELV P.	E.C.		_
-8-	1.1	41 7.10	V	1
61	matria	20120	1.	100
	1	1	0.00	
Present		we observed Neterlank court	of a 10% cm % af Jonchros	ni internet
Modified (Roply only whom the form the present 1	 the life Semi-accepts at least UPs of binchmark cover. For Me forms with benchlaark cover of < 10%, then constance tubulantiantially incidined if the we form has ethor. < 50% of the benchmark spaces diversity, or no reproductively mature spaces are diversity, or no reproductively mature spaces are diversity. software diversity and the Me form has entraces. > 50% of benchmark spaces diversity, an > 50% of benchmark spaces diversity, an 			

and the second se	 A style by Managamine (Managamine) Managamine (Managamine)
	 > 50% of benchmark cover dial singely to immatual canaca.
	settivents but the cover of reproductively metaor spectrees.
	In a 10% of the benchmark opver
	a subset subset and set of the

Inderstorey	Score	18
Category & Description		
All strata and Life forms effect	byely ubsent	0
Up to 50% of life forms prese	en);	5
 SONE to 90% of Life forms present. 	 of those present, a 50% substantially modified 	- 18
	 of those present, < 50% substantially examined. 	15
99% of Life forms present	 of those present, 2 50% substantially modified 	15
	 of those present, < 50%, substantially insidified 	- ini
	 af more present, none substantially modified 	31

Version 1.3 October 2004

Category &	Description		High dversity**	Low investy*
	wittin EVC not di events	went by uploads:	0	0
No evidence of a recruitment	within EAC	clear evidence of appropriate episodic event	<u>0</u> ;	ġ.
22/104 ²⁻⁴	driven.Dy amaddic events?*	isti clear evidence el appropriate episodic event	ş	:5
Carl and the second sec	proportion (if historie woody	< 30%	30	.0
	species present	30 - 20%	ô.	4
Metorn	edécelete recruitsetit	= 20%h	10	- 18

- 'cettern' refers to a group of woody plane, established in a longle applode (can

mutuale suppressed campy species individuals).

- mine m XVC becomment for clarification

1 foost multiple multiple canopy species as one species

* Sugh diservally defined as > \$0% of benchmark woods species diversity

Organic Litter	Score	100
Category & Description	Dominated by native organic littler	Dominated by opninative organic litter
< 10% of benchmark cover	(0)	9
< 50% or > 150% of secondark cover	2	2
= 50% or < 150% of hendrimm's cover		4

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment (*)
Eucarlypt carroox (combinent) speciete)	1 80
AGRIA 12 17240	
DEEM STATE	2
Galadian and the	1.4
there are a set of the	
And a second sec	2
Spice 1/ Spectra	10
Zarris Dr. Hillight Sc.	
wither of weath can be for the constant ISS and before	

	1.00
Scare	2
ocore	1 1
1.1	state from the second

L).

Category & Description	Large logs present*	Large logs abserve*	
< 10% of tieschmark length	0	n.	
< 50% of benchmark length	(F)	8	
s 30% of benchmark length		à	

Large logs idefined as shows any momenter a 0.5 of benchmark important.

* present if large kig length in a 25% of 27% herebrier ing herebri

absent if large tog loggth is < 25% of 8VC benchmark log termin.

'Landscape Context Score'

Logs

Patch Size	Score	18
Category & Description		
= 2 tu		1
Between 2 and 5 ha		.2
Repwent 1 and 10 his		- 9
Between 10 and 20 ha		. 6
. 20 Ne, but 'significantly disturbed'	*	8
> 20 hw, but not significantly distant	Dell'*	10

* significantly automatif defined as per RFA Old Georetic analysis are reacting zoupes, graving etc. - effectively must patches within Represented landscapes.

Radius from site	% Native vegetation	Weighting	
IDO HI	1	0.00	
Ref.		0.04	
i km		0.03	
		neighbourhood is ly disturbed	- K.
		Add Values and 'round-off'	7.4

* 10 resenti (10%)......

Histopy is realise vegetation a Weighting for each radial from the zone $m_{\rm H}$ 40% s 0.03 \times 1.21; then add values to obtain this weightputched values

Distance to Core Area		Score	
Distance	Core Area not significantly disturbed*	Core Atea significantly disturbed*	
234/17	0	0	
1 Hz 5 Am	2. E		
4.1.8m	4.	3.	
		- AD	

* calling as per RNA 'Dill Grantit' analyses.

	'Site Condition Score'					C	'Landscape Context Score'				
ponent	jangar Jangar	Mood Volum	Weeds	tares .	Long -	the		ā.	authood	e to Core Area	Total
Comp	Large T	Tree La	1,825.01	Underst	Recruit	Organic	tion	Peter S	Newthol	Distano	100
Score	2	2	US:	ts	10	5	5	8	4	4	124

www.dse.vic.gov.iiii

Vegetation	Quality Field Assessment Version 1.3 - October 2004	Sheet Department of Sustainability and
Star Nome/No	LOCATION TERMATE THE	Date 27/3/3 Environment
Alaersacia) ETHOL - All - K	Mep Name/No	AMG / MGA
Tenner State Forest Eve-	Strating by forest	Boregion Ele Law landle i
	'Site Condition Score'	

Large Trees Score Understorey Life forms % Canopy Health* **Category & Description** > 70% 30.70% < 30% None present. 0 0 0 > If to 20% of the benchmark number of Harger threes(1).4 = 20% to 40% of the transmask

transference for the first formerablished			
* 40% to 72% of the perchase number of large trees/Na	- 6	2	3
 70% to 100% of the benchmark number of large trees/Ne 	0.	19	- 36
 Itie benchmerk member of large trees/hat 	- 10	- 967	-8

Large brees invided by character at Seward heaps salary - Set EVC benchmark.

mumber of linear trees/ful

5

* Estimate proportion of an expected healthy takeny cover that is present

it is not missing due to tree (leach or decline, or middletee infraction)

Tree Canopy Cover	Sco	re	i H
Catanana & Decembridan	- 0.3	Canogy Hea	itty =
Category & Description	> 77%	30-20年	< .70%
= 10% of bindmiaik cover		11	0
< 50% or > 150% of benchmark cover	- 20	2.	1
= 50% or = 150% of benchmark cover	- 5	1	3

- (97. Tree stream is defined as these caregy tree spaces reacting - 90% of manary traight - see EVC honohmark description

* Estimate proportion of an inspected healthy caropy cover that a present

() is not moning due to tree death or dealine, in midning Westation)

Lack of Weeds	Sco	are	15		
Category & Description	Thigh Threat "weekbi "				
category a pescription	None	× 50%	> 50%		
= 50% cover of meeos		2	0		
25 Stills onver all weeds	2	6			
5 - 25% cover of wields	110	.01	1		
4. Whi scores of reveals**	(15)	1.0	110		

* proposition of mentionies due to high themat weath - see 55% hereitment for quate.

high filmear, wood species are defined as these matodocoid species (including non-indipersons (welves') with the splitly to out competer and substantially

induce one or move independue life forms in the langer term assuming on-going. current alle chatactimatics and dolumbarics require

the EVC beochnian has break word species for the EVC in the bioregron and provides an optimate of their "intervenies" and "repact". In general, these woed species considered to have a ligh install are recontered righ three regardless. of their invalidy/invaria-

** If total weed cover in neighbors (<1%) and high trend weed species and present they acone "13"

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (*)	Modified (*)
-4T	314	1515	1.1	
T	17.4	3/ 3	1.20	1
800	9-1-1-	15 130	12/	1.2
33	1322	5 X e	1	1.2
A\$H	17.5	2. (2 .	2	1
1.1.4	E E F	3 Ict	.7	10
LINHA	01/2:	+ I d	X.	-
1.116	212	10.7.10	2	6
MAG	OLL.	- 24	4	-
GE	1 1/2	1 //.e.:	2	94
56	17.3	115	-7-	1
61	all I was	4 7.10	1	1.1
Ste	AL 1544	27.10	2	1.00
	1	1		
	1.	10.	302	- 25
	1	- P - 1	78	710
Prosent	For the form, with the life form, with "the life form of the life form of	benchmu/k.cover copies at least 10	97 s 10%, 13 % d beccima	nodense ek sover.
Modified Deply only repert the	 c 50% of ine i c 50% of ine i co reproductive For iffe forms with substantially lines 	 benchmik/k, cover ified' if that the foir emclimatic species rls-mats repectes benchmark cover ment if the file for 	m has either; i disertify; is fm are observ of = 10%, the	1900-
(heising.) çönu m	+ III 50% of bold	himatik covet; jul historik ligecieti (by Smiask covet due) bie cover of repro	langely to immi	afure canopy

< Understorey Score **Category & Description** AE strate and Life forms effectively absent 11 Up to 50% of the forms present 2 50% to 90% of Life forms of those present, > 50% 10 president. withtherhighy readified. of those present, < 50% 75 substantially modified. = 101% of Life forms present . If those present, x.50% 15 substantially modified of those present, < 50% 201 substantially modified + of these present, horse 25 substantially modified

hi + 10% of the benchmark cover

Version 1.3 October 2004

Category & Description			Low diversity*
water EVC not di events	reau ph abyroge.	Q.:	6
within EVC	clear exidence of appropriate episodic event	0	9
"cohort" driven by cohort" epimalic events."	on clear evidence of appropriate episodic event	6	3
Provide the second s	< 30%	30	+
species present:	30 - 20%	62	.1
adequate -			
	events events within EVC driven by episodic events.* proportion of native woody species present that faive	Description andtwi EVC net divert by reholds: comm: within EVC driven by episodic event driven by episodic event proportion of native woody species present that have	Description High diversity** andtwi EVC not diversity episodic comm 0 within EVC driven by episodic event 0 within EVC driven by episodic event 0 proportion of native woody species present mat have 30 - 70%

+ 'constructions to a group of weekly powers estatimized in a origin episode (can

include talgereneed candley species and/values1.

A ratio to EVC benchmark for start/cablos.

" treat multiple multiple caropy toboles as one species.

* tript inventity initial as), \$0% of terchmark social species threshy

Organic Litter	Score	3
Category & Description	Dominated by native organic littles	Dominated by non-native organic litter
< 10% of begchmark cover	0	0
< 50% of > 150% of benchmark cover	3	2
- 50% mr = 150% of benchmark count	5	4

Species Recruitment

Recruitment (V)	
V	
5	
12.2	2
- C	10
1.1	
5.1	
S. 1.	
3	
18	
	South Street Street

Logs	Score		
Category & Description	Large logs. present*	Liingij kogs ahsent	
< 10% of tenchnask largth	0	0.	
< \$0% of benchmark length	10	2	
SIN of bencivners lingth	S	÷	

Large logs defined as Plane with daments > 0.3 of sendmask large Verritht.

ц.

* present if large kep length is = 25% of EVE benchmark leg langth.

absort if targe tog tongth = < 25% of EVE benchmark tog longth.

11011000000000000000000000000000000000		
Patch Size	Score	8
Category & Description	_	
< (3.314)		A
Botween 2 and 5 ha		3
Between 5 and 10 he	4	
Between 10 and 20 ha.		0
- 30 Ha, but 'egreficantly disturbed'*		8
> 70 the, but not 'significantly disturbed	27	10

* significantly assumed idefined as per RFA that Growth' analytes og ruading. coupes, grazing etc. - effectively most patches within Hegmented landscapes.

Radius from site	% Native vegetation	Weighting	
100.01	11-5-24	0.63	3
1.000	1110	0.09	M
5.871	80	0.03	24
		neightiourhooid in V disturbed"	-2
		Add Values and 'round-off'	Ten.

Huttigay to matter suggestation a Weighting for each radius from the core (e.g. 40% a 0.03 \times 1.31; then add values to obtain final heightic atopol Value

'Landscape Context Score'

Distance	Core Area not significantly disturbed*	Core Area significanth distuited*
⊨5ikm	D.1	μ.
lio \$-km	2	10
0.000		31
mbgunus	5	193

* defined as per \$25 You Growth' analysis.

	Ġ	Site	Con	ditic	on So	core'		C	ndsc onte Score	xt	
Component	(ies	whether Addison	Weeds	tain a	111111	(thus		0e	pottool	Distance to Care Area	Total
Compo	Large T Tree Ca Luck uf Underst Recruth Recruth Cryanut	Understorey Recruitment Organic Lith Logh	Piledris	Pilitição Sil	Distano	100					
Score	12	4	15	15	6	3	5	8	Ϋ.	4	69

DULLEY PERSO

Version 1.3 - October 2004

Department of Sustainability and Environment

2/15

2/12

Sett Name/No	101		
Accessor(3)	Ethin-	Alle	95.
Taining E-Lin	III Excest		Eve

Location Canada Salar

Date	1			
AMG / MG/				
fiorepao	E,	G.	Li-	16

'Site Condition Score'

Understorey Life forms

-

Large Trees	Sco	re	2
Category & Description		Cancipy Hei	intex.
Caregory a Description	> 70%	30-70%	< 30%
Moor present	11	0007	18
> 0 to 20% of the benchmark number of large breacher	(\mathcal{D})	1	6
> 20% to 40% of the brinchman. number of large troeschia	4	3	.2
5-40% to 70% of the territoriank mander of large troes/ha	6	191	4
 70% to soons of the beachmark number of large trites/hat 	60	$\langle \psi \rangle$	6
) the benchmark member of large trees to	10	390	10

Limp trees an uplosed by diamond at treast negative

I sale EVC benchmann.

* Estimate proportion of an expected neurony cocopy cover that a present

It in your minima due to tree death to decive, or methods intestation).

Tree Canopy Cover	Sco	re	2
Catagonia & Danislation	1.99.5	Cainopy Hea	10.2
Category & Description	> 10%	30.70%	< 30%
< 10% of benchmark cover	- 0	1	0
= 50% or = 190% of benztimark cover	- 38	(2)	- 31 -
- 50% in < 150% of benchmark cover	- 5	1	3

Then Canops is defined as those Language here specials maching a write of manager heregits - kee EVC becamerals description.

* Estimate proposed of an expected healthy caregy court that a present

(i is not initially due to they death or (or its or multipose (Vernalion).

ack of Weeds	Sco	ne	12	
Category & Description	194	threat' ees	mc75 *	
and the second second	None	= 50	> 501	
> 50% tover ist weeth.	4	1	0	
25 - 50% cover of weeds	×	6	- 141	
5 - 75% cover of weeds	10.	193	21	
= 5% cover of lends**	/18	123	11.	

* proportion of west other due to hugh these wests - any this terretrient for quite wigh thread wood species are defined as these nanooxies species including

reaction installations in the second state of the second state of substantially reduce one an increased persons with formula in the longer term assuming on going cannot make installation and documence regime.

The EVC benchmark hits topical weak reporter for the EVC in the Invergence and provides in estimate of their "inversioners" and "impact". In general, these week set its considered to take a high motion are considered such thread regardling of their investments.

7.1 Etitle wood zown in veryspice (x1%) and high transf wood species with present them soors '(1).

LF Code from EVC betichmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (*)	Modified (*)
17	314	215	1.14	R
215	1.17.10	5115	14	1.1
.015	81.15	251123	-2-1	× .
12	91.2	S 1.5	×	
FE.	271	= 0.1	×	
1.11	217	- 1.1		
. <u>1X0</u>	≈ 1.8	51/12	1	
21-	1.5.2	7.51	- K.	
-1. fr	1.1.4	3-140		100
4044	- Juli-ha	DOX.1	- V	
N.M.	귀 등 년	1212	1	110
Mosfie	1 1 5	\$ 12	- 2	
61:	1. 67	î (.15	- P	- K.
192-	312	1.1/18	10 A	-
32		150.00	N.	
£6.	and the state of t	ER KAUSEL		
Presant	 Present' if Bity spectrums For the forms with 'present' if 	n benstreach speed ant sbiocved 5 benstmark cover superv at jeast 30	01.010%.10	realization:
Modified Upply only form a (mare)	For the forms with substantially 'mod • < \$0% of the s • no reproductive For the forms with	benchmark cover bled" if the life far wrichmark ispecies fy mattere species (hord) if the life top blod) if the life top hinark cover, as	at < 50%, Ibn wither plant: Hoverlaty; da this are observ of = 10%, Ibe has either:	n considerent

< 50% of benchmark species diversify, in
 50% of benchmark species diversify to immuture campa spectrums had the cover of reproductively divature spectrums is < 10% of the benchmark count

Inderstorey	Score	15
Category & Description		
All strata and Life forms effect Up to 50% of Me forms prese	CONTRACT CONTRACTOR	0.
SSI'lls to 90% of Life forms, present	of those present, in 50% watertantially readified	49
	 of those present, < 50% substantially modified 	(B)
= 90% of Life forms present	 of these present, 3, 50% substantially recorded 	45
	 of these present, < Some substantially modified 	1206
	 of those present, norm substantially modified 	-325;
	The second se	100 Co. 7 L F

Vegetation Quality Field Assessment Sheet Version 1.3 October 2004

Ì

Columnia R	Description		High	Lpse
ategory & Description		diversity**	diversity*	
	within EVC not dr events	iven by episodic	R	-0
No estácico of a recultiment	within EVC	clear evidence of appropriate spirodic event	9	10
cabert**	drivers by episodic events "	no clear evidence of appropriate episodic event	3	:53
	proportion of native woody	< 10%	- 3	34
	species present	38 = 70%	3	3
inast onn Mit Gurm	adequatei recruitment	2016	10	(a),

conort wilers to a group of woody plants estatishing in a single sympole (car moude suppressed cancey species data-iduals)

- refer to TVC benchmark for cleVfcation.

I multiple applying carryly species as one species

high diversity defined as > 50% of bootmakk woody specim thereinly

Organic Litter	Score	22
Category & Description	Dominated by native organic.	Dominated by non-native organic little
< 10% of benchmark cover	01	0
$\ll 50\%~{\rm cm} > 150\%$ of benchmark cover	3	
- 50% or \$ 150% of benchmark cover-	6	A.

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment
Eucarypt concept (combined species)	V
Coproce Black	3
The an dealer and	÷
ELVIS AND DAT	Sec.
EAR Show By Showing	2
number of woody spp. in EVC benchmark (35 and uplin)	×

14

D.

logs	Score		
Category & Description	Large loge persent*	Lànge Xoge absert?	
< 10% of benchmark length	U	0	
< 50 ⁴ of benchmark length	2	2	
= 30% of benchmark length	5	- 62	

Large rops defined as these with charteries = 6.5 of temporaris large trial (20).

* present if large log ampth is c 25% of RVC behaviourk log larges.

attains if large log length is < 25% of EVC be-chimals log length.

Patch Size	Score	-8
Category & Description		
- 2 16		-1
Bebween 2 and 5 ba		- 2
Between S and 10 ha		
Between +0 and 20 He		
= 30 na, but highlightly disturbed?*		10
= 20.1%, but not 'significantly disturble	ND.7	310

'Landscape Context Score'

Distance	Gare Area not significantly disturbed*	Care Area significanth disturbed*
Sim	Π.	10
1 10 5 km	4	£
er 1. kritt		3
000000000	\$	

· defreed as per 27A Thit Crosen' studyets.

	6	Site	Con	ditio	on Sc	ore'		C	ndsc onte icore	3×	
ponent	200	1000y Cover	Wends	orev.	E.	little		dia -	boote	in the Cone Airde	Total
Com	Large T	10	190.0	Underg	Roount	ante:	cools	Parton 5	1	Distand	100
Score	3	2	15	5	6	5	ψ	1	74	4	63

" significantly disturbed defined as per FPA Old Growth analysis og rossling, couperin, graving etc. - effectively mant patcher within hypometical factoraper-

Radius from site	% Native vegetation	Weighting	
100.01	LAU	(0.0)	3
1. With	100	0.04	
5.km	1.0.	0.03	
		neighbeurhood is y disturbéd	-2
		Add Values and 'round-off'	÷

Multism the radius vegetation is therefore for each radius from the zone (mg. 40% \star 0.03 \pm 1.05 then add values to obtain this heighting/mood Value

Version 1.3 - October 2004

Department of Sustainability and Environment

Site Name/No:	Red		
Assessor(s) Prima A. (A.)	Map Name/Ne.	AMG / MGA	
Tenne States Includes	eve has been to see	Borogan 1972, U.J. G. D.	

Understorey Life forms

'Site Condition Score'

Large Trees

CONTRACTOR AND A CONTRACT	- 100	Paradatari Min	alative -		
Category & Description	Sundary Health*				
and the second	> 70%	30.70%	< 30%		
Penne present	38	0	0.		
> 0 to 20% of the territimark number of large trees ha	4	$\mathcal{A}^{(1)}$	(3)		
 20% to #0% of the banchmark sumber of large trees/he 	4	3	7		
> 40% to 70% of the bencomark number of Targe trees/Na	8	8			
 70% to 100% of the benchmark number of large bigss/ha- 	8	22	0		
 the teactmark number of large mercina 	tă	200	÷8.		

Score

Large trees and defined by distriction at breast height ritins?

See EVC benchmark.

* Estimate unicontion of an increased nearthy caregor cover that in prevent

() is met missing due to tool mostly or incluse, by millistop (intratation),

Tree Canopy Cover	Score	Q
Category & Description	36 Gartopy H	ewences
STREET WAR ALL NUT THE AVE		

Category & Description	90 Campoy Asswith *				
caregory is activitation	> 70%	30-70%	< .30%		
< 10% of benchmark cover	-8	0)	:13		
< 30% in > 150% of Senchrhark cover	2	1	1		
- 50% to: ± 150% of becommark cover	5		3		

Thes cancey is defined as those cancey this specials reacting a wink of minute . Nexts - set EVC torontimetric description.

* Estimate proportion of an expected beauty canopy cover that is present

() = ool minimu due to tree sharth or decire, or minimum interaction)

ack of Weeds	Sco	we	15		
Category & Description	Tripo tornat" invests.*				
category a description	None	= 50%	>:589		
# 50% own of availa		2	0		
25 - 50%-cover of weeds	- X	6	1.4		
5 - 20% cover elt weede.	11	0	18		
** always in wyoo will *		11			

* temportion of word cover due to high investigeneeds - see GAC benchmark for gasts.

"regri firredi" wimi species and defined in those emodecut species (including min-mitigeneous "without") with the ability to out competer and substantially induce one or roote infegerous. We forms in the larger term assuming on going sample life characteristics and disturbance regime.

The EVC bencionals with topaciti wend species for the EVC in the topages and provides as estimate of their wavefunction and impact. In general, three were species considered to have a high argued are consistented right travel regardless of their disconsecute.

a.e. it polls made the subgridges (+1,4) and solv quest made thorse also

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (-')	Modified (*)
117	一方方主		C	-
10	01 E	-7. HE	52	
165	412	351-25		
18 C	134 3	223.6.14	1.0	1
PS	1.1	3.4.0	7	1.1
111	31.1		1	-
MAL	11日1日	114	1 V 1	1.1
1.7.6	- 7 1	1.5	- 5	
1.88	1 1 1	5 2 4		Q
PET L	81.1	2.6.5	2	
0.967	- 1 · · ·	3.177	1	
65	1770	20X5	- V	
	21	21-	- 2	
21	malme	5 X G		
	- T.			
	1 - I - I	- 1 - 1	i wite:	
Present	 Snewna 'd Any spectrum For Ma forms with transit d 	t terrethildek sover ant obverved, r terrethildek cover cupies at watt 10	of): 10%, co	
Modified (apply doly where file family armited)	For life forms with subscurbally free = < 50% of the t = no reproductive For life forms, with sambaritality free = 50% of bern	Deschmalk cover theor if the life for perchanark specials in maliner special benchmark cover files" if the life for	of coords, be in fas edited diversity; or ensiste observ of a faths, the it has either	n çonatmej est.

 S 50% of liet/three species diversity, or
 S 50% of liet/three sover due largely to immature taxoely specimies but the cover of reproductively instance specimies is 4 10% of the terchitals species.

