I. SPECIES	Lepidospartum squamatum (A. Gray) A. Gray
NRCS CODE: LESQ	Family: Asteraceae Order: Asterales Tribe: Senecioneae Class: Magnoliopsida
Discoid head (top). Whitish	Scale leaves (top); mature plant in early April before active growth resumed (bottom); flowering plant and plant in fruit in fall (right). (photos, A. Montalvo)
pappus of ripe achenes (bottom).	
A. Subspecific taxa	None currently recognized (Jepson eFlora 2016, FNA 2016).
B. Synonyms	L. squamatum var. palmeri (A. Gray) A. Gray L. C. Wheeler. (FNA 2016) L. squamatum (A. Gray) A. Gray var. obtectum Jeps. (Munz & Keck 1968, Munz 1974) Linosyris squamata A. Gray Tetradymia s. A. Gray (Munz 1974) Baccharis sarothroides A. Gray var. pluricephala Jeps. (JepsonOnline)
C. Common name	Scalebroom; also scale-broom, California broomsage, broomscale (Calflora 2016, Painter 2016)
D. Taxonomic relationships	Phylogenetic work shows <i>Lepidospartum</i> is most closely allied with <i>Tetradymia</i> (Pelser et al. 2007). There are three species of <i>Lepidospartum</i> in North America (FNA 2016). <i>Lepidospartum latisquamum</i> S. Watson occurs in desert washes and fans in eastern California, Utah, and Nevada from about 3,000 to 8,200 ft (915 to 2,500 m). <i>L. burgessii</i> B. L. Turner is a rare taxon associated with gypsum soils in desert basins of New Mexico, Texas, and Mexico.
E. Related taxa in region	<i>L. latisquamum</i> potentially overlaps in distribution with <i>L. squamatum</i> in the Mojave Desert region and lower edges of the San Gabriel Mountains from the Cajon Pass area northward. It differs from <i>L. squamatum</i> in having fewer (only 4–6) flowers per head, corollas extending well beyond the involuce, tomentose phyllaries, and much longer, thread or needle like leaves (20–30 mm).
F. Taxonomic issues	The previously recognized variant, <i>L. s.</i> var. <i>palmeri</i> occurs in more arid regions near Twentynine Palms and the head of the Coachella Valley from Palm Canyon to Whitewater and Morongo washes in Riverside Co. (Wheeler 1938, Munz & Keck 1968). This same variant was recognized by Jepson (1925) as <i>L. s.</i> var. <i>obtectum. L. s.</i> var. <i>palmeri</i> continues to be listed for sale by seed companies in California (NSN 2016).
G. Other	The name <i>Lepidospartum</i> originates from the Greek words <i>lepis</i> (for scale) and <i>sparton</i> (rope, cable) which together refer to broom-like branches with small scale-like leaves (McMinn 1939). Scalebroom is an indicator species of alluvial scrub vegetation and the <i>Lepidospartum squamatum</i> Alliance. This vegetation alliance has a CNPS global listing of G3 and state listing of S3, but some associations within this alliance are rare and listed as G1, S1.1 (Sawyer et al 2009). The G1, S1 ranking is for natural communities at high risk of extinction or elimination and the .1 stands for very threatened status (Evens 2011). This includes Riversidean Alluvial Fan Sage Scrub as classified by Holland (1986). <i>L. squamatum</i> can form spreading clones and should not be planted in gardens or close to homes in areas where its underground spreading rhizomes can send up shoots and potentially crack concrete foundations. The plant is a good indicator of episodic scouring floods, so avoiding development in habitat occupied by scalebroom makes sense for multiple reasons.

II. ECOLOGICAL & EVOLUTIONARY CONSIDERATIONS FOR RESTORATION		
A. Attribute summary list (based on referenced responses in full table)	 Taxonomic stability - high Longevity - medium to long-lived Parity - polycarpic Flowering age - ~ 2 years Stress tolerance - moderate to high Environmental tolerance - narrow Reproduction - facultative seeder, clonal Fragmentation history - historical and recent Habitat fragmentation - high at low elevations Distribution - restricted, alluvial deposits low to mid-elevations SDM projected midcentury habitat gain - gain highly variable (7–329 %); gain > loss under 4 of 5 future climate scenarios (assuming unlimited dispersal) 	 Seeds - non-dormant, short lived Seed dispersal distance - far Pollen dispersal - intermediate to far Breeding system - outcrossed Population structure - unknown; low in congeners Adaptive trait variation - unknown Chromosome number - variable Genetic marker polymorphism - unknown; but high in related congeners Average total heterozygosity - unknown; high in related congeners Hybridization potential - low SDM projected midcentury suitable habitat - 12–100 % stable (highly variable)
B. Implications for seed transfer (summary)	Scalebroom has low seed set similar to the other tw (2016) and factors determining seed set are likely s numbers of S-alleles are responsible for the low see watercourses within Ecological Subsections may be populations and agricultural seed increase fields by allele variation which can increase compatible mati populations to ensure collection from multiple clon Scalebroom is expected to have medium to high wind dispersed seeds, growth in open areas, ability by flood waters, and pollen dispersal by bees. Hab and local watersheds is likely to be much higher tha connectivity can be restricted by other plant commu drainages, it is reasonable to mix seeds from adjace Scalebroom is restricted to alluvial habitats and processes and substrates to which the plant is adapt coast ranges westward and along washes that flow is Mojave Desert. Wash habitats often cross the boum Sections. There have been no studies to quantify th ecoregions, such as among coastal areas, inland val not be combined when mixing seeds from population Results of Species Distribution Modeling are hig stability of suitable habitat. However, the highest p	to species of <i>Lepidospartum</i> studied by Williams et al. imilar. If inbreeding among relatives or insufficient ed set, combining seeds from different subpopulations or e beneficial to sexual reproduction within restored alleviating inbreeding depression and augmenting S- ings. Seed collections should be well spaced through es. dispersal capacity within local watersheds owing to its for stems and roots to disperse and establish downstream itat connectivity and dispersal within stream corridors an across local watersheds because lateral habitat unities, steep topography, and development. Within et Ecological Subsections. should only be planted in areas that have the fluvial ed. Populations occur along washes that flow from the from inland mountains northward andeastward into the daries of adjacent Ecological Subsections and sometimes he effects of moving plants among similar vs. dissimilar leys, and deserts. Therefore, Ecological Sections should ons within different stream channels. (hly variable. Three of five models together predict 93% potential gain is predicted for a hotter, wetter future, cted for the two hottest futures.
III. GENERAL		
A. Geographic range	Widespread in central and southern California deser California in alluvial deposits along washes, river to distribution of scalebroom as primarily cismontane below 5000 ft (~1,500 m), mostly inland away from far north as the upper San Joaquin Valley and the d such northerly records have been sparse. Collection Colorado Desert need to be verified, as do a few co <i>L. latisquamum</i> .	rts, inland valleys and foothills, Arizona, and Baja erraces, and alluvial fans. McMinn (1939) described the southern California in sandy washes and gravelly places in the immediate coast. McMinn noted collections from as rier, inner South Coast Ranges of Alameda County, but ns from the eastern portion of the Mojave Desert and the llections from the southern Great Basin in the vicinity of