Inderstorey	Score	1.00
Category & Description		1
All strate and Life forms effect		9
Up to 50% of life forms pensi	ent.	5.
= 50% to 90% of Life forms invised	 of mose pteamt, a 50% substantially modified 	10
	 of more present, < 50% substantially modified 	15
- Work of Life forms present	 of those present, 2 50% substantially modified 	45
	 of these present, < 50% substantially modified 	-20
	 of those present, none industribuily modified 	-25

Version 1.3 October 2004

Description		High	Low diversity*
	iven by episodic	0	il.
within EVC	clear evidence of appropriate episodic event	0	305
kontert" driven by	no clear avidence of appropriate apisodic svent	\@≾	5
proportion of	< 30%	- 35	1
species presels: that have	30 - 70%	0	
adequate recruitment*	5.20%	36	5
	events within EVC driven by episodic events* proportion of native woody species present that have adequate	within EVC not driven by episodic events. within EVC driven by episodic events. ² episodic events. ² proportion of native woothy species present toat have adequate	Description diversity** within EVC not drivers by encode: events 0 within EVC driven by episodic events** clear evidence of appropriate evidence of appropriate evidence of appropriate npisodic event 0 proportion of native woody species present toat have adequate clear 0

+ cohord refers to a group of woody plants incadilined in a unipe estimate (can

indude suppressed Lancov species individuals's

In other to EVC pre-chemiety for classification.

7 (must involutive mucallypt concerv species as one special

* high diversity apprend as 2 52% of beechmark woods species deeperty

Organic Litter	Score	
Category & Description	Dominated by native organic little	
 10% of benchmark sover 	0	1.00
< 30% or > 150% of benchmark cover	1.1	38
> 50% or = 150% of beachmark cover	1.163	- 14

apecies receitinging	Species	Recruitment
----------------------	---------	-------------

141-1
2.7
21 -
1

.ogs	Score			
Category & Description	Large logs present*	Large logi		
< 10% of benchmark longth	0	0.2		
< 50% of benchmark length	1.	1		
50% of benchmark length	4	-		

carge logs delived as those with diameter > 0.5 of benchmark large tries stats

If prevent if targe kig length is < 2215 of First zenchmark tog implifi

absore if large log length is < 25% of EVC boochmark leg length.

'Landscape Context Score'

Patch Size	Score	
Category & Description		
< 2.ha	1	
Belween J and 5 he	2	
Between 5 and 10 tax	4	
detween 10 and 20 ha	6	
= 20 fta, but 'significantly disturbed's	8	2.
- 20 hb, but not supplicantly mitures	11	1

 lognificanaly datarised defined as per RFA 'DHI Growth' analyses op. Fording. migers graning stor - effectively most patches within fragmented landscapes

1

Radius from site	% Native vegetation	Weighting	
(00.10)	10%	2.0.0	- 3 -
I MIL	1.	0.04	
5-km		0.03	
		neighbourhood is ly disturbed!	
		Add Values and 'round-off'	121

Multiply the network vegetation, a Weighting for each radius here. the some log- 42% × 0:03 × 1.25, then add values to obtain final langetiourbook Value

Distance to	Core Area	Score		
Distance	Core Arna not significantly disturbed*	Core Area significantly disturbed*		
ir 5 km	- 0.	0		
1 to 5 km	20	- E		
<3.960				
a construction of	3	220		

* defined as pix NFA 'Old Growth' animates

		Site	Con	ditio	on Sc	ore		C	ndsc onte icore	xt	
Component	1000	many Cores	Weeds	- Adua	- Show	Litter		3	urtoot.	erto Core Ante	Total
Com	Linge T	Tree Ca	lack of	Underse	Necture	Organis	1001	1	neghto	Ibezano	100
Score	Ň	6	15	15	5	5	15	8	7	4	GG

4

Version 1.3 - October 2004

Department of Sustainability and Environment 122.71

-	C - B	h		
		6.0077	ŵ.1	4.0

ų

CUMPE Location

Accounter	2774-15C-	ALC:	18	3.
	11-Yangen		EVC	14

14

Map Nume/No: NO Land Hours

AMG / MGA

Date

Understorey Life forms

EG gland Bioregion :

The second s

'Site Condition Score'

Large Trees

Category & Description	% Canopy Health*		2017) *
conceptly a proclamation	$\gtrsim 70\%$	30-70%	× 30%
Nome present.	0	0	- 10 C
> 0.10 20% of the treatmink number of large mess/ha.	×.	(\mathbf{i})	30
> 20% to 40% of the benchmark number of large breachis	à.	ĥ.	121
= 40% to 70% of free perchimans rumber of large blem/ha	6	1987 -	- (4)
 70% m 100% of me becommun, number of large trees/ha 		1	100
 Hell benchmark number of large trees/hat 	10	÷.)	

Scare

Large treas are actived by mammer at treast height ratio

site EVC benchmark.

* Estimate proportion of an expected neithly coropy cover that is present

(car not missing due to free dooth or dordean, as multiplos initial above

Tree Canopy Cover	Sco	re	5
Category & Description		Caralogay Hes	NDV.+
Category & Description	> .70%	30-70%	< 30%
 10% of perchange cover 	1.0	0	- Û
< 50% or > 150% of benchmark cover	1	10	
= 50% or < 150% of bonchmark cover	6	- G	3

Tree campy is defined as these centry time species reacting y 40% of manual hinght - seil EVC finishmurk description.

* Estimate proportion of an expected healthy canopy cover that is present.

() all not missing due to tree death or decline, or misbebbe infestation).

.ack of Weeds	Sco	re	15
Catagony & Description	Tright threat! webords?		
Category & Description	Noise.	= 50%	> 50%
> 50% come of words.	-	2	.0:
25 - 50%- covert of wavetic	1	6	
1 + 25% cover of woods	. 13		- 191
= 35s cover of weeds?"	15	163	11

* proportion of west-cover plan 45 high trends were's - well \$15, here there is a good.

High Binest wired spoces are defined as those imposed species (including coll independent "values") with the adulty to out compete and substantially malaure one on recent stablicenses life forms as the longer term assuming dringeing turnerili bila chikosotekilarica anti disturbanca regene

The EVC benchmark like typical wend species for the EVC in the bioregram and provides an instimate of their "monoweness" and "impact". In general, these week species considered to have a neth etatert are considered high threat regardless M Sheet my Bayersets.

If it total wrote cover in negrigital (iii thii) and high thread wood species are present them append 1.31

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (*)	Modified (*)
141	1212	515	100	2
10		LI XIU.	5	
010	131154	17.7.5		
	1023	12 1 20		8
- 95	1 7 1	1.1	2	ý.
SR.	10-1-1-	- 7		
	1.35X II	57.2	- 6	
1.1%		11.0		
105	计正式图	2 1 1 1		
Juin-	2 - 1 - 2	STIL	U	
0.996	271	8.1.1		
34.F	221	1616-		
- 50	1.7.3	210		
154	maine	101+10		
	У.	X.	F2	-
Present	 Provent' if Pro spectrums with "present' if Dry (if) farm or 	toppes at lease 10	rof 2 10%; co	niamat A cavat
Modified	Tor the forms with substantially mod • = 50% of the t • de deproductive	ified: if the life for who'rmark apocaes	m has offer in diversity; in	
(apply only where the form is "lemant";	For life forms with substantially imod = 50% of bond = 50% of bond = 1.50% of bond = 1.50% of bond	benchmark cover ihed if the Me for litnark cover; or hmark species div	of 5 10%, the minute attention enviry, or .	n coosidirred

specifiers built the cover of reproductivity makes specificary as a 10% of the benchmark open Understorey Score

Category & Description		
All strate and Life forms effect	zivity absent	01
Up to 50% of life limits press	ent .	5
 50% to 90% of Life forms present 	 of those present. > 50% indistantially modeled. 	10
	 of those present, < 50% substantially modified 	15
90% of lofe forms present	 of those present, > 50%. sobstantially modified 	-15
	 of those present, < 50% substantially modified 	18
	 of those present, nace substantially modified 	26

Version 1.3 October 2004

Category &	Description		High oversity**	Low, dversity*
	wathin EVC nut drawnits	wen by conodic	Φ.	0
No eventmor of a recturbuter columnt* written EVC dineer by quisodic events*		Bear evidence of episoprum episodic event	d.	.0
	no clear evidence of appropriate episodic event	53	3	
	propertion of native woody	× 30% :	3.	d.
recruitment 'contert' in at	species present that have	30.20%	1	a.
least onla litte-form	adequate recruitment ²	± 20%	10	- 3

+ "opert" refers to a group of woody plants established to a single woods is in

include suppression samply species individuality

sife to EvC beschmark for clarification

¹ total institute cocaligit canopy specimical loce species.
² multi-species defined as a 10% of investment windor species diversity.

Organic Litter	Score	
Category & Description	Dominated by native organic littee	Dominated by non-native organic little
< 10% of beychmark cover	0	.0;
< 50% or > 150% of benchmark cover	3	2
2 50% or = 150% of benchmark lover	57	- 4

Species Recruitment

Woody species recorded in habitat zone	Adequate Recruitment (*)
Eucalypt campy (combined (pacies)	- X
film and the second	300
Stand Stranger and Stranger	20
Rei er i Brei Miron Mirty e Str	12
Program and the Colora	8
ministra de Castal de Castal de 2500 Antendo de 21. de 21. de 21. de 25. de	192
Address Advention of the	1

Logs		core
Category & Description	Large logs present*	Carge logi. absent
= 10% of benchmark length	D	đ.
< 50% of benchmark length	31	2.0
50% of brochmark langth	- 13?	

Large logs defined as those with diameter > 0.5 of templorark large tries diff-

нí

* present if large key kergift a 1.29% of EVC becchmain as worth

atsignt if large tog length is < 25% of EVC beschmiek tog length

'Landscape Context Score'

ť

ï

t

Patch Size	Score	10
Category & Description		
<2.6a		10
Between 2 and 5 he		-x
Setween 5 and 10 ha		4
Genueper 10 and 20 fta		. 16
- 30 ha, but 'agnificantly disturbed'*		8
> 20 his, out not "significantly disturbed	ć+	18

 superfluxnets obstated defined as per RTA 'OU Grands' analyses on conding, excess, grading etc. - effectively most patches within frequencied backnows

Radius from site	% Native	Weighting	
100 mi	102.0	0.03	Ξ.
309		0.04	- N.
s.km		0.023	1.114
		neighbourhood is ly distuited	-E
	~~~~~	Add Values and 'round-off'	71

to resent 20%.

Multiply III, nature vegetation is Weighting for each radius from the score (49: 40% v (1.02 - 1.23); then add usines to others's final failing/sourcecold Venue

Distance to	Score	
Distance	Core Area not significantly distarted*	Core Area significantly illigradiat
> 5 km		.0.
1 to 5 km	2.	
<.1.9m:		1
curringuiture -		- 40

· defined as per RFA 'Old Growth' Analyses.

	3	Site	Con	ditio	on So	ore		C	ndsc onte Score	xt	
Component	1	many cover	ck of Wreefs	Mader	nem;	COMPC		đ	putteot	in to Corp Ange	Total
Com	Linge T	1	Luck of	Undered	REPORT	Croaric	ulo:	Piletin S	Newton	panna	100
Score	2	3	15	ıš	8	ŝ	1	3	1	4	32

www.dse.vic.gov.au

Map Name/No.

Listation

DWARFADERS

Version 1.3 - October 2004

100

Department of Sustainability and Environment

Louader

			B
som:	Nat	1000	Nec
0.14			1900

Assessor(s) E = 1 = 2 = 2 = 2 = 2

Large Trees

Timere (SHI) Tel Flashill

EVE

Score

-----

15

'Site Condition Score'

Understorey Life
------------------

( Cial

-to Illain

Clabe

AMC / MCA

6orpipion

199

and the statements of		16	_	
Category & Description	Sciency Health *			
carsgory a manipular	> 70	30-70%	× 30%	
Noom possere		02	0	
> 0 ts 20% of the beochmark number of large twenths	3	13	Ĩ.	
> 20% to 40% of the boochmani number of large bees/Na	(s)	Sal	11	
<ul> <li>Atms to 70% of the binchmark, number of large trees/hu</li> </ul>	6	8	9	
<ul> <li>20% to 100% of me terminium number of large troes/Na</li> </ul>	<u>0</u>	$(\mathbf{p})$	3.0	
; the benchmark minister of large ' meeting	in:	(g):	38	

Lings here's and defined by champers at boost here if (other)

- your EVIC tampetintuark

" Estimate proportion of an expectat reactly colopy cover that is present

It as not missing that to tree doubt to double, or missippor infestation)

Tree Canopy Cover	Sco	re	2	
Cotocourt & Description	0.464	Carropy Her	NU) =	
Category & Description	> 70% 30-70%		< 30%	
< 10% of benchstara sover	18	.0-	-8	
< 50% or > 150% of benchmark cover-	- 11	125	1	
= 50% or = 150% of booktmack cover	182	1	13	

Tree sample is defined as these canopy their species leading a 30% of mature Angler - sea EVC benchmark daucrokon.

* Elemetic proportion of an expectico heinthy caregor power that a prenerit

(ca. not meaning chill to thee death or leading, or minimated intelligible).

ack of Weeds		ore	14		
Category & Description	76grt chreat," www.cat.				
conceptory is searchinger	None.	< 50%	> 50%		
> 30% cover of energy -	4	3	0.1		
25 50% cover of weeds		- K	4		
1 - 25% cover of weeds	. 11	-0-	10		
< 1/1 cover of weads**	B	- 12	11.		

t proportion of sensitioner due to trapp thread sensities - sensitive benciments for party High Threat wind species and defined as more attractived, species (including

comissingeroom matters ("with the attribute) out competent and subscantially revision one or more autoportion life forms a the longer serve assuming program current and characteristics and disturbance regime

The EVC bencomment tota typical wend specials for the EVC of the bioregrap and provides an estimate of their "incativeness" and 'impact". In general, income wood species considered to have a light request are standards from threat equivalence of their monovisoods.

** If total event cover is negligible ( < 1%) and high thread wood species and present them score 'AT.

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (~)	Modified (<')
11	313	21 5	1	1
- T	1.758	17282	100	-
INS:	14.8	8425	1.1	10
10.5	47.2	1110	1	-
FS:	DIT	- 1 I		1.1
12.62	1.100	- 7.5		
Mile	2.1.1	T Y Lo		
1.16	201 2	- C.C.	1.1	
1 ML	187.73	1.51		
1100	1370	37.5	V.	
MOR.		- 2 - 1	- A-	-
VE	212	601 5		
50	1111	7.2	- 2-	
1.0	2 1 11	10161	- X-	1
GL.	100.173	3/75	- Y.	1.7
1916-	F F	216	1.75	- A.
Present	<ul> <li>Ally specience</li> <li>Ally specience</li> <li>For interaction with personal if</li> </ul>	n ferstivnek rowe ers somewol bestimek rowe roges et lesst 10	of > 10%, to	new providence
Modified (apply only other the form to	<ul> <li>substantially 'mod</li> <li>s SDN of the t</li> <li>no reproductive</li> <li>For life forms with withstantially lived</li> <li>s 50% of bots</li> </ul>	Demonstrative recommission of the framework of the fra	n has either develops or test and observ of a 10%, the t bus either:	ei:

50% of benchmists cover due largely to emissive campa

speciments but the cover of reproductively-manufe speciments III < 10% of the brinchmark cover

Inderstorey	Score	12
Category & Description		1
40 strata and Life forms office		0
Up to 50% of the forms prese	11 E	5
50% to 90% of Life forms present	<ul> <li>of those present, &gt; 50%</li> <li>substantially implified</li> </ul>	:10
	<ul> <li>of those present, &lt; 50% substantally modified</li> </ul>	C
<ul> <li>90% of Life forms present.</li> </ul>	<ul> <li>of those present, a Strik substantially root/filed</li> </ul>	18
	<ul> <li>of them present, &lt; 50% substantially modified</li> </ul>	-20
	<ul> <li>of these present, iscent substantially modified</li> </ul>	25:



Version 1.3 October 2004

Recruitme	nt	5	cone	3
Category &	Description		High diversity***	Low diversity*
	within EVE not di events	overs by etabolic	0	20
No evidence of a rechilement	within EVC.	clear evidence of appropriate episodic event	0	<u>()</u> (
cobert*	driven by apisode events"	no clear evidence of appropriate episode: event	ŝ	90
ALC: NO STREET	proportion of native woody	< 30%	3	- 14
	species possible that have	20-20%	(B)	D
Me-form	adequate recoalment"	1.70%	10	- 8

· "TUDOIT' refers to a group of woody grows sublimited in a larger special (car)

include suppressed canaby specter individuals?

- whereas Est, benchmark for overfication,

7 imat multiply excepted carropy species as one species.

* high coverage petrined as > 50% of benchmark woody species dhims by:

Organic Litter	Score	5
Category & Description	Dominated by native organic litter	Dominated by non-native organic little
- 10% of benchmark covar	0	ù.
< 50% or > 150% of beechmark cover	3	2
= 50% or < 150% of benchmark over	3)	A

**Species Recruitment** 

Woody species recorded in habitat zone	Adequate Recruitment (*)
Eucalypt canopy (combined specier)	2
Geoderice conte Objective dividenti de	1
CAREES MALLIN	- 2-
while of south loss in Par constraint (35 and 188)	

number of weeky yep, in EVC secondary (55-ana talm)

ogs	Score		
Category & Description	Large logs. present*	Large logs absent	
< 10% of pendanark length	0.	.0	
< 50% of penchimark length	1	(2):	
: 50% of benchmark length	5		

Large logs defined as these with standard ± 0.5 of beechmark segarities doe

* present if large log weight is a 25% of EVC beachmark (og lengt).

it also it is an a court of the second second

Patch Size	Score	8
Category & Description		
6.279		1
Bistumen 2 and 5 hill		3
Retwiee 5 and 10 ha		
Between 15 and 28 ha		- 8
20 Na. but 'significantly disturbed'*	E.	8.
= 20 ha, but not significantly disturb	ed*	:10

 - significantly electroted defined as per RFA 'Cell factory's analysis og, rozend, cooper, graving etc. – effectively most patches within fragmunited factocaper.

Radius from site	% Native vegetation	Weighting	
100 m-	105	0.03	- B.
1.6m	Viol.	0.04	34
5, 8m	- 60	0.03	二文书
	subtract 2 if the 'significant	neghboximood a ly distucted	-2
		Add Values and 'round-off'	74

* ID INTEREST 277%

multiply in ratios vegetation a Weighting for each radius from the zone (e.g. 40%  $\times$  0.6%  $\times$  1.2); then add values to obtain this freightpurchased values

# 'Landscape Context Score'

Distance	Core Area hol significantly disturbed*	Core Area significantly disturbed*
> 5 km	0	ñ.
1 to 5 km	4	1
< 1 km		. 0.
configuous	5	193

* datheet in per FFA. Oht Growth: analyses.

		F	inal	Ha	bit	tat	Sc	ore			
	U	Site	Con	ditio	n Sc	ore		C	ndsc onte Score	xt	
ponent	590	papy Cover	Weeds	ADDA	20394	i mini		.50	harden	e to Core Arca	Total
Comp	Large To	1000	10.00	Underst	Recollin	Comme	tion	Patch S	No.	Distance	100
Score	2	2	15	15	(Loj:	5	2	8	7	4	63

Map Warner/Weil:

Laga Lib 17

Version 1.3 - October 2004

Department of Sustainability and Environment

Nim	

Analyzanity ______A

party of Tast? Location

Date

A 2-			

EVC.

Tulline

Score

AMG / MGA

Territal Office Velocities 11

Large Trees

-----

115

light a

ES Law land D-OTHER DATE

# 'Site Condition Score'

#### Understorey Life forms

Category & Description	Canapy Health*			
category a Description	> 14	30-70-	× 30%	
None present	0	9	. P	
<ul> <li>0 to 20% of the benchmark number at large frems/ha</li> </ul>	10	a),	4	
<ul> <li>XPIs to APIs of the benchmark Nonber of large creevity</li> </ul>	÷.	16	ą.	
# 40% to 70% of the denctmark number of large trees/ha	ji.	4		
<ul> <li>PD% to 100% of the benchmerk humber of large treas/ha</li> </ul>	8	16	10	
. the bolichmark multilies of large reaction	310	10	8	

er it trebill height (direct

ier IVC Southwest

* Electricity properties of an expected multily samply court that 4 present

(ver not mining due to tree dealth or decline, or mispegoe execution).

Tree Canopy Cover	Sco	.5		
Catagoni & Occupation	Canopy Health.*			
Category & Description	> 37%	30-70%	× 30%	
< 10% of benchmark power	4	0	-0	
< 50% or > 150% of benchmark cover	1	2	1	

- 50% or - 250% of teachmark ower They samply is defined as these calculations for sameric meeting a blink of manage

Aroth: - ien buC binchmalk description

* Estimate proportion of an expected Assetting cacego obser that is present

In a real monorpical to tree death or country, or malietpe infestation

ack of Weeds	Sco	vre	肾
Category & Description	his	n threat was	x75 *
consysty a vescription	None	1.50%	> 509
> 50% cover of weeks	+	2	1
25 50% cover of weeds	T.	6	
5 - 75% cover of weeds	11.	9	-2
< Shi cover of weeds**	6	11	11

* simplerbox of weeks could shall to high thread weeks - see EVC benchmark for goose. migh threat wood species are defined as these impoliced species (inducting

non-addigeneous mathems a with the ability to out-considerer and substantially induct one in store indigeous life family in the looper term, assuming on going durinfrif illo chiemieristics and aldurbanes regate

The EVC benchmark mits typical wood spores for the EVC in the bioregion and provides an indimate of their invationmeter and 'impact'. In general, their weed boocks comissored to twice a ways inplace are possidered, type phone regentees of their Humber

** if tooli wood powers in coopspore (+ (1%) and high thread weeps species are present than (acres 11).

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (*)	Modified (~')
11	10.2	215	1	100
	1.3.7	(F,T,T) =	. X	×
Ne	「モノ王」	915	1900 -	2
111	07 =	15	8	-
- MA	- 1.E.	2 100	×	- P
2.41	1.2	115	1.0	4
	17:2	- # (C.)	. ×	
6/16	R. S. H.	- 61		_
Man_	2.1.2	114.1		
Ditte .	1.1.1.2		- V	- R
-15	1.2	2 /2-	1.5	-
VE	01:2	-1.5		1.0
5.E.	12.63.1	and the second		
422	51.4	1002	- C -	- A.
6.1	wall ve	15 1.20	1	× .
	- 1	1.	19/13	11.2
Present	<ul> <li>present if</li> <li>any speciments</li> <li>for its forms, with</li> <li>present if</li> <li>the life form or</li> </ul>	h beinchmark cove	r of a 1996; co	nižbiost rik pivomi
Modified (400% only- wrane for form in (prmmt)	<ul> <li>no reproduction</li> <li>For site forms with isobrimitally theory</li> <li>+ 50% of berg</li> <li>+ 50% of berg</li> </ul>	Ment" if the site to produce apacture of matching spectre benchmark cover that if the Me for matching cover; or	this take without 5 diversity; 22 ends and 20thers of a 10%, the michary oddlast: emoty; of	en. 19 roosale-sut

Inderstorey	Score	- 55
Category & Description		
All strate and Life turns effer	tively absent :	D.
Up to 50% of Me forms press	199	5
50% to 90% of Life forms, present.	<ul> <li>of thosis presided, a 50% substantially modified</li> </ul>	10
	<ul> <li>of those present, &lt; 59% substantially visibility</li> </ul>	38
90% of Life forms present	<ul> <li>of those present, a Suma substancially modified</li> </ul>	.15
	<ul> <li>of these present, &lt; 50% substantially modified</li> </ul>	- 20
	<ul> <li>of those present, onne substantially modified</li> </ul>	35

= = 10% of the terrotinal's cover



Version 1.3 October 2004 îr.

Cittegory &	Description		High diversity**	Low diversity*
	within EVC not dr events	iven by resorte	a.	D
tio evidence al a tecnolisiont	within EVC	clear evidence of appropriate episodic event	- 6	0
'conort'' driv	driveri Dy episodić eventa*	no clear evidence of appropriate episodic evient	5	3
Evidence of at litist one	proportion of pative woody	< 30%	1	(1)
convisionent convision at	species present that fullye	30 - 70%	P	ă.
tife form	adequate recolligent	20%	- 10	3

operation of the state of the s

include supportaind caregoy species antivistants

F refer to EVC boostmark for clarification

These multiple bookysit tampy species in one species.

* high inventry defined as a fallity of benchmark woody specter diversity

Organic Litter	Score	5
Category & Description	Dominated by native organic littler	
< 20% of benchmark cover-	- 10	0
< 50% of > 150% of benchmark cover	3	- R.
> 50% or = 150% of benchmark cover	(5)	

#### Species Recruitment

Woody species recorded in habitat zone	Adequate Recluitment
Eucalypt canopy (combined species)	1.00
PURCEPOIL SUPPLY	1.00
Olemnia data.	6
Elestion Hold Luich	1 . A.
Fallack aller Martin	~
Corner and file	- C -
15-CRA LALLAND	
Remera In The	5
Stat Bridge - 1-54 Fick	800
gentles heijfeite	- Y

memory of accely spy. in 81/C kinstroniels (55 and tally)

Logs	Score			
Category & Description	Large logs present*	Large logs absent		
< 10% of benchmark length	0	0		
+ 50% of benchmark length	0.5	. 12		
= 50% of benchmark length	5.	- 23		

samplings defined as those with character > 0.5 of bonchstark targe multitude

Ψ

If propert if large key longth is = 25% of XVE borshmark key lampth.

# absent # lange tog longits is < 25% of AVC benchmark key ungin-

# 'Landscape Context Score'

Patch Size	Score
Category & Description	
4.2 ha	- X
Betweent Z and 5 ha	3
Between \$ and 10 he	
Setween 18 and 20 ha	6
= 20 ha, but significantly disturbed*	() () () () () () () () () () () () () (
> 20 hit; but not significantly disturbe	oll." 10

I 'significantly described defined as per RFA Tot mowith analysiss eq. toxicity cooper, gracing etc. - effectively multiplatenes within frequentizat landicapes.

Radius from site	% Native vegetation	Weighting	
00 111	2011	E0:04	1
s kim	100	19.09	
i em		0.03	- 74
	subbact 2 if the 'significant	neighbourhood n ly disturbed	-21
		Add Values and 'round-off'	- 74

Mumphy the names separated in Weighbeig for each radius from the open  $(a_0, 40\% \times 0.03 + 3.2)$ , then and values to obtain final Neighbourbook yallies

Distance to	Score		
Distance	Core Area not significantly disturbed*	Core Area significantly disturbed*	
+ 5 km	0	- 11	
i to 5 lim	12	1	
< ± xm	1.00	7:	
contriguous		- C-65-	

· deliver as per NAY Old Grouds' analysis.

		Site	Con	ditio	on So	ore'		C	ndsc onte icore	xt	
Component	itees	oopp Cover	Weeds	Kajo	and a second	timer		Æ	iortiod.	e to Ctre Arro	Total
Com	Large To	The Co	Lack of	Unders	Penuitr	Organic	tion	Pator 5	-	Distant	100
Score	0	5	15	15	6	V/r	5	8	Ŧ	ų	163

	lity Field Assessment rsion 1.3 - October 2004	Sustainability and
Site Name/No	Location Tomatis Work	Dire 5/9/13 Environment
Allessorial CTITOS - A.H. A.K.S.		AMG / MGA
tenue State Forest EVE Show	sty Dry Forest	Burgar EG Lowlands

town State Forest ever Shrubby Dry Forest

**************

'Site Condition Score'

Understorey Life forms

-52

arge Trees	Sco	re	10	
Category & Description	W Canopy Health*			
carryory a description	$> 70^{\circ}$	30-70%	5 30%	
None present	0	0	ą.	
<ul> <li>0 to 20% of the benchmark maniper of large trees/ha</li> </ul>	14	3	4	
= 20% to 40% of the benchmark number of large trees/ha	240	3	2	
# 40% to 20% of the benchment number of large (nets/ha	246	- 26	34	
<ul> <li>70% to 100% of the Servicendek number of large trees/har</li> </ul>	101	72	30	
<ol> <li>the benchmark combine of large trens/hat</li> </ol>		- 0	8	

Large trees are defined by diameter in modell height (1004)

i.ev EVC Serichmann,

* Ethimate projection of an expected territry careary cover that is present

(i.e. one straining due to mee deals or declare, or entitletie infantation)

Tree Canopy Cover	Sco	re	Ta'ly
Category & Description	19-0	Canopy Nes	nith #
Category & Description	> 70%	30-70%	< 321
< 10% of benchmark cover-	0	0	0
< 50% or > 150% of beochmark cover		2	30
± 50% or = 150% of trinchmark cover	3	- ii	3

These carrieds is defined as these carrieds treat species reacting ( 30% of mature weater see EVC beschmark descrution

* Estimate proportion of an expected teaming caropy cover that a present.

It is not making that to true deats or pectine, or middetpe averagional

ack of Weeds	Sco	ne	13		
Category & Description	Paget1 trinnel1' eventsts *				
Category a Description	None	± 50%	> 50%		
- 50m cover of weeds	4	1	: R		
25 - 50% cover of weeds	25	16.1	4		
5 - 25% cover of wreds	114				
< 5% com of young**	(15)	-15	35		

Placeportain of levels cover illue to frigh thread levels | see EVC honchrise's for guide. rispititional anels species are defining as those emodoced species (including non-independent metions's with the applity to put compete and substantially

rentative one or more radigebous life forms in the larger term assuming de-going summer site chickdminies and eletamator organic

The EVC bonchmank tasts (vplstat seeed species for the EVC in the teorogical and provides an extension of them invalueness, and impact. In general, those word londes considered to have a right insald are considered with meal regardless. (d Matt Hullington)

As a post would come as negligible ( v ( %) and righ thread sound species and provising they across 17,

LF Code from EVC benchmark	# spp observed / Benchmark spp.	% cover observed / Benchmark % cover	Present (~)	Modified (<)
12	= D L	$15L \leq 1$	- 4	100
	2.0	12/ath	- A -	- 36
-MS-	1.		12	-X-
- 55	11 6 2	103 (184		
.7004	315	215	- 1	×
Lar	2.11	2.4	-	. K
LAG	1.5.2		12	1
100	112	37.1		
Sept.	241		- C	
G.C.	「くちろ」	2.65	1.	
-56	2 1/2	_ /	- 10	
121	101,13	0	1	
34	C Horn	21		10
	n.	-n.		_
		<u> </u>		- V
Present	present' II • day specification For the forms with president' if • the the form of	Contributiante cover Incorpress al terrest 10	r of a 10% ve	Tendon Miconia
Modified (Apply strip	initebankially two + ~ 50% of the i + ou reproductive For Me tyrons with	i öknichmark ocyan shegi it dhe ide fan denormark opecas denormark opecas operationark operation obenormark oper	m kas attrei - Weensty, ut etts als daters - of = 10%, m	
form is form is present (	<ul> <li>&lt; 50% of berg</li> <li>&lt; 50% of berg</li> </ul>	Med' if the tife for Amark colver; or Amark species dw Amark colver over	enter: of	elure canopa

percentry in the cover of reproductively meture speciment es < 10% of the beochmark cover

Inderstorey	Score	20
Category & Description		
All strata and Life forms effor	tively absent	0
Up to 50% of life forms prese	ini.	1.5
50% to 90% of the forms present	<ul> <li>of those present, &gt; 50% substantially modified</li> </ul>	142
	<ul> <li>Inf most present, &lt; 50%, substantially modified</li> </ul>	15
97% of Life forms present	<ul> <li>of those preserve, 2 50% substantially modified</li> </ul>	15
	<ul> <li>of those present, &lt; 50% substantially resultiest</li> </ul>	20
	<ul> <li>of those present, how substantially inodified</li> </ul>	-25



Version 1.3 October 2004 íſ

Category &	Description		High diversity++	Low diversity*		
	within EVC out da	9	D			
No evidence of a recruitment 'cohest"	within EVC	cient evidence of atgropriate epitodic event	0	0		
	driven by opisodic overitz*	no-clear evidence tif appropriate episodic.evimt	٤	3		
Exidence of at least com	proportion of native woody	< 10%	3.	9		
sonutraerit	species present. that heve	10 79%	100	18		
wast ever No form	adequate recruitment*	10	18.1			

"cohort" refers to a group of woody plants established in a single resided (can include suppressed cannot species individual).

- mile to CVC benchmark for clambdation

" Jousi multium oucolypt campy species as one species.

* regis stversky defined as a 50% of benchmark woody species diversity

Organic Litter	Score	2			
Category & Description	Dominated by native organic litter	and the second se			
< 10% of benchmark obver		0			
< 50% or = 150% of benchmore power	1	2			
il 52% us < 150% of benchmark crives	- V	90			

Species I	Recruitment
-----------	-------------

Woody species recorded in habitat zone	Adequate Recruitment (V)
Equalitype carriegy (combined species)	
Digasticolit, pullet System.	- 20 F
As for the spatial sector of the	- X
CE - 2 1 / / 1 1 3, 5 / - 116 7	
Mana Arabita a Composition	
All has the antide of a local barrier of a	
and the second	
Sector Contraction of the sector of the sect	
R. Law C. Hard	
and the second se	
Second of the Automber Sector	1.1.2.2
Pedrala and alfred by his of	140 M
number of winter upp, in FVC here times, (55 and table)	1.1.1

ogs	5	core
Category & Description	Large logs	Large logs absard*
< 10% of benchmark length	0.0	Ö.
< 50% of benchmark length		7
: Strin of benchmark Wright		

Lengt topt defined at those will darheder 2.0.5 of benchmark large timester.

Score

* present if single may empty in a 27m of \$10, servicement top month.

# absort if lange key where is a Z3% of EVC benchmark tog wheel.

# 'Landscape Context Score'

Ť.

ĩ

Patch Size	Score	16
Category & Description		
< 2 ha		- A.
Between 2 and 5 ha		2
Bertrimmen 5 and 10 ta.		- 14
Between 10 and 20 he	1	.0
= 70 two out "significantly disturbed"*		18
= 20 iss, lose oot supreficantly streturbe	10	30

 significantly absurbed defined as per RFA 'Cid Debett' Workyes (g. noeths; trouber, graining etc. - effectively most parciety within tragmented taniturapel.

Radius from site	% Native vegetation	Weighting	
100:111	189 C	0.03	3
1.km	50	0.04	- 11
5 km	24.9	0.03	- 20H
		neighbourhood () ly disturbed	-2
		-1	

Huttany to name separation a Weighting for each radius from the tone ing. 40% x 0.03 = 1.21; then add values to obtain final Neightboarhood Value.

Distance	Core Area not significantly disturbed*	Cote Area significantly disturbed*
i 5 km	0	01
1:10-5:km		A.
< 1 Rm	4	- X
annibiguous		143

* defined as per IVA 'Dig Orowith' analysis:

Distance to Core Area

	Ĩ	Site	Con	'Lai Co S							
Component	onent oor covri vedi		Weedle	, Naudo	ant	inter-		900	uncod	6 th Con Area.	Total
	Large Tr	True Car	10.50	Underst	Were all	Organic	8	Funch S	Aleignee	Distano	100
Score	3	5	15	20	5	3	Б	N	Ŧ	4	76

_										S	urvey Sa	mple Site	es						
Status	Species	Common Name	Lifeform	1	2	3, 11	4	5	6	7, 13	8, 12	9	10	11	14	15	16	17	Other