B. Distribution in California	Map includes validated herbarium records (CCH 2016) as well as occurrence data from CalFlora (2016) and
mapped onto ecological	field surveys (Riordan et al. 2018).
section/subsection (sensu	Legend has Ecological Sections;
Goudey & Smith 1994; Cleland	black lines are subsections
et al. 2007)	Children For and the second
Section Code	Sierra Nevada M261E: r,u
	Sierra Nevada Foothills M201F: d,e
261A M261G	Great valley 202A: g,q,w,y,z
262A M262B	Central California Coast Ranges M262A: c-h i
263A 322A	Southern California Coast 261B: a-g i j
M261A 322B	Southern California Mountains and Valleys
M261B 322C	M262B: a-l,n,o,p
M261D 341F	Mojave Desert 322A: f,g,h,n,p
M261E 342B	Sonoran Desert 322B: e
M261F Salton Sea	150 km
C. Life history, life form	Long-lived perennial, clone-forming shrub. In the wild, may live over 70 years (Sawyer et al. 2009). Under
	cultivation at Rancho Santa Ana Botanic Garden, plants lasted about 15 years (Everett 2012).
D Distinguishing traits	One to two meter high erect to spreading broom-like shrub with alternate, entire, scale-like leaves (McMinn
D. Distinguishing traits	1939. Munz 1974. Keil & Barkley 2016). The heads occur singly at the tips of branches and bear 9–17 disk
	flowers subtended by three to four series of closely imbricate involucre bracts (phyllaries) that are unequal
	in size. The receptacle lacks chaff. The achenes produce a whitish pappus of finely scabrous capillary
	bristles. Seedlings and juvenile plants produce linear to oblanceolate leaves that are canescent (whitish
	with dense, appressed hairs). New resprouts can also produce some juvenile leaves. The juvenile leaves
	give way to glabrous scale leaves as the plant matures (see X. C. Horticulture and agriculture for photo).
	Older shrubs can accumulate many fine, dead branches.
E. Root system, rhizomes,	Forms lateral, suckering roots. Plants spread horizontally very slowly but resprout rapidly from underground
stolons, etc.	structures after disturbance.
	Prenda Wash Riverside Co
	(A. Montalvo)
F. Rooting depth	Rooting depth is relatively shallow, but can be laterally extensive. Roots and rooted stems may be deep in
	fluvial deposits. No measurements were found.
IV. HABITAT	
A. Vegetation alliances,	In southern California, alluvial scrub communities with scalebroom are diverse in composition and structure
associations	(Smith 1980, Hanes et al. 1987, Burk et al. 2007, Barbour & Wirka 1997, Buck-Diaz et al. 2011).
	Scalebroom commonly occurs with the subshrubs Eriogonum fasciculatum (var. polifolium or var.
	foliolosum), Ericameria (linearifolia and/or pinifolia), Artemisia californica, Salvia mellifera, Salvia
	apiana, Acmispon glaber (var. glaber or var. brevialatus), and/or Hesperoyucca whipplei. Depending on
	location, scattered larger shrubs may be present, such as <i>Rhus ovata, Malosma laurina</i> , <i>Rhamnus crocea</i> ,
	Toxicodenaron diversitood, and Baccharis salicijolia. The large, suffruitescent perennials Eriodicityon trichoadhy or Eviodictivon grassifolium and Pommana coultari and a large number of enhameral annuals con
	also occur with scalebroom, depending on geographic location and frequency of flooding. The trees
	<i>Ouercus agrifolia</i> and <i>Platanus racemosa</i> may also be scattered in alluvial scrub habitat with scalebroom.
	Because many of the associated shrubs are key components of sage scrub, Kirkpatrick & Hutchinson (1977)
	considered alluvial scrub with scalebroom to be a form of coastal sage scrub. Some of the named plant
	communities are as follows:
	Manual of California Vegetation - MCV2 (Sawyer et al. 2009): Lepidospartum squamatum shrubland
	alliance (membership rule >1% cover in alluvial environments): major associations in our region includeL.
	squamatum-Artemisia californica scrub, L. squamatum-Eriogonum fasciculatum scrub, L. squamatum-
	Atriptex canescens scrub, L. squamatum-Eriodictyon crassifolium-Hesperoyucca whipplei scrub, L.
	squamatum-Erioalciyon trichocalyx-Hesperoyucca whipplei scrub, and L. squamatum/ephemeral annuals
	Soluo. Holland system (Holland 1986): Alluvial fan chanarral Moiave Decert wash seruh Riversidean alluvial
	fan sage scriib.
	iuii sugo soruo.

B. Habitat affinity and breadth of habitat	Low gradient alluvial deposits along intermittently to episodically flooded washes, streams, stream terraces, and fans (McMinn 1939, Sawyer et al. 2009).
C. Elevation range	30–1600 m (FNA 2016)
D. Soil: texture, chemicals, depth	Well-drained alluvial deposits. In a study in the upper Santa Ana River flood plain, Burk et al. (2007) found scalebroom tolerated a range of alluvial substrates from fines to gravel as well as accumulated organics. The sediments can be derived from a variety of parent materials, including granitic substrates and various sedimentary rocks.
E. Precipitation	Precipitation falls primarily from November through May during the cool season in most of scalebroom's range; summer monsoon rains are common in portions of the Mojave Desert where scalebroom is less common. Though rainfall is variable across its range, scalebroom tends to grow in areas with a total annual precipitation of 10 to 30 in (25 to 75 cm). In southern California, annual precipitation normals range from 10 to 40 in for interior Southern California Mountains and Valleys (M262B), 14 to 50 in for areas along the Southern California Coast (261B), and 20 to 40 inches for the Sierra Nevada Foothills (M261F). The total annual precipitation may be less important than the amount of water that flowsthrough occupied habitat.
F. Drought tolerance	Appears tolerant of summer drought, but may partially escape drought by growing in sandy channels.
G. Flooding or high water tolerance	Adapted to areas having dynamic fluvial processes(Sawyer et al. 2009) tolerating episodic to intermittent flooding events and areas that receive scouring floods. Bendix (1999) found <i>L. squamatum</i> associated with a 20-year flood zone recovered quickly after flooding.
H. Wetland indicator status for California	For Arid West Region = FACU (facultative upland); for Western Mountains, Valleys, and Coast = FACU (USDA Plants 2016).
I. Shade tolerance	Full sun.
V. CLIMATE CHANGE AND PROJECTED FUTURE SUITABLE HABITAT	
Baseline (1951-	1980) Habitat Suitability Projected (2040-2069) Stable Habitat
Suitability	

Low 0 50 100 km

High

Projected (2040-2069) Habitat Loss

A. Species Distribution Models (SDM forecasts, Riordan et al. 2018) Map descriptions

Modeled habitat suitability under (A) baseline (1951–1980) and (B–D) projected midcentury (2040–2069) climate conditions. Projected future habitat suitability maps show agreement across five different climate model scenarios: (B) stable = suitable under both baseline and future conditions; (C) loss = suitable under baseline but unsuitable under future conditions; (D) gain = unsuitable under baseline and becoming suitable under future conditions. In all maps, land area that has already been converted to urban and agriculture land uses is masked in dark gray (FRAP 2015 Assessment; https://map.dfg.ca.gov/metadata/ds1327.html).

B. SDM summary	Species distribution model predictions of future suitable habitat for scalebroom under 21st century climate change are variable. Assuming a future of continued high greenhouse gas emissions, Riordan et al. (2018) predicted 12–100% of baseline habitat in southern California would remain suitable (stable) under mid- century conditions across future climate scenarios from five different general circulation models (GCMs) (SDM maps Fig. B). Predicted gain in suitable habitat exceeded loss under four of the five climate scenarios (SDM maps Figs. C-D), but predictions varied widely among climate scenario considered, while the greatest loss (88%) in suitable habitat was predicted under the wettest scenario considered, while the greatest loss (88%) in suitable habitat was predicted under the driest scenario considered. Contrasting modeling work by Principe et al. (2013) predicted that most of the currently suitable habitat for scalebroom would remain suitable by mid-century. Their models also differed in the geographic distribution of habitat suitability with a greater area of San Diego Co. predicted to be suitable under current climatic conditions. SDM predictions should be interpreted with caution. Scalebroom is sensitive to the substrate and fluvial dynamics of alluvial fans and outwashes, factors that are not well captured in the environmental predictors of the SDMs (Riordan et al. 2017). An overlay of fans and streams with alluvial deposits would provide more resolution as to where the plants might grow within the predicted suitable habitat. In some cases, the correlative approach used to relate distributional data with environmental conditions may not correlate with the population-level processes driving species' persistence, as when extinction risk is sensitive to life history traits (Fordham et al. 2012). Additionally, other threats, such as human land use, invasive species, and fire, may interact with climate change. The high degree of habitat conversion and fragmentation in southern California creates a consid
C. Modeling caveats (concerns)	The five general circulation models (GCMs) used to predict future habitat suitability assume a 'business-as- usual' scenario of high greenhouse gas emissions that tracks our current trajectory (IPCC scenario RCP 8.5). They show how climate may change in southern California and highlight some of the uncertainty in these changes. The true conditions at mid-21st century, however, may not be encompassed in these five models. Predictions of current and future habitat suitability should be interpreted with caution and are best applied in concert with knowledge about the biology, ecology, population dynamics and demographics of the species. They are best interpreted as estimates of exposure to projected climate change. Our models characterize habitat suitability with respect to climate and parent geology but do not include other factors, such as biotic interactions or disturbance regimes, that may also influence species distributions. Additionally, they do not include the adaptive capacity of a species, which will affect its sensitivity to changes in climate. See Riordan et al. (2018) for more information on SDM caveats.

VI. GROWTH, REPRODUCTION, AND DISPERSAL

A. Seedling emergence relevant to general ecology

Seedlings emerge in openings in alluvial scrub vegetation on alluvial substrates. The cotyledons are green, glabrous, and linear. The first true leaves are broadly ovate and whitish with dense woolly hairs (canescent). Branches with scale leaves start to grow within 5 months. The timing of emergence appears to vary with temperature and moisture conditions but is typically in late winter to early spring.

Juvenile plant on 8/2/2011 establishing in flood-carried sediments. Seedling about 5 months old. Photo, A. Montalvo.