	Acacia dealbata	Silver Wattle	Т															х	
	Acacia longifolia	Sallow Wattle	Т			Х				х				Х				х	
	Acacia myrtifolia	Myrtle Wattle	MS			Х								Х					
	Acacia terminalis	Sunshine Wattle	MS																х
	Acacia verniciflua	Varnish Wattle	MS					Х											
	Acacia verticillata	Prickly Moses	MS						Х										
	Acrotriche serrulata	Honey-pots	PS	Х					Х	Х		Х			Х			Х	
	Adiantum aethiopicum	Common Maidenhair	GF				х			х	Х		х		х			х	
	Allocasuarina littoralis	Black Sheoak	Т									Х						Х	
	Amperea xiphoclada	Broom Spurge	SS							х					Х				
	Anisopogon avenaceus	Oat Spear-grass	LTG						X			Х							
	Australina pusilla	Shade Nettle	МН														Х		
	Austrodanthonia spp.	Wallaby-grass	MTG	Х	Х			X	Х										
	Austrostipa spp.	Spear-grass	MTG			Х				х				Х	Х			Х	
	Bedfordia arborescens	Blanket Leaf	Т														Х		
r	Beyeria lasiocarpa	Wallaby-bush	MS																х
	Billardiera scandens	Common Apple-berry	SC	Х	Х	Х	х	Х	Х	Х		Х	Х	Х	Х			Х	
	Blechnum cartilagineum	Gristle Fern	GF				х				Х		х			Х			х
	Blechnum nudum	Fishbone Water-fern	GF								X								х
	Burchardia umbellata	Milkmaids	мн							х					х			Х	
	Bursaria spinosa subsp. spinosa	Sweet Bursaria	MS										Х						
	Cassinia aculeata	Common Cassinia	MS	х	х	Х		х	х	х		х		х	Х		х	х	
	Cassinia longifolia	Shiny Cassinia	MS	Х			Х	Х	Х	Х	Х		Х		Х	Х	Х	Х	
	Clematis glycinoides	Forest Clematis	SC				х			Х					Х	Х	Х	Х	
	Comesperma ericinum	Heath Milkwort	MS						Х										
*	Conyza spp.	Fleabane	МН																Х
	Coprosma quadrifida	Prickly Currant-bush	MS				х				Х		х			Х	Х		
	Correa reflexa	Common Correa	MS																Х
	Cyathea australis	Rough Tree-fern	TF				X			х					х	Х			Х
	Dampiera stricta	Blue Dampiera	SS			Х		х	х	х		х		х	х			х	
	Daviesia leptophylla	Narrow-leaf Bitter-pea	MS		Х	Х	х	Х	Х	Х	X	Х		Х	Х			Х	

# 9.4 Appendix 4: Flora species list recorded by Ethos NRM, April 2013

#### ETHOS NRM

<b>C</b> 1.1										S	urvey Sar	mple Site	es						
Status	Species	Common Name	Lifeform	1	2	3, 11	4	5	6	7, 13	8, 12	9	10	11	14	15	16	17	Other
	Deyeuxia quadriseta	Reed Bent-grass	LTG			х	х			Х				х	Х			х	
	Dianella caerulea	Paroo Lily	MTG	х		Х		х	Х	Х		Х		Х	Х			Х	
	Dianella revoluta	Black-anther Flax-lily	MTG									Х							
	Dichelachne spp.	Plume Grass	MTG			X		Х						Х				X	
	Dichondra repens	Kidney-weed	SH														Х		
	Dillwynia glaberrima	Smooth Parrot-pea	SS									Х							
	Echinopogon ovatus	Common Hedgehog- grass	MNG						х										х
	Elaeocarpus reticulatus	Blue Oliveberry	Т				X				Х		Х			Х	Х		х
	Epacris impressa	Common Heath	MS			х		х	х	х	х	Х	х	Х	х			х	
	Eucalyptus baxteri	Brown Stringybark	T/IT	х	Х				Х										
	Eucalyptus bridgesiana	But But	T/IT									Х						x	
	Eucalyptus consideniana	Yertchuk	T/IT	Х	Х			X	Х			Х						X	
	Eucalyptus croajingalensis	Gippsland Peppermint	T/IT				Х						х						
	Eucalyptus cypellocarpa	Mountain Grey-gum	T/IT	Х			X	Х			Х		Х			Х			Х
	Eucalyptus elata	River Peppermint	T/IT										х						
	Eucalyptus globoidea	White Stringybark	T/IT	Х		Х				Х				Х		Х			
r	Eucalyptus mackintii	Gippsland Stringybark	T/IT															х	
	Eucalyptus macrorhyncha	Red Stringybark	T/IT					X	Х			Х						X	
	Eucalyptus mannifera	Brittle Gum	T/IT		Х			х											
	Eucalyptus obliqua	Messmate	T/IT				X	Х		Х	Х		Х		Х	Х			
r	Eucalyptus polyanthemos subsp. longior	Forest Red Box	T/IT						Х										
	Eucalyptus sieberi	Silvertop Ash	T/IT	Х		X				Х				Х	Х				
	Eucalyptus tricarpa	Red Ironbark	T/IT		Х	x		x	х					х				x	
	Euchiton spp.	Cudweed	MH					X					х						
	Eustrephus latifolius	Wombat Berry	SC													Х	Х		
	Exocarpos cupressiformis	Cherry Ballart	Т	х														X	
	Gahnia clarkei	Tall Saw-sedge	LTG														Х		
	Gahnia sieberiana	Red-fruit Saw-sedge	LTG			X								Х					
	Gahnia spp.	Saw-sedge	MTG	х	Х		Х		х	х	Х	х			х				
	Galium spp.	Bedstraw	MH							Х	Х				Х				
	Glycine clandestina	Twining Glycine	SC	х			Х	х											
	Gonocarpus spp.	Raspwort	MH				X			X					Х				

#### ETHOS NRM

Status	Species									S	urvey Sa	mple Site	es						
		Common Name	Lifeform	1	2	3, 11	4	5	6	7, 13	8, 12	9	10	11	14	15	16	17	Other
	Gonocarpus teucroides	Germander Raspwort	МН	х		х		х	х	Х	х		х	Х	X			х	
	Goodenia ovata	Hop Goodenia	MS	х	х		х	х			х		Х			Х		Х	
	Gratiola peruviana	Austral Brooklime	МН				х						Х						
	Hakea eriantha	Tree Hakea	MS	Х															
	Hardenbergia violacea	Purple Coral-pea	SC										Х						
	Helichrysum leucopsidum	Satin Everlasting	МН			Х								Х					
	Hibbertia aspera	Rough Guinea Flower	SS	х		Х		х		х	х	х	х	Х	Х			х	
	Hibbertia crinita	Hoary Guinea-flower	SS																x
	Hibbertia empetrifolia	Tangled Guinea-flower	SS	х				х		х					Х				
	Hibbertia obtusifolia	Grey Guinea-flower	SS					Х	Х	Х		Х			Х			Х	
	Hydrocotyle laxiflora	Stinking Pennywort	SH				х												
	Hydrocotyle spp.	Pennywort	SH							Х			Х		Х				
	Hypericum gramineum	Small St John's Wort	МН	х						х		х	Х		х			х	
*	Hypochaeris radicata	Flatweed	MH				X			Х					Х			Х	
	Indigofera australis	Austral Indigo	MS									х							
	Joycea pallida	Silvertop Wallaby-grass	LTG			Х		Х		X				Х	Х				
	Juncus pauciflorus	Loose-flower Rush	MTG																x
	Kunzea ericoides spp. agg.	Burgan	MS				х			Х		х	Х		х			х	
	Lagenophora spp.	Bottle-daisy	МН							х		х			x	х			
	Lastreopsis acuminata	Shiny Shield-fern	GF				X				х		X						
	Lepidosperma filiforme	Common Rapier-sedge	MTG	?	Х				Х	Х		х			х				
	Lepidosperma laterale	Variable Sword-sedge	MTG	Х		Х	х					Х		Х		Х		Х	х
	Leptospermum brevipes	Slender Tea-tree	MS									х							
	Leptospermum continentale	Prickly Tea-tree	MS							Х					Х			Х	
r	Leptospermum trinervium	Paperbark Tea-tree	MS									х	Х						
	Leptostigma reptans	Dwarf Nertera	SH				х												
	Lobelia anceps	Angled Lobelia	мн				х												
	Lomandra filiformis	Wattle Mat-rush	MTG	х				х	х										
	Lomandra longifolia	Spiny-headed Mat-rush	LTG		Х	х	х	х	Х	х	х	х	х	х	х			х	
	Lomatia fraseri	Tree Lomatia	MS										Х						
	Lomatia ilicifolia	Holly Lomatia	SS							х					х				
	Luzula spp.	Wood-rush	MTG				Х						Х						Х

#### ETHOS NRM

Status	Species				Survey Sample Sites																	
		Common Name	Lifeform	1	2	3, 11	4	5	6	7, 13	8, 12	9	10	11	14	15	16	17	Other			
	Microlaena stipoides	Weeping Grass	MNG		Х	х		х	х	х				х	Х		х	х				
r	Nicotiana suaveolens	Austral Tobacco	МН														х					
	Notelaea ligustrina	Privet Mock-olive	MS																х			
	Notelaea venosa	Large Mock-olive	MS														Х		х			
	Olearia lirata	Snowy Daisy-bush	MS				Х			х	х		Х		Х		х		х			
	Olearia spp.	Daisy-bush	MS			Х								Х								
	Opercularia spp.	Stinkweed	МН	х				Х	х													
	Opercularia spp.	Stinkweed	SH				X						Х									
	Oxalis spp.	Wood-sorrel	SH				Х			Х			Х		Х	Х						
	Ozothamnus cuneifolius	Wedge-leaf Everlasting	MS			Х		Х						Х		Х						
	Pandorea pandorana	Wonga Vine	SC								Х					Х	х					
	Patersonia glabrata	Leafy Purple-flag	MTG					Х				Х										
	Persoonia chamaepeuce	Dwarf Geebung	PS									х										
	Persoonia confertiflora	Cluster-flower Geebung	MS	Х					Х													
r	Persoonia levis#	Smooth Geebung	MS									х										
	Persoonia linearis	Narrow-leaf Geebung	MS	Х	Х	Х		Х	Х	Х		Х		Х	Х							
	Pimelea humilis	Common Rice-flower	SS	х				Х	х													
	Platylobium obtusangulum	Common Flat-pea	PS										Х									
	Platysace lanceolata	Shrubby Platysace	MS			Х				Х				Х	Х			х				
	Poa spp.	Tussock-grass	MTG	х				Х	х		Х		Х			Х		Х				
	Poa spp.	Tussock-grass (branched)	MTG										х									
	Polystichum proliferum	Mother Shield-fern	GF														Х					
	Pomaderris aspera	Hazel Pomaderris	т														х					
	Pomaderris spp.	Smooth Pomaderris	MS																X			
	Pomax umbellata	Pomax	SS			Х								Х								
	Prostanthera hirtula	Hairy Mint-bush	MS			Х				Х				Х	Х							
	Pteridium esculentum	Austral Bracken	GF			Х	Х			х	х	х	Х	х	Х	х		х				
	Pultenaea daphnoides	Large-leaf Bush-pea	MS	х		Х		х		х			х	х	X							
	Pultenaea retusa	Blunt Bush-pea	SS							х		х			х							
	Rhytidosporum procumbens	White Marianth	SS		X	Х		Х	х					Х				Х				
*	Rubus fruticosus spp. agg.	Blackberry	SC					х														
	Senecio spp.	Groundsel	МН					Х														

#### ETHOS NRM

Chatura	Species	Common Name	Lifeform	Survey Sample Sites															
Status				1	2	3, 11	4	5	6	7, 13	8, 12	9	10	11	14	15	16	17	Other
	Smilax australis	Austral Sarsaparilla	SC														х		
	Solanum prinophyllum	Forest Nightshade	MH			Х								Х			Х		
	Stypandra glauca	Nodding Blue-lily	MH		х			х	х	х					х				
	Syzygium smithii	Lilly Pilly	Т														Х		
*	Taraxicum officinale spp. agg.	Dandelion	МН			Х							х	Х					
	Tetrarrhena juncea	Forest Wire-grass	LNG			Х	x	х	х	х				Х	х			X	
	Tetratheca pilosa	Hairy Pink-bells	SS		х		х	х	х			Х							
	Tylophora barbata	Bearded Tylophora	SC	х			Х									Х	Х		
	Veronica spp.	Speedwell;	MH	х									х			х			
	Viola betonicifolia	Showy Violet	MH																Х
	Viola hederacea	Ivy-leaf Violet	МН				х			х			х		х	х		х	
	Wahlenbergia spp.	Bluebell	MH		Х			Х	Х				х					X	
	Xanthorrhoea minor	Small Grass-tree	LTG	х					х	х		Х			х				
		unidentified orchid	SH							Х					х				

Status: r = rare in Victoria (DSE, 2005). * = Weed species

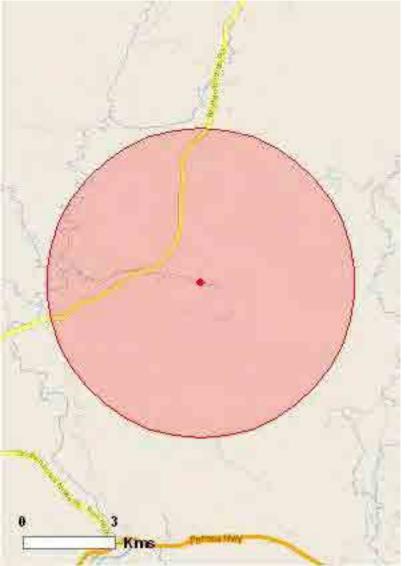
# 9.5 Appendix 5: EPBC Protected Matters Search

Australian Government



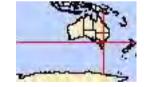
Department of Sustainability, Environment, Water, Population and Communities

# **EPBC** Act Protected Matters Report


This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected.

Information on the coverage of this report and qualifications on data supporting this report are contained in the caveat at the end of the report.

Information is available about <u>Environment Assessments</u> and the EPBC Act including significance guidelines, forms and application process details.


Report created: 27/02/13 13:22:21

Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements



This map may contain data which are ©Commonwealth of Australia (Geoscience Australia), ©PSMA 2010

Coordinates Buffer: 5.0Km



# Summary

# Matters of National Environmental Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance:	1
Great Barrier Reef Marine Park:	None
Commonwealth Marine Areas:	None
Listed Threatened Ecological Communities:	1
Listed Threatened Species:	17
Listed Migratory Species:	11

# Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As <u>heritage values</u> of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place and the heritage values of a place on the Register of the National Estate.

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Land:	None
Commonwealth Heritage Places:	None
Listed Marine Species:	11
Whales and Other Cetaceans:	None
Critical Habitats:	None
Commonwealth Reserves:	None

# Extra Information

This part of the report provides information that may also be relevant to the area you have nominated.

Place on the RNE:	3
State and Territory Reserves:	None
Regional Forest Agreements:	1
Invasive Species:	12
Nationally Important Wetlands:	None
Key Ecological Features (Marine)	None

# Details

# Matters of National Environmental Significance

Wetlands of International Importance (RAMSAR)	[Resource Information]
Name	Proximity
Gippsland lakes	Within 10km of Ramsar

[Resource Information]

# Listed Threatened Ecological Communities

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Name	Status	Type of Presence
White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland	Critically Endangered	Community may occur within area
Listed Threatened Species		[Resource Information]
Name	Status	Type of Presence
Birds		
Botaurus poiciloptilus		
Australasian Bittern [1001]	Endangered	Species or species habitat likely to occur within area
Swift Parrot [744]	Endangered	Species or species
	Lindangered	habitat may occur within area
Rostratula australis		
Australian Painted Snipe [77037]	Vulnerable	Species or species habitat may occur within area
Fish		
Prototroctes maraena		
Australian Grayling [26179]	Vulnerable	Species or species habitat may occur within area
Frogs		
Heleioporus australiacus		
Giant Burrowing Frog [1973]	Vulnerable	Species or species habitat likely to occur within area
Litoria aurea Green and Golden Bell Frog [1870] Litoria littlejohni	Vulnerable	Species or species habitat likely to occur within area
Littlejohn's Tree Frog, Heath Frog [64733]	Vulnerable	Species or species

Name	Status	Type of Presence
		habitat may occur within
Litoria raniformis		area
Growling Grass Frog, Southern Bell Frog, Green and Golden Frog, Warty Swamp Frog [1828]	Vulnerable	Species or species habitat likely to occur within area
Mammals		
Dasyurus maculatus maculatus (SE mainland population	<u>on)</u>	
Spot-tailed Quoll, Spotted-tail Quoll, Tiger Quoll (southeastern mainland population) [75184]	Endangered	Species or species habitat may occur within area
Isoodon obesulus obesulus Southern Brown Bandicoot (Eastern) [68050]	Endangered	Species or species
	Lindangered	habitat may occur within area
Petrogale penicillata Brush-tailed Rock-wallaby [225]	Vulnerable	Spacios or spacios
Brush-tailed Rock-wallaby [225]	Vullierable	Species or species habitat may occur within area
Potorous longipes	<b>-</b>	<b>o</b> · · ·
Long-footed Potoroo [217]	Endangered	Species or species habitat likely to occur within area
Potorous tridactylus tridactylus		
Long-nosed Potoroo (SE mainland) [66645]	Vulnerable	Species or species habitat may occur within area
Pseudomys novaehollandiae		Species or species
New Holland Mouse [96]	Vulnerable	Species or species habitat likely to occur within area
Pteropus poliocephalus	Vulnarabla	Foreging fooding or
Grey-headed Flying-fox [186]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Plants		
Cryptostylis hunteriana Leafless Tongue-orchid [19533]	Vulnerable	Species or species
	Vullerable	habitat may occur within area
Prasophyllum frenchii Maroon Leek-orchid, Slaty Leek-orchid, Stout	Endangered	Species or species
Leek-orchid, French's Leek-orchid, Swamp Leek- orchid [9704]	Lindangered	habitat likely to occur within area
Listed Migratory Species		[Resource Information]
* Species is listed under a different scientific name on the	he EPBC Act - Threatened	
Name	Threatened	Type of Presence
Migratory Marine Birds		
<u>Apus pacificus</u> Fork-tailed Swift [678]		Species or species
		habitat likely to occur within area
<u>Ardea ibis</u>		
Cattle Egret [59542]		Species or species habitat likely to occur within area
Migratory Terrestrial Species		
Haliaeetus leucogaster		Chapter of an article
White-bellied Sea-Eagle [943]		Species or species habitat likely to occur within area
<u>Hirundapus caudacutus</u>		
White-throated Needletail [682]		Species or species habitat known to occur within area
Merops ornatus Rainbow Bee-eater [670]		Species or species
		habitat may occur within area
Monarcha melanopsis Black-faced Monarch [609]		Species or species

Threatened	Type of Presence
medicileu	habitat known to occur within area
	Species or species habitat known to occur within area
	Species or species habitat known to occur within area
	Species or species habitat likely to occur within area
	Species or species habitat may occur within area
Vulnerable*	Species or species habitat may occur within area
	[Resource Information]
the EPBC Act - Threatened	
Threatened	Type of Presence
	Species or species habitat likely to occur within area
	the EPBC Act - Threatened

Ardea ibis Cattle Egret [59542]

Gallinago hardwickii Latham's Snipe, Japanese Snipe [863]

<u>Haliaeetus leucogaster</u> White-bellied Sea-Eagle [943] area Species or species habitat likely to occur

habitat may occur within

Hirundapus caudacutus White-throated Needletail [682]

Lathamus discolor Swift Parrot [744]

Merops ornatus Rainbow Bee-eater [670]

Monarcha melanopsis Black-faced Monarch [609]

Myiagra cyanoleuca Satin Flycatcher [612]

Rhipidura rufifrons Rufous Fantail [592] within area

Species or species habitat likely to occur

Species or species

within area

Species or species habitat known to occur within area

Species or species habitat may occur within area

Species or species habitat may occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Species or species

Endangered

	<b>T</b> I <b>A</b>	<b>T</b> (D
Name	Threatened	Type of Presence
		habitat known to occur within area
<u>Rostratula benghalensis (sensu lato)</u>		
Painted Snipe [889]	Vulnerable*	Species or species habitat may occur within
		area

# Extra Information

Places on the RNE			[Resource Information]
Note that not all Indigenous sites may be list	ted.		
Name	St	ate	Status
Natural			
Dominion Mine Area	VI	С	Interim List
<u>Mount Nowa Nowa Area</u>	VI	С	Interim List
Yellow Waterholes Creek Area	VI	С	Interim List
Regional Forest Agreements			[Resource Information]
Note that all areas with completed RFAs have	ve been included.		
Name			State
East Gippsland RFA			Victoria
Invasive Species			[Resource Information]
Weeds reported here are the 20 species of national significance (WoNS), along with other introduced plants that are considered by the States and Territories to pose a particularly significant threat to biodiversity. The following feral animals are reported: Goat, Red Fox, Cat, Rabbit, Pig, Water Buffalo and Cane Toad. Maps from Landscape Health Project, National Land and Water Resouces Audit, 2001.			ficant threat to Pig, Water Buffalo
Name	Status		Type of Presence
Mammals			
Capra hircus			
Goat [2]			Species or species habitat likely to occur within area

Felis catus

Cat, House Cat, Domestic Cat [19]

Oryctolagus cuniculus Rabbit, European Rabbit [128]

# <u>Sus scrofa</u> Pig [6]

Vulpes vulpes Red Fox, Fox [18]

# Plants

Asparagus asparagoides

Bridal Creeper, Bridal Veil Creeper, Smilax, Florist's Smilax, Smilax Asparagus [22473]

Chrysanthemoides monilifera Bitou Bush, Boneseed [18983] Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat may occur within area

Name	Status	Type of Presence
Lantana camara Lantana, Common Lantana, Kamara Lantana, Large-leaf Lantana, Pink Flowered Lantana, Red Flowered Lantana, Red-Flowered Sage, White Sage, Wild Sage [10892] Lycium ferocissimum		Species or species habitat likely to occur within area
African Boxthorn, Boxthorn [19235]		Species or species habitat likely to occur within area
Pinus radiata		
Radiata Pine Monterey Pine, Insignis Pine, Wilding Pine [20780]		Species or species habitat may occur within area
Rubus fruticosus aggregate		
Blackberry, European Blackberry [68406]		Species or species habitat likely to occur within area
Salix spp. except S.babylonica, S.x calodendron & S.x	<u>reichardtii</u>	
Willows except Weeping Willow, Pussy Willow and Sterile Pussy Willow [68497]		Species or species habitat likely to occur within area

# Coordinates

-37.65523 148.11652

# Caveat

The information presented in this report has been provided by a range of data sources as acknowledged at the end of the report.

This report is designed to assist in identifying the locations of places which may be relevant in determining obligations under the Environment Protection and Biodiversity Conservation Act 1999. It holds mapped locations of World Heritage and Register of National Estate properties, Wetlands of International Importance, Commonwealth and State/Territory reserves, listed threatened, migratory and marine species and listed threatened ecological communities. Mapping of Commonwealth land is not complete at this stage. Maps have been collated from a range of sources at various resolutions.

Not all species listed under the EPBC Act have been mapped (see below) and therefore a report is a general guide only. Where available data supports mapping, the type of presence that can be determined from the data is indicated in general terms. People using this information in making a referral may need to consider the qualifications below and may need to seek and consider other information sources.

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

For species where the distributions are well known, maps are digitised from sources such as recovery plans and detailed habitat studies. Where appropriate, core breeding, foraging and roosting areas are indicated under 'type of presence'. For species whose distributions are less well known, point locations are collated from government wildlife authorities, museums, and non-government organisations; bioclimatic distribution models are generated and these validated by experts. In some cases, the distribution maps are based solely on expert knowledge.

Only selected species covered by the following provisions of the EPBC Act have been mapped:

- migratory and
- marine

The following species and ecological communities have not been mapped and do not appear in reports produced from this database:

- threatened species listed as extinct or considered as vagrants
- some species and ecological communities that have only recently been listed
- some terrestrial species that overfly the Commonwealth marine area
- migratory species that are very widespread, vagrant, or only occur in small numbers

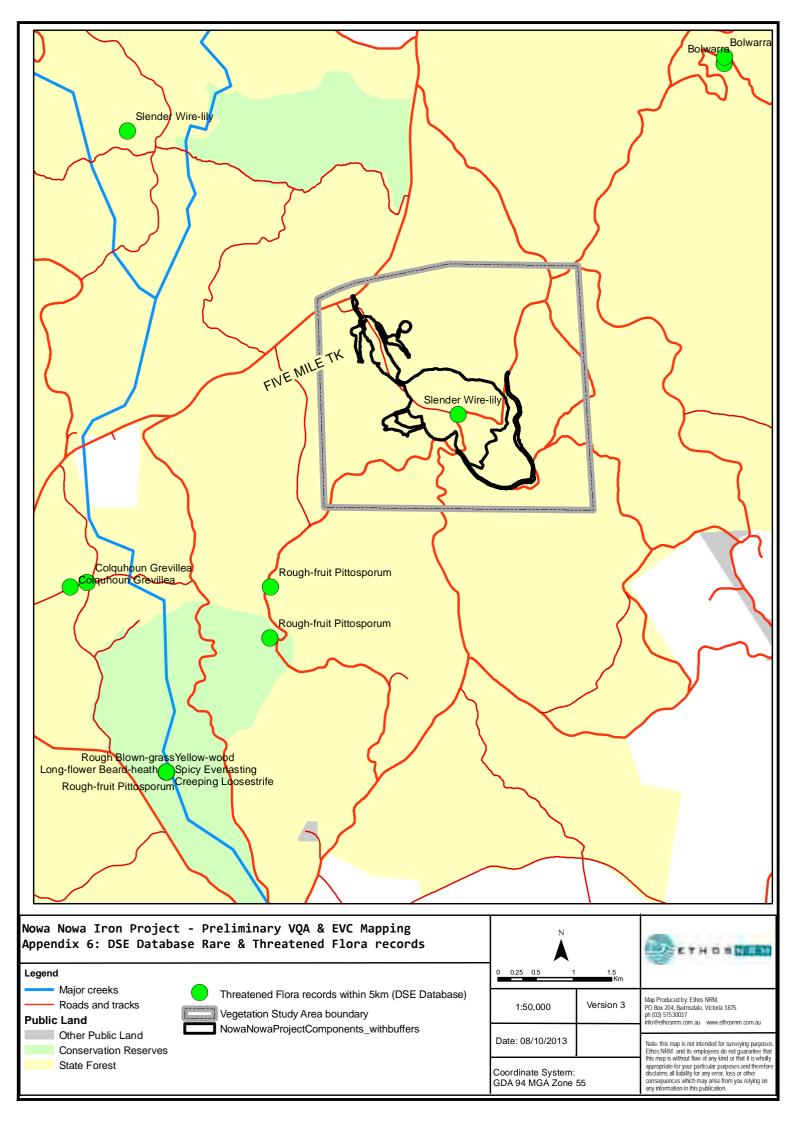
The following groups have been mapped, but may not cover the complete distribution of the species:

- non-threatened seabirds which have only been mapped for recorded breeding sites
- seals which have only been mapped for breeding sites near the Australian continent

Such breeding sites may be important for the protection of the Commonwealth Marine environment.

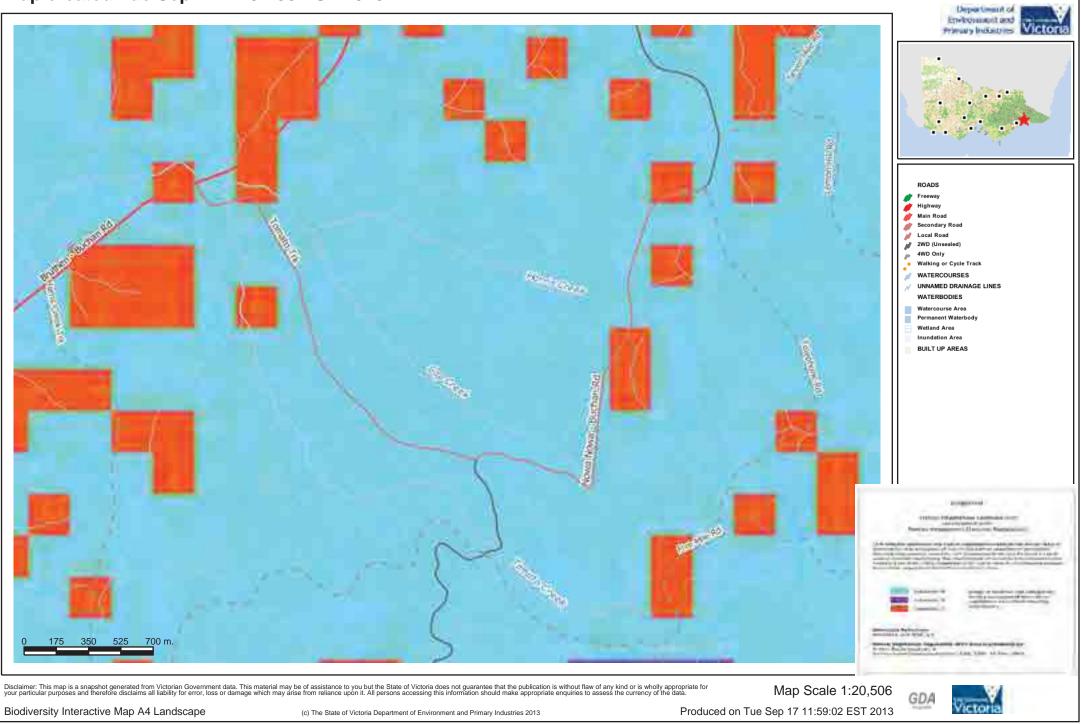
# Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

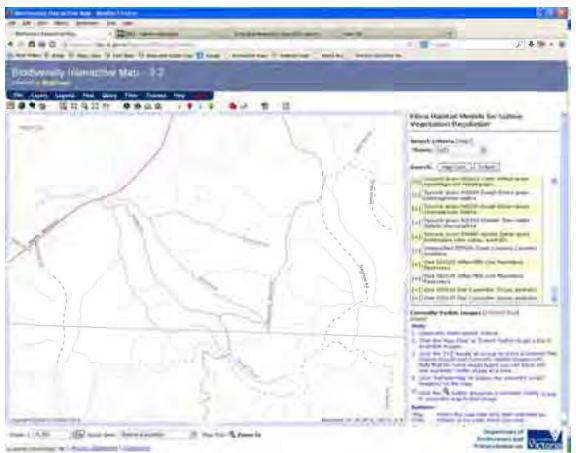

- -Department of Environment, Climate Change and Water, New South Wales
- -Department of Sustainability and Environment, Victoria
- -Department of Primary Industries, Parks, Water and Environment, Tasmania
- -Department of Environment and Natural Resources, South Australia
- -Parks and Wildlife Service NT, NT Dept of Natural Resources, Environment and the Arts
- -Environmental and Resource Management, Queensland
- -Department of Environment and Conservation, Western Australia
- -Department of the Environment, Climate Change, Energy and Water
- -Birds Australia
- -Australian Bird and Bat Banding Scheme
- -Australian National Wildlife Collection
- -Natural history museums of Australia
- -Museum Victoria
- -Australian Museum
- -SA Museum
- -Queensland Museum
- -Online Zoological Collections of Australian Museums
- -Queensland Herbarium
- -National Herbarium of NSW
- -Royal Botanic Gardens and National Herbarium of Victoria
- -Tasmanian Herbarium
- -State Herbarium of South Australia
- -Northern Territory Herbarium
- -Western Australian Herbarium
- -Australian National Herbarium, Atherton and Canberra
- -University of New England
- -Ocean Biogeographic Information System
- -Australian Government, Department of Defence
- -State Forests of NSW
- -Geoscience Australia
- -CSIRO
- -Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.


© Commonwealth of Australia Department of Sustainability, Environment, Water, Population and Communities GPO Box 787 Canberra ACT 2601 Australia +61 2 6274 1111

## 9.6 Appendix 6: DSE Database Rare & Threatened Flora Records Map




## 9.7 Appendix 7: DEPI Native Vegetation Reforms Location Risk Map

# Map created Tue Sep 17 11:54:58 EST 2013



# 9.8 Appendix 8: DEPI Biodiversity Interactive Map Habitat Models for Native Vegetation Regulation

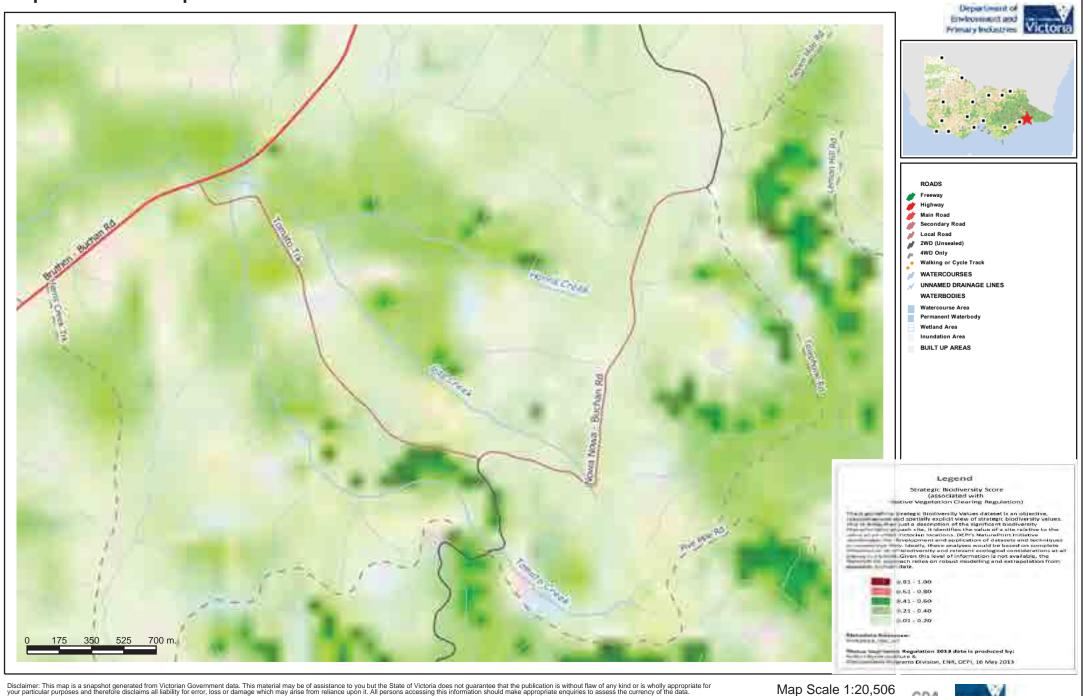


#### Figure 8.8-1: Biodiversity Interactive Map Search Extent

#### Table 8.8-1: List of Flora and Fauna Habitat Models in Project area

List of Flora Species Distribution Models from extent search of the Project area
Epiphyte 501853 Jointed Mistletoe Korthalsella rubra subsp. rubra
Fern 500133 Rough Maidenhair Adiantum hispidulum
Fern 500294 Common Spleenwort Asplenium trichomanes
Fern 500313 Japanese Lady-fern Deparia petersenii subsp. congrua
Fern 502644 Broad Shield-fern Polystichum formosum
Forb 500471 Rock Daisy Brachyscome petrophila
Forb 500839 Fringed Helmet-orchid Corybas fimbriatus
Forb 501003 Streaked Rock-orchid Dockrillia striolata subsp. striolata
Forb 501084 Purple Diuris Diuris punctata var. punctata
Forb 501711 Slender Violet-bush Hybanthus monopetalus
Forb 501889 Slender Wire-Iily Laxmannia gracilis
Forb 502089 Creeping Loosestrife Lysimachia japonica
Forb 502275 Austral Tobacco Nicotiana suaveolens
Forb 502390 Dune Wood-sorrel Oxalis rubens
Forb 502709 Maroon Leek-orchid Prasophyllum frenchii
Forb 502790 Leafy Greenhood Pterostylis cucullata

Forb 502798 Cobra Greenhood Pterostylis grandiffora Forb 503002 Water Pimpernel Samolus valerandi Forb 503103 Shingle Fireweed Senecio diaschides Forb 503383 Naked Sun-orchid Thelymitra circumsepta Forb 503383 Naked Sun-orchid Thelymitra circumsepta Forb 503837 Nausral Crane's-bill Geranium solanderi var. solanderi s.s. Other grass 500786 Lealy Twig-sedge Cladium procerum Shrub 500333 Vallaby-bush Beyeria lasiocarpa Shrub 500393 Wallaby-bush Beyeria lasiocarpa Shrub 500393 Wallaby-bush Beyeria lanceolata Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500396 Pinkwood Beyeria lanceolata Shrub 501910 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 501910 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 5019970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501971 Grey Beard-heath Leucopogon microphyllus var. pilibundus Shrub 501981 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 501987 Loiet Daisy-bush Olearia viscosa Shrub 502465 Giant Honey-myttle Melaleuca armillariis subsp. armillariis Shrub 502551 Golden Pomaderris Pomaderris subsp. atmillariis Shrub 502652 Birch Pomaderris Pomaderris ericcephala Shrub 502652 Birch Pomaderris Pomaderris ericcephala Shrub 502665 Sandtly Zieria Zieria smithii subsp. smithii Shrub 502665 Sandtly Zieria Zieria smithii subsp. smithii Shrub 502664 Convex Pomaderris Pomaderris oraria subsp. calcicola Shrub 50305 Sandtly Zieria Zieria smithii subsp. smithii Shrub 50346 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 50365 Sandtly Zieria Zieria smithii subsp. smithii Shrub 50365 Sandtly Zieria Zieria smithii subsp. smithii Tree 50116 Yellow-wood Acronychia bologifolia Tree 50116 Yellow-wood Acronychia bologifolia Tree 50116 Yellow-wood Acronychia bologifolia Tree 50116 Yellow-wood Acronychia bologifolia Tree 501265 Spotted Gum Corymbia maccilata Tree 50116 Spotted Gum Corymbia maccilata Tree 50126 Spotted Gum Corymbia maccilata	
Forb 503002 Water Pimpernel Samolus valerandi Forb 503103 Shingle Fireweed Senecio diaschides Forb 503383 Naked Sun-orchid Thelymitra circumsepta Forb 503383 Naked Sun-orchid Thelymitra circumsepta Forb 503583 One-flower Early Nancy Wurmbea uniflora Forb 50337 Austral Crane's-bill Geranium solanderi var. solanderi s.s. Other grass 500786 Leafy Twig-sedge Cladium procerum Shrub 500385 Eastern Bitter-bush Adriana urticoides var. urticoides Shrub 500396 Pinkwood Beyeria lasciocarpa Shrub 501917 Griese Lespedeza Lespedeza juncea subsp. sericea Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 502145 Giant Honey-myrtle Melaleuca armiliaris subsp. armillaris Shrub 502650 Gidlen Pomaderris Pomaderris aurea Shrub 502651 Golden Pomaderris Pomaderris ericeophala Shrub 502651 Golden Pomaderris Pomaderris ericeophala Shrub 502657 Woolly-head Pomaderris Pomaderris einceophala Shrub 502658 Ginch Pomaderris Pomaderris einceophala Shrub 502659 Striped Pomaderris Pomaderris einceophala Shrub 502669 Striped Pomaderris Pomaderris eric austop. calcicola Shrub 502674 Convex Pomaderris Pomaderris oraria subsp. calcicola Shrub 502674 Convex Pomaderris Pomaderris oraria subsp. calcicola Shrub 50364 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 50365 Sandtly Zieria Zieria smithii subsp. smithii Shrub 503712 Giaphan Stringybark Eucalyptus bosistoana Tree 50116 Yellow-wood Acronychia bolongifolia Tree 501265 Spotted Gum Corymbia maculata Tree 50116 Yellow-wood Acronychia bolongifolia Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheet-grass Australopyrum retrofractum Tussock grass 500143 Comb Wheet-grass Australopyrum retrofractum	Forb 502795 Fisch's Greenhood Pterostylis fischii
Forb 503103 Shingle Fireweed Senecio diaschides Forb 503303 Naked Sun-orchid Thelymitra circumsepta Forb 503527 Swamp Violet Viola caleyana Forb 503537 Austral Crane's-bill Geranium solanderi var. solanderi s.s. Other grass 500786 Leaty Twig-sedge Cladium procerum Shrub 500135 Eastern Bitter-bush Adriana urticoides var. urticoides Shrub 500330 Wallaby-bush Beyeria lasicoarpa Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500136 Eastern Bitter-bush Adriana urticoides var. urticoides Shrub 500396 Pinkwood Beyeria lasicoarpa Shrub 500136 Pinkwood Beyeria lasicoarpa Shrub 500136 Forey Beard-Heath Leucopogon microphyllus var. pilibundus Shrub 501971 Grey Beard-heath Leucopogon microphyllus var. pilibundus Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 501391 Sicaid Daisy-bush Olearia iodochroa Shrub 502651 Golden Pomaderris Pomaderris subsp. atmiliaris Shrub 502652 Birch Pomaderris Pomaderris sucea Shrub 502652 Birch Pomaderris Pomaderris subsp. betulina Shrub 502652 Birch Pomaderris Pomaderris pulser subsp. pelifera Shrub 502657 Woolly-head Pomaderris Pomaderris pulser, pilifera Shrub 502654 Convex Pomaderris Pomaderris oraria subsp. calcicola Shrub 502654 Convex Pomaderris Pomaderris oraria subsp. calcicola Shrub 502654 Convex Pomaderris Pomaderris oraria subsp. calcicola Shrub 502657 Koolly-head Pomaderris Pomaderris oraria subsp. calcicola Shrub 502657 Koolly-Maine auticoides var. urticoides (pubescent form) Shrub 502657 Koolly Gue Pousy-bush Bervillea celata Tree 500366 Rock Banksia Banksia saxicola Tree 500367 Rock Banksia Banksia Saxicola Tree 5003712 Gippsland Stringybark Eucalyptus bosistoana Tree 503712 Gippsland Stringybark Eucalyptus machini Tussock grass 501143 Comb Wheat-grass Australopyrum retrofractum T	Forb 502798 Cobra Greenhood Pterostylis grandiflora
Forb 503383 Naked Sun-orchid Thelymitra circumsepta Forb 503527 Swamp Violet Viola caleyana Forb 503583 One-flower Early Nancy Wurmbea uniflora Forb 503583 One-flower Early Nancy Wurmbea uniflora Forb 503583 Charles Caley Twig-sedge Cladium procerum Shrub 500354 Eastern Bitter-bush Adriana urticoides var. urticoides Shrub 500393 Wallaby-bush Beyeria lasiocarpa Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500396 Pinkwood Beyeria lanceolata Shrub 501091 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 501091 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501971 Grey Beard-heath Leucopogon attenuatus Shrub 501974 Grey Beard-heath Leucopogon attenuatus Shrub 502455 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris Shrub 502450 Violet Daisy-bush Olearia iodochroa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris subsp. betulina Shrub 502652 Birch Pomaderris Pomaderris subsp. petulina Shrub 502657 Woolly-head Pomaderris politeria subsp. batulina Shrub 502657 Moolly-head Pomaderris Pomaderris oraria subsp. calcicola Shrub 502650 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 50305 Sandfly Zieria Zieria smithi subsp. smithii Shrub 504716 Colquhoun Grevillea Geialta Tree 50116 Yellow-wood Acronychia bolosifolia Tree 501285 Coast Grey-box Eucalyptus bosistoana Tree 50253 Coast Grey-box Eucalyptus bosistoana Tree 50331 Limestone Blue Wattle Acacia caerulescens Tree 50331 Comb Wheat-grass Australopyrum retrofractum Tussock grass 501490 Noiheid Spear-g	Forb 503002 Water Pimpernel Samolus valerandi
Forb 503527 Swamp Violet Viola caleyana Forb 503583 One-flower Early Nancy Wurmbea uniflora Forb 505337 Austral Crane's-bill Geranium solanderi var. solanderi s.s. Other grass 500786 Leafy Twig-sedge Cladium procerum Shrub 500135 Eastern Bitter-bush Adriana urticoides var. urticoides Shrub 500398 Walaby-bush Beyeria lasiocarpa Shrub 500398 Pinkwood Beyeria lanceolata Shrub 500426 Showy Boronia Boronia ledifolia Shrub 500426 Showy Boronia Boronia ledifolia Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501971 Grey Beard-heath Leucopogon attenuatus Shrub 501976 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501978 Giant Honey-mytte Melaleuca armillaris subsp. armillaris Shrub 502145 Giant Honey-mytte Melaleuca armillaris subsp. armillaris Shrub 502145 Giant Honey-mytte Melaleuca armillaris subsp. armillaris Shrub 50251 Golden Pornaderris Pomaderris aurea Shrub 502551 Golden Pornaderris Pomaderris aurea Shrub 502652 Birch Pornaderris Pomaderris aurea Shrub 502652 Birch Pornaderris Pomaderris eriocephala Shrub 502654 Convex Pomaderris Pomaderris eriocephala Shrub 502654 Convex Pomaderris Pomaderris subsp. selifera Shrub 502655 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503094 Limestone Pomaderris Pomaderris aurea Shrub 502654 Convex Pomaderris Pomaderris aurea Shrub 502657 Sandfly Zieria Zieria smithii subsp. smithii Shrub 50305 Sandfly Zieria Zieria smithii subsp. smithii Shrub 50304 Limestone Pomaderris Pomaderris arai subsp. calcicola Shrub 503416 Colquhoun Grevillea Grevillea celata Tree 500365 Rock Banksia Banksia saxicola Tree 500355 Cocast Grey-box Eucalyptus bosistoana Tree 501157 Yeolpsland Stringybark Eucalyptus macikintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500143 Comst Meat-grass Australopyrum retrofractum	Forb 503103 Shingle Fireweed Senecio diaschides
Fob 503583 One-flower Early Nancy Wurmbea uniflora Forb 505337 Austral Crane's-bill Geranium solanderi var. solanderi s.s. Other grass 500786 Leafy Twig-sedge Cladium procerum Shrub 500135 Eastern Bitter-bush Adriana urticoides var. urticoides Shrub 500393 Wallaby-bush Beyeria lasiocarpa Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500426 Showy Boronia Boronia ledifolia Shrub 501091 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 501991 Grey Beard-heath Leucopogon attenuatus Shrub 501971 Grey Beard-heath Leucopogon attenuatus Shrub 501974 Grey Beard-heath Leucopogon microphyllus var. pilibundus Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 502545 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris Shrub 502551 Golden Pomaderris Pomaderris subsp. betulina Shrub 502552 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502657 Woolly-head Pomaderris Pomaderris subsp. sittiti Shrub 502674 Convex Pomaderris Pomaderris subsp. sittiti Shrub 50306 Sandfly Zieria Zieria smithii subsp. smithii Shrub 50305 Sandfly Zieria Zieria smithii subsp. smithii Shrub 50346 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504216 Colquhoun Grevillea Grevillea celata Tree 50116 Yellow-wood Acronychia oblongifolia Tree 501265 Socat Grey-box Eucalyptus bosistoana Tree 501265 Socat Grey-box Eucalyptus bosistoana Tree 501265 Sototed Gum Corymbia maculata Tree 501313 Cimb Wheat-grass Australopyrum retrofractum Tussock grass 501433 Comb Wheat-grass Australopyrum retrofract	Forb 503383 Naked Sun-orchid Thelymitra circumsepta
Forb 505337 Austral Crane's-bill Geranium solanderi var. solanderi s.s. Other grass 500786 Leafy Twig-sedge Cladium procerum Shrub 500339 Wallaby-bush Beyeria lasiocarpa Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500426 Showy Boronia Boronia ledifolia Shrub 500426 Showy Boronia Boronia ledifolia Shrub 501091 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501988 Hairy Beard-heath Leucopogon attenuatus Shrub 501988 Hairy Beard-heath Leucopogon attenuatus Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 50245 Giant Honey-mytle Melaleuca armillaris subsp. armillaris Shrub 502309 Violet Daisy-bush Olearia iodochroa Shrub 502551 Golden Pomaderris Pomaderris subsp. attenuitaris Shrub 502652 Girch Pomaderris Pomaderris betulina subsp. betulina Shrub 502652 Girch Pomaderris Pomaderris betulina subsp. betulina Shrub 502657 Woolly-head Pomaderris polifera subsp. pilifera Shrub 502659 Woolly-head Pomaderris subcapitata Shrub 502657 Woolly-head Pomaderris subcapitata Shrub 50306 Sandfly Zieria Zieria smithii subsp. smithii Shrub 502674 Convex Pomaderris Pomaderris orai subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 50471 E Colquhoun Grevillea Grevillea celata Tree 500116 Colquhoun Grevillea Grevillea celata Tree 50116 Yellow-wood Acronychia oblongifolia Tree 501265 Qoast Grey-box Eucalyptus bosistoana Tree 501265 Qoast Grey-box Eucalyptus bosistoana Tree 501265 Spotted Gum Corymbia maculata Tree 50363 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gipsland Stringybark Eucalyptus mackintii Tussock grass 50143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 50143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 501494 Veined Spear-grass Australopyrum retrofractum Tussock grass 501494 Veined Spear-grass Australopyrum retrofractum	Forb 503527 Swamp Violet Viola caleyana
Other grass 500786 Leafy Twig-sedge Cladium procerum           Shrub 500135 Eastern Bitter-bush Adriana urticoides var. urticoides           Shrub 500393 Wallaby-bush Beyeria lasiocarpa           Shrub 500396 Pinkwood Beyeria lanceolata           Shrub 500426 Showy Boronia Boronia ledifolia           Shrub 501971 Crey Beard-heath Leucopogon attenuatus           Shrub 501971 Grey Beard-heath Leucopogon attenuatus           Shrub 501986 Hairy Beard-heath Leucopogon attenuatus           Shrub 501988 Hairy Beard-heath Leucopogon attenuatus           Shrub 501988 Hairy Beard-heath Leucopogon attenuatus           Shrub 501230 Violet Daisy-bush Olearia viscosa           Shrub 502631 Viscid Daisy-bush Olearia viscosa           Shrub 502651 Golden Pomaderris Pomaderris sericea           Shrub 502652 Birch Pomaderris Pomaderris sericeaphala           Shrub 502654 Convex Pomaderris Pomaderris sericephala           Shrub 502655 Shriped Pomaderris Pomaderris subcapitata           Shrub 502667 Woolly-head Pomaderris subcapitata           Shrub 502668 Striped Pomaderris Pomaderris oraria subsp. calcicola           Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola           Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form)           Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola           Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) <tr< td=""><td>Forb 503583 One-flower Early Nancy Wurmbea uniflora</td></tr<>	Forb 503583 One-flower Early Nancy Wurmbea uniflora
Shrub 500135 Eastern Bitter-bush Adriana urticoides var. urticoides Shrub 500393 Wallaby-bush Beyeria lanceolata Shrub 500396 Pinkwood Beyeria lanceolata Shrub 500426 Showy Boronia Boronia ledifolia Shrub 501971 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501971 Grey Beard-heath Leucopogon attenuatus Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 502309 Violet Daisy-bush Olearia idochroa Shrub 502309 Violet Daisy-bush Olearia idochroa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris ericcephala Shrub 502657 Woolly-head Pomaderris pomaderris subcapitata Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 5026674 Convex Pomaderris Pomaderris oraria subsp. calcicola Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 5039417 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504718 Colquhoun Grevillea Grevillea celata Tree 500116 Colquhoun Grevillea Grevillea celata Tree 50116 Colquhoun Grevillea Grevillea celata Tree 501153 Coast Grey-box Eucalyptus bosistoana Tree 5011253 Coast Grey-box Eucalyptus bosistoana Tree 501125 Spotted Gum Conymbia maculata Tree 50312 Gipsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya	Forb 505337 Austral Crane's-bill Geranium solanderi var. solanderi s.s.
Shrub 500393 Wallaby-bush Beyeria lasiocarpa         Shrub 500396 Pinkwood Beyeria lanceolata         Shrub 500426 Showy Boronia Boronia ledifolia         Shrub 501971 Broad-leaf Hop-bush Dodonaea rhombifolia         Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea         Shrub 501971 Grey Beard-heath Leucopogon attenuatus         Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus         Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus         Shrub 502145 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris         Shrub 502309 Violet Daisy-bush Olearia iodochroa         Shrub 502651 Golden Pomaderris Pomaderris aurea         Shrub 502652 Birch Pomaderris Pomaderris ericcephala         Shrub 502669 Striped Pomaderris Pomaderris subcapitata         Shrub 502669 Striped Pomaderris Pomaderris oraria subsp. calcicola         Shrub 503046 Limestone Pomaderris Pomaderris oraria subsp. calcicola         Shrub 503055 Sandfly Zieria Zieria smithii subsp. smithii         Shrub 503056 Rock Banksia Banksia saxicola         Tree 500355 Rock Banksia Banksia saxicola         Tree 501265 Spotted Gum Corymbia maculata         Tree 50331 Limestone Blue Wattle Acacia caerulescens         Tree 503633 Limestone Blue Wattle Acacia caerulescens         Tree 503633 Limestone Blue Wattle Acacia caerulescens         Tree 503633 Limestone Blue Wattle Acacia caerulescens <td>Other grass 500786 Leafy Twig-sedge Cladium procerum</td>	Other grass 500786 Leafy Twig-sedge Cladium procerum
Shrub 500396 Pinkwood Beyeria Ianceolata Shrub 500426 Showy Boronia Boronia Iedifolia Shrub 501091 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501971 Grey Beard-heath Leucopogon attenuatus Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 502145 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris Shrub 502309 Violet Daisy-bush Olearia iodochroa Shrub 502331 Viscid Daisy-bush Olearia viscosa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502652 Birch Pomaderris Pomaderris periodephala Shrub 502657 Woolly-head Pomaderris pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502660 Standfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 503946 Limestone Pomaderris Pomaderis oraria subsp. calcicola Shrub 503946 Colquhoun Grevillea Grevillea celata Tree 50365 Rock Banksia Banksia saxicola Tree 50365 Rock Banksia Banksia saxicola Tree 50365 Rock Banksia Banksia saxicola Tree 50363 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 50143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya	Shrub 500135 Eastern Bitter-bush Adriana urticoides var. urticoides
Shrub 500426 Showy Boronia Boronia ledifolia Shrub 501091 Broad-leaf Hop-bush Dodonaea rhombifolia Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea Shrub 501971 Grey Beard-heath Leucopogon attenuatus Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 502145 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris Shrub 502309 Violet Daisy-bush Olearia viscosa Shrub 502331 Viscid Daisy-bush Olearia viscosa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris eriocephala Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502657 Woolly-head Pomaderris Pomaderris subsp. pilifera Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502665 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503046 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500158 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya	Shrub 500393 Wallaby-bush Beyeria lasiocarpa
Shrub 501091 Broad-leaf Hop-bush Dodonaea rhombifolia         Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea         Shrub 501971 Grey Beard-heath Leucopogon nicrophyllus var. pilibundus         Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus         Shrub 501980 Hairy Beard-heath Leucopogon microphyllus var. pilibundus         Shrub 502145 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris         Shrub 502309 Violet Daisy-bush Olearia viscosa         Shrub 502651 Golden Pomaderris Pomaderris aurea         Shrub 502652 Birch Pomaderris Pomaderris eriocephala         Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala         Shrub 5026674 Convex Pomaderris Pomaderris subcapitata         Shrub 503046 Limestone Pomaderris Pomaderris oraria subsp. calcicola         Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola         Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form)         Shrub 504716 Colquhoun Grevillea Grevillea celata         Tree 500365 Rock Banksia Banksia saxicola         Tree 50116 Yellow-wood Acronychia oblongifolia         Tree 50253 Spotted Gum Corymbia maculata         Tree 50363 Limestone Blue Wattle Acacia caerulescens         Tree 503712 Gippsland Stringybark Eucalyptus mackintii         Tussock grass 500133 Slender Saw-sedge Gahnia microstachya         Tussock grass 501393 Slender Saw-sedge Gahnia microstachya     <	Shrub 500396 Pinkwood Beyeria lanceolata
Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea         Shrub 501971 Grey Beard-heath Leucopogon attenuatus         Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus         Shrub 501980 Chinese Lespedeza Lespedeza armillaris subsp. armillaris         Shrub 501980 Sinte Dearis Peard-heath Leucopogon microphyllus var. pilibundus         Shrub 50230 Violet Daisy-bush Olearia iodochroa         Shrub 50231 Viscid Daisy-bush Olearia iodochroa         Shrub 502651 Golden Pomaderris Pomaderris aurea         Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina         Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala         Shrub 502669 Striped Pomaderris Pomaderris subcapitata         Shrub 503046 Limestone Pomaderris Pomaderris subsp. calcicola         Shrub 503916 Limestone Pomaderris Pomaderris oraria subsp. calcicola         Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form)         Shrub 50416 Colquhoun Grevillea Grevillea celata         Tree 500165 Rock Banksia Banksia saxicola         Tree 501253 Coast Grey-box Eucalyptus bosistonan         Tree 501253 Coast Grey-box Eucalyptus bosistonan         Tree 501253 Coast Grey-box Eucalyptus mackintii         Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum         Tussock grass 50159 Rough Blown-grass Lachnagrostis scabra         Tussock grass 501393 Slender Saw-sedge Gahnia microstachya	Shrub 500426 Showy Boronia Boronia ledifolia