B. Crowth nattorn	Growth patterns in southern California are more similar to species that grow in riparian environments than to
(phenology)	plants typical of sage scrub and chaparral shrublands. Seedlings typically emerge in safe sites in outwash deposits during the winter rainy season or after episodic flood waters have receded. In the field, plants can take several years to reach reproductive maturity. Most vegetative growth occurs from early spring tonid-summer. Flowering occurs primarily from mid-summer into the fall, peaking September–October (Jepson eFlora 2016, map of CCH collections by month). Most seeds disperse in the late fall after which plants appear inactive and dormant until late winter or spring. In western Riverside County, after unusual early summer rainfall events, plants may flower and disperse seeds earlier than usual (A. Montalvo pers. obs.). In a study of Mojave Desert shrubs from April 2006 to April 2007, maximum stomatal conductance for <i>L. squamatum</i> was observed in November and minimums were observed in the cold winter months of December and March (Jacobsen et al. 2008). The maximum (least negative) seasonal water potentials were observed in August during the dry summer period, which coincides with flowering. The authors noted that the distribution of this species extends eastward into summer rainfall regions of the eastern Mojave Desert and Arizona where summer rainfall events are common. Plants may have the capacity to respond to different rainfall patterns.
C. vegetative propagation	Plants can be propagated from underground runners (Everett 2012). Pieces of plants are able to travel downstream during floods and sprout from under the sediments (Sawyer et al. 2009). The extent and diversity of clones (size and distribution of genotypes) has not been studied.
D. Regeneration after fire or other disturbance Damaged stems resprouting after scouring flood waters i Canyon Wash, Orange Co., Photo, A. Montalvo.	Plants resprout readily from underground root/stem structures after shearing from flood scour, after being buried by sediments, or after fire (Sawyer et al. 2009, A. Montalvo pers. obs.) They can sprout from stems and root crowns after burial by deep flood sediments or after disturbance from grading for development purposes. Plants have thin bark and a canopy structure that is considered fire sensitive(Sawyer et al. 2009), despite ability to resprout postfire.
E. Pollination	Flowers are visited by a variety of bees, wasps, flies, and butterflies (Moldenke 1976). Moldenke lists many visitors, especially Halictid bees, <i>Xylocopa</i> , and what he refers to as the "guild of Compositae-specific bees of diverse families". See slide share site http://www.slideshare.net/cvadheim/promoting-pollinators-2010). The larger bees, such as <i>Xylocopa</i> and honey bees are known to forage over substantial distances of over 1,000 to 10,000 km (Zurbuchen et al. 2010).
F. Seed dispersal	Wind dispersed. The single-seeded achenes (regarded as seeds) have a long pappus and are readily carried away by wind. Strong Santa Ana winds often occur during seed dispersal season in Riverside County.
G. Breeding system, mating system	Genus listed as self-incompatible (Moldenke 1976) and primarily outbreeding. Scalebroom heads produce perfect flowers (both male and female parts) with an unspecialized pollination mechanism allowing insects to transfer self pollen to stigmas of flowers within a plant. Studies of the closely related, rare plant <i>Lepidospartum burgessii</i> show that self-pollen fails to germinate on its stigmas indicating possible sporophytic incompatibility, a trait possessed by many plants in the Asteraceae (Ladyman 2004). In clonal plants, such incompatibility can result in many flowers failing to develop seeds (Rogers & Montalvo 2004, Williams et al. 2016).
H. Hybridization potential	There are no studies of hybridization potential and hybrid compatibility, but theprimarily allopatric (non- overlapping) distribution of taxa within <i>Lepidospartum</i> suggests hybridization potential is low. Taxa might occasionally overlap in the Mojave Desert region.

I. Inbreeding and outbreeding effects	Ability to form clones provides opportunities for increased receipt of self pollen, but the degree of inbreeding and inbreeding effects have not yet been studied. Research on scalebroom's relative <i>L. burgessii</i> noted that the rare endemic plant's low seed set may be the result of inbreeding and/or a lack of compatible mates because in rare, self-incompatible plants, populations with low genetic variation sometimes suffer from a low incidence of compatible mates (Williams et al. 2016). Inbreeding coefficients for two populations of <i>L. burgessii</i> ($F_{IS} = 0.38$ and 0.24) were relatively high but a bit lower than for the widespread <i>L. latisquamum</i> ($F_{IS} = 0.44$) (Williams et al. 2016). The high inbreeding coefficients suggest relatively high inbreeding among close relatives which could result in genetic drift influencing population structure if dispersal is limited. Given scalebroom's distribution and dispersal abilities, it is likely that inbreeding coefficients are lower than for these other species.
VII. BIOLOGICAL	AINTERACTIONS
A. Competitiveness	Plants tend grow in alluvial scrub vegetation communities with low cover relative to adjacent stands of chaparral, coastal sage scrub, oak woodland, or riparian scrub such as mulefat-willow scrub. Young seedlings are not likely to be good competitors.
B. Herbivory, seed predation, disease	Larvae of various insects feed on the flowers and developing fruits including the Typhridid fly <i>Neaspilota viridenscens</i> (Goeden 1989), the Lepidopteran moth <i>Lycomorpha regulus</i> (Comstock & Henne 1967), and the Hemipteran bug <i>Largus californicus</i> (Booth 1990).
C. Palatability, attractiveness to animals, response to grazing	The vegetative plant produces a strong, pungent odor that likely deters mammalian herbivores. Reported to be toxic and unpalatable to livestock (Keil & Barkley 2012). Plants produce abundant quantities of the sesquiterpine compound epoxydecompostin (Flamm et al. 1976).
D. Mycorrhizal? Nitrogen fixing nodules?	Bethlenfalvay et al. (1984) reported association with vascular arbuscular mycorrhizal fungi (VAM) in the genus <i>Glomus</i> with roots of <i>Lepidospartum squamatum</i> in a site in the desert (Anza Borrego State Park). The VAM fungi found are considered non-host-specific. No reports were found for alluvial sage scrub occurrences.
VIII. ECOLOGICAL GENETICS	
A. Ploidy	2n = 60, 90 (FNA 2016). Ornduff et al. (1963) and Strother (1983) reported a base number of $x = 10$ and $n = 30$. No geographic patterns to the variation in ploidy have been reported.
B. Plasticity	No published studies that quantify plasticity or environmental variation. Leaf form can be variable within plants depending on age and sprouting status (see III. B. Distinguishing traits), and flowering time can vary depending on rainfall patterns.
C. Geographic variation (morphological and physiological traits)	No published studies of geographic variation. Wheeler (1938) noted two, localized morphological variants, but no substantial spatial patterns. There is a local form from the Whitewater area of the Coachella Valley he recognized as <i>L. s.</i> var. <i>palmeri</i> and a possible race in the Santa Anita Wash (Arcadia, Altadena) where the vegetative branches of mature plants tend to retain some leaves of the juvenile form.
D. Genetic variation and population structure	Population structure and the extent of clone formation have not been studied in <i>L. squamatum</i> , but studies on two congeners with many shared life-history traits provide some insight. Williams et al. (2016) used eight microsatellite loci to examine the extent of clone formation and pattern of genetic variation within and among populations of the rare, narrow endemic <i>L. burgessii</i> relative to the more common, widespread <i>L. latisquamum</i> . Over half the shoots in a patch of <i>L. burgessii</i> were likely from the same clone (genet) and clones identical in genotype were found up to 305 m away, corroborating vegetative spread. In contrast, there was no evidence for clonal spread in <i>L. latisquamum</i> . Diversity statistics were similar for the two species with both having relatively high heterozygosity (H _e averaged 0.32 for <i>L. b.</i> and 0.41 for <i>L. l.</i>). An analysis of population structure showed low structure for patches separated by 0.1–5 km relative to the total population of patches (<i>L. burgessii</i> F _{ST} = 0.180; <i>L.</i> <i>latisquamum</i> F _{ST} = 0.116), indicating that most variation was found within or among individuals rather than among patches. This level of structure is normally consistent with moderate levels of gene flow, but these plants also have high inbreeding coefficients (see VI. I. Inbreeding and outbreeding effects). The authors suggest that gene flow is lower than expected from the seed and pollen dispersal mechanisms. The low seed set in both species might be influenced by a combination of inbreeding and a deficiency of S-alleles needed for a well-functioning self-incompatibility system.
E. Phenotypic or genotypic variation in interactions with other organisms	No studies found.
F. Local adaptation	No studies found.

G. Translocation risks	Not studied. There are no common garden, reciprocal transplant, or hybridization studies available. Risks of translocation are expected to be low within ecological regions and watersheds as long as planted within appropriate habitat.
IX. SEEDS	ASTERACEAE ASTERA
A. General	Seed lots can be highly variable in purity and germination among years and from different locations. Most bulk seed lots have a low percentage of PLS, from 3–6% (S&S Seeds 2016, Stover Seed Co. 2016) and in many populations and years, flowers produce a low percentage of filled seeds (A. Montalvo pers. obs.). Wild collections of seeds by Irvine Ranch Conservancy have averaged about 2% viability (M. Garrambone pers. com).
B. Seed longevity	Seeds are not expected to remain viable for more than a year in the soil. Seeds in warehouse storage at ambient conditions in coastal California experience steep losses in viability after one year (S&S Seeds, personal communication). Kay et al. (1984) found seed germination to be negligible at 30 months when stored under warehouse conditions. Longevity can be increased under cool, dry storage. At the RCRCD, cleaned seed lots dried to ambient conditions and stored in closed containers in a walk-in cold room (conditions ranging from 41 to 50°F at 37–45% relative humidity) remained viable and produced hardy plants for at least three full years (A. Montalvo pers. obs.).
C. Seed dormancy	Non-dormant. Seeds germinate without pretreatment (Emery 1988, Everett 2012).
D. Seed maturation	Seeds typically mature in phases in the fall and begin to disperse mid-fall to late fall.
E. Seed collecting and harvesting Unusually good seed-filling after a wet winter. (Photo by A. Montalvo 7 Nov. 2017, Temescal Wash, Riverside Co.)	Achenes should be collected when they are dark brown to black and the pappus is dry and fluffy (when they are ready to disperse by wind). Ripe seeds can be collected by plucking or shaking the branches over open baskets or large buckets. Transfer to woven sacks or large containers with lids for transport to processing location. Remove lids after transport to allow aeration and avoid condensation. (IX. D-G. A. Montalvo pers. obs.)
F. Seed processing	Place collected material loosely in large open containers and remove any large stems. Allow seeds to dry in open containers away from wind in an area with good air circulation and away from full sun. After seeds are dry, screen out large impurities and insects before placing in cool, dry storage.
G. Seed storage	Store seeds under dry, cool conditions to increase longevity to more than one year (see IX. B. Seed longevity). Seeds stored under ambient conditions should be used within a year of collection. The long pappus and low seed filling result in large bags of seed for storage.
H. Seed germination	Germination occurs under a range of temperatures and is limited by moisture availability. Nursery: In the outdoor nursery at RCRCD in Riverside, California, successful germination occurs for seeds planted in flats from early December through early February when days and nights are cool. Most seeds begin to germinate six to seven days after planting and complete germination occurs within three weeks (Everett 2012, A. Montalvo pers. obs.). In a study of plants from the Mojave Desert, <i>L. squamatum</i> germinated best at 5°C with values of 47% and 58% for two different collections, whereas most other species germinated best at 15°C (Kay et al. 1984). Seeds have also been reported to germinate at 21°C (Graves et al. 1975). Field: In field studies by the Irvine Ranch Conservancy in Orange Co. California during a drought, seedlings emerged January through late March in irrigated plots and throughout March in un-irrigated plots following late rains (M. Garrambone & M. Major pers. com.). At sites in western Riverside County, seedlings emerged in March to April following soaking rains or receding floodwaters (A. Montalvo pers. obs.).
I. Seeds/lb	The average live seeds per bulk pound of commercial seed lots has been reported as 19,800 with the number of seeds in a PLS lb as 370,000 (S&S Seeds 2016). Others have reported 27,000 live seeds per lb (based on 20% purity, 30% germination, and 450,000 seeds per PLS lb (Stover Seed Company 2016).