Shrub 501971 Grey Beard-heath Leucopogon attenuatus Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 502145 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris Shrub 502309 Violet Daisy-bush Olearia iodochroa Shrub 502331 Viscid Daisy-bush Olearia viscosa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris eutocephala Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 503065 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 50416 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501253 Coast Grey-box Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 50159 Rough Blown-grass Lachnagrostis scabra Tussock grass 50159 Rough Blown-grass Lachnagrostis scabra Tussock grass 50159 Rough Blown-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 501091 Broad-leaf Hop-bush Dodonaea rhombifolia
Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus Shrub 502145 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris Shrub 502309 Violet Daisy-bush Olearia iodochroa Shrub 502331 Viscid Daisy-bush Olearia viscosa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500365 Rock Banksia Banksia saxicola Tree 501263 Coast Grey-box Eucalyptus bosistoana Tree 501253 Coast Grey-box Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 50159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501490 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cascinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 501970 Chinese Lespedeza Lespedeza juncea subsp. sericea
Shrub 502145 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris Shrub 502309 Violet Daisy-bush Olearia iodochroa Shrub 502331 Viscid Daisy-bush Olearia viscosa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502674 Convex Pomaderris Pomaderris oraria subsp. pilifera Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501259 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501598 Spotted Saw-sedge Gahnia microstachya Tussock grass 501598 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 501971 Grey Beard-heath Leucopogon attenuatus
Shrub 502309 Violet Daisy-bush Olearia iodochroa Shrub 502311 Viscid Daisy-bush Olearia viscosa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris pilifera subsp. pilifera Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 500159 Rough Blown-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 501988 Hairy Beard-heath Leucopogon microphyllus var. pilibundus
Shrub 502331 Viscid Daisy-bush Olearia viscosa Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris etulina subsp. betulina Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 501494 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 502145 Giant Honey-myrtle Melaleuca armillaris subsp. armillaris
Shrub 502651 Golden Pomaderris Pomaderris aurea Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 502309 Violet Daisy-bush Olearia iodochroa
Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris subcapitata Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 50159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 502331 Viscid Daisy-bush Olearia viscosa
Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala Shrub 502669 Striped Pomaderris Pomaderris pilifera subsp. pilifera Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 502651 Golden Pomaderris Pomaderris aurea
Shrub 502669 Striped Pomaderris Pomaderris pilifera subsp. pilifera Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 50440 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 502652 Birch Pomaderris Pomaderris betulina subsp. betulina
Shrub 502674 Convex Pomaderris Pomaderris subcapitata Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 50159 Rough Blown-grass Lachnagrostis scabra Tussock grass 50159 Rough Blown-grass Australopyrum setrofractum Tussock grass 501930 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima	Shrub 502657 Woolly-head Pomaderris Pomaderris eriocephala
Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 50159 Rough Blown-grass Lachnagrostis scabra Tussock grass 50159 Rough Blown-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 502669 Striped Pomaderris Pomaderris pilifera subsp. pilifera
Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 502674 Convex Pomaderris Pomaderris subcapitata
Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form) Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 503605 Sandfly Zieria Zieria smithii subsp. smithii
Shrub 504716 Colquhoun Grevillea Grevillea celata Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 503946 Limestone Pomaderris Pomaderris oraria subsp. calcicola
Tree 500116 Yellow-wood Acronychia oblongifolia Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 504217 Eastern Bitter-bush Adriana urticoides var. urticoides (pubescent form)
Tree 500365 Rock Banksia Banksia saxicola Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Shrub 504716 Colquhoun Grevillea Grevillea celata
Tree 501253 Coast Grey-box Eucalyptus bosistoana Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tree 500116 Yellow-wood Acronychia oblongifolia
Tree 501295 Spotted Gum Corymbia maculata Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tree 500365 Rock Banksia Banksia saxicola
Tree 503633 Limestone Blue Wattle Acacia caerulescens Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tree 501253 Coast Grey-box Eucalyptus bosistoana
Tree 503712 Gippsland Stringybark Eucalyptus mackintii Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tree 501295 Spotted Gum Corymbia maculata
Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tree 503633 Limestone Blue Wattle Acacia caerulescens
Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tree 503712 Gippsland Stringybark Eucalyptus mackintii
Tussock grass 501393 Slender Saw-sedge Gahnia microstachya Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tussock grass 500143 Comb Wheat-grass Australopyrum retrofractum
Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tussock grass 500159 Rough Blown-grass Lachnagrostis scabra
Unclassified 507665 Coast Cassinia Cassinia maritima Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tussock grass 501393 Slender Saw-sedge Gahnia microstachya
Vine 502124 Yellow Milk-vine Marsdenia flavescens	Tussock grass 504940 Veined Spear-grass Austrostipa rudis subsp. australis
	Unclassified 507665 Coast Cassinia Cassinia maritima
Vine 503139 Star Cucumber Sicyos australis	Vine 502124 Yellow Milk-vine Marsdenia flavescens
	Vine 503139 Star Cucumber Sicyos australis


Earth	Systems

Amphibians 13042 Giant Burrowing Frog Heleioporus australiacusAmphibians 13117 Brown Toadlet Pseudophryne bibroniiAmphibians 13125 Southern Toadlet Pseudophryne semimarmorataAmphibians 13126 Green and Golden Bell Frog Litoria aureaAmphibians 13207 Growling Grass Frog Litoria raniformisAmphibians 13207 Growling Grass Frog Litoria raniformisAmphibians 13930 Martin's Toadlet Uperoleia martiniBats 11280 Grey-headed Flying-fox Pteropus poliocephalusBats 11303 Eastern Horseshoe Bat Rhinolophus megaphyllus megaphyllusFish 4686 Australian Grayling Prototroctes maraenaFish 5051 Coxs Gudgeon Gobiomorphus coxiinvertebrates 15021 Golden Sun Moth Synemon planaMammals 11008 Spot-tailed Phascogale Phascogale tapoatafaMammals 11061 Common Dunnart Sminthopsis murina murinaMammals 11137 Squirrel Glider Petaurus norfolcensis
Amphibians 13125 Southern Toadlet Pseudophryne semimarmorata Amphibians 13166 Green and Golden Bell Frog Litoria aurea Amphibians 13207 Growling Grass Frog Litoria raniformis Amphibians 13930 Martin's Toadlet Uperoleia martini Bats 11280 Grey-headed Flying-fox Pteropus poliocephalus Bats 11280 Grey-headed Flying-fox Pteropus poliocephalus Bats 11303 Eastern Horseshoe Bat Rhinolophus megaphyllus megaphyllus Fish 4686 Australian Grayling Prototroctes maraena Fish 4949 River Blackfish Gadopsis marmoratus Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa
Amphibians 13166 Green and Golden Bell Frog Litoria aurea Amphibians 13207 Growling Grass Frog Litoria raniformis Amphibians 13930 Martin's Toadlet Uperoleia martini Bats 11280 Grey-headed Flying-fox Pteropus poliocephalus Bats 11280 Grey-headed Flying-fox Pteropus poliocephalus Bats 11303 Eastern Horseshoe Bat Rhinolophus megaphyllus megaphyllus Fish 4686 Australian Grayling Prototroctes maraena Fish 4686 Australian Grayling Prototroctes maraena Fish 4949 River Blackfish Gadopsis marmoratus Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa
Amphibians 13207 Growling Grass Frog Litoria raniformis Amphibians 13930 Martin's Toadlet Uperoleia martini Bats 11280 Grey-headed Flying-fox Pteropus poliocephalus Bats 11303 Eastern Horseshoe Bat Rhinolophus megaphyllus megaphyllus Fish 4686 Australian Grayling Prototroctes maraena Fish 4949 River Blackfish Gadopsis marmoratus Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
Amphibians 13930 Martin's Toadlet Uperoleia martini Bats 11280 Grey-headed Flying-fox Pteropus poliocephalus Bats 11280 Grey-headed Flying-fox Pteropus poliocephalus Bats 11303 Eastern Horseshoe Bat Rhinolophus megaphyllus megaphyllus Fish 4686 Australian Grayling Prototroctes maraena Fish 4686 Australian Grayling Prototroctes maraena Fish 4949 River Blackfish Gadopsis marmoratus Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa
Bats 11280 Grey-headed Flying-fox Pteropus poliocephalus Bats 11303 Eastern Horseshoe Bat Rhinolophus megaphyllus megaphyllus Fish 4686 Australian Grayling Prototroctes maraena Fish 4949 River Blackfish Gadopsis marmoratus Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
Bats 11303 Eastern Horseshoe Bat Rhinolophus megaphyllus megaphyllus Fish 4686 Australian Grayling Prototroctes maraena Fish 4949 River Blackfish Gadopsis marmoratus Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
Fish 4686 Australian Grayling Prototroctes maraena Fish 4949 River Blackfish Gadopsis marmoratus Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
Fish 4949 River Blackfish Gadopsis marmoratus Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
Fish 5051 Coxs Gudgeon Gobiomorphus coxii nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
nvertebrates 15021 Golden Sun Moth Synemon plana Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
Mammals 11008 Spot-tailed Quoll Dasyurus maculatus maculatus Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
Mammals 11017 Brush-tailed Phascogale Phascogale tapoatafa Mammals 11061 Common Dunnart Sminthopsis murina murina
Mammals 11061 Common Dunnart Sminthopsis murina murina
Jammale 11127 Squirrel Clider Petaurus porfeleopsis
Viannais 11137 Squiller Gilder Feldulus nonocensis
Mammals 11215 Brush-tailed Rock-wallaby Petrogale penicillata
Other Non-passerine birds 10045 Lewin's Rail Lewinia pectoralis pectoralis
Other Non-passerine birds 10050 Baillon's Crake Porzana pusilla palustris
Other Non-passerine birds 10170 Australian Painted Snipe Rostratula benghalensis australis
Other Non-passerine birds 10185 Little Egret Egretta garzetta nigripes
Other Non-passerine birds 10186 Intermediate Egret Ardea intermedia
Other Non-passerine birds 10187 Eastern Great Egret Ardea modesta
Other Non-passerine birds 10195 Little Bittern Ixobrychus minutus dubius
Other Non-passerine birds 10197 Australasian Bittern Botaurus poiciloptilus
Other Non-passerine birds 10212 Australasian Shoveler Anas rhynchotis
Other Non-passerine birds 10214 Freckled Duck Stictonetta naevosa
Other Non-passerine birds 10215 Hardhead Aythya australis
Other Non-passerine birds 10216 Blue-billed Duck Oxyura australis
Other Non-passerine birds 10217 Musk Duck Biziura lobata
Other Non-passerine birds 10220 Grey Goshawk Accipiter novaehollandiae novaehollandiae
Other Non-passerine birds 10226 White-bellied Sea-Eagle Haliaeetus leucogaster
Other Non-passerine birds 10230 Square-tailed Kite Lophoictinia isura
Other Non-passerine birds 10238 Black Falcon Falco subniger
Other Non-passerine birds 10246 Barking Owl Ninox connivens connivens
Other Non-passerine birds 10248 Powerful Owl Ninox strenua
Other Non-passerine birds 10250 Masked Owl Tyto novaehollandiae novaehollandiae
Other Non-passerine birds 10253 Sooty Owl Tyto tenebricosa tenebricosa
Passerine birds 10498 Chestnut-rumped Heathwren Calamanthus pyrrhopygius
Passerine birds 10504 Speckled Warbler Chthonicola sagittatus
Passerine birds 10598 Painted Honeyeater Grantiella picta
Passerine birds 10603 Regent Honeyeater Anthochaera phrygia

Waders 10111 Gull-billed Tern Gelochelidon nilotica macrotarsa
Waders 10117 Little Tern Sternula albifrons sinensis
Waders 10118 Fairy Tern Sternula nereis nereis
Waders 10137 Pacific Golden Plover Pluvialis fulva
Waders 10138 Hooded Plover Thinornis rubricollis rubricollis
Waders 10141 Greater Sand Plover Charadrius leschenaultii
Waders 10149 Eastern Curlew Numenius madagascariensis
Waders 10152 Godwits fam. Scolopacidae gen. Limosa
Waders 10154 Wood Sandpiper Tringa glareola
Waders 10157 Common Sandpiper Actitis hypoleucos
Waders 10164 Red Knot Calidris canutus
Waders 10165 Great Knot Calidris tenuirostris

# 9.9 Appendix 9: DEPI Native Vegetation Reforms Strategic Biodiversity Score Map

## Map created Tue Sep 17 11:54:58 EST 2013



Map Scale 1:20,506

GDA actoria

(c) The State of Victoria Department of Environment and Primary Industries 2013

Produced on Tue Sep 17 11:55:02 EST 2013

Biodiversity Interactive Map A4 Landscape

Annex 2 Targeted Survey for Colquhoun Grevillea (*Grevillea celata*); (Ethos NRM)



# Targeted survey for Colquhoun Grevillea (Grevillea celata):

# Nowa Nowa Iron Project (5 Mile Deposit)



FINAL Prepared For: Earth Systems October 2013

#### ETHOS NRM Pty Ltd

 ABN: 44 104 999 528

 PO Box 204, 162 Macleod St

 Bairnsdale, Vic. 3875

 Telephone: 03-5153 0037

 Facsimile: 03-5153 0038

 E-mail: info@ethosnrm.com.au

 Website: www.ethosnrm.com.au

ENVIRONMENTAL, PLANNING & NATURAL RESOURCE MANAGEMENT CONSULTANTS

# TABLE OF CONTENTS

1	INTRODUCTION	3
1.1 1.2	PROJECT BACKGROUND	
1.3	SITE LOCATION AND DESCRIPTION	4
1.4	COLQUHOUN GREVILLEA (GREVILLEA CELATA)	
2	METHODOLOGY	6
3	RESULTS	8
3.1	TARGETED SURVEY RESULTS	8
3.2	PREVIOUS SURVEY RESULTS	8
4	CONCLUSION	9
5	REFERENCES	10
6	APPENDICES	11
6.1 6.2	APPENDIX 1: NOWA NOWA IRON PROJECT INFRASTRUCTURE AND LAYOUT MAP APPENDIX 2: VBA RECORDS OF COLQUHOUN GREVILLEA	
TABL	.ES	

# TABLE 1: SURVEY EFFORT 8

## FIGURES

FIGURE 1:	PROJECT SITE LOCALITY	5
FIGURE 2:	COLQUHOUN GREVILLEA TARGETED SURVEY EFFORT MAP	7

**Cover Photo:** Colquhoun Grevillea within the fenced area on the Bruthen-Nowa Nowa Road, 1.5km west of the Bruthen-Buchan Road (Sean Phillipson).

Ethos NRM Pty	Ltd			
Document Control				
Client	Earth Systems			
Title	Targeted Survey for Colquhoun Grevillea (Greville	ea cela	ta) – Nowa Nowa Iron Proje	ect
Author	Amie Hill			
Manager	Eric Sjerp			
Version	Final			
Electronic File Name	13031 nowa nowa iron project grevillea celata sur	vey fin	al.docx	
Date Last Saved	24/10/2013 2:36 PM			
Date Last Printed	24/10/2013 2:43 PM	No	Format	Date
Distribution:	Sean Phillipson, Eric Sjerp	1	Draft v1.0 for review	18/10/13
	Earth Systems (Megan Price and Daniel Banfai)	1	Draft v1.0 pdf via email	18/10/13
	Cc: Planning & Property Partners (Nick Baker)	1	Draft v1.0 pdf via email	18/10/13
	Earth Systems (Megan Price and Daniel Banfai)	1	Final pdf via email	24/10/13
	Cc: Planning & Property Partners (Nick Baker)			

## 1 INTRODUCTION

#### 1.1 Project Background

The Nowa Nowa Iron Project (5 Mile Deposit) (the Project) proposed by Eastern Iron Limited, through their wholly owned subsidiary Gippsland Iron Pty Ltd, is a greenfield development of a high grade magnetite/hematite deposit generally referred to as 'Five Mile' and within EL4509. The Project is located approximately 7 km north of the township of Nowa Nowa, which is situated on the Princes Highway between Bairnsdale and Orbost in East Gippsland, Victoria (see **Figure 1**).

The Project site (including open pit, waste rock dump, infrastructure and access/haul roads and buffers) covers almost 150 hectares, between the Bruthen-Buchan Road, along Tomato Track to the Buchan-Nowa Nowa Road and Five Mile Track (see **Appendix 1**).

The Nowa Nowa Iron Project will have impacts on approximately 146 hectares of native vegetation at the mine site, for the proposed diversion of the Nowa Nowa-Buchan Road and for works to upgrade the intersection of the mine access road at the Bruthen-Buchan Road. No additional vegetation loss is expected along the proposed Project transportation route within Victoria to the existing South East Fibre Exports (SEFE) wharf at the Port of Eden in Edrom, NSW.

Assessment of vegetation type and condition has been previously undertaken by Ethos NRM (Ethos, 2013) within a broad area, referred to as the 'Vegetation Study Area', which contains the proposed mine site and associated infrastructure. During a desktop review of rare and threatened flora records, the occurrence of the vulnerable plant Colquhoun Grevillea (*Grevillea celata*) was identified within 5km of the Project site.

#### 1.2 Objectives

Ethos NRM Pty Ltd has been engaged by Earth Systems to undertake a targeted survey for Colquhoun Grevillea (*Grevillea celata*) to investigate the potential presence of the species within the Project site.

The survey was requested by the Department of Environment and Primary Industries (DEPI), due to the proximity of the Project site to existing known populations.

The purposes of this survey and report are to:

- 1. Undertake targeted surveys for *Grevillea celata* within the Project site.
- 2. If *Grevillea celata* is located within the Project site, collect data such as population size estimates, map population extent and life stage.
- 3. If *Grevillea celata* is located within the Project site, provide recommendations for further surveys to document the population extent within the Project site and the surrounding area.
- 4. Document survey effort and results of the survey

The Project footprint comprises all related infrastructure, dams and roads including buffers for fire protection.

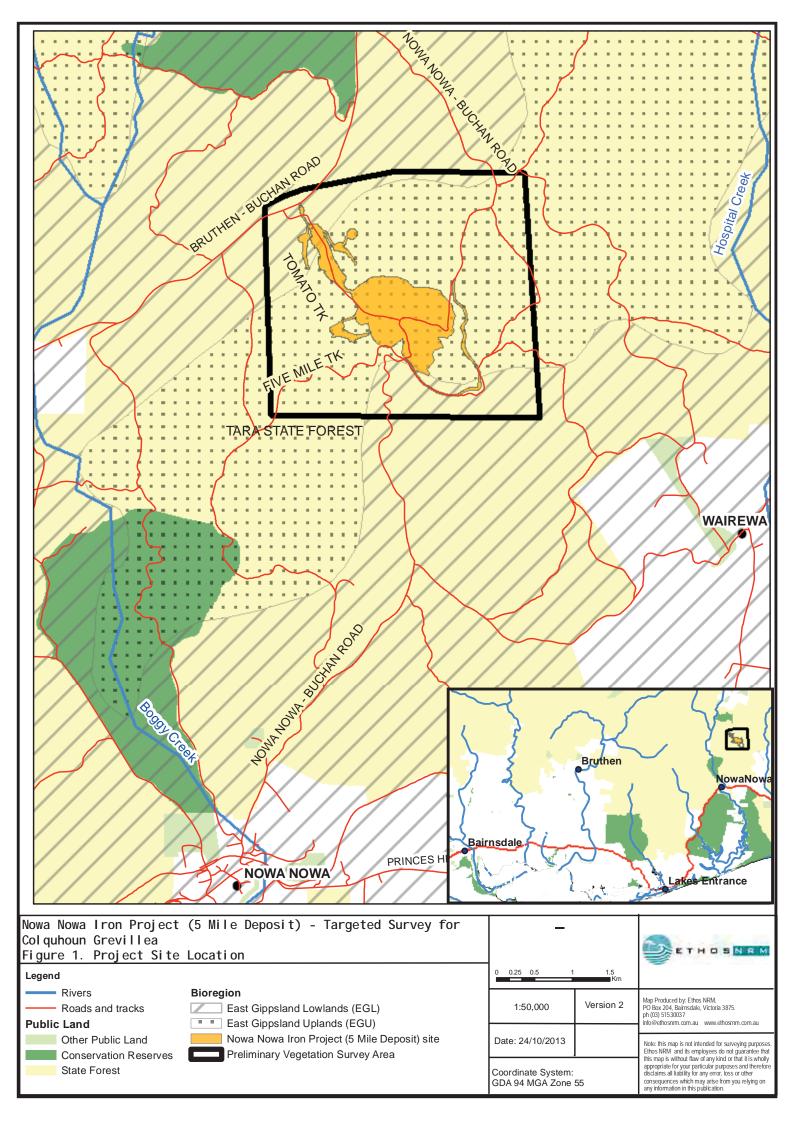
#### 1.3 Site Location and Description

The Project site is located wholly within the Tara State Forest (Crown land) which is primarily managed for forestry activities in the vicinity of the proposed works (see **Figure 1**).

The Project site is located mostly within the East Gippsland Uplands bioregion. A small portion of the northern extent of the footprint, and part of the proposed diversion of the Nowa Nowa - Buchan Road, are within the East Gippsland Lowlands.

The topography across the Project site is undulating, with several creeks and drainage lines dissecting the site. Slopes are generally moderate along drainage lines in the north to north-west of the site, with lower relief along Tomato Track and to the west which are relatively flat, wide spurs. Steeper slopes occur outside the Project site to the south of Five Mile Track. Soils are generally well draining silty loams, with exposed rock and shallow soils dominant on dry spurs and slopes, with lower slopes and sheltered aspects having higher clay content and lacking the rock component.

Ethos NRM Ecological Vegetation Class (EVC) mapping across the broad Vegetation Study Area recorded four EVCs, including; Shrubby Dry Forest, the dominant EVC covering almost 75% of the mine site, Lowland Forest comprising almost 20%, Riparian Forest covering 4% and Damp Forest a further 3%.


The Project Site has been subject to extensive timber harvesting. Logging history available from DEPI's Biodiversity Interactive Map (DEPI, 2013a) shows that timber harvesting has impacted the majority of the Project since the 1960s. All vegetation within the Project site has been burnt (planned burning) over the last 5 to 30 years.

#### 1.4 Colquhoun Grevillea (*Grevillea celata*)

Colquhoun Grevillea (*Grevillea celata*) is known only from the Colquhoun State Forest, and is a low, dense shrub to 1.8m high, with red and yellow flowers appearing from July to February (Walsh & Entwisle, 1996). The total known range of the species is approximately 11km², and the total population is estimated to be between 1000 and 1600 plants (DSE, 2008). It is mostly confined to roadsides and natural forest clearings with high light levels (DSE, 2008), and most populations are located along the edge of the Bruthen-Nowa Nowa Road and the adjacent forest tracks to the north and south (VBA, 2013; refer to **Appendix 2**).

Its habitat consists of heathy open forest with an overstorey of eucalypts including; *Eucalyptus consideniana*, *E. cypellocarpa*, *E. globoidea*, *E. macrorhyncha* or *E. obliqua* (DSE, 2008). Associated species include a variety of small to medium shrubs, Bracken, graminoids and herbs. Spiny Bossiaea (*Bossiaea obcordata*) is considered a good indicator species as it is present in almost all populations of Colquhoun Grevillea (Walsh & Entwisle, 1996).

*Grevillea celata* is listed as Vulnerable under both the Commonwealth *Environment Protection and Biodiversity Conservation (EPBC) Act 1999* and the DEPI Advisory List of Rare or Threatened Plants in Victoria (DSE, 2005). It is also listed as threatened under Victoria's *Flora and Fauna Guarantee (FFG) Act 1988*. The population of Colquhoun Grevillea which is closest to the Project site is along Lyle's Break, approximately 5km south-west. This population is listed as an important population in the species' FFG Action Statement. Other populations of Colquhoun Grevillea extend to the west and south of Lyle's Break (see **Appendix 2**).



## 2 METHODOLOGY

A targeted field survey for Colquhoun Grevillea (*Grevillea celata*) was undertaken within the Project site on the 16th of October, 2013. Surveys were conducted by 2 observers.

Prior to conducting the survey, the current flowering of the species was confirmed at a fenced population on the Bruthen-Nowa Nowa Road 1.5km west of the intersection with Bruthen-Buchan Road. Reference photos were taken at this site.

The survey adopted a combination of methods to maximise coverage of the most likely locations for populations as well as ensuring a representative sample of vegetation and habitats present within the Project site, including:

- Foot and vehicle-based survey of vegetation adjacent to existing vehicle tracks dissecting and bounding the Project Site, and
- Walking transects through the mine pit and other areas of the Project site.

The method and survey effort was confirmed with DEPI (Mick Bramwell, Environmental Advice and Approvals) prior to undertaking field work.

Walking transects involved traversing through native vegetation, with observers at a spacing of approximately 20 metres, and observing vegetation within 5-10 metres per person either side of the line traversed depending on vegetation density. Average transect width was 30 metres, although a minimum of 20m was used to calculate survey effort. Roadside survey involved each observer focussing on one side of the road, either walking slowly along the edge of the roadside vegetation, or from a vehicle traveling at approximately 5km per hour. Survey width varied from 5-10 metres per person depending on understorey density, a minimum width of 5m per person (10m total width) was assumed in calculating survey effort.

Targeted survey transects are shown in Figure 2.

C C C C C C C C C C C C C C C C C C C	Nowa Nowa - B	Gesermine Gesermine Prove Ethermone G
Nowa Nowa Iron Project (5 Mile Deposit) - Targeted Survey for Colquhoun Grevillea Figure 2. Survey Effort	<b>—</b> 0 0.1 0.2 0.4 0.6	ETHOSNEM.
Targeted Grevillea celata survey Transects       Ecological Vegetation Classes (Draftv2.1)         Transect - Walking       Damp Forest         Roadside - Walking       Lowland Forest         Roadside - Vehicle       Riparian Forest         Proliminary Survey Sample Points       Shrubby Dry Forest	1:17,023 Version 2	Map Produced by: Elhos NRM, PO Box 204, Bairnsdale, Victoria 3875. ph (03) 51530037 info@elhosrrm.com.au www.elhosrnm.com.au
Roads and Tracks     Creeks	Date: 24/10/2013 Coordinate System: GDA 94 MGA Zone 55	Note: this map is not intended for surveying purposes. Ethos NRM and its employees do not guarantee that this map is without flaw of any kind or that it is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, bos or other consequences which may arise from you relying on any information in this publication.

# 3 RESULTS

#### 3.1 Targeted survey results

The targeted survey for Colquhoun Grevillea consisted of 9.37 km of transects (4.8km walking and 4.6km vehicle) covering an area of approximately 11.2 hectares (ha) along roadsides and through native vegetation within the proposed mine footprint (refer to **Table 1**). Transects through vegetation traversed project components including the mine pit, waste rock dump and low grade ore stock pile (refer to Appendix 1 for Project Infrastructure and Layout Map). Transects traversed the range of Ecological Vegetation Classes present within the Project site, as well as varied vegetation condition, fire history and timber harvesting history. Roadside searches traversed all vehicle tracks dissecting and immediately adjacent to the Project site.

# Colquhoun Grevillea was not located during the Targeted survey conducted by Ethos NRM on 16th October, 2013.

The survey effort is detailed in **Table 1** below. The width of the area surveyed along transects depended on the density of understorey vegetation, and a conservative estimate of survey area coverage is provided to allow for this variation.

Survey Type	Survey Method	General location	Width of transect (m)	Length of transect (m)	Estimated search area (ha)
Transect 1	Walking	mine pit	20	4597	1.9
Transect 2	Walking	haul road/waste rock dump (old logging trk)	10	935	0.7
Transect 3	Walking	waste rock dump/ low grade ore stock pile	20	734	1.9
Roadsides	Walking	5 Mile Track (west), part Nowa Nowa- Buchan Road	10	944	2.2
Roadsides	Vehicle (<5km/hr)	Tomato Track, 5 Mile Track (east), part Nowa Nowa-Buchan Road	10	2160	4.6
TOTALS				9370	11.2

#### Table 1: Survey effort

#### 3.2 **Previous survey results**

Detailed flora lists were collected by Ethos NRM at 17 sample sites across the Vegetation Study Area (VQA) during the previous Preliminary Vegetation Quality Assessment and EVC Mapping fieldwork, with a total of 141 terrestrial flora species recorded (Ethos NRM, 2013). Additional species were also recorded while traversing native vegetation on the site. The survey coverage included approximately 24 ha of vegetation sampling across an 1100 ha Vegetation Survey Area, conducted over 3 days in Autumn, 2013 (including Habitat Hectare Assessment sample sites and traverse across the study area). Approximately 15 ha of this survey coverage occurred within or adjacent to the Project site.

Ethos NRM was aware of the potential presence of Colquhoun Grevillea at the Project site prior to undertaking the Preliminary VQA and EVC Mapping fieldwork, through interrogation of the DSE Rare and Threatened Species Database. **Colquhoun Grevillea was not observed during the surveys conducted by Ethos NRM in Autumn 2013**. The Preliminary survey (Autumn 2013) recorded many of the associated species listed in the Colquhoun Grevillea Action Statement (DSE, 2008) across the entire Vegetation Survey area, but did not record the indicator species Spiny Bossiaea. Individual VQA sample sites recorded less than half of the 'associated species', with most sites recording few of the species. Areas of Lowland Forest sampled outside of the Project site (to the east) had the most similar floristic assemblages to the described habitat for Colquhoun Grevillea. A single sample site within the Project site, located near the western boundary of the proposed Waste Rock Dump, had almost half of the 'associated species', and was covered by the targeted surveys.

The Victorian Biodiversity Atlas (VBA, 2013) shows several flora survey sites located in close vicinity to the Project site (8 sites within 1km), between 1967 and 1994, none of which have recorded Colquhoun Grevillea.

## 4 CONCLUSION

Colquhoun Grevillea has not been recorded by Ethos NRM at the Project site, following the targeted and general flora surveys conducted in Autumn and Spring of 2013.

Targeted surveys for Colquhoun Grevillea were conducted across the Project Site in Spring, covering almost 10% of the area of vegetation proposed for removal.

Roadsides were considered to be the most likely location to detect the species presence within the Project site (confirmed by DEPI), and these were systematically surveyed on foot or from a slow-moving vehicle. Transects through vegetation were also undertaken within the Project site, covering a representative variety of habitat types, vegetation condition, and management history.

Earlier preliminary surveys carried out by Ethos NRM in Autumn (Ethos, 2013) covered an additional 10% of the Project site, and did not detect Colquhoun Grevillea, or the indicator species Spiny Bossiaea. Other historic surveys recorded on the Victorian Biodiversity Atlas (VBA, 2013) have not detected the species within the Project site, and only one population has been recorded at the outer edge of a 5km database search radius.

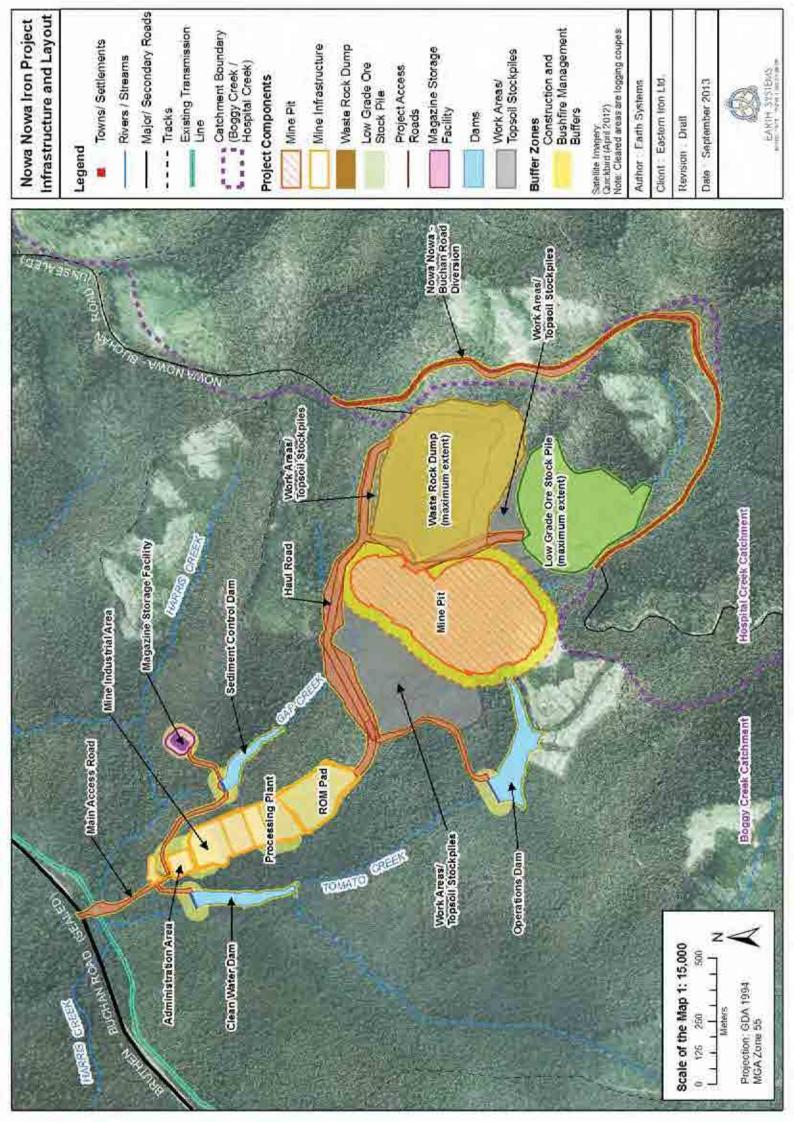
The closest record of Colquhoun Grevillea to the Project site is approximately 5km to the south-west along Lyle's Break, which represents the eastern extent of the known range of the species.

Ethos NRM considers that it is unlikely that a substantial population of Colquhoun Grevillea is present within the Project site.

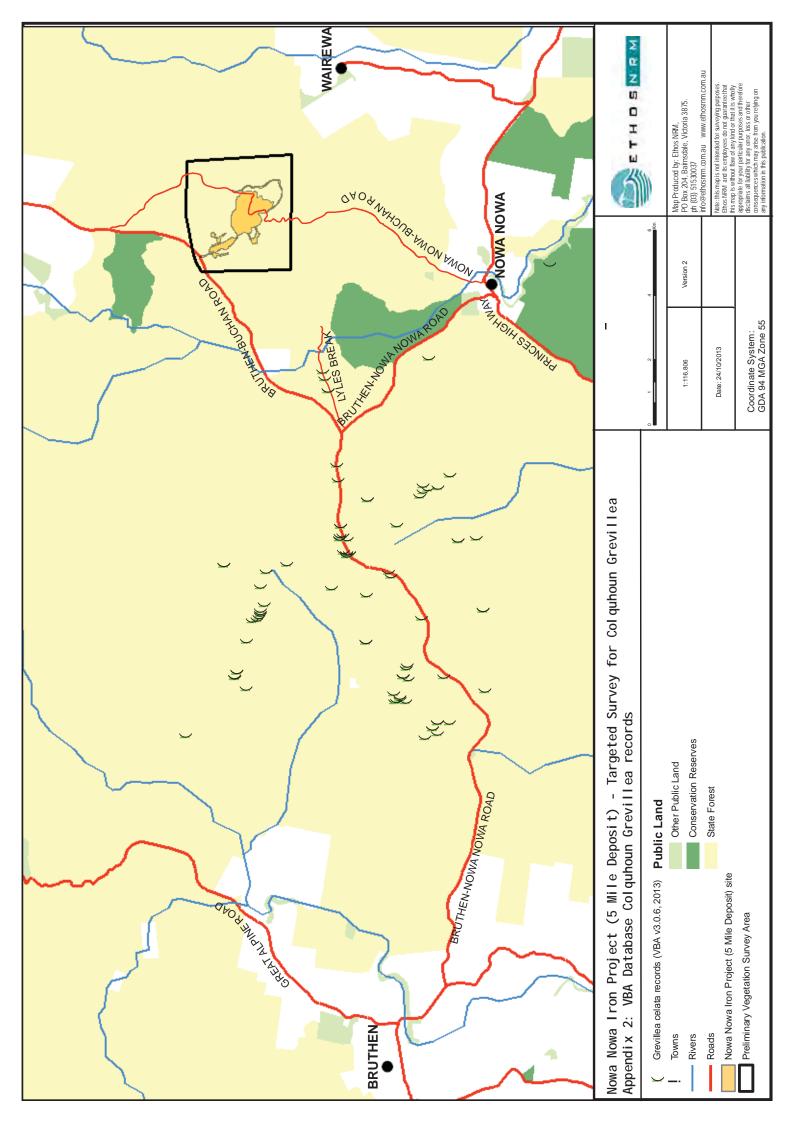
### 5 REFERENCES

- DSE, 2005. Advisory List of Rare or Threatened Plants in Victoria 2005. Victorian Department of Sustainability and Environment, East Melbourne, Victoria.
- DSE, 2008. Flora and Fauna Guarantee Act 1988 Action Statement No. 211: Colquhoun Grevillea Grevillea celata. The State of Victoria, Department of Sustainability and Environment, Melbourne
- DSE, 2013a. Online Mapping Biodiversity Interactive Map. www.dse.vic.gov.au (website accessed 27/02/2013). Victorian Department of Sustainability and Environment.
- Ethos NRM, 2013. Preliminary Vegetation Quality Assessment and Ecological Vegetation Class Mapping: Nowa Nowa Iron Project. Report prepared for Earth Systems, October, 2013 by Ethos NRM Pty Ltd, Victoria.
- SEWPAC, 2013. *Matters of National Environmental Significance*, viewed 27/02/13 <u>http://www.environment.gov.au/epbc/protect/index.html</u>. Australian Government Department of Sustainability, Environment, Water, Population and Communities.
- Viridans, 2013b. *Wild Plants of Victoria on the Web,* Viridans Biological database 2013, Viridans Pty Ltd, Victoria.
- Walsh, N.G. and Entwisle, T.J. (eds)(1996). *Flora of Victoria. Volume 3. Dicotyledons. Winteraceae to Myrtaceae.* Inkata Press.

#### Rare and Threatened Species Data Source (DSE)


- Data Source: 'Victorian Flora Site Database', © The State of Victoria, Department of Sustainability and Environment (accessed via the 'Flora Information System', [December 2010] - © Viridans Biological Databases). The contribution of the Royal Botanical Gardens Melbourne to the database is acknowledged.
- Data Source: 'Atlas of Victorian Wildlife', © The State of Victoria, Department of Sustainability and Environment (accessed via the 'Victorian Fauna Database', [December 2010]- © Viridans Biological Databases).

#### VBA, 2013 Data Source (DEPI)


Data Source: 'Victorian Biodiversity Atlas', © The State of Victoria, Department of Environment and Primary Industries (Version 3.0.6, October 2013]).

## 6 APPENDICES

#### 6.1 Appendix 1: Nowa Nowa Iron Project Infrastructure and Layout Map



## 6.2 Appendix 2: VBA Records of Colquhoun Grevillea



# Annex 3 Nationally and State threatened/significant flora species within, and potentially in, the region and likelihood of presence in mine site (DSE 2013d)

and likelino(	and likelinood of presence in mine site (USE 20130)		ום סונם	ני	7-74-	5			
		Consei	<b>Conservation Status</b>	atus	Previously	usly			
Common Name	Scientific Name	EPBC Act	FFG Act	DSE	recorded in the region between years	d in the on years	Likelihood in mine site and justification	Habitat/Species Characteristics	Type
Maroon Leek-orchid	Prasophyllum frenchii	EN		EN	N/A	N/A	U - Habitat absent or of insufficient quality	Grassland and grassy woodland habitats that are generally damp but well drained	Herb
Matted Flax-lily	Dianella amoena	EN		EN	N/A	N/A	H/U - Habitat absent or of insufficient quality	Lowland grasslands, grassy woodlands and creeklines of herb-rich woodland	Herb
Colquhoun Grevillea	Grevillea celata	٨U		٨	1937	2008	<ul> <li>U – Some habitat</li> <li>present; patchily</li> <li>distributed</li> </ul>	Terrain tends to be flat or with a slight northerly aspect. Populations occur from c. 140–300 m above sea level; occasionally present in disturbed areas	Shrub
Leafy Nematolepis	Nematolepis frondosa	٨U		ΛΛ	1987	2002	U - Habitat absent or of insufficient quality	Varied habitat ranging from low rock outcrop scrub to tall open forest dominated by Eucalyptus regnans	Shrub
Limestone Blue Wattle	Acacia caerulescens	٨U		٨	1990	2008	H/U - Habitat too disturbed	Restricted to the Lakes Entrance-Buchan district. Small stands persist along the roadside to the north of Buchan	Tree
Leafless Tongue- orchid	Cryptostylis hunteriana	٨U		EN	N/A	N/A	U - Undergrowth probably of insufficient quality	Reported to occur in a wide variety of habitats including heathlands, dry sclerophyll forests, forested wetlands, freshwater wetlands, grasslands, grassy woodlands, rainforests	Herb
Thick-lipped Spider- Orchid	Caladenia tessellata	٧U			N/A	N/A	U - Undergrowth probably of insufficient quality	Heathland, heathy or grassy woodland, and grassy or sedgy open forests in well drained sand and clay loams	Herb
Austral Moonwort	Botrychium australe			ΝU	1994	1994	H/U - Habitat absent	Damp sites in open forest or grassland; widespread but uncommon	
Yellow-wood	Acronychia oblongifolia			R	1975	2000	U - Habitat too disturbed	Warmer rainforest and on their margins, also in regrowth rainforest, widespread in coastal districts	Shrub - tree
Dainty Bitter-cress	Cardamine tryssa			EN	1995	1995	H/U - Undergrowth probably of insufficient quality	Moist areas	Herb

		Conser	<b>Conservation Status</b>	atus	Previously	usly			
Common Name	Scientific Name	EPBC Act	FFG Act	DSE	recorded in the region between years	l in the on 1 years	Likelihood in mine site and justification	Habitat/Species Characteristics	Type
Slender Mud-grass	Pseudoraphis paradoxa			EN	1979	1992	H/U - Habitat absent	Ephemeral or permanent pools and watercourses, often forming floating mats	Other grass
Coastal Greenhood	Pterostylis alveata			٨U	1993	1999	U - Habitat absent or of insufficient quality	Grows among grass on moist slopes and near streams in coastal and near-coastal districts	Herb
Creeping Loosestrife	Lysimachia japonica			٧U	1976	1976	U - Habitat absent or of insufficient quality	Moist situations, in and on margins of rainforest, on stream banks and in swamps	Herb
Japanese Lady-fern	Deparia petersenii subsp. congrua			٨U	1985	1985	U - Habitat absent or of insufficient quality	Frequently forms large colonies in or close to stream banks and damp rock faces and crevices	Fern
Jointed Mistletoe	Korthalsella rubra subsp. rubra			٨U	1976	1999	U - Habitat absent or of insufficient quality	Parasitic on a wide range of trees in rainforest and wet sclerophyll forest	Epiphyte
Naked Sun-orchid	Thelymitra circumsepta			٨U	1974	2005	U - Habitat absent or of insufficient quality	Mountainous districts with high rainfall and in seepage areas on tablelands	Herb
Showy Boronia	Boronia ledifolia			٧U	1987	2004	P - Habitat present	Heath and dry sclerophyll forest on sandstone and granite	Shrub
Spotted Gum	Corymbia maculata			ΛU	1979	1980	P – Habitat may be present	Community dominant, in open forest on somewhat infertile and drier sites on shales and slates	tree
Star Cucumber	Sicyos australis			VU	1985	1999	U - Habitat absent or of insufficient quality	Chiefly on margins of warmer rainforest, mainly on the coast	Vine
Tullach Ard Grevillea	Grevillea polychroma			٧U	1987	1987	U - Habitat may be present, but probably not sufficient	Open forest and rocky shrub associations	Shrub
Viscid Daisy-bush	Olearia viscosa			Ν	1976	2000	<ul> <li>U - Habitat absent or of insufficient quality</li> </ul>	Coastal scrub and rainforest margins	Shrub
Wild Sorghum	Sarga leiocladum			٧U	1999	1999	P - Habitat may be present	In woodland on poorer soils	Other grass
Bear's-ear	Cymbonotus lawsonianus			R	1990	1990	P - Habitat/conditions present	Range of situations such as open forest, roadsides and disturbed areas	Herb
Birch Pomaderris	Pomaderris betulina subsp. betulina			R	1940	1994	P - Habitat may be present	Open forest	Shrub
Blotched Hyacinth- orchid	Dipodium variegatum			22	N/A	N/A	U - Habitat absent or of insufficient quality	Wet sclerophyll forest to heath, on a variety of soils	Herb

		Consei	<b>Conservation Status</b>	atus	Previously	usly			
Common Name	Scientific Name	EPBC Act	FFG Act	DSE	recorded in the region between years	in the on years	Likelihood in mine site and justification	Habitat/Species Characteristics	Type
Bluish Pigface	Carpobrotus glaucescens			Я	2007	2007	H/U - Habitat absent	Coastal sand dunes	Herb
Bolwarra	Eupomatia laurina			Ч	1977	1994	U - Habitat absent or of insufficient quality	Moist eucalypt forest on the coast and lower ranges	Tree
Coast Cassinia	Cassinia maritima			R	1992	1992	U - Habitat absent	Genus under revision, coastal areas	Herb
Coast Grey-box	Eucalyptus bosistoana			Я	1976	2008	P - Habitat may be present	Near streams in lowland areas on better quality soils, particularly over limestone	Tree
Coast Mistletoe	Muellerina celastroides			R	1978	2007	U - Habitat absent or of insufficient quality	Coastal areas in sclerophyll forest and rainforest, usually parasitic on species of Banksia and Casuarinaceae	Epiphyte
Comb Wheat-grass	Australopyrum retrofractum			2	N/A	N/A	H/U - Habitat absent	Grows at high elevations in high alpine herbfields and sod tussock grassland	Grass
Common Spleenwort	Asplenium trichomanes			Я	1992	1999	P - Habitat present	It is a widespread and common species, occurring almost worldwide in a variety of rocky habitats	Fern
Convex Pomaderris	Pomaderris subcapitata			Я	1980	2004	P - Habitat may be present	Open forest	Shrub
Dark Wire-grass	Aristida calycina var. calycina			R	1987	1987	P - Habitat present	Grows on poor or sandy soils	Tussock grass
Dune Wood-sorrel	Oxalis rubens			Ч	2007	2007	H/U - Habitat absent	Commonly grows on islands, beaches and coastal sand dunes	Herb
Dwarf Brooklime	Gratiola pumilo			Я	N/A	N/A	P - Habitat may be present	Permanently or seasonally swampy ground, and the margins of dams and reservoirs	Herb
Eastern Bitter-bush	Adriana urticoides var. urticoides			Я	1987	1995	P - Habitat present	Sand dunes, watercourses, valleys and gorges, roadsides	Shrub
Eastern Pomaderris	Pomaderris discolor			Я	1970	1970	P - Habitat may be present	Open forest	Shrub
Forest Phebalium	Phebalium squamulosum subsp. squamulosum			2	1978	1978	P - Habitat may be present	Chiefly in sclerophyll forest, widespread on sandstone	Shrub
Forest Red-box	Eucalyptus polyanthemos subsp. longior			2	1949	1949	U - Habitat absent or of insufficient quality	Undulating terrain comprising stony or gravelly clays	Tree

		Consei	<b>Conservation Status</b>	atus	Previously	lsu			
Common Name	Scientific Name	EPBC Act	FFG Act	DSE	recorded in the region between years	in the n years	Likelihood in mine site and justification	Habitat/Species Characteristics	Type
Fringed Helmet- orchid	Corybas fimbriatus			R	1979	1985	H/U - Habitat too dry	Common in moist forests in coastal districts	Herb
Gippsland Stringybark	Eucalyptus mackintii			R	1986	1992	P - Habitat may be present	Dry sclerophyll forest or woodland on shallow poor soils on rises	Tree
Golden Pomaderris	Pomaderris aurea			R	1984	1984	P - Habitat may be present	Open forest	Shrub
Grey Beard-heath	Leucopogon attenuatus			R	1987	1987	P - Habitat may be present	Dry sclerophyll forest, open woodland and open rocky platforms within heath	Shrub
Heath Platysace	Platysace ericoides			R	2000	2000	P - Habitat may be present	Coastal heath, scrubby heath and sclerophyll woodland on sandy soils over various substrates	Shrub
Large-bract Hovea	Hovea magnibractea			R	1987	1996	P - Habitat may be present	Wet and dry forests	Shrub
Leafless Pink-bells	Tetratheca subaphylla			R	1987	1987	U - Habitat conditions absent	Grows on rocky hillsides usually in mountain eucalypt forest	Shrub
Limestone Pomaderris	Pomaderris oraria subsp. calcicola			R	1978	2002	P - Habitat may be present	Open forest	Shrub
Monkey Mint-bush	Prostanthera walteri			R	1987	1987	P - Habitat may be present	Commonly sclerophyll forest on granitic soils	Shrub
Mountain Kangaroo Apple	Solanum linearifolium			R	N/A	N/A	P - Habitat may be present	Disturbed or open areas of coastal ranges and tablelands	Shrub
Outcrop Guinea- flower	Hibbertia hermanniifolia			R	1987	2002	P - Habitat may be present	Open forest on sandstone	Shrub
Paperbark Tea-tree	Leptospermum trinervium			R	1979	1979	P - Habitat may be present	Dry sclerophyll forest, heath and scrub in deep or shallow sandy soil	Shrub
Pinkwood	Beyeria viscosa			R	1975	2000	U - Habitat too forested	Widespread in skeletal soils on ridges and hilltops or in crevices of rock slabs and on steep bluffs	Shrub
Rough Blown-grass	Lachnagrostis scabra			Я	1976	1976	U - Habitat absent or of insufficient quality	Occurs in coastal habitats, including seepage slopes, stream banks and swamps	Grass
Rough-fruit Pittosporum	Pittosporum revolutum			R	1974	1996	P - Habitat may be present	Rainforest, wet and dry sclerophyll forest; chiefly in coastal districts	Shrub
Salt Lawrencia	Lawrencia spicata			Я	1978	2007	H/U - Habitat absent	Coastal margins, estuaries, river banks	Herb

		Consei	<b>Conservation Status</b>	atus	Previously	usly			
Common Name	Scientific Name	EPBC Act	FFG Act	DSE	recorded in the region between years	l in the on 1 years	Likelihood in mine site and justification	Habitat/Species Characteristics	Type
Sandfly Zieria	Zieria smithii subsp. smithii			R	1999	1999	U - Habitat absent or of insufficient quality	Widespread on the coast and ranges	Shrub
Slender Bog-sedge	Schoenus lepidosperma subsp. pachylepis			R	1984	1984	U - Habitat absent or of insufficient quality	Grass-like; coastal areas	Herb
Slender Mint-bush	Prostanthera saxicola var. bracteolata			R	1987	1987	U - Habitat may be present, but not sheltered	Heath, dry sclerophyll forest and woodland, on sandstone in sheltered gullies	Shrub
Slender Saw-sedge	Gahnia microstachya			R	1987	1987	P - Habitat may be present	Sclerophyll forest and woodland in drier situations	Tussock grass
Slender Wire-Iily	Laxmannia gracilis			R	1980	1992	P - Habitat may be present	Usually woodland or open stony areas, on sandstone- or granite-derived soils	Herb
Small Autumn Greenhood	Pterostylis longipetala			R	1985	1985	U - Habitat absent	Moist slopes in sclerophyll forest of coastal and near- coastal districts	Herb
Small Fork-fern	Tmesipteris parva			R	1995	1995	U - Habitat absent or of insufficient quality	Usually epiphytic on tree ferns, widespread but not common, in rainforest and moist eucalypt forest	Epiphyte
Small Wax-lip Orchid	Glossodia minor			2	1976	1984	U - Undergrowth probably of insufficient quality	Coastal and near-coastal districts, especially in heath	Herb
Southern Blue-gum	Eucalyptus globulus subsp. globulus			R	N/A	N/A	P - Habitat may be present	Gently undulating sub-coastal hills or in protected valleys	Tree
Spicy Everlasting	Ozothamnus argophyllus			R	1940	1999	P - Habitat may be present	Woodland and on edges of rainforest, on granite or basalt; chiefly on the escarpment ranges	Shrub
Spurred Helmet- orchid	Corybas aconitiflorus			R	1985	2000	U - Undergrowth probably of insufficient quality	Widespread in sclerophyll forest, particularly in coastal and near-coastal localities	Herb
Stalked Adder's- tongue	Ophioglossum reticulatum			R	1970	1970	U - Habitat absent or of insufficient quality	Poorly known species. In other countries it grows along rivers	Herb
Streaked Rock- orchid	Dockrillia striolata subsp. striolata			R	1985	2006	U - Habitat absent or of insufficient quality	Cliff faces and granite boulders up to 1000 meters in elevation in exposed locations	Herb
Swamp Violet	Viola caleyana			Я	1992	1992	H/U - Habitat absent	Wet situations in forest or woodland or near swamps	Herb

		Conser	<b>Conservation Status</b>	atus	Previously	usly			
Common Name	Scientific Name	EPBC Act	FFG Act	DSE	recorded in the region between years	l in the on years	Likelihood in mine site and justification	Habitat/Species Characteristics	Type