J. Planting K. Seed increase activities or potential	 Nursery: Seeds should be planted shallowly and provided with ample sunlight. Plant seeds on the surface of the soil and cover lightly with soil or coarse sand. Keep seeds moist until germination is complete. Once root have grown into plugs, decrease watering to prevent damping off. Field: At wild field sites, seeds can be sown in sandy, gravelly soil, and sandy loams, gently raked, then tamped to ensure shallow planting(A. Montalvo pers. obs., M. Major pers. com.). Growing plants for seed increase is expected to supply higher quality seeds with greater seed filling if the genetic diversity of plantings is high. Seeds could be collected and sown within a few months of harvest, saving valuable cold storage space. The Irvine Ranch Conservancy in Orange Co. is actively working on
	methods to increase success of seed farm plantings for seed production of scalebroom at their seed farm in Irvine, Orange Co, California (see X. C. Horticulture or agriculture).
X. USES	
A. Revegetation and erosion control	Can be successful established from seeds or containers in disturbed wash habitats below 5,000 ft (~1,500 m) in the Southern California Mountains and Valleys Section (A. Montalvo, pers. obs.). Plants may be able to grow on loose hillsides adjacent to washes to help control erosion (Everett 2012).
B. Habitat restoration	Used in the restoration of alluvial scrub habitat in southern California. In the Temescal Valley area, both seeds and container plants have been planted by the Riverside-Corona Resource Conservation District with mixed success (A. Montalvo and S. Pynn pers. obs.). Most mortality of container plants appears shortly after outplanting from damage to plants. Survival of plants from 3" x 9" containers outplanted in January 2016 during a drought and drip irrigated two to four times a month until the fall, was 68% after eight months. In two other trials using similar irrigation, survival of plants from 3" x 9" and two gallon pots installed in February 2015 was 86% to 18 months, and survival of plants installed in March 2014 was 82.7% after 18 months (container sizes included 3" x 9", 4" x 10" and two gallon). In restoration trials by Irvine Ranch Conservancy in Orange Co., seedlings in irrigated seeded plots reached an average height of 7.3 cm after five months, while plants in unirrigated plots averaged 3.5 cm. In low water plots planted with liners at the same time, plant height averaged 8.3 cm after five months, while plants in high water plots averaged 6.4 cm (M. Major pers. com.). Watering of irrigated plots occurred every 2 to 3 weeks during spring, and every 3 to 5 weeks during summer. Observers noted differences in soil depth had a large influence on plant survival and growth. Plants in plots with at least 2 in of sandy loam. In the Mojave Desert, <i>L. squamatum</i> was one of the species seeded to restore the corridor used to bury a pipeline aqueduct. Transects in unseeded areas had limited natural recruitment. After 36 years, in 20 randomly placed transects over unseeded sites, only one <i>L. squamatum</i> was found (Berry et al. 2016). Abella & Newton (2009) noted survival of 8% for another desert seeding project.
C. Horticulture or agriculture The second se	 Nursery: Can be grown easily from seed in containers and then outplanted. At the RCRCD nursery in Riverside, seeds are sown in plug flats. Plugs are shifted into larger pots after seedlings develop their first two sets of true leaves and roots reach the bottom of plugs. Plants start slowly but obtain quart size (3" x 9" square containers) within seven months and can remain in same pots for a year before shifting to larger pots or outplanting. A well-drained soil mix is necessary. After plants are transferred to the larger pots, watering is adjusted to allow soil to dry down between watering events. Once branches with scale leaves develop, shoots become brittle, so care must be taken not to break plants when moving pots and removing plants from pots for transplanting. Agriculture: In one planting trial, the Irvine Ranch Conservancy (IRC) outplanted seedlings in rose pots in December in a single row with 2.5 ft spacing, but fewer than 5% of plants reached reproductive maturity (M. Garrambone pers. com.). IRC will be trying larger-sized plants in their next trial.
D. Wildlife value	Provides cover for wildlife such as small mammals and nesting birds. Breeding areas of the Texas nighthawk (<i>Chordeiles acutipennis texensis</i>) in the Santa Clara Valley were associated with gravel beds at sites occupied by scale-broom (Pickwell & Smith 1938). In southern California, scale-broom scrub also provides habitat for a number of rare species including legless lizards, <i>Anniella</i> (Papenfuss & Parham 2013), San Bernardino kangaroo rat (Burk et al. 2007, RCA 2015), Dulzura kangaroo rat, and Los Angeles pocket mouse (RCA 2012 a, b). The plant also provides nectar and pollen for a variety of bees and butterflies in the late summer when few flowers are available (see VI. E. Pollination). Although the plant is toxic and unpalatable to livestock (Keil & Barkley 2016), the plant's rating as low value for wildlife by Conrad (1987) should be reconsidered.
E. Plant material releases by NRCS and cooperators	None reported. Not a likely candidate.
F. Ethnobotanical	None reported.

XI. acknowledgments	Partial funding for production of this plant profile was provided by the U.S. Department of Agriculture, Fores Service, Pacific Southwest Region Native Plant Materials Program and the Pacific Southwest Research Station, and the Riverside-Corona Resource Conservation District. We thank Jennifer Buck-Diaz for reviewing the draft manuscript.
XII. CITATION	Montalvo, A. M., E. C. Riordan, and J. L. Beyers. 2017. Plant Profile for <i>Lepidospartum squamatum</i> . Native Plant Recommendations for Southern California Ecoregions. Riverside-Corona Resource Conservation District and U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, CA. Online: https://www.rcrcd.org/plant-profiles
XIII. LINKS TO R	EVIEWED DATABASES & PLANT PROFILES
Calflora	https://www.calflora.org//cgi-bin/species_query.cgi?where-calrecnum=4718
Calscape	https://calscape.org/Lepidospartum-squamatum-(Scale-Broom)?srchcr=sc5bca3ff0ecd64_
Fire Effects Information System (FEIS)	https://www.feis-crs.org/feis/ (not treated)
Jepson Flora, Herbarium (JepsonInterchange)	http://ucjeps.berkeley.edu/cgi-bin/get_cpn.pl?3776
Jepson eFlora (JepsonOnline, 2nd ed.)	https://ucjeps.berkeley.edu/cgi-bin/get_cpn.pl?3776
USDA PLANTS	https://plants.usda.gov/core/profile?symbol=LESQ
Native Seed Network (NSN)	https://www.nativeseednetwork.org/
GRIN (provides links to many resources)	https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?id=466362
Native American Ethnobotany Database (NAE)	http://naeb.brit.org/
Rancho Santa Ana Botanic Garden Seed Program, seed photos	http://www.hazmac.biz/091214/091214LepidospartumSquamatum.html
Flora of North America (FNA) (online version)	http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=220007452
XIV. IMAGES	Seed images by John Macdonald used with permission from Rancho Santa Ana Botanic Garden Seed Program (RSABG Seed Program), with rights reserved by RSABG. Images may not be used for commercial purposes. All other images by Arlee Montalvo (copyright 2017) unless otherwise indicated with rights reserved by the Riverside-Corona Resource Conservation District (RCRCD). Photos may be used freely for non- commercial and not-for-profit use if credit is provided. All other uses require permission of the authors and the Riverside-Corona Resource Conservation District.