Tall Acrotriche	Acrotriche leucocarpa			Я	1987	1987	P - Habitat present	Montane open eucalypt woodlands, in sandy clays or sandy loams over sandstone	Shrub
Twin-flower Tea-tree	Leptospermum emarginatum			Ч	1984	2005	U - Habitat absent or of insufficient quality	Grows along river banks and rocky creeks	Shrub
Varied Mitrewort	Mitrasacme polymorpha			Я	1992	1992	U - Habitat absent or of insufficient quality	Widespread, often growing in sandy soil overlying sandstone, mainly coastal districts	Herb
Veined Spear-grass	Austrostipa rudis subsp. australis			Я	1992	1992	U - Too far from coast	Woodland near the coast	Tussock grass
Velvet Apple-berry	Billardiera scandens s.s.			Ъ	1995	1995	P - Habitat present	Common in open eucalypt forest and woodland, particularly at higher altitudes	Shrub
Violet Daisy-bush	Olearia iodochroa			Я	1977	2004	P - Habitat may be present	Low woodland or sclerophyll forest, on rocky outcrops	Shrub
Violet Westringia	Westringia glabra			Я	2002	2002	U - Habitat absent or of insufficient quality	Low open woodland and shrubland, in skeletal soils of steep rocky gorges	Shrub
Wallaby-bush	Beyeria lasiocarpa			Я	1977	2004	U - Habitat too dry	Wet sclerophyll forest or in moist gullies along the coast and in rocky situations on the ranges	Shrub - tree
Water Pimpernel	Samolus valerandii			Я	1987	1995	U - Habitat absent or of insufficient quality	Moist shady situations and freshwater stream margins	Herb
Woolly-head Pomaderris	Pomaderris eriocephala			Я	1978	2004	P - Habitat may be present	Open forest	Shrub
Yellow Milk-vine	Marsdenia flavescens			Я	1975	1999	U - Habitat absent	Subtropical and dry rainforest; widespread, chiefly in coastal districts	Vine
Blue-leaf Tussock- grass	Poa sieberiana var. cyanophylla			DD	1987	1987	P - Habitat may be present	A variable grass of wide distribution and growing in many habitats	Tussock grass
Floating Bur-reed	Sparganium subglobosum			DD	1964	1964	H/U - Habitat absent	Still or slow-flowing fresh water	Aquatic perennial
Hypsela	Hypsela tridens			DD	1970	1970	U - Habitat absent or of insufficient quality	Grows on the edges of lakes, pools and slow-moving streams	Herb
Long-flower Beard- heath	Leucopogon juniperinus			DD	1940	2000	P - Habitat may be present	Dry and wet sclerophyll forest and woodland on various soils over shale or sandstone	Shrub

		Conse	<b>Conservation Status</b>	atus	Previously	usly			
Common Name	Scientific Name	EPBC Act	FFG Act	DSE	recorded in the region between years	d in the on years	Likelihood in mine site and justification	Habitat/Species Characteristics	Type
Skeleton Vine	Clematis leptophylla			DD	1995	2004	U - Undergrowth probably of insufficient quality	More common in valleys and slopes of the southern highlands	Vine
Slender Tick-trefoil	Desmodium varians			DD	2000	2000	U - Habitat absent or of insufficient quality	Chiefly in woodland or eucalypt forest; not common	Herb
Upright Panic	Entolasia stricta			DD	1988	1995	U - Habitat absent or of insufficient quality	Scrub in dry areas on sandy or sandstone-derived soils	Herb
Water Parsnip	Berula erecta			DD	1999	1999	1999 H/U - Habitat absent	Swamp areas and shallow water lakes	Herb

EN – Endangered; VU – Vulnerable; R – Rare; L – Listed; DD – Data deficient; H/U – Highly Unlikely; U – Unlikely; P – Potential. Habitat information sourced from (Walsh & Entwisle 1996), (Orchard & Wilson 2001), (Greig 1999) and (Costermans 2009)

# Annex 4 Threatened or internationally listed bird species recorded or potentially present in the region and the likelihood of presence in the mine site

	מווח הוב וועבוווהסח חו מובאבוורב ווו הוב וווווב									
Common Name	Scientific Name		Conservation Status	Status		Previously recorded	usly ded	Present in Study	Future likelihood in mine	Habitat characteristics
		EPBC Act	Treaty	FFG Act	DSE	between years	n years	Area		
Australasian bittern	Botaurus poiciloptilus	EN			EN	1977	1977		H/U - Rare species, habitat not present on site	Reedbeds, swamps, streams, estuaries
Australasian shoveler	Anas rhynchotis				٧U	1977	1977		H/U - Habitat absent	Heavily vegetated swamps
Australian painted snipe	Rostratula australis	VU; Marine; M	CAMBA		CR	N/A	N/A		<b>H/U</b> - Rare species, habitat absent	Shallow terrestrial freshwater wetlands, including temporary and permanent lakes, swamps
Azure kingfisher	Alcedo azurea				NT	1976	2008	ı	O - If creeks on site are flowing at high levels, this species may visit the site	Rivers, creeks, mangroves
Baillon's crake	Porzana pusilla palustris			_	ΛU	1977	1977		H/U - Habitat absent	Coasts, wetlands, mangroves
Black-faced monarch	Monarcha melanopsis	M; Marine	Bonn			1977	1993		P - Habitat present but species is less common in southern section of range	East coast forests, rainforests, eucalypt woodlands, coastal scrub and damp gullies
Brown treecreeper	Climacteris picumnus victoriae				NT	N/A	N/A	Yes	R - Habitat present	Temperate or dry forests, can live in disturbed forests
Cattle egret	Ardea ibis	M; Marine	CAMBA JAMBA			1981	2006	ı	<ul> <li>Habitat patchy, may fly- over</li> </ul>	Pasture, among stock, occasionally shallows of wetlands
Chestnut-rumped heathwren	Calamanthus pyrrhopygius				٨U	1977	2006	ı	O - Habitat probably insufficient	Coastal heath, mountain and hinterland areas, dense undergrowth of forests and woodlands
Diamond firetail	Stagonopleura guttata			Γ	NT	1977	1978	ı	<ul> <li>U - Habitat absent or of insufficient quality</li> </ul>	Grassy woodland
Eastern curlew	Numenius madagascariensis	M; Marine	Bonn CAMBA JAMBA ROKAMBA		NT	1977	1977		H/U - Habitat absent	Coastal estuaries, mud flats, mangroves, sandpits
Eastern great egret	Ardea modesta (also	M;	CAMBA	_	٧U	1977	2002	'	U - Habitat patchy, unless	Wide range of wetland habitats,

Rev1

## EARTH SYSTEMS

Common Name	Scientific Name		Conservation Status	Status		Previously recorded	usly ded	Present in Study	Future likelihood in mine	Habitat characteristics
		EPBC Act	Treaty	FFG Act	DSE	between years	ı years	Area		
	Egretta alba, Ardea alba)	Marine	JAMBA						creeks flood, may fly over	e.g. inland and coastal, freshwater and saline
Fairy tern (Australian)	Sternula nereis nereis	VU; Marine			EN	N/A	N/A		H/U - Habitat absent, too far inland to fly over	Coasts, estuaries, breed on sandy beaches and sand pits
Fork-tailed swift	Apus pacificus	M; Marine	CAMBA JAMBA ROKAMBA			N/A	N/A	ı	<b>U</b> - May fly over during summer	Many habitats, migrant during summer
Glossy ibis	Plegadis falcinellus	M; Marine	CAMBA		NT	1981	1981	ı	H/U - Habitat absent	Freshwater marshes, swamps and lagoons
Glossy-black cockatoo	Calyptorhynchus lathami				٧U	N/A	N/A		O - Habitat probably of insufficient quality to forage or roost, but may stop over between foraging and roosting sites	Open forest, especially in she- oaks
Grey falcon	Falco hypoleucos				EN	1980	1980	ı	H/U - Beyond normal range	Woodland and scrub in arid zones
Grey goshawk	Accipiter novaehollandiae novaehollandiae				٧U	1977	1981	1	O - Habitat absent	Forested areas, especially coastal closed forests
Hooded plover	Thinornis rubricollis rubricollis	Marine			٧U	1977	1977	,	H/U - Habitat absent	Ocean beaches, rarely coastal lakes
Hooded robin	Melanodryas cucullata cucullata				NT	1977	2008	ı	<ul> <li>U - Habitat absent and beyond normal range</li> </ul>	Dry forests, woodlands, mallee, scrublands
Latham's snipe	Gallinago hardwickii	M; Marine	Bonn CAMBA JAMBA ROKAMBA	Z	NT	1977	2007	ı	U - Rare migrant, habitat absent unless creeks flood, may be seen flying over	Occurs in permanent and ephemeral wetlands with low, dense vegetation. But also occur in habitats with saline or brackish water
Lewin's rail	Lewinia pectoralis pectoralis				٧U	1977	1977		H/U - Recorded once in area, habitat absent	Grassy, reedy, thickly vegetated waterways
Little egret	Egretta garzetta nigripes				EN	1980	1980		H/U - Recorded once in area, habitat absent	Wetlands, inter-tidal mudflats

## EARTH SYSTEMS

Common Name	Scientific Name		Conservation Status	Status		Previously recorded	usly ded	Present in Study	Future likelihood in mine	Habitat characteristics
		EPBC Act	Treaty	FFG Act	DSE	between years	years ו	Area	site Justification	
Magpie goose	Anseranas semipalmata				NT	1978	1978	ı	H/U - Recorded once in area, habitat absent, beyond normal range	Rush and sedge dominated wetlands
Masked owl	Tyto novaehollandiae novaehollandiae				EN	1977	2007	Yes	<ul> <li>Habitat present for hunting, unlikely to roost on site</li> </ul>	Forests, woodlands, caves. Roosts in tree hollows, dense foliage, out-buildings, caves
Musk duck	Biziura lobata				٨U	1977	1981	ı	H/U - Habitat absent	Permanent swamps with dense vegetation; large open lakes, tidal inlets and bays
Nankeen night heron	Nycticorax caledonicus hillii				NT	1977	1981		H/U - Habitat absent	Swamps, inter-tidal flats, estuaries, rivers
Orange-bellied parrot	Neophema chrysogaster	CR			CR	N/A	N/A	ı	H/U - Species population too small and habitat insufficient	Breeds in Tasmania in open forest copse in heath. Winters in mainland coastal saltmarsh, dunes, damp grasslands
Painted honeyeater	Grantiella picta				ΛU	N/A	N/A		H/U - Area is beyond normal range, probably insufficient quality habitat	Open box-ironbark forests, woodlands, especially with mistletoe
Pied cormorant	Phalacrocorax varius				NT	1977	1987	,	H/U - Habitat absent	Large areas of water, coastal or inland lakes, rivers and mangrove line estuaries
Powerful owl	Ninox strenua			_	٨	1977	2009	,	<ul> <li>Habitat probably of insufficient quality to nest or roost, but may forage</li> </ul>	Tall open forests, woodlands, roost in large trees in gullies
Rainbow bee-eater	Merops ornatus	M; Marine	JAMBA			N/A	N/A		U - Habitat absent, may fly- over	Open country, sand dunes, banks
Regent honeyeater	Anthochaera phrygia	EN; M	JAMBA		CR	N/A	N/A		H/U - Population reduced, habitat probably of insufficient quality	Open forests, woodlands, especially near blossoming eucalypts and mistletoe
Royal spoonbill	Platalea regia				NT	1980	1981		H/U - Habitat absent	Shallows of fresh and saltwater wetlands, intertidal flats

EARTH SYSTEMS

Common Name	Scientific Name		Conservation Status	Status		Previously recorded	usly ded	Present in Study	Future likelihood in mine	Habitat characteristics
		EPBC Act	Treaty	FFG Act	DSE	between years	ו years	Area		
Rufous fantail	Rhipidura rufifrons	M; Marine	Bonn			1977	1993		<ul> <li>More likely further north but may visit area occasionally</li> </ul>	Wet forests, occasionally in open forests
Satin flycatcher	Myiagra cyanoleuca	M; Marine	Bonn			1977	1977		<ul> <li>Habitat understorey too dense but may move through the area occasionally</li> </ul>	Tall and medium open forests, often at height
Sooty owl	Tyto tenebricosa tenebricosa				٨U	1979	2008		O - Habitat probably of insufficient quality to nest or roost, but may forage	Closed and tall forests, especially in gullies; roost in tree hollows, caves by day; active in canopy at night
Speckled warbler	Chthonicola sagittata				٨U	1978	1978	ı	H/U - Recorded once in area >30 years ago, habitat insufficient quality	Open woodlands
Spotted harrier	Circus assimilis				NT	N/A	N/A	ı	U - Habitat absent, may fly- over	Open grassland, crops and windbreaks
Spotted quail-thrush	Cinclosoma punctatum				NT	N/A	N/A		<b>U</b> - Habitat absent or of insufficient quality	Sclerophyll forests, ideally on leaf-littered rocky ridges with short grass tussocks
Square-tailed kite	Lophoictinia isura				٧U	N/A	N/A		<ul> <li>U - Habitat absent, may fly- over</li> </ul>	Open forests, riverine woodlands, scrubs, heathlands
Swift parrot	Lathamus discolor	EN; Marine			EN	1977	1977	ı	<ul> <li>Habitat understorey too dense but may move through the area occasionally</li> </ul>	Drier open forests, woodlands, parks, gardens
Turquoise parrot	Neophema pulchella				NT	2004	2004		<ul> <li>Habitat insufficient to forage or roost, but may stop over</li> </ul>	Open forests; eucalyptus woodlands and open forests, with a ground cover of grasses and low understorey of shrubs
White-bellied sea- eagle	Haliaeetus leucogaster	M; Marine	CAMBA	Ļ	٧U	1977	2008	,	<b>O</b> - Habitat absent, may fly- over	Large rivers, fresh and saline lakes, reservoirs, coastal seas, islands
White-fronted tern	Sterna striata				NT	1977	1977		H/U - Habitat absent	Oceanic, rocky reefs, in Australia during non-breeding season

Habitat characteristics		Coastal and mountainous regions; migrant in summer
Future likelihood in mine		<ul> <li>Habitat insufficient to forage or roost, but may stop over</li> </ul>
Present in Study	Area	
Previously recorded	oetween years	N/A
Prev	betwe	N/A
	DSE	
Status	FFG Act	
Conservation	Treaty	CAMBA JAMBA ROKAMBA
	EPBC Act	M; Marine
Scientific Name		Hirundapus caudacutus
Common Name		White-throated needletail

Key: CR – Critically Endangered; EN – Endangered; VU – Vulnerable; M – Migratory; Marine – Marine; NT – Near Threatened; L – Listed; N – Nominated; Bonn – Bonn Convention; CAMBA – China-Australia Migratory Bird Agreement; JAMBA – Japan-Australia Migratory Bird Agreement; ROKAMBA – Republic of Korea-Australia Migratory Bird Agreement; H/U – Highly unlikely; U – Unlikely; O – Occasional visitor; P – Potential resident; R – Resident. Habitat characteristics generally sought from (Simpson & Day 1999) and common knowledge.

# Annex 5 Nationally and state threatened mammalian species recorded or potentially present in the region and the likelihood of presence in the mine site

					)				
Common Name	Scientific Name	Conser	Conservation Status	Status	Previously recorded	usly ded	Present in Study	Future likelihood in mine site	Habitat characteristics
		EPBC Act	FFG Act	DSE	between years	ı years	Area	aria jusuricauori	
Brush-tailed rock-wallaby	Petrogale penicillata	٧U		CR	N/A	N/A		H/U - Species population too small and habitat insufficient	Rocky escarpments, caves and ledges for shelter and face north for warmth
Common bent-wing bat	Miniopterus schreibersii GROUP				1965	1969		H/U - Habitat absent	Roosts in caves, old mines, road culvets. Forages above canopy of forested areas
Eastern horseshoe bat	Rhinolophus megaphyllus			Ν	1964	1965	ı	<b>H/U</b> - Habitat insufficient to forage or roost	Cave roosting in closed tropical forest habitats and hot humid roosting sites
Eastern pygmy possum	Cercartetus nanus		_	NT	1961	1961		<ul> <li>Habitat absent or of insufficient quality, but may infrequently move through site</li> </ul>	Temperate rainforest, dry and wet sclerophyll forest, banksia woodland, and coastal heath
Greater glider	Petauroides volans			٧U	1978	2000	ı	P - Habitat present; may breed in area	Wet sclerophyll forest, needs large tree hollows for shelter
Grey-headed flying-fox	Pteropus poliocephalus	٨U		٨U	N/A	N/A	ı	H/U - Habitat absent or of insufficient quality. No established colonies in area	Utilises vegetation communities including rainforests, open forests, closed and open woodlands
Long-footed potoroo	Potorous longipes	EN			N/A	N/A		H/U - Habitat absent or of insufficient quality	Temperate rainforest, riparian forest and wet sclerophyll forest
Long-nosed potoroo	Potorous tridactylus tridactylus	٧U		NT	N/A	N/A		<ul> <li>C - Rare species, habitat probably of insufficient quality to permit constant/resident populations</li> </ul>	Open forest and woodland and the ecotone in-between
New Holland mouse	Pseudomys novaehollandiae	٨U		ΛU	N/A	N/A	,	<ul> <li>Understorey heath probably of insufficient quality to provide habitat</li> </ul>	Coastal areas and up to 100 km inland, open heathland, vegetated sand dunes, open woodland with a heathland understorey

S
Σ
ш
શ
6
т
F
Ъ
<
ш

Common Name	Scientific Name	Conser	Conservation Status	itatus	Previously recorded	usly ded	Present in Study	Future likelihood in mine site	Habitat characteristics
		EPBC Act	FFG Act	DSE	between years	years	Area	anu jusuncanon	
Southern brown bandicoot	Isoodon obesulus obesulus	E	ب	NT	N/A	N/A		P - Habitat may be present, local populations known in Gippsland area; however likelihood of occurrence limited by presence of predators and insufficient ground cover	Variety of habitats including heathland, shrubland, sedgeland, heathy open forest and woodland
Southern myotis	Myotis macropus			NT	N/A	N/A	ı	U - Habitat absent	Preferred habitat is riparian. Roosts in caves, mines, tree hollows
Spot-tailed quoll	Dasyurus maculatus maculatus	E		E	N/A	N/A	1	O - Habitat probably unsuitable	Temperate and subtropical rainforests in mountain areas, wet schlerophyll forest, lowland forests, open and closed eucalypt woodlands
White-footed dunnart	Sminthopsis leucopus			ΤN	1978	1978		P - Habitat may be present, may be of insufficient quality to sustain population	Occurs in forests and woodlands with an open understorey of low density vegetation; also in grassy fore-dune complexes

Key: CR – Critically Endangered; EN – Endangered; VU – Vulnerable; NT – Near Threatened; L – Listed; I – Insufficient data; H/U – Highly unlikely; U – Unlikely; O – Occasional visitor; P – Potential resident. Habitat characteristics sought from (Menkhorst 1995)

# Annex 6 Nationally and state threatened reptilian and amphibian species recorded or potentially present in the region and the likelihood of presence in the mine site

		5					01.0		
		Conse	<b>Conservation Status</b>	Status	Previously	ylsuc	Present in	Eutrus Ilitalihaad in mino cito and	
Common Name	Scientific Name	EPBC Act	FFG Act	DSE	between years	leen Irs	the Study Area	r uture interinood in mine site and justification	Habitat characteristics
Lace monitor	Varanus varius			E	1992	2002	Yes	O - Habitat present; presence dependent on prey; large home ranges and can travel several km a day	Common; semi-arboreal, forested areas
Dendy's toadlet	Pseudophryne dendyi			DD	1961	1977		O - Habitat absent; unless creeks flood	Adults often in damp leaf litter or sheltering under other debris and can be in both wet and dry forests and alpine areas
Giant burrowing frog	Heleioporus australiacus	ΛΛ		CR	N/A	N/A		U - Several records in the Lakes Entrance area; species found far from water; potential habitat present but still unlikely	Appears dependent on areas with native vegetation, with eucalypt forests. Occur in a wide range of forest communities including montane sclerophyll and riparian woodland
Green and golden bell frog	Litoria aurea	٨U		٨U	1965	1993	,	<ul> <li>U - Habitat currently absent; if creeks flood, frogs may move in from more permanent nearby streams</li> </ul>	Coastal plains and lowland forest, damp forest, shrubby dry forest. Breeding habitat includes dams, coastal lagoons and streamside pools. Habitats are mostly permanent
Growling grass frog	Litoria raniformis	٨U		EN	N/A	N/A		<b>H/U -</b> Habitat currently absent. Beyond normal range	Emergent vegetation, such as lagoons, ponds and farm dams. Also in open grassland, open forest, and ephemeral and permanent non-saline marshes and swamps
Littlejohn's tree frog	Litoria littlejohni	٨U		EN	N/A	N/A		<ul> <li>U - Some habitat may be present; if creeks flood</li> </ul>	Forest, coastal woodland and heath. Breeding habitat may be temporary pools in forested areas, deep permanent pools of slow creeks
Martin's toadlet	Uperoleia martini			CR	N/A	N/A	Yes	<ul> <li>O - Some habitat may be present; if creeks flood</li> </ul>	Adults are found in dry forest, shrublands, grasslands, and open and disturbed areas. Mostly near water, but also in dry depressions that flood in winter or spring

	Habitat characteristics	Adults in dry forest, shrubland, grassland, and heaths; under leaf litter and other debris in moist soaks	Adults are found in dry forest, shrublands, grasslands, and open and disturbed areas. Most common near water, but can be found in dry depressions that flood in winter or spring
The second s	ruure internood in mine site and justification	<ul> <li>O - Some habitat may be present; if creeks flood</li> </ul>	<b>O</b> - Some habitat may be present; if creeks flood
Present in	the Study Area	ı	
Previously	recoraea between years	1979	N/A
Previ	betwork	1961 1979	N/A
Conservation Status	DSE	ΛΛ	DD
	FFG Act		
	EPBC FFG Act Act		
	Scientific Name	Pseudophryne semimarmorata	Uperoleia tyleri
	Common Name	Southern toadlet	Tyler's toadlet

Key: CR – Critically Endangered; EN – Endangered; VU – Vulnerable; NT – Near Threatened; L – Listed; DD – Data deficient; H/U – Highly unlikely; U – Unlikely; O – Occasional seasonally dependant visitor. Information generally sourced from (Tyler & Knight 2011) and (Swanson 2007)

### Annex 7 Owl survey and sighting information

Requirement	Details
Names and contact details	Dr Megan Price and Naveena Wijesekara
	Earth Systems
	Suite 17, 79-83 High Street
	Kew, VIC 3101
	Tel: +61398107500
Species present, number of individuals and type of observation	One masked owl seen
	No other species within 10 m
	Yellow-bellied glider ~200 m
Date and time	08/05/2013 at 19:41 AEST
Precise geographic location	55 H 600258 5831487
	Halfway along Telephone Rd, sitting on a branch overhanging the track
	Appeared to be hunting
Weather details	Approximately 16°C
	Beaufort wind scale: 2 (light breeze)
Method of observation	Spotlighting
Targeted owl sampling effort	For general surveying effort see Section 5.3
	Time searching for owls 37 hours, 40 minutes
	Call playback and recognition covered 3500 ha
	Transect spotlighting covered 200 ha
	Number of nights: 12
	Number of days: 18 (dusk, dawn and day)
	Sequence: powerful, sooty and then masked owl vocalisations (i.e. territorial screams and trilling) were played and all calls were followed by at least 2 min silence
Quality of light and optical aids	250 lumen portable spotlight
	42 x 8 binoculars
Experience and qualifications of observers	·
Dr Megan Price	Bsc (Hons) and PhD (Biological Sciences, Monash University)
	Extensive field experience with bird and mammal behaviour

Requirement	Details
	and physiology
	A-class ABBBS authority
	Select publications:
	Price, M. (2008). The impact of human disturbance on birds: a selective review. <i>Too Close for Comfort: Conflicts in Human Wildlife Encounters.</i> D. Lunney, A. Munn and W. Meikle. Sydney, Royal Zoological Society of NSW: 163-196.
	Price, M. & A. Lill (2008). Does pedestrian traffic affect the composition of 'bush bird' assemblages? <i>Pacific Conservation Biology</i> 14: 54-62.
Naveena Wijesekara	BSc (Hons) Biological Sciences, University of Brunei Darussalam
	MEnv, University of Melbourne
	Grad. Dip. Environmental Planning, RMIT
	Extensive experience with bird behaviour and ecology
	Honours thesis: Behaviour, movement and habitat usage non- breeding pied hornbills ( <i>Anthracoceros albirostris</i> ) groups in Panaga, Brunei Darassalam
Supporting evidence	See Plate 5-6