Bibliography for Lepidospartum squamatum

- Abella, S. R., and A. C. Newton. 2009. A systematic review of species performance and treatment effectiveness for revegetation in the Mojave Desert, USA. Pages 45-74 in A. Fernandez-Bernal and M. A. De La Rosa, editors. Arid Environments and Wind Erosion. Nova Science Publishers, Inc., Hauppauge, NY.
- Barbour, M. G., and J. Wirka. 1997. Classification of alluvial scrub in Los Angeles, Riverside and San Bernardino Counties. Report to California Department of Fish and Game, Sacramento, CA.
- Bendix, J. 1998. Impact of a flood on southern California riparian vegetation. Physical Geography 19:162-174.
- Bendix, J. 1999. Stream power influence on southern Californian riparian vegetation. Journal of Vegetation Science **10**:243-252.
- Berry, K. H., J. F. Weigand, T. A. Gowan, and J. S. Mack. 2016. Bidirectional recovery patterns of Mojave Desert vegetation in an aqueduct pipeline corridor after 36 years: I. Perennial shrubs and grasses. Journal of Arid Environments 124:413-425.
- Bethlenfalvay, G. J., S. Dakessian, and R. S. Pakovsky. 1984. Mycorrhizae in a southern California desert: Ecological implications. Canadian Journal of Botany **62**:519-524.
- Booth, C. L. 1990. Biology of *Largus californicus* (Hemiptera: Largidae). The Southwestern Naturalist **35**:15-22.
- Buck-Diaz, J., J. M. Evens, and A. M. Montalvo. 2011. Alluvial scrub vegetation of southern California, a focus on the Santa Ana River watershed in Orange, Riverside, and San Bernardino Counties, California. Report to USDA Forest Service, Grant Program, National Fire Plan Restoration/Rehabilitation of Burned Areas. Available: https://cnps.org/wp-content/uploads/2018/03/alluvial scrub-diaz evans2011.pdf. [Accessed: 10 October 2018]
- Burk, J. H., C. E. Jones, W. A. Ryan, and J. A. Wheeler. 2007. Floodplain vegetation and soils along the upper Santa Ana River, San Bernardino County, California. Madroño **54**:126-137.
- Calflora. 2017. Information on California plants for education, research and conservation [web application]. The Calflora Database [a non-profit organization], Berkeley, California. Available: https://www.calflora.org/. [Accessed 29 December 2017]
- CCH. 2016. Consortium of California Herbaria. Regents of the University of California, Berkeley, California. On line database: https://ucjeps.berkeley.edu/consortium/. [Accessed 20 July 2016].
- Cleland, D. T., J. A. Freeouf, J. E. Keys, G. J. Nowacki, C. A. Carpenter, and W. H. McNab. 2007. Ecological Subregions: Sections and Subsections for the Conterminous United States. General Technical Report WO-76D [Map on CD-ROM] (A.M. Sloan, cartographer). U.S. Department of Agriculture, Forest Service, Washington, DC.
- Comstock, J. A., and C. Henne. 1967. Early stages of *Lycomorpha regulus* Grinnell, with notes on the imago (Lepidoptera: Amatidae). Journal of Research on the Lepidoptera **6**:275-280.
- Conrad, C. E. 1987. Common Shrubs of Chaparral and Associated Ecosystems of Southern California. General Technical Report PSW-99, U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, CA.
- Emery, D. E. 1988. Seed Propagation of California Native Plants. Santa Barbara Botanic Garden, Santa Barbara, CA.
- Evens, J. 2011. Identification and mapping of rare plant communities-- State of knowledge and adoption

of standardized techniques. Pages 49-55 *in* Proceedings of the CNPS Conservation Conference, January 17-19, 2009. California Native Plant Society, Sacramento, CA.

- Everett, P. C. 2012. A Second Summary of the Horticulture and Propagation of California Native Plants at the Rancho Santa Ana Botanic Garden, 1950-1970. Edited by Bart C. O'Brien. Rancho Santa Ana Botanic Garden, Claremont, CA.
- Flamm, B. L., J. A. Pettus Jr, J. J. Sims, J. P. Springer, and J. Clardy. 1976. Isolation of epoxydecompostin from *Lepidospartum squamatum* Gray and its structure revision. Tetrahedron Letters 17:2671-2674.
- Fordham, D. A., H. Resit Akçakaya, M. B. Araújo, J. Elith, D. A. Keith, R. Pearson, T. D. Auld, C. Mellin, J. W. Morgan, T. J. Regan, M. Tozer, M. J. Watts, M. White, B. A. Wintle, C. Yates, and B. W. Brook. 2012. Plant extinction risk under climate change: Are forecast range shifts alone a good indicator of species vulnerability to global warming? Global Change Biology 18:1357-1371.
- FNA 2016. Volume 20. No. 238, Lepidospartum. Flora of North America North of Mexico. New York and Oxford. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=118069. [Accessed November 2017]
- Goeden, R. 1989. Host plants of *Neaspilota* in California (Diptera: Tephritidae). Proceedings of the Entomological Society of Washington **91**:164-168.
- Goudey, C. B., and D. W. Smith, editors. 1994. Ecological Units of California: Subsections (map). U.S. Department of Agriculture, Forest Service. Pacific Southwest Region, San Francisco, CA. Scale 1:1,000,000; colored.
- Graves, W. L., B. L. Kay, and W. A. Williams. 1975. Seed treatment of Mojave Desert shrubs. Agronomy Journal **67**:773-777.
- Hanes, T., R. Friesen, and K. Keane. 1989. Alluvial scrub vegetation in coastal southern California. Pages 187-193 in D. L. Abella, technical coordinator. Proceedings of the California Riparian Systems Conference: Protection, Management, and Restoration for the 1990s. General Technical Report PSW-110. U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, CA.
- Holland, R. F. 1986. Preliminary Descriptions of the Terrestrial Natural Communities of California. State of California Department of Fish and Game, Nongame Heritage Program, Sacramento, CA.
- Jacobsen, A. L., R. B. Pratt, S. D. Davis, and F. W. Ewers. 2008. Comparative community physiology: Nonconvergence in water relations among three semi-arid shrub communities. New Phytologist 180:100-113.
- Jepson, W. L. 1925. A Manual of the Flowering Plants of California. University of California Press, Berkeley, CA.
- Jepson eFlora. 2016. Jepson Flora Project (eds.) Jepson eFlora, http://ucjeps.berkeley.edu/cgibin/get_IJM.pl?tid=506.
- Kay, B. L., C. C. Pergler, and W. L. Graves. 1984. Storage of seed of Mojave Desert shrubs. Journal of Seed Technology 9:20-28.
- Keil, D.J., and T. M. Barkley 2016. *Lepidospartum*. *In* Jepson Flora Project (eds.) Jepson eFlora, http://ucjeps.berkeley.edu/cgi-bin/get IJM.pl?tid=506 [Accessed 18 February 2016].
- Kirkpatrick, J. B., and C. F. Hutchinson. 1977. The community composition of California coastal sage scrub. Vegetatio **35**:21-33.

- Ladyman, J. A. R. 2004. *Lepidospartum burgessii* B.L. Turner. Pages 434-436 *in* J. K. Francis, editor.
 Wildland Shrubs of the United States and its Territories: Thamnic Descriptions. Volume 1.
 General Technical Report IITF-GTR-26, USDA Forest Service, International Institute of Tropical Forestry and Rocky Mountain Research Station, Fort Collins, CO.
- McMinn, H. E. 1939. An Illustrated Manual of California Shrubs. J. W. Stacey, Incorporated, San Francisco, CA.
- Moldenke, A. R. 1976. California pollination ecology and vegetation types. Phytologia 34:305-361.
- Munz, P. A. 1974. A Flora of Southern California. University of California Press, Berkeley, CA.
- Munz, P. A., and D. D. Keck. 1968. A California Flora with Supplement. University of California Press, Berkeley, CA.
- NSN. 2016. Native Seed Network. Home page http://www.nativeseednetwork.org/.
- Ornduff, R., P. H. Raven, D. W. Kyhos, and A. R. Kruckeberg. 1963. Chromosome numbers in Compositae. III. Senecioneae. American Journal of Botany **50**:131-139.
- Painter, E. 2016. Common (vernacular) names applied to California vascular plants. University of California Jepson Herbarium, Online database: <u>https://ucjeps.berkeley.edu/</u>cgi-bin/get painter common.pl?3776.
- Papenfuss, T. J., and J. F. Parham. 2013. Four new species of California legless lizards (*Anniella*). Breviora **536**:1-17.
- Pelser, P., B. Nordenstam, J. Kadereit, and L. Watson. 2007. An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of *Senecio* L. Taxon **56**:1077-1104.
- Pickwell, G., and E. Smith. 1938. The Texas nighthawk in its summer home. The Condor 40:193-215.
- Principe, Z., J. B. MacKenzie, B. Cohen, J. M. Randall, W. Tippets, T. Smith, and S. A. Morrison. 2013. 50-Year Climate Scenarios and Plant Species Distribution Forecasts for Setting Conservation Priorities in Southwestern California v.1. The Nature Conservancy of California, San Francisco, CA.
- Riordan, E.C, A.M. Montalvo, and J. L. Beyers. 2018. Using Species Distribution Models with Climate Change Scenarios to Aid Ecological Restoration Decisionmaking for Southern California Shrublands. Research Paper PSW-RP-270. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA. 130 p. Available: https://www.fs.fed.us/psw/publications/documents/psw/pp270/. [Accessed 6 September 2018].
- RCA (Regional Conservation Authority). 2012a. Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP) Biological Monitoring Program: Aguanga Kangaroo Rat (*Dipodomys merriami collinus*) Survey Report 2011. Riverside County. Available: https:// www.wrc-rca.org/about-rca/annual-reports/ [Accessed 15 November 2017].
- RCA. (Regional Conservation Authority). 2012b. Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP) Biological Monitoring Program: Los Angeles Pocket Mouse (*Perognathus longimembris brevinasus*) Survey Report 2011. Riverside County. Available at: https://www.wrc-rca.org/about-rca/annual-reports/
- RCA. (Regional Conservation Authority). 2015. Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP) Biological Monitoring Program: 2015 San Bernardino Kangaroo Rat (*Dipodomys merriami parvus*) Survey Report. Riverside County. Available at: https://www.wrc-rca.org/about-rca/annual-reports/

- Rogers, D. L., and A. M. Montalvo. 2004. Genetically appropriate choices for plant materials to maintain biological diversity. University of California. Report to the U.S. Department of Agriculture, Forest Service, Rocky Mountain Region, Lakewood, CO. Available: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev3_039080.pdf
- Sawyer, J. O., T. Keeler-Wolf, and J. M. Evens. 2009. A Manual of California Vegetation. 2nd edition. California Native Plant Society Press, Sacramento, CA.
- Smith, R. 1980. Alluvial scrub vegetation of the San Gabriel River floodplain, California. Madroño **27**:126-138.
- S&S Seeds. 2016. S & S Seeds Inc. Plant database: http://www.ssseeds.com/database/index.html. [Accessed July, 2016].
- Stover Seed Company. 2016. Species List. Online database: http://www.stoverseed.com/websearch/specieslist.cfm. [Accessed July 2016].
- Strother, J. L. 1983. More chromosome studies in Compositae. American Journal of Botany **70**:1217-1224.
- USDA PLANTS. 2016. The PLANTS Database (<u>http://plants.usda.gov</u>, 24 June 2016). National Plant Data Team, Greensboro, NC 27401-4901 USA.
- Wheeler, L. C. 1938. The type of the genus *Lepidospartum*. Contributions from the Gray Herbarium of Harvard University **122**:320-323.
- Williams, E. W., R. Cheung, C. Siegel, M. Howard, J. Fant, and K. Havens. 2016. Persistence of the gypsophile *Lepidospartum burgessii* (Asteraceae) through clonal growth and limited gene flow. Conservation Genetics DOI 10.1007/s10592-016-0855-0: 1-11.
- Wirka, J. L. 1997. Alluvial Scrub Vegetation in Southern California: A Case Study Using the Vegetation Classification of the California Native Plant Society. Masters thesis. University of California, Davis.
- Zurbuchen, A., L. Landert, J. Klaiber, A. Müller, S. Hein, and S. Dorn. 2010. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biological Conservation 143:669-676